1
|
Varma S, Bamb AL, Haldar N, Gajbhiye V, Amalnerkar D, Chaudhari BP. Gold Nanorods (GNRs): A Golden Nano Compass to Navigate Breast Cancer by Multimodal Imaging Approaches. J Biomed Mater Res B Appl Biomater 2025; 113:e35543. [PMID: 39917809 DOI: 10.1002/jbm.b.35543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 05/08/2025]
Abstract
The ongoing rise in the incidences of breast cancer cases has concerned medical and scientific personnel around the world. Adequate treatment of cancer predominantly relies on the pertinent diagnosis of the type of cancer as well as other molecular and cellular details at the initial stage only. Surprisingly, up till now, there is no single, self-reliant imaging modality that helps to systematically find out the anatomical and functional events taking place inside the body. This resulted in the advent of the multimodal imaging concept, which encompasses the integration of complementary imaging modalities by designing multimodal imaging probes. Gold nanorods (GNRs) are extremely popular and effective nanoparticles for multimodal bioimaging due to their unique properties. Researchers have designed varieties of stable and biocompatible GNR-based probes for targeted and nontargeted multimodal imaging of breast cancer. However, there is a lack of investigations on the in vivo fate and the toxicity of GNRs. Thus, their preclinical to clinical translation can be attained by comprehensively determining the in vivo fate and toxicity of GNRs. The review provides details about the GNRs-based nanoprobes fabricated so far for breast cancer imaging, which, by consequent studies, can be taken up to clinical usage.
Collapse
Affiliation(s)
- Sanjana Varma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aagam Lalit Bamb
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niladri Haldar
- Nanobioscience Group, Agharkar Research Institute, Pune, India
| | | | - Dinesh Amalnerkar
- Department of Applied Sciences and Humanities, Pimpri Chinchwad College of Engineering, Pune, India
| | - Bhushan Pradosh Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Na L, Song X, Luo P, Su J, Yao Z. Innovative applications of advanced nanomaterials in cerebrovascular imaging. Front Bioeng Biotechnol 2025; 12:1456704. [PMID: 39911816 PMCID: PMC11794002 DOI: 10.3389/fbioe.2024.1456704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 02/07/2025] Open
Abstract
Cerebrovascular imaging is essential for the diagnosis, treatment, and prognosis of cerebrovascular disease, including stroke, aneurysms, and vascular malformations. Conventional imaging techniques such as MRI, CT, DSA and ultrasound have their own strengths and limitations, particularly in terms of resolution, contrast and safety. Recent advances in nanotechnology offer new opportunities for improved cerebrovascular imaging. Nanomaterials, including metallic nanoparticles, magnetic nanoparticles, quantum dots, carbon-based nanomaterials, and polymer nanoparticles, show great potential due to their unique physical, chemical, and biological properties. This review summarizes recent advances in advanced nanomaterials for cerebrovascular imaging and their applications in various imaging techniques, and discusses challenges and future research directions. The aim is to provide valuable insights for researchers to facilitate the development and clinical application of these innovative nanomaterials in cerebrovascular imaging.
Collapse
Affiliation(s)
- Li Na
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Xiaofu Song
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| | - Ping Luo
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Jingqi Su
- Liaoning Provincial People’s Hospital, China Medical University, Shenyang, China
| | - Zhicheng Yao
- Department of Neurology, Liaoning Provincial People’s Hospital, Shenyang, China
| |
Collapse
|
3
|
Butt A, Bach H. Nanomedicine and clinical diagnostics part I: applications in conventional imaging (MRI, X-ray/CT, and ultrasound). Nanomedicine (Lond) 2025; 20:167-182. [PMID: 39661327 PMCID: PMC11731363 DOI: 10.1080/17435889.2024.2439776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
Integrating nanotechnologies in diagnostic imaging presents a promising step forward compared to traditional methods, which carry certain limitations. Conventional imaging routes, such as X-ray/computed tomography and magnetic resonance imaging, derive significant advantages from nanoparticles (NPs), which allow researchers and clinicians to overcome some of the limitations of traditional imaging agents. In this literature review, we explore recent advancements in nanomaterials being applied in conventional diagnostic imaging techniques by exploring relevant reviews and original research papers (e.g. experimental models and theoretical model studies) in the literature. Collectively, there are numerous nanomaterials currently being examined for use in conventional imaging modalities, and each imaging technique has unique NPs with properties that can be manipulated to answer an array of clinical questions specific to that imaging modality. There are still challenges to consider, including getting regulatory approval for clinical research and routine use about long-term biocompatibility, which collectively emphasize the need for continued research to facilitate the integration of nanotechnology into routine clinical practice. Most importantly, there is a continued need for strong, collaborative efforts between researchers, biomedical engineers, clinicians, and industry stakeholders, which are necessary to bridge the persistent gap between translational ideas and implementation in clinical settings.
Collapse
Affiliation(s)
- Ahmad Butt
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Parvin N, Kumar V, Mandal TK, Joo SW. Advancements in Nanoporous Materials for Biomedical Imaging and Diagnostics. J Funct Biomater 2024; 15:226. [PMID: 39194664 DOI: 10.3390/jfb15080226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
This review explores the latest advancements in nanoporous materials and their applications in biomedical imaging and diagnostics. Nanoporous materials possess unique structural features, including high surface area, tunable pore size, and versatile surface chemistry, making them highly promising platforms for a range of biomedical applications. This review begins by providing an overview of the various types of nanoporous materials, including mesoporous silica nanoparticles, metal-organic frameworks, carbon-based materials, and nanoporous gold. The synthesis method for each material, their current research trends, and prospects are discussed in detail. Furthermore, this review delves into the functionalization and surface modification techniques employed to tailor nanoporous materials for specific biomedical imaging applications. This section covers chemical functionalization, bioconjugation strategies, and surface coating and encapsulation methods. Additionally, this review examines the diverse biomedical imaging techniques enabled by nanoporous materials, such as fluorescence imaging, magnetic resonance imaging (MRI), computed tomography (CT) imaging, ultrasound imaging, and multimodal imaging. The mechanisms underlying these imaging techniques, their diagnostic applications, and their efficacy in clinical settings are thoroughly explored. Through an extensive analysis of recent research findings and emerging trends, this review underscores the transformative potential of nanoporous materials in advancing biomedical imaging and diagnostics. The integration of interdisciplinary approaches, innovative synthesis techniques, and functionalization strategies offers promising avenues for the development of next-generation imaging agents and diagnostic tools with enhanced sensitivity, specificity, and biocompatibility.
Collapse
Affiliation(s)
- Nargish Parvin
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Vineet Kumar
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
5
|
Thomas N, Puluhulawa LE, Cindana Mo’o FR, Rusdin A, Gazzali AM, Budiman A. Potential of Pullulan-Based Polymeric Nanoparticles for Improving Drug Physicochemical Properties and Effectiveness. Polymers (Basel) 2024; 16:2151. [PMID: 39125177 PMCID: PMC11313896 DOI: 10.3390/polym16152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Pullulan, a natural polysaccharide with unique biocompatibility and biodegradability, has gained prominence in nanomedicine. Its application in nanoparticle drug delivery systems showcases its potential for precision medicine. AIM OF STUDY This scientific review aims to comprehensively discuss and summarize recent advancements in pullulan-based polymeric nanoparticles, focusing on their formulation, characterization, evaluation, and efficacy. METHODOLOGY A search on Scopus, PubMed, and Google Scholar, using "Pullulan and Nanoparticle" as keywords, identified relevant articles in recent years. RESULTS The literature search highlighted a diverse range of studies on the pullulan-based polymeric nanoparticles, including the success of high-selectivity hybrid pullulan-based nanoparticles for efficient boron delivery in colon cancer as the active targeting nanoparticle, the specific and high-efficiency release profile of the development of hyalgan-coated pullulan-based nanoparticles, and the design of multifunctional microneedle patches that incorporated pullulan-collagen-based nanoparticle-loaded antimicrobials to accelerate wound healing. These studies collectively underscore the versatility and transformative potential of pullulan-based polymeric nanoparticles in addressing biomedical challenges. CONCLUSION Pullulan-based polymeric nanoparticles are promising candidates for innovative drug delivery systems, with the potential to overcome the limitations associated with traditional delivery methods.
Collapse
Affiliation(s)
- Nurain Thomas
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Lisa Efriani Puluhulawa
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Faradila Ratu Cindana Mo’o
- Department of Pharmacy, Faculty of Sport and Health, Universitas Negeri Gorontalo, Jl. Jenderal Sudirman No. 6, Gorontalo 96128, Indonesia; (N.T.); (L.E.P.); (F.R.C.M.)
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, P.Penang, Penang 11800, Malaysia;
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
6
|
Li F, Chen L, Zhong S, Chen J, Cao Y, Yu H, Ran H, Yin Y, Reutelingsperger C, Shu S, Ling Z. Collagen-Targeting Self-Assembled Nanoprobes for Multimodal Molecular Imaging and Quantification of Myocardial Fibrosis in a Rat Model of Myocardial Infarction. ACS NANO 2024; 18:4886-4902. [PMID: 38295159 DOI: 10.1021/acsnano.3c09801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue. Furthermore, although echocardiography is real-time and convenient, it lacks the necessary resolution for detecting fibrotic myocardium, thus limiting its value in fibrosis detection. Inspired by the postinfarction accumulation of collagen types I and III, we developed a collagen-targeted multimodal imaging nanoplatform, CNA35-GP@NPs, comprising lipid nanoparticles (NPs), encapsulating gold nanorods (GNRs) and perfluoropentane (PFP). This platform facilitated ultrasound/photoacoustic/CT imaging of postinfarction cardiac fibrosis in a rat model of myocardial infarction (MI). The surface-modified peptide CNA35 exhibited excellent collagen fiber targeting. The strong near-infrared light absorption and substantial X-ray attenuation of the nanoplatform rendered it suitable for photoacoustic and CT imaging. In the rat model of MI, our study demonstrated that CNA35-GNR/PFP@NPs (CNA35-GP@NPs) achieved photoacoustic, ultrasound, and enhanced CT imaging of the fibrotic myocardium. Notably, the photoacoustic signal intensity positively correlated with the severity of myocardial fibrosis. Thus, this study presents a promising approach for accurately detecting and treating the fibrotic myocardium.
Collapse
Affiliation(s)
- Fang Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Lihua Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Shigeng Zhong
- Department of Ultrasound, Chongqing People's Hospital, Chongqing 400010, P. R. China
| | - Jinhua Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yang Cao
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Han Yu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhiyu Ling
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
7
|
Karageorgou MA, Apostolopoulou A, Tomazinaki ME, Stanković D, Stiliaris E, Bouziotis P, Stamopoulos D. Gamma-Camera Direct Imaging of the Plasma and On/Intra Cellular Distribution of the 99mTc-DPD-Fe 3O 4 Dual-Modality Contrast Agent in Peripheral Human Blood. MATERIALS (BASEL, SWITZERLAND) 2024; 17:335. [PMID: 38255503 PMCID: PMC10820996 DOI: 10.3390/ma17020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The radiolabeled iron oxide nanoparticles constitute an attractive choice to be used as dual-modality contrast agents (DMCAs) in nuclear medical diagnosis, due to their ability to combine the benefits of two imaging modalities, for instance single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI). Before the use of any DMCA, the investigation of its plasma extra- and on/intra cellular distribution in peripheral human blood is of paramount importance. Here, we focus on the in vitro investigation of the distribution of 99mTc-DPD-Fe3O4 DMCA in donated peripheral human blood (the ligand 2-3-dicarboxypropane-1-1-diphosphonic-acid is denoted as DPD). Initially, we described the experimental methods we performed for the radiosynthesis of the 99mTc-DPD-Fe3O4, the preparation of whole blood and blood plasma samples, and their incubation conditions with 99mTc-DPD-Fe3O4. More importantly, we employed a gamma-camera apparatus for the direct imaging of the 99mTc-DPD-Fe3O4-loaded whole blood and blood plasma samples when subjected to specialized centrifugation protocols. The direct comparison of the gamma-camera data obtained at the exact same samples before and after their centrifugation enabled us to clearly identify the distribution of the 99mTc-DPD-Fe3O4 in the two components, plasma and cells, of peripheral human blood.
Collapse
Affiliation(s)
- Maria-Argyro Karageorgou
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Adamantia Apostolopoulou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
- Laboratory of Biology, School of Medicine, Department of Basic Medical Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Mina-Ermioni Tomazinaki
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Dragana Stanković
- Laboratory for Radioisotopes, “Vinča” Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia;
| | - Efstathios Stiliaris
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (A.A.); (P.B.)
| | - Dimosthenis Stamopoulos
- Department of Physics, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.-E.T.); (E.S.)
| |
Collapse
|
8
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Gyulasaryan H, Kuzanyan A, Manukyan A, Mukasyan AS. Combustion Synthesis of Magnetic Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1902. [PMID: 37446418 DOI: 10.3390/nano13131902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Combustion synthesis is a green, energy-saving approach that permits an easy scale-up and continuous technologies. This process allows for synthesizing various nanoscale materials, including oxides, nitrides, sulfides, metals, and alloys. In this work, we critically review the reported results on the combustion synthesis of magnetic nanoparticles, focusing on their properties related to different bio-applications. We also analyze challenges and suggest specific directions of research, which lead to the improvement of the properties and stability of fabricated materials.
Collapse
Affiliation(s)
- Harutyun Gyulasaryan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Astghik Kuzanyan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Aram Manukyan
- Institute for Physical Research, National Academy of Sciences of Armenia, Ashtarak-2, Ashtarak 0204, Armenia
| | - Alexander S Mukasyan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
10
|
Kozlovskaya V, Ducharme M, Dolmat M, Omweri JM, Tekin V, Lapi SE, Kharlampieva E. Direct Radiolabeling of Trastuzumab-Targeting Triblock Copolymer Vesicles with 89Zr for Positron Emission Tomography Imaging. Biomacromolecules 2023; 24:1784-1797. [PMID: 36926842 DOI: 10.1021/acs.biomac.2c01539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Radiolabeled drug nanocarriers that can be easily imaged via positron emission tomography (PET) are highly significant as their in vivo outcome can be quantitatively PET-traced with high sensitivity. However, typical radiolabeling of most PET-guided theranostic vehicles utilizes modification with chelator ligands, which presents various challenges. In addition, unlike passive tumor targeting, specific targeting of drug delivery vehicles via binding affinity to overexpressed cancer cell receptors is crucial to improve the theranostic delivery to tumors. Herein, we developed 89Zr-labeled triblock copolymer polymersomes of 60 nm size through chelator-free radiolabeling. The polymersomes are assembled from poly(N-vinylpyrrolidone)5-b-poly(dimethylsiloxane)30-b-poly(N-vinylpyrrolidone)5 (PVPON5-PDMS30-PVPON5) triblock copolymers followed by adsorption of a degradable tannin, tannic acid (TA), on the polymersome surface through hydrogen bonding. TA serves as an anchoring layer for both 89Zr radionuclide and targeting recombinant humanized monoclonal antibody, trastuzumab (Tmab). Unlike bare PVPON5-PDMS30-PVPON5 polymersomes, TA- and Tmab-modified polymersomes demonstrated a high radiochemical yield of more than 95%. Excellent retention of 89Zr by the vesicle membrane for up to 7 days was confirmed by PET in vivo imaging. Animal biodistribution using healthy BALB/c mice confirmed the clearance of 89Zr-labeled polymersomes through the spleen and liver without their accumulation in bone, unlike the free nonbound 89Zr radiotracer. The 89Zr-radiolabeled polymersomes were found to specifically target BT474 HER2-positive breast cancer cells via the Tmab-TA complex on the vesicle surface. The noncovalent Tmab anchoring to the polymersome membrane can be highly advantageous for nanoparticle modification compared to currently developed covalent methods, as it allows easy and quick integration of a broad range of targeting proteins. Given the ability of these polymersomes to encapsulate and release anticancer therapeutics, they can be further expanded as precision-targeted therapeutic carriers for advancing human health through highly effective drug delivery strategies.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - James M Omweri
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
11
|
Jansson T, Jansson L, Mousavi A, Persson L, Angenete E. Detection of magnetomotive ultrasound signals from human tissue. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102621. [PMID: 36283571 DOI: 10.1016/j.nano.2022.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Rectal cancer is a common cancer, with presently a 5-year survival of 67 %. Treatment is based on tumor stage, but current staging methods, such as magnetic resonance imaging (MRI) or ultrasound, are limited in the ability to correctly stage the disease. Magnetomotive ultrasound is a developing modality that has a potential to improve rectal cancer staging. Magnetic nanoparticles are set in motion by an external magnetic field, and the resulting motion signature is detected by ultrasound. Here, we report on magnetomotive images of magnetic nanoparticles in human tissue, using a prototype system where a rotating permanent magnet provides the varying magnetic field, and an ultrasound transducer array encircling the magnet, detects the induced motion. Prior to surgery, a patient with a low rectal tumor was injected at three sites close to the tumor with magnetic nanoparticles. Postsurgical magnetomotive ultrasound scanning revealed the three injection sites, with no obvious artefactual signals. A phantom study showed detection of nanoparticles beyond 40 mm, where 30 mm is the expected maximum distance to mesorectal lymph nodes. Magnetomotive ultrasound image of iron oxide nanoparticles in human tissue. Prior to surgery a patient was injected with nanoparticles, and the excised tissue specimen was imaged with a prototype magnetomotive ultrasound system. The three colored areas overlaid on the standard B-mode greyscale image, correspond to the three injection sites.
Collapse
Affiliation(s)
- Tomas Jansson
- Department of Clinical Sciences Lund/Biomedical Engineering, Lund University, 221 85 Lund, Sweden; Clinical Engineering Skåne, Skåne Regional Council, 221 85 Lund, Sweden.
| | | | | | | | - Eva Angenete
- Department of Surgery, SSORG-Scandinavian Surgical Outcomes Research Group, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital/Östra, Department of Surgery, 416 85 Gothenburg, Sweden
| |
Collapse
|
12
|
Mettenbrink EM, Yang W, Wilhelm S. Bioimaging with Upconversion Nanoparticles. ADVANCED PHOTONICS RESEARCH 2022; 3:2200098. [PMID: 36686152 PMCID: PMC9858112 DOI: 10.1002/adpr.202200098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bioimaging enables the spatiotemporal visualization of biological processes at various scales empowered by a range of different imaging modalities and contrast agents. Upconversion nanoparticles (UCNPs) represent a distinct type of such contrast agents with the potential to transform bioimaging due to their unique optical properties and functional design flexibilities. This review explores and discusses the opportunities, challenges, and limitations that UCNPs exhibit as bioimaging probes and highlights applications with spatial dimensions ranging from the single nanoparticle level to cellular, tissue, and whole animal imaging. We further summarized recent advancements in bioimaging applications enabled by UCNPs, including super-resolution techniques and multimodal imaging methods, and provide a perspective on the future potential of UCNP-based technologies in bioimaging research and clinical translation. This review may provide a valuable resource for researchers interested in exploring and applying UCNP-based bioimaging technologies.
Collapse
Affiliation(s)
- Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
13
|
Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Peserico A, Di Berardino C, Russo V, Capacchietti G, Di Giacinto O, Canciello A, Camerano Spelta Rapini C, Barboni B. Nanotechnology-Assisted Cell Tracking. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1414. [PMID: 35564123 PMCID: PMC9103829 DOI: 10.3390/nano12091414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
The usefulness of nanoparticles (NPs) in the diagnostic and/or therapeutic sector is derived from their aptitude for navigating intra- and extracellular barriers successfully and to be spatiotemporally targeted. In this context, the optimization of NP delivery platforms is technologically related to the exploitation of the mechanisms involved in the NP-cell interaction. This review provides a detailed overview of the available technologies focusing on cell-NP interaction/detection by describing their applications in the fields of cancer and regenerative medicine. Specifically, a literature survey has been performed to analyze the key nanocarrier-impacting elements, such as NP typology and functionalization, the ability to tune cell interaction mechanisms under in vitro and in vivo conditions by framing, and at the same time, the imaging devices supporting NP delivery assessment, and consideration of their specificity and sensitivity. Although the large amount of literature information on the designs and applications of cell membrane-coated NPs has reached the extent at which it could be considered a mature branch of nanomedicine ready to be translated to the clinic, the technology applied to the biomimetic functionalization strategy of the design of NPs for directing cell labelling and intracellular retention appears less advanced. These approaches, if properly scaled up, will present diverse biomedical applications and make a positive impact on human health.
Collapse
Affiliation(s)
- Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.D.B.); (V.R.); (G.C.); (O.D.G.); (A.C.); (C.C.S.R.); (B.B.)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zeng Z, Gao H, Chen C, Xiao L, Zhang K. Bioresponsive Nanomaterials: Recent Advances in Cancer Multimodal Imaging and Imaging-Guided Therapy. Front Chem 2022; 10:881812. [PMID: 35372260 PMCID: PMC8971282 DOI: 10.3389/fchem.2022.881812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is a serious health problem which increasingly causes morbidity and mortality worldwide. It causes abnormal and uncontrolled cell division. Traditional cancer treatments include surgery, chemotherapy, radiotherapy and so on. These traditional therapies suffer from high toxicity and arouse safety concern in normal area and have difficulty in accurately targeting tumour. Recently, a variety of nanomaterials could be used for cancer diagnosis and therapy. Nanomaterials have several advantages, e.g., high concentration in tumour via targeting design, reduced toxicity in normal area and controlled drug release after various rational designs. They can combine with many types of biomaterials in order to improve biocompatibility. In this review, we outlined the latest research on the use of bioresponsive nanomaterials for various cancer imaging modalities (magnetic resonance imaging, positron emission tomography and phototacoustic imaging) and imaging-guided therapy means (chemotherapy, radiotherapy, photothermal therapy and photodynamic therapy), followed by discussing the challenges and future perspectives of this bioresponsive nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Zeng Zeng
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - CongXian Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lianbo Xiao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
17
|
Thi Kim Dung D, Umezawa M, Ohnuki K, Nigoghossian K, Okubo K, Kamimura M, Yamaguchi M, Fujii H, Soga K. The influence of Gd-DOTA ratios conjugating PLGA-PEG micelles encapsulated IR-1061 in bimodal over–1000 nm near–infrared fluorescence and magnetic resonance imaging. Biomater Sci 2022; 10:1217-1230. [DOI: 10.1039/d1bm01574e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multimodal imaging can provide multidimensional information for understanding concealed microstructures or bioprocesses in biological objects. The combination of over–1000 nm near–infrared (OTN–NIR) fluorescence imaging and magnetic resonance (MR) imaging is...
Collapse
|
18
|
Ekta, Utreja D. Fluorescence Based Comparative Sensing Behavior of the Nano-Composites of SiO 2 and TiO 2 towards Toxic Hg 2+ Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3082. [PMID: 34835846 PMCID: PMC8621696 DOI: 10.3390/nano11113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
We have synthesized sulfonamide based nano-composites of SiO2 and TiO2 for selective and sensitive determination of toxic metal ion Hg2+ in aqueous medium. Nano-composites (11) and (12) were morphologically characterized with FT-IR, solid state NMR, UV-vis, FE SEM, TEM, EDX, BET, pXRD and elemental analysis. The comparative sensing behavior, pH effect and sensor concentrations were carried out with fluorescence signaling on spectrofluorometer and nano-composites (11) and (12), both were evaluated as "turn-on" fluorescence detector for the toxic Hg2+ ions. The LODs were calculated to be 41.2 and 18.8 nM, respectively of nano-composites (11) and (12). The detection limit of TiO2 based nano-composites was found comparatively lower than the SiO2 based nano-composites.
Collapse
Affiliation(s)
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India;
| |
Collapse
|
19
|
Luengo Morato Y, Ovejero Paredes K, Lozano Chamizo L, Marciello M, Filice M. Recent Advances in Multimodal Molecular Imaging of Cancer Mediated by Hybrid Magnetic Nanoparticles. Polymers (Basel) 2021; 13:2989. [PMID: 34503029 PMCID: PMC8434540 DOI: 10.3390/polym13172989] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
Collapse
Affiliation(s)
- Yurena Luengo Morato
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Karina Ovejero Paredes
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Laura Lozano Chamizo
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
| | - Marco Filice
- Nanobiotechnology for Life Sciences Lab, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal, 28040 Madrid, Spain; (Y.L.M.); (K.O.P.); (L.L.C.)
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC F.S.P.), Calle Melchor Fernández Almagro 3, 28029 Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
20
|
Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle-mediated light-activated therapies, such as photodynamic therapy and photothermal therapy, are earnestly being viewed as efficient interventional strategies against several cancer types. Theranostics is a key hallmark of cancer nanomedicine since it allows diagnosis and therapy of both primary and metastatic cancer using a single nanoprobe. Advanced in vivo diagnostic imaging using theranostic nanoparticles not only provides precise information about the location of tumor/s but also outlines the narrow time window corresponding to the maximum tumor-specific drug accumulation. Such information plays a critical role in guiding light-activated therapies with high spatio-temporal accuracy. Furthermore, theranostics facilitates monitoring the progression of therapy in real time. Herein, we provide a general review of the application of theranostic nanoparticles for in vivo image-guided light-activated therapy in cancer. The imaging modalities considered here include fluorescence imaging, photoacoustic imaging, thermal imaging, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, and single-photon emission computed tomography. The review concludes with a brief discussion about the broad scope of theranostic light-activated nanomedicine.
Collapse
|
21
|
Rastegari E, Hsiao YJ, Lai WY, Lai YH, Yang TC, Chen SJ, Huang PI, Chiou SH, Mou CY, Chien Y. An Update on Mesoporous Silica Nanoparticle Applications in Nanomedicine. Pharmaceutics 2021; 13:1067. [PMID: 34371758 PMCID: PMC8309088 DOI: 10.3390/pharmaceutics13071067] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/09/2023] Open
Abstract
The efficient and safe delivery of therapeutic drugs, proteins, and nucleic acids are essential for meaningful therapeutic benefits. The field of nanomedicine shows promising implications in the development of therapeutics by delivering diagnostic and therapeutic compounds. Nanomedicine development has led to significant advances in the design and engineering of nanocarrier systems with supra-molecular structures. Smart mesoporous silica nanoparticles (MSNs), with excellent biocompatibility, tunable physicochemical properties, and site-specific functionalization, offer efficient and high loading capacity as well as robust and targeted delivery of a variety of payloads in a controlled fashion. Such unique nanocarriers should have great potential for challenging biomedical applications, such as tissue engineering, bioimaging techniques, stem cell research, and cancer therapies. However, in vivo applications of these nanocarriers should be further validated before clinical translation. To this end, this review begins with a brief introduction of MSNs properties, targeted drug delivery, and controlled release with a particular emphasis on their most recent diagnostic and therapeutic applications.
Collapse
Grants
- MOST 108-2320-B-010 -019 -MY3; MOST 109-2327-B-010-007 Ministry of Science and Technology
- MOHW108-TDU-B-211-133001, MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1, VTA108-V1-5-3, VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan the "Cancer Progression Research Center, National Yang-Ming University" from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan. and the Ministry of Education through the SPROUT Project- Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B) of National Chiao Tung University and, Taiwan.
Collapse
Affiliation(s)
- Elham Rastegari
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Yun-Hsien Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Tien-Chun Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Shih-Jen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Pin-I Huang
- Department of Oncology, Taipei Veterans General Hospital, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (E.R.); (Y.-J.H.); (W.-Y.L.); (Y.-H.L.); (T.-C.Y.); (S.-J.C.)
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11217, Taiwan
| |
Collapse
|
22
|
Rumanti AP, Maruf A, Liu H, Ge S, Lei D, Wang G. Engineered bioresponsive nanotherapeutics: recent advances in the treatment of atherosclerosis and ischemic-related disease. J Mater Chem B 2021; 9:4804-4825. [PMID: 34085084 DOI: 10.1039/d1tb00330e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biological stimuli that are present during the pathogenesis of disease have gained considerable interest as a critical element for the design of smart drug delivery systems. Recently, the utilization of biological stimuli-responsive (bioresponsive) nanotheranostic agents to treat atherosclerosis and ischemic-related diseases has demonstrated significant outcomes in preclinical studies. Those diseases share similar hallmarks, including high levels of endogenous reactive oxygen species (ROS), low pH, and high enzyme activity. Interestingly, other relevant biological stimuli such as shear stress, cholesterol, and glutathione have recently been explored as internal stimuli to trigger drug release and some particular actions. In addition, a number of strategies can be proposed to enhance their targeting efficiency, diagnostic properties, and efficacy rate. This review discusses recent advancements in the preclinical studies of bioresponsive nanotherapeutics as diagnostic and therapeutic agents against atherosclerosis and ischemic-related diseases as well as some potential strategies to overcome the current limitations.
Collapse
Affiliation(s)
- Ayu Pratiwi Rumanti
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| | | | | | | | | | | |
Collapse
|
23
|
Fan S, Zhang Y, Tan H, Xue C, He Y, Wei X, Zha Y, Niu J, Liu Y, Cheng Y, Cui D. Manganese/iron-based nanoprobes for photodynamic/chemotherapy combination therapy of tumor guided by multimodal imaging. NANOSCALE 2021; 13:5383-5399. [PMID: 33666213 DOI: 10.1039/d0nr08831e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early diagnosis of tumors is crucial in selecting appropriate treatment options to achieve the desired therapeutic effect, but it is difficult to accurately diagnose cancer by a single imaging modality due to technical constraints. Therefore, we synthesized a type of Fe3O4 nanoparticle with manganese dioxide grown on the surface and then prepared it by loading photosensitive drugs and traditional Chinese medicine monomers to create an integrated diagnosis/treatment multifunctional nanoplatform: Fe3O4@MnO2-celastrol (CSL)/Ce6. This nanoplatform can have full advantage of the tumor microenvironment (TME) characteristics of hypoxia (hypoxia), acidic pH (acidosis), and increased levels of reactive oxygen species (e.g., H2O2), even outside the TME. Specific imaging and drug release can also enhance tumor therapy by adjusting the hypoxic state of the TME to achieve the combined effect of chemotherapy (CT) and photodynamic therapy (PDT). Moreover, the obtained Fe3O4@MnO2-CSL/Ce6 has H2O2- and pH-sensitive biodegradation and can release the anticancer drug celastrol (CSL) and photosensitizer Ce6 in TME and simultaneously generate O2 and Mn2+. Therefore, the "dual response" synergistic strategy also confers specific drug release on nanomaterials, relieves tumor hypoxia and antioxidant capacity, and achieves significant optimization of CT and PDT. Furthermore, the resulting Mn2+ ions and Fe3O4 nanoparticles can be used for T1/T2 magnetic resonance imaging on tumor-bearing mice, and the released Ce6 can simultaneously provide fluorescence imaging functions. Therefore, Fe3O4@MnO2-CSL/Ce6 realized the synergistic treatment of PDT and CT under multimodal near-infrared fluorescence/photoacoustic (photoacoustic) imaging monitoring, showing its great potential in the accurate medical treatment of tumors.
Collapse
Affiliation(s)
- Shanshan Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.
| | - Yu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huanshan Road, Shanghai 200030, P.R. China
| | - Haisong Tan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200011, P.R. China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yu He
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiangyu Wei
- Department of Radiology, Shu Guang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiqian Zha
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yanlei Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Yingsheng Cheng
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China. and Shanghai University of Medicine and Health Sciences, Shanghai 201318 and P.R. China; Shanghai Fengxian District Central Hospital; Shanghai Jiaotong University Affiliated Sixth People's Hospital South Campus, Shanghai 201400, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| |
Collapse
|
24
|
Liu P, Shi X, Zhong S, Peng Y, Qi Y, Ding J, Zhou W. Metal-phenolic networks for cancer theranostics. Biomater Sci 2021; 9:2825-2849. [PMID: 33688863 DOI: 10.1039/d0bm02064h] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal-phenolic networks (MPNs) have shown promising potential in biomedical applications since they provide a rapid, simple and robust way to construct multifunctional nanoplatforms. As a novel nanomaterial self-assembled from metal ions and polyphenols, MPNs can be prepared to assist the theranostics of cancer owing to their bio-adhesiveness, good biocompatibility, versatile drug loading, and stimuli-responsive profile. This Critical Review aims to summarize recent progress in MPN-based nanoplatforms for multimodal tumor therapy and imaging. First, the advantages of MPNs as drug carriers are summarized. Then, various tumor therapeutic modalities based on MPNs are introduced. Next, MPN-based theranostic systems are reviewed. In terms of in vivo applications, specific attention is paid to their biosafety, biodistribution, as well as excretion. Finally, some problems and limitations of MPNs are discussed, along with a future perspective on the field.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Shenghui Zhong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China. and School of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
25
|
Guo Z, Cui Z. Fluorescent nanotechnology for in vivo imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1705. [PMID: 33686803 DOI: 10.1002/wnan.1705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/21/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Fluorescent imaging in living animals gives an intuitive picture of the dynamic processes in the complex environment within a living being. However, animal tissues present a substantial barrier and are opaque to most wavelengths of visible light. Fluorescent nanoparticles (NPs) with new photophysical characteristics have shown excellent performance for in vivo imaging. Hence, fluorescent NPs have been widely studied and applied for the detection of molecular and biological processes in living animals. In addition, developments in the area of nanotechnology have allowed materials to be used in intact animals for disease detection, diagnosis, drug delivery, and treatment. This review provides information on the different types of fluorescent particles based on nanotechnology, describing their unique individual properties and applications for detecting vital processes in vivo. The development and application of new fluorescent NPs will provide opportunities for in vivo imaging with better penetration, sensitivity, and resolution. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Zhengyuan Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
26
|
Baghdadi NE, Burke BP, Alresheedi T, Nigam S, Saeed A, Almutairi F, Domarkas J, Khan A, Archibald SJ. Multivalency in CXCR4 chemokine receptor targeted iron oxide nanoparticles. Dalton Trans 2021; 50:1599-1603. [PMID: 33502425 DOI: 10.1039/d0dt02626c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CXCR4 chemokine receptor is an important biomolecular target in cancer diagnostics and therapeutics. In a new multivalent approach, iron oxide nanoparticles were conjugated with multiple binding units of a low affinity azamacrocylic CXCR4 antagonist. The silica coated nanostructure has good suspension stability, a mode size of 72 nm and high affinity for CXCR4, showing >98% inhibition of anti-CXCR4 mAb binding in a receptor binding competition assay on Jurkat cells.
Collapse
Affiliation(s)
- Neazar E Baghdadi
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah, Saudi Arabia and Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.
| | - Benjamin P Burke
- Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK
| | - Tahani Alresheedi
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK. and Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK and Department of Chemistry, College of Science and Art, Qassim University, Qassim, Saudi Arabia
| | - Shubhanchi Nigam
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK. and Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK
| | - Abdu Saeed
- Department of Physics, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Farooq Almutairi
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK. and College of Applied Medical Sciences, University of Hafar Al-Batin, Hafar Al-Batin, Saudi Arabia
| | - Juozas Domarkas
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK. and Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK
| | - Abid Khan
- Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK and Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stephen J Archibald
- Department of Chemistry, University of Hull, Cottingham Road, Hull, HU6 7RX, UK. and Department of Biomedical Sciences and PET Research Centre, University of Hull Cottingham Road, Hull, HU6 7RX, UK
| |
Collapse
|
27
|
Shapoval O, Oleksa V, Šlouf M, Lobaz V, Trhlíková O, Filipová M, Janoušková O, Engstová H, Pankrác J, Modrý A, Herynek V, Ježek P, Šefc L, Horák D. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F 3:Tb 3+(Gd 3+),Yb 3+,Nd 3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. NANOMATERIALS 2021; 11:nano11010230. [PMID: 33467188 PMCID: PMC7830756 DOI: 10.3390/nano11010230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Multimodal imaging, integrating several modalities including down- and up-conversion luminescence, T
1- and T
2(T
2*)-weighted MRI, and CT contrasting in one system, is very promising for improved diagnosis of severe medical disorders. To reach the goal, it is necessary to develop suitable nanoparticles that are highly colloidally stable in biologically relevant media. Here, hydrophilic poly(N,N-dimethylacrylamide-N-acryloylglycine methyl ester)-alendronate-[P(DMA-AGME)-Ale]-coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) followed by coating with the polymer. The particles were tho-roughly characterized by a dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray energy dispersive spectroscopy (EDAX), selected area electron diffraction (SAED), elemental ana-lysis and fluorescence spectroscopy. Aqueous particle dispersions exhibited excellent colloidal stability in water and physiological buffers. In vitro toxicity assessments suggested no or only mild toxicity of the surface-engineered Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ particles in a wide range of concentrations. Internalization of the particles by several types of cells, including HeLa, HF, HepG2, and INS, was confirmed by a down- and up-conversion confocal microscopy. Newly developed particles thus proved to be an efficient contrast agent for fluorescence imaging, T
1- and T
2(T
2*)-weighted magnetic resonance imaging (MRI), and computed tomography (CT).
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
- Correspondence: (O.S.); (L.Š.); (D.H.); Tel.: +420-296-809-260 (D.H.)
| | - Viktoriia Oleksa
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Olga Trhlíková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Marcela Filipová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
| | - Hana Engstová
- Institute of Physiology, Czech Academy of Sciences, 142 20 Praha 4, Czech Republic; (H.E.); (P.J.)
| | - Jan Pankrác
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (J.P.); (A.M.); (V.H.)
| | - Adam Modrý
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (J.P.); (A.M.); (V.H.)
| | - Vít Herynek
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (J.P.); (A.M.); (V.H.)
| | - Petr Ježek
- Institute of Physiology, Czech Academy of Sciences, 142 20 Praha 4, Czech Republic; (H.E.); (P.J.)
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic; (J.P.); (A.M.); (V.H.)
- Correspondence: (O.S.); (L.Š.); (D.H.); Tel.: +420-296-809-260 (D.H.)
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, 162 06 Prague 6, Czech Republic; (V.O.); (M.Š.); (V.L.); (O.T.); (M.F.); (O.J.)
- Correspondence: (O.S.); (L.Š.); (D.H.); Tel.: +420-296-809-260 (D.H.)
| |
Collapse
|
28
|
Zheng X, Wang J, Rao J. The Chemistry in Surface Functionalization of Nanoparticles for Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Muñoz-Garcia J, Cochonneau D, Télétchéa S, Moranton E, Lanoe D, Brion R, Lézot F, Heymann MF, Heymann D. The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics 2021; 11:1568-1593. [PMID: 33408768 PMCID: PMC7778581 DOI: 10.7150/thno.50683] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Macrophages are specialized cells that control tissue homeostasis. They include non-resident and tissue-resident macrophage populations which are characterized by the expression of particular cell surface markers and the secretion of molecules with a wide range of biological functions. The differentiation and polarization of macrophages relies on specific growth factors and their receptors. Macrophage-colony stimulating factor (CSF-1) and interleukine-34 (IL-34), also known as "twin" cytokines, are part of this regluatory landscape. CSF-1 and IL-34 share a common receptor, the macrophage-colony stimulating factor receptor (CSF-1R), which is activated in a similar way by both factors and turns on identical signaling pathways. However, there is some discrete differential activation leading to specific activities. In this review, we disscuss recent progress in understanding of the role of the twin cytokines in macrophage differentiation, from their interaction with CSF-1R and the activation of signaling pathways, to their implication in macrophage polarization of non-resident and tissue-resident macrophages. A special focus on IL-34, its involvement in pathophsyiological contexts, and its potential as a theranostic target for macrophage therapy will be proposed.
Collapse
Affiliation(s)
- Javier Muñoz-Garcia
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- SATT Ouest Valorisation, Nantes, France
| | - Denis Cochonneau
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | | | - Emilie Moranton
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Didier Lanoe
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
| | - Régis Brion
- Université de Nantes, INSERM, U1238, Nantes, France
| | | | | | - Dominique Heymann
- Université de Nantes, Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44805, France
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
30
|
Kozlovskaya V, Alford A, Dolmat M, Ducharme M, Caviedes R, Radford L, Lapi SE, Kharlampieva E. Multilayer Microcapsules with Shell-Chelated 89Zr for PET Imaging and Controlled Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56792-56804. [PMID: 33306342 DOI: 10.1021/acsami.0c17456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Radionuclide-functionalized drug delivery vehicles capable of being imaged via positron emission tomography (PET) are of increasing interest in the biomedical field as they can reveal the in vivo behavior of encapsulated therapeutics with high sensitivity. However, the majority of current PET-guided theranostic agents suffer from poor retention of radiometal over time, low drug loading capacities, and time-limited PET imaging capability. To overcome these challenges, we have developed hollow microcapsules with a thin (<100 nm) multilayer shell as advanced theranostic delivery systems for multiday PET tracking in vivo. The 3 μm capsules were fabricated via the aqueous multilayer assembly of a natural antioxidant, tannic acid (TA), and a poly(N-vinylpyrrolidone) (PVPON) copolymer containing monomer units functionalized with deferoxamine (DFO) to chelate the 89Zr radionuclide, which has a half-life of 3.3 days. We have found using radiochromatography that (TA/PVPON-DFO)6 capsules retained on average 17% more 89Zr than their (TA/PVPON)6 counterparts, which suggests that the covalent attachment of the DFO to PVPON provides stable 89Zr chelation. In vivo PET imaging studies performed in mice demonstrated that excellent stability and imaging contrast were still present 7 days postinjection. Animal biodistribution analyses showed that capsules primarily accumulated in the spleen, liver, and lungs with negligible accumulation in the femur, with the latter confirming the stable binding of the radiotracer to the capsule walls. The application of therapeutic ultrasound (US) (60 s of 20 kHz US at 120 W cm-2) to Zr-functionalized capsules could release the hydrophilic anticancer drug doxorubicin from the capsules in the therapeutic amounts. Polymeric capsules with the capability of extended in vivo PET-based tracking and US-induced drug release provide an advanced platform for development of precision-targeted therapeutic carriers and could aid in the development of more effective drug delivery systems.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Aaron Alford
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maksim Dolmat
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Racquel Caviedes
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Lauren Radford
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
- Center for Nanomaterials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
31
|
Zhao Y, Ye F, Brismar TB, Li X, He R, Heuchel R, El-Sayed R, Feliu N, Zheng W, Oerther S, Dutta J, Parak WJ, Muhammed M, Hassan M. Multimodal Imaging of Pancreatic Ductal Adenocarcinoma Using Multifunctional Nanoparticles as Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53665-53681. [PMID: 33201660 PMCID: PMC7735668 DOI: 10.1021/acsami.0c15430] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Late diagnosis and refractory behavior toward current treatment protocols make pancreatic ductal adenocarcinoma (PDAC) one of the most difficult cancer forms to treat. The imaging-based approach plays an important role to identify potentially curable PDAC patients in high-risk groups at the early stage. In the present study, we developed a core-shell structured gold nanorod (AuNR) as a contrast agent for multimodal imaging and investigated its application for PDAC diagnosis. The composite nanoparticles composed of a AuNR core inside a layer of mesoporous silica that was then coated with a gadolinium oxide carbonate shell (AuNR-SiO2-Gd) are designed to be used in magnetic resonance imaging (MRI), X-ray computed tomography (CT), and photoacoustic imaging (PAI). A phantom study with the AuNR-SiO2-Gd NPs demonstrated higher MRI contrast compared to Gadovist and higher X-ray attenuation than Visipaque. A strong, stable, and broad wavelength range signal with a peak at 800 nm was observed in PAI. The AuNR-SiO2-Gd NPs showed significant contrast enhancement under PAI/MRI/CT in both the liver and spleen of control mice after intravenous administration. The utility in PDAC was studied in a genetically engineered mouse model carrying Kras and p53 mutations, which develops spontaneous tumors and keeps the desmoplasia and hypovascularity feature of PDAC in patients. The AuNR-SiO2-Gd NPs were highly accumulated in the surrounding soft tissues but were sparsely distributed throughout the tumor due to dense stroma infiltration and poor tumor vascularization. Hence, a negative contrast within the tumor area in CT/PAI and a positive contrast in MRI were observed. In conclusion, AuNR-SiO2-Gd NPs have good potential to be developed as a multimodal contrast agent for PDAC, which might improve early diagnosis and benefit the clinical outcome for PDAC patients.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Clinical Research Center, and Center for Allogeneic Stem
Cell Transplantation (CAST), Karolinska
University Hospital—Huddinge, SE-141 86 Stockholm, Sweden
| | - Fei Ye
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical
Science, Intervention and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Xuan Li
- Pancreatic
Cancer Research Laboratory, Department of Clinical Science, Intervention
and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Rui He
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Clinical Research Center, and Center for Allogeneic Stem
Cell Transplantation (CAST), Karolinska
University Hospital—Huddinge, SE-141 86 Stockholm, Sweden
| | - Rainer Heuchel
- Pancreatic
Cancer Research Laboratory, Department of Clinical Science, Intervention
and Technology (CLINTEC), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Ramy El-Sayed
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Neus Feliu
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, 22607 Hamburg, Germany
| | - Wenyi Zheng
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Clinical Research Center, and Center for Allogeneic Stem
Cell Transplantation (CAST), Karolinska
University Hospital—Huddinge, SE-141 86 Stockholm, Sweden
| | - Sandra Oerther
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Clinical Research Center, and Center for Allogeneic Stem
Cell Transplantation (CAST), Karolinska
University Hospital—Huddinge, SE-141 86 Stockholm, Sweden
| | - Joydeep Dutta
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, 22607 Hamburg, Germany
| | - Mamoun Muhammed
- KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria 21526, Egypt
| | - Moustapha Hassan
- Division of Experimental
Cancer Medicine, Department of Laboratory Medicine (LABMED), Karolinska Institutet, SE-141 86 Stockholm, Sweden
- Clinical Research Center, and Center for Allogeneic Stem
Cell Transplantation (CAST), Karolinska
University Hospital—Huddinge, SE-141 86 Stockholm, Sweden
- Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
32
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
33
|
Siciliano G, Corricelli M, Iacobazzi RM, Canepa F, Comegna D, Fanizza E, Del Gatto A, Saviano M, Laquintana V, Comparelli R, Mascolo G, Murgolo S, Striccoli M, Agostiano A, Denora N, Zaccaro L, Curri ML, Depalo N. Gold-Speckled SPION@SiO 2 Nanoparticles Decorated with Thiocarbohydrates for ASGPR1 Targeting: Towards HCC Dual Mode Imaging Potential Applications. Chemistry 2020; 26:11048-11059. [PMID: 32628283 DOI: 10.1002/chem.202002142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Efforts are made to perform an early and accurate detection of hepatocellular carcinoma (HCC) by simultaneous exploiting multiple clinically non-invasive imaging modalities. Original nanostructures derived from the combination of different inorganic domains can be used as efficient contrast agents in multimodal imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) and Au nanoparticles (NPs) possess well-established contrasting features in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), respectively. HCC can be targeted by using specific carbohydrates able to recognize asialoglycoprotein receptor 1 (ASGPR1) overexpressed in hepatocytes. Here, two different thiocarbohydrate ligands were purposely designed and alternatively conjugated to the surface of Au-speckled silica-coated SPIONs NPs, to achieve two original nanostructures that could be potentially used for dual mode targeted imaging of HCC. The results indicated that the two thiocarbohydrate decorated nanostructures possess convenient plasmonic/superparamagnetic properties, well-controlled size and morphology and good selectivity for targeting ASGPR1 receptor.
Collapse
Affiliation(s)
- Giulia Siciliano
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Present address: Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, 73100, Lecce, Italy
| | - Michela Corricelli
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Rosa Maria Iacobazzi
- Istituto Tumori Giovanni Paolo II, IRCCS, Viale Orazio Flacco 65, 70124, Bari, Italy
| | - Fabio Canepa
- Dipartimento di Chimica e Chimica Industriale-SPIN-CNR Unità di Genova, Università degli Studi di Genova, via Dodecaneso 31, 16146, Genova, Italy
| | - Daniela Comegna
- Istituto di Biostrutture e Bioimmagini IBB, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Elisabetta Fanizza
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Annarita Del Gatto
- Istituto di Biostrutture e Bioimmagini IBB, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Michele Saviano
- Istituto di Cristallografia IC, CNR, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Roberto Comparelli
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Giuseppe Mascolo
- Istituto di Ricerca Sulle Acque IRSA, CNR, Area della Ricerca Roma 1, Via Salaria Km 29,300 C.P. 10, 00015 Monterotondo Stazione, Roma, Italy
| | - Sapia Murgolo
- Istituto di Ricerca Sulle Acque IRSA, CNR, Viale Francesco de Blasio 5, 70132, Bari, Italy
| | - Marinella Striccoli
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Angela Agostiano
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Nunzio Denora
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Laura Zaccaro
- Istituto di Biostrutture e Bioimmagini IBB, CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - M Lucia Curri
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| | - Nicoletta Depalo
- Istituto per i Processi Chimico Fisici IPCF S.S: Bari, CNR, Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70124, Bari, Italy
| |
Collapse
|
34
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Day AH, Domarkas J, Nigam S, Renard I, Cawthorne C, Burke BP, Bahra GS, Oyston PCF, Fallis IA, Archibald SJ, Pope SJA. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, 99mTc(i) radiolabelled 1,8-naphthalimide conjugate. Dalton Trans 2020; 49:511-523. [PMID: 31844857 DOI: 10.1039/c9dt04024b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of six different 1,8-naphthalimide conjugated dipicolylamine ligands (L1-6) have been synthesised and characterised. The ligands possess a range of different linker units between the napthalimide fluorophore and dipcolylamine chelator which allow the overall lipophilicity to be tuned. A corresponding series of Re(i) complexes have been synthesised of the form fac-[Re(CO)3(L1-6)]BF4. The absorption and luminescence properties of the ligands and Re(i) complexes were dominated by the intramolecular charge transfer character of the substituted fluorophore (typically absorption ca. 425 nm and emission ca. 520 nm). Photophysical assessments show that some of the variants are moderately bright. Radiolabelling experiments using a water soluble ligand variant (L5) were successfully undertaken and optimised with fac-[99mTc(CO)3(H2O)3]+. Confocal fluorescence microscopy showed that fac-[Re(CO)3(L5)]+ localises in the mitochondria of MCF-7 cells. SPECT/CT imaging experiments on naïve mice showed that fac-[99mTc(CO)3(L5)]+ has a relatively high stability in vivo but did not show any cardiac uptake, demonstrating rapid clearance, predominantly via the biliary system along with a moderate amount cleared renally.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ahmad MY, Ahmad MW, Yue H, Ho SL, Park JA, Jung KH, Cha H, Marasini S, Ghazanfari A, Liu S, Tegafaw T, Chae KS, Chang Y, Lee GH. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles. Molecules 2020; 25:E1159. [PMID: 32150823 PMCID: PMC7179159 DOI: 10.3390/molecules25051159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/06/2023] Open
Abstract
The study of ultra-small paramagnetic gadolinium oxide (Gd2O3) nanoparticles (NPs) as in vivo positive (T1) magnetic resonance imaging (MRI) contrast agents is one of the most attractive fields in nanomedicine. The performance of the Gd2O3 NP imaging agents depends on the surface-coating materials. In this study, poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was used as a surface-coating polymer. The PMVEMA-coated paramagnetic ultra-small Gd2O3 NPs with an average particle diameter of 1.9 nm were synthesized using the one-pot polyol method. They exhibited excellent colloidal stability in water and good biocompatibility. They also showed a very high longitudinal water proton spin relaxivity (r1) value of 36.2 s-1mM-1 (r2/r1 = 2.0; r2 = transverse water proton spin relaxivity) under a 3.0 tesla MR field which is approximately 10 times higher than the r1 values of commercial molecular contrast agents. High positive contrast enhancements were observed in in vivo T1 MR images after intravenous administration of the NP solution sample, demonstrating its potential as a T1 MRI contrast agent.
Collapse
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Md. Wasi Ahmad
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Huan Yue
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Son Long Ho
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science (KIRAMS), Seoul 01817, Korea; (J.A.P.); (K.-H.J.)
| | - Ki-Hye Jung
- Division of RI-Convergence Research, Korea Institute of Radiological & Medical Science (KIRAMS), Seoul 01817, Korea; (J.A.P.); (K.-H.J.)
| | - Hyunsil Cha
- Department of Molecular Medicine and Medical & Biological Engineering and DNN, School of Medicine, KNU and Hospital, Taegu 41566, Korea;
| | - Shanti Marasini
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Adibehalsadat Ghazanfari
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Shuwen Liu
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Tirusew Tegafaw
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| | - Kwon-Seok Chae
- Department of Biology Education and DNN, Teachers’ College, KNU, Taegu 41566, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine and Medical & Biological Engineering and DNN, School of Medicine, KNU and Hospital, Taegu 41566, Korea;
| | - Gang Ho Lee
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences, Kyungpook National University (KNU), Taegu 41566, Korea; (M.Y.A.); (M.W.A.); (H.Y.); (S.L.H.); (S.M.); (A.G.); (S.L.); (T.T.)
| |
Collapse
|
37
|
Methods of Granulocyte Isolation from Human Blood and Labeling with Multimodal Superparamagnetic Iron Oxide Nanoparticles. Molecules 2020; 25:molecules25040765. [PMID: 32053865 PMCID: PMC7070653 DOI: 10.3390/molecules25040765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 02/08/2023] Open
Abstract
This in vitro study aimed to find the best method of granulocyte isolation for subsequent labeling with multimodal nanoparticles (magnetic and fluorescent properties) to enable detection by optical and magnetic resonance imaging (MRI) techniques. The granulocytes were obtained from venous blood samples from 12 healthy volunteers. To achieve high purity and yield, four different methods of granulocyte isolation were evaluated. The isolated granulocytes were labeled with multimodal superparamagnetic iron oxide nanoparticles (M-SPIONs) coated with dextran, and the iron load was evaluated qualitatively and quantitatively by MRI, near-infrared fluorescence (NIRF) and inductively coupled plasma mass spectrometry (ICP-MS). The best method of granulocyte isolation was Percoll with Ficoll, which showed 95.92% purity and 94% viability. After labeling with M-SPIONs, the granulocytes showed 98.0% purity with a yield of 3.5 × 106 cells/mL and more than 98.6% viability. The iron-loading value in the labeled granulocytes, as obtained by MRI, was 6.40 ± 0.18 pg/cell. Similar values were found with the ICP-MS and NIRF imaging techniques. Therefore, our study shows that it is possible to isolate granulocytes with high purity and yield and labeling with M-SPIONs provides a high internalized iron load and low toxicity to cells. Therefore, these M-SPION-labeled granulocytes could be a promising candidate for future use in inflammation/infection detection by optical and MRI techniques.
Collapse
|
38
|
Wang D, Yao Y, He J, Zhong X, Li B, Rao S, Yu H, He S, Feng X, Xu T, Yang B, Yong T, Gan L, Hu J, Yang X. Engineered Cell-Derived Microparticles Bi 2Se 3/DOX@MPs for Imaging Guided Synergistic Photothermal/Low-Dose Chemotherapy of Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901293. [PMID: 32042550 PMCID: PMC7001653 DOI: 10.1002/advs.201901293] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/21/2019] [Indexed: 05/20/2023]
Abstract
Cell-derived microparticles, which are recognized as nanosized phospholipid bilayer membrane vesicles, have exhibited great potential to serve as drug delivery systems in cancer therapy. However, for the purpose of comprehensive therapy, microparticles decorated with multiple therapeutic components are needed, but effective engineering strategies are limited and still remain enormous challenges. Herein, Bi2Se3 nanodots and doxorubicin hydrochloride (DOX) co-embedded tumor cell-derived microparticles (Bi2Se3/DOX@MPs) are successfully constructed through ultraviolet light irradiation-induced budding of parent cells which are preloaded with Bi2Se3 nanodots and DOX via electroporation. The multifunctional microparticles are obtained with high controllability and drug-loading capacity without unfavorable membrane surface destruction, maintaining their excellent intrinsic biological behaviors. Through membrane fusion cellular internalization, Bi2Se3/DOX@MPs show enhanced cellular internalization and deepened tumor penetration, resulting in extreme cell damage in vitro without considering endosomal escape. Because of their distinguished photothermal performance and tumor homing target capability, Bi2Se3/DOX@MPs exhibit admirable dual-modal imaging capacity and outstanding tumor suppression effect. Under 808 nm laser irradiation, intravenous injection of Bi2Se3/DOX@MPs into H22 tumor-bearing mice results in remarkably synergistic antitumor efficacy by combining photothermal therapy with low-dose chemotherapy in vivo. Furthermore, the negligible hemolytic activity, considerable metabolizability, and low systemic toxicity of Bi2Se3/DOX@MPs imply their distinguished biocompatibility and great potential for tumor theranostics.
Collapse
Affiliation(s)
- Dongdong Wang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Yuzhu Yao
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Junkai He
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiaoyan Zhong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Basen Li
- Department of RadiologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shiyu Rao
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haiting Yu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Shuaicheng He
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiaoyu Feng
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tuo Xu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Bin Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tuying Yong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Lu Gan
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Jun Hu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
39
|
Zare EN, Jamaledin R, Naserzadeh P, Afjeh-Dana E, Ashtari B, Hosseinzadeh M, Vecchione R, Wu A, Tay FR, Borzacchiello A, Makvandi P. Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3279-3300. [PMID: 31873003 DOI: 10.1021/acsami.9b19435] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the different synthetic polymers developed for biomedical applications, poly(lactic-co-glycolic acid) (PLGA) has attracted considerable attention because of its excellent biocompatibility and biodegradability. Nanocomposites based on PLGA and metal-based nanostructures (MNSs) have been employed extensively as an efficient strategy to improve the structural and functional properties of PLGA polymer. The MNSs have been used to impart new properties to PLGA, such as antimicrobial properties and labeling. In the present review, the different strategies available for the fabrication of MNS/PLGA nanocomposites and their applications in the biomedical field will be discussed, beginning with a description of the preparation routes, antimicrobial activity, and cytotoxicity concerns of MNS/PLGA nanocomposites. The biomedical applications of these nanocomposites, such as carriers and scaffolds in tissue regeneration and other therapies are subsequently reviewed. In addition, the potential advantages of using MNS/PLGA nanocomposites in treatment illnesses are analyzed based on in vitro and in vivo studies, to support the potential of these nanocomposites in future research in the biomedical field.
Collapse
Affiliation(s)
| | - Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
- Department of Chemical, Materials and Industrial Production Engineering , University of Naples Federico II , Naples 80125 , Italy
| | - Parvaneh Naserzadeh
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Nanomedicine and Tissue Engineering Research Center , Shahid Beheshti University of Medical Sciences , Tehran 1985717443 , Iran
| | - Elham Afjeh-Dana
- Shahdad Ronak Commercialization Company (SPE No 10320821698) , Pasdaran Street , Tehran 1947 , Iran
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Behnaz Ashtari
- Radiation Biology Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
| | - Mehdi Hosseinzadeh
- Health Management and Economics Research Center , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Computer Science , University of Human Development , Sulaymaniyah , Iraq
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care , Istituto Italiano di Tecnologia , Naples 80125 , Italy
| | - Aimin Wu
- Department of Orthopedics, Bioprinting Research Group, Zhejiang Provincial Key Laboratory of Orthopedics , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Franklin R Tay
- College of Graduate Studies , Augusta University , Augusta , Georgia 30912 , United States
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology , The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Assunta Borzacchiello
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| | - Pooyan Makvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine , Iran University of Medical Sciences , Tehran 14496-14535 , Iran
- Institute for Polymers, Composites, and Biomaterials (IPCB) , National Research Council (CNR) , Naples 80125 , Italy
| |
Collapse
|
40
|
Lutter JC, Eliseeva SV, Collet G, Martinić I, Kampf JW, Schneider BL, Carichner A, Sobilo J, Lerondel S, Petoud S, Pecoraro VL. Iodinated Metallacrowns: Toward Combined Bimodal Near‐Infrared and X‐Ray Contrast Imaging Agents. Chemistry 2020; 26:1274-1277. [DOI: 10.1002/chem.201905241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jacob C. Lutter
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | | | - Guillaume Collet
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Ivana Martinić
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Jeff W. Kampf
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Bernadette L. Schneider
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Aidan Carichner
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| | - Julien Sobilo
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphanie Lerondel
- Centre d'Imagerie du Petit AnimalPHENOMIN-TAAM 45071 Orléans Cedex 2 France
| | - Stéphane Petoud
- Centre de Biophysique MoléculaireCNRS UPR 4301 45071 Orléans Cedex 2 France
| | - Vincent L. Pecoraro
- Department of ChemistryWillard H. Dow LaboratoriesThe University of Michigan Ann Arbor MI 48109 United States
| |
Collapse
|
41
|
Zheng L, Wang Y, Yang B, Zhang B, Wu Y. Islet Transplantation Imaging in vivo. Diabetes Metab Syndr Obes 2020; 13:3301-3311. [PMID: 33061492 PMCID: PMC7520574 DOI: 10.2147/dmso.s263253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Although islet transplantation plays an effective and powerful role in the treatment of diabetes, a large amount of islet grafts are lost at an early stage due to instant blood-mediated inflammatory reactions, immune rejection, and β-cell toxicity resulting from immunosuppressive agents. Timely intervention based on the viability and function of the transplanted islets at an early stage is crucial. Various islet transplantation imaging techniques are available for monitoring the conditions of post-transplanted islets. Due to the development of various imaging modalities and the continuous study of contrast agents, non-invasive islet transplantation imaging in vivo has made great progress. The tracing and functional evaluation of transplanted islets in vivo have thus become possible. However, most studies on contrast agent and imaging modalities are limited to animal experiments, and long-term toxicity and stability need further evaluation. Accordingly, the clinical application of the current achievements still requires a large amount of effort. In this review, we discuss the contrast agents for MRI, SPECT/PET, BLI/FI, US, MPI, PAI, and multimodal imaging. We further summarize the advantages and limitations of various molecular imaging methods.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Yinghao Wang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bin Yang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| | - Bo Zhang
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Correspondence: Bo Zhang; Yulian Wu Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China Tel/Fax +86 571 87783563 Email ;
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou310000, People’s Republic of China
| |
Collapse
|
42
|
|
43
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2019; 60:1665-1681. [PMID: 31792128 PMCID: PMC12079160 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Dzuricky M, Xiong S, Weber P, Chilkoti A. Avidity and Cell Uptake of Integrin-Targeting Polypeptide Micelles is Strongly Shape-Dependent. NANO LETTERS 2019; 19:6124-6132. [PMID: 31389705 DOI: 10.1021/acs.nanolett.9b02095] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We describe a genetically encoded micelle for targeted delivery consisting of a diblock polypeptide with segments derived from repetitive protein motifs inspired by Drosophila melanogaster Rec-1 resilin and human tropoelastin with a C-terminal fusion of an integrin-targeting fibronectin type III domain. By systematically varying the weight fraction of the hydrophilic elastin-like polypeptide (ELP) block and molecular weight of the diblock polypeptide, we designed micelles of different morphologies that modulate the binding avidity of the human wild-type 10th fibronectin domain (Fn3) as a function of shape. We show that wormlike micelles that present the Fn3 domain have a 1000-fold greater avidity for the αvβ3 receptor compared to the monomer ligand and an avidity that is greater than a clinically relevant antibody that is driven by their multivalency. The amplified avidity of these micelles leads to significantly increased cellular internalization, a feature that may have utility for the intracellular delivery of drugs that are loaded into the core of these micelles.
Collapse
Affiliation(s)
- Michael Dzuricky
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Patrick Weber
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
- Swiss Nanoscience Institute , University of Basel , Basel 4056 , Switzerland
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
45
|
Fluorinated MRI contrast agents and their versatile applications in the biomedical field. Future Med Chem 2019; 11:1157-1175. [DOI: 10.4155/fmc-2018-0463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MRI has been recognized as one of the most applied medical imaging techniques in clinical practice. However, the presence of background signal coming from water protons in surrounding tissues makes sometimes the visualization of local contrast agents difficult. To remedy this, fluorine has been introduced as a reliable perspective, thanks to its magnetic properties being relatively close to those of protons. In this review, we aim to give an overall description of fluorine incorporation in contrast agents for MRI. The different kinds of fluorinated probes such as perfluorocarbons, fluorinated dendrimers, polymers and paramagnetic probes will be described, as will their imaging applications such as chemical exchange saturation transfer (CEST) imaging, physico-chemical changes detection, drug delivery, cell tracking and inflammation or tumors detection.
Collapse
|
46
|
Thakare V, Tran VL, Natuzzi M, Thomas E, Moreau M, Romieu A, Collin B, Courteau A, Vrigneaud JM, Louis C, Roux S, Boschetti F, Tillement O, Lux F, Denat F. Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging. RSC Adv 2019; 9:24811-24815. [PMID: 35528689 PMCID: PMC9073358 DOI: 10.1039/c9ra00365g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/01/2019] [Indexed: 12/16/2022] Open
Abstract
A novel trifunctional imaging probe containing a chelator of radiometal for PET, a NIR heptamethine cyanine dye, and a bioconjugatable handle, has been grafted onto AGuIX® nanoparticles via a Michael addition reaction. The resulting functionalized nanoparticles have been fully characterized, radiolabelled with 64Cu, and evaluated in a mice TSA tumor model using multimodal (PET/MRI/optical) imaging. The controlled dual functionalization of AGuIX® nanoparticles afforded trimodal imaging (PET/MRI/fluorescence) theranostic agents.![]()
Collapse
|
47
|
Leone C, Bertuzzi EE, Toropova AP, Toropov AA, Benfenati E. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. CHEMOSPHERE 2018; 210:52-56. [PMID: 29986223 DOI: 10.1016/j.chemosphere.2018.06.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Unlike the well-known simplified molecular input-line entry system (SMILES), the so-called quasi-SMILES contains information related to physicochemical and biochemical conditions by a special additional symbols (codes), each standing for different conditions (time exposure, concentration, type of cell, etc.). Thus, quasi-SMILES can be used to build up models for cytotoxicity of functionalized nanozeolites using a mathematical function of eclectic information. These calculations were done with the Monte Carlo CORAL software. The statistical quality of models based on quasi-SMILES was usually considerably better than the statistical quality of models based on traditional SMILES.
Collapse
Affiliation(s)
- Caterina Leone
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy.
| | - Elia E Bertuzzi
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Alla P Toropova
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Andrey A Toropov
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156, Milan, Italy
| |
Collapse
|
48
|
Liu F, Chen Y, Li Y, Guo Y, Cao Y, Li P, Wang Z, Gong Y, Ran H. Folate-receptor-targeted laser-activable poly(lactide- co-glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy. Int J Nanomedicine 2018; 13:5139-5158. [PMID: 30233177 PMCID: PMC6135220 DOI: 10.2147/ijn.s167043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious threats to human health. Precision medicine is an innovative approach to treatment, as part of which theranostic nanomedicine has been studied extensively. However, the required biocompatibility and substantial cost for the approval of nanomedicines hinder their clinical translation. PURPOSE We designed a novel type of theranostic nanoparticle (NP) folate-receptor-targeted laser-activatable poly(lactide-co-glycolic acid) (PLGA) NPs loaded with paclitaxel (Ptx)/indo-cyanine green (ICG)-folic acid-polyethylene glycol (PEG)-PLGA-Ptx@ICG-perfluorohexane (Pfh)- using safe and approved materials and drugs, which would facilitate clinical translation. With laser irradiation, highly efficient photothermal therapy can be achieved. Additionally, targeted NPs can be activated by near-infrared laser irradiation at a specific region, which leads to the sharp release of Ptx at areas of high folate-receptor expression and ensures a higher Ptx concentration within the tumor region, thereby leading to chemo/photothermal synergistic antitumor efficacy. Meanwhile, the NPs can be used as a dual-modality contrast agent for photoacoustic and ultrasound imaging. MATERIALS AND METHODS FA-PEG-PLGA-Ptx@ICG-Pfh NPs were prepared by sonification method and characterized for physicochemical properties. Cytotoxicity and in vivo biocompatibility were evaluated respectively by CCK8 assay and blood analysis. NPs as dual-modality contrast agents were evaluated by photoacoustic/ultrasound imaging system in vitro and in vivo. In vitro anticancer effect and in vivo anticancer therapy was evaluated by CCK8 assay and MDA-MB231 tumor-bearing mice model. RESULTS FA-PEG-PLGA-Ptx@ICG-Pfh NPs were in the size of 308±5.82 nm with negative zeta potential and showed excellent photothermal effect. The NPs could be triggered sharp release of Ptx by laser irradiation, and showed the good biocompatibility in vitro and in vivo. Through photoacoustic/ultrasound imaging, the NPs showed an excellent ability as dual-modality contrast agents in vitro and in vivo. FA-PEG-PLGA-Ptx@ICG-Pfh NPs with laser irradiation showed the best anticancer efficacy in vitro and in vivo. CONCLUSION Such a biocompatible and novel theranostic NP is expected to integrate dual-modality imaging with improved therapeutic efficacy and provide a promising paradigm for cancer therapy.
Collapse
Affiliation(s)
- Fengqiu Liu
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Yuli Chen
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Yizhen Li
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Yuan Guo
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Yang Cao
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Pan Li
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Zhigang Wang
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Yuping Gong
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| | - Haitao Ran
- Ultrasound Department, Second Affiliated Hospital, Chongqing Medical University, ;
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China, ;
| |
Collapse
|
49
|
Molecular Imaging with 68Ga Radio-Nanomaterials: Shedding Light on Nanoparticles. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Wang T, Jia G, Cheng C, Wang Q, Li X, Liu Y, He C, Chen L, Sun G, Zuo C. Active targeted dual-modal CT/MR imaging of VX2 tumors using PEGylated BaGdF5 nanoparticles conjugated with RGD. NEW J CHEM 2018. [DOI: 10.1039/c8nj01527a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RGD-PEG-BaGdF5 NPs can be used as CT/MR dual-modality contrast agents of solid tumors via the RGD-mediated tumor vasculature targeting strategy.
Collapse
|