1
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
2
|
Misra P, Tandon R, Basak T, Sengupta S, Dube A. Purified Splenic amastigotes of Leishmania donovani-Immunoproteomic approach for exploring Th1 stimulatory polyproteins. Parasite Immunol 2020; 42:e12729. [PMID: 32415855 DOI: 10.1111/pim.12729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
Abstract
Visceral leishmaniasis (VL) represents one of the most challenging infectious diseases worldwide. The reason that once infected, patient develops immunity against Leishmania parasite has paved way to develop prophylactic vaccines against disease, but only some of these have moved ahead for clinical trials. Herein, the study to explore novel and potential vaccine candidates was extended to pathogenic form of parasite, that is, amastigote form which is less explored due to complexity of its purification process. Methods and results. Classical protocol of purification of splenic amastigotes was modified to obtain highly pure amastigotes which was confirmed by Western blotting in support with proteomics studies. Fractionation and sub-fractionation of purified splenic amastigotes revealed four sub-fractions, belonging to 97 to 68 kDa and 68 to 43 kDa ranges, which showed long-lasting protection with remarkable Th1-type cellular responses in hamsters vaccinated with these sub-fractions (LTT, NO, QRT-PCR). Further proteomics analysis, to identify and understand the precise nature and function of these protective protein sub-fractions, identified a total of 47 proteins including twenty-five hypothetical proteins/unknowns. Amastigote stage has potential Th1-stimulatory vaccine candidates, notably, among identified proteins, major were uncharacterized proteins/hypothetical proteins, which once characterized may serve as novel and potential vaccine candidates/drug targets.
Collapse
Affiliation(s)
- Pragya Misra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rati Tandon
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Trayambak Basak
- School of Basic Sciences, BioX- Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
3
|
Jamal F, Singh MK, Hansa J, Pushpanjali, Ahmad G, Dikhit MR, Umar MS, Bimal S, Das P, Mujeeb AA, Singh SK, Zubair S, Owais M. Leishmania-Specific Promiscuous Membrane Protein Tubulin Folding Cofactor D Divulges Th 1/Th 2 Polarization in the Host via ERK -1/2 and p38 MAPK Signaling Cascade. Front Immunol 2020; 11:817. [PMID: 32582140 PMCID: PMC7280453 DOI: 10.3389/fimmu.2020.00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Visceral leishmaniasis (VL)-related mortality and morbidity imposes a great deal of health concern across the globe. The existing anti-leishmanial drug regimen generally fails to eliminate newly emerging resistant isolates of this dreadful parasite. In such circumstances, the development of a prophylactic strategy to impart protection against the disease is likely to take center stage. In order to develop a promising prophylactic vaccine, it is desirable to identify an adequately potential vaccine candidate. In silico analysis of Leishmania tubulin folding cofactor D protein predicted its potential to activate both B- and T-cell repertoires. Furthermore, the ELISA employing anti-peptide27 (a segment of tubulin folding cofactor D) antibody revealed its proficiency in VL diagnosis and treatment monitoring. The peptide27 and its cocktail with another Leishmania peptide (peptide23) prompted the up-regulation of pro-inflammatory cytokines, such as IFN-γ, TNF-α, IL-2, IL-17, etc., and the down-regulation of immune-regulatory cytokines, such as IL-10, in the immunized BALB/c mice. Coherent to the consequence of peptide-specific humoral immune response, peptide cocktail-based immunization ensued in the predominant amplification of pathogen-specific IgG2a over the IgG1 isotype, up-regulated proliferation of T lymphocytes, and enhanced production of nitric oxide, reactive oxygen species, etc. We also established that the peptide cocktail modulated host MAPK signaling to favor the amplification of Th1-dominated immune response in the host. The peptide cocktail mediated the activation of the host immune armory, which was eventually translated into a significant decline in parasitic load in the visceral organs of experimental animals challenged with Leishmania donovani.
Collapse
Affiliation(s)
- Fauzia Jamal
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Manish K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Jagadish Hansa
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pushpanjali
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ghufran Ahmad
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Bioinformatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Mohd Saad Umar
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Anzar Abdul Mujeeb
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Shubhankar K Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdesciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Singh MK, Jamal F, Dubey AK, Shivam P, Kumari S, Pushpanjali, Bordoloi C, Narayan S, Das VNR, Pandey K, Das P, Singh SK. Visceral leishmaniasis: A novel nuclear envelope protein 'nucleoporins-93 (NUP-93)' from Leishmania donovani prompts macrophage signaling for T-cell activation towards host protective immune response. Cytokine 2018; 113:200-215. [PMID: 30001865 DOI: 10.1016/j.cyto.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
The shift of macrophage and T-cell repertoires towards proinflammatory cytokine signalling ensures the generation of host-protective machinery that is otherwise compromised in cases of the intracellular Leishmania parasite. Different groups have attempted to restore host protective immunity. These vaccine candidates showed good responses and protective effects in murine models, but they generally failed during human trials. In the present study, we evaluated the effect of 97 kDa recombinant nucleoporin-93 of Leishmania donovani (rLd-NUP93) on mononuclear cells in healthy and treated visceral leishmaniasis (VL) patients and on THP-1 cell lines. rLd-NUP93 stimulation increased the expression of the early lymphocyte activation marker CD69 on CD4+ and CD8+ T cells. The expression of the host protective pro-inflammatory cytokines IFN-γ, IL-12 and TNF-α was increased, with a corresponding down-regulation of IL-10 and TGF-β upon rLd-NUP93 stimulation. This immune polarization resulted in the up-regulation of NF-κB p50 with scant expression of SMAD-4. Augmenting lymphocyte proliferation upon priming with rLd-NUP93 ensured its potential for activation and generation of strong T-cell mediated immune responses. This stimulation extended the leishmanicidal activity of macrophages by releasing high amounts of reactive oxygen species (ROS). Further, the leishmanicidal activity of macrophages was intensified by the elevated production of nitric oxide (NO). The fact that this antigen was earlier reported in circulating immune complexes of VL patients highlights its antigenic importance. In addition, in silico analysis suggested the presence of MHC class I and II-restricted epitopes that proficiently trigger CD8+ and CD4+ T-cells, respectively. This study reported that rLd-NUP93 was an effective immunoprophylactic agent that can be explored in future vaccine design.
Collapse
Affiliation(s)
- Manish K Singh
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Fauzia Jamal
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Amit K Dubey
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India; National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - Pushkar Shivam
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sarita Kumari
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Pushpanjali
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Chayanika Bordoloi
- National Institute of Pharmaceutical Education and Research, Hajipur 844102, India
| | - S Narayan
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Shubhankar K Singh
- Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
5
|
Co-factor-independent phosphoglycerate mutase of Leishmania donovani modulates macrophage signalling and promotes T-cell repertoires bearing epitopes for both MHC-I and MHC-II. Parasitology 2017; 145:292-306. [PMID: 29140228 DOI: 10.1017/s0031182017001494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Immunoactivation depends upon the antigen potential to modulate T-cell repertoires. The present study has enumerated the effect of 61 kDa recombinant Leishmania donovani co-factor-independent phosphoglycerate mutase (rLd-iPGAM) on mononuclear cells of healthy and treated visceral leishmaniasis subjects as well as on THP-1 cell line. rLd-iPGAM stimulation induced higher expression of interleukin-1β (IL-1β) in the phagocytic cell, its receptor and CD69 on T-cell subsets. These cellular activations resulted in upregulation of host-protective cytokines IL-2, IL-12, IL-17, tumour necrosis factor-α and interferon-γ, and downregulation of IL-4, IL-10 and tumour growth factor-β. This immune polarization was also evidenced by upregulation of nuclear factor-κ light-chain enhancer of activated B cells p50 and regulated expression of suppressor of mother against decapentaplegic protein-4. rLd-iPGAM stimulation also promoted lymphocyte proliferation and boosted the leishmaniacidal activity of macrophages by upregulating reactive oxygen species. It also induced 1·8-fold higher release of nitric oxide (NO) by promoting the transcription of inducible nitric oxide synthase gene. Besides, in silico analysis suggested the presence of major histocompatibility complex class I and II restricted epitopes, which can proficiently trigger CD8+ and CD4+ cells, respectively. This study reports rLd-iPGAM as an effective immunoprophylactic agent, which can be used in future vaccine design.
Collapse
|
6
|
Mendonça SCF. Differences in immune responses against Leishmania induced by infection and by immunization with killed parasite antigen: implications for vaccine discovery. Parasit Vectors 2016; 9:492. [PMID: 27600664 PMCID: PMC5013623 DOI: 10.1186/s13071-016-1777-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 08/26/2016] [Indexed: 01/06/2023] Open
Abstract
The leishmaniases are a group of diseases caused by different species of the protozoan genus Leishmania and transmitted by sand fly vectors. They are a major public health problem in almost all continents. There is no effective control of leishmaniasis and its geographical distribution is expanding in many countries. Great effort has been made by many scientists to develop a vaccine against leishmaniasis, but, so far, there is still no effective vaccine against the disease. The only way to generate protective immunity against leishmaniasis in humans is leishmanization, consisting of the inoculation of live virulent Leishmania as a means to acquire long-lasting immunity against subsequent infections. At present, all that we know about human immune responses to Leishmania induced by immunization with killed parasite antigens came from studies with first generation candidate vaccines (killed promastigote extracts). In the few occasions that the T cell-mediated immune responses to Leishmania induced by infection and immunization with killed parasite antigens were compared, important differences were found both in humans and in animals. This review discusses these differences and their relevance to the development of a vaccine against leishmaniasis, the major problems involved in this task, the recent prospects for the selection of candidate antigens and the use of attenuated Leishmania as live vaccines.
Collapse
Affiliation(s)
- Sergio C F Mendonça
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. 4365 - Manguinhos, 21040-360, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Immunological consequences of stress-related proteins – cytosolic tryparedoxin peroxidase and chaperonin TCP20 – identified in splenic amastigotes ofLeishmania donovanias Th1 stimulatory, in experimental visceral leishmaniasis. Parasitology 2014; 142:728-44. [DOI: 10.1017/s003118201400184x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYIn earlier studies, proteomic characterization of splenic amastigote fractions from clinical isolates ofLeishmania donovani, exhibiting significant cellular responses in curedLeishmaniasubjects, led to the identification of cytosolic tryparedoxin peroxidase (LdcTryP) and chaperonin-TCP20 (LdTCP20) as Th1-stimulatory proteins. Both the proteins, particularly LdTCP20 for the first time, were successfully cloned, overexpressed, purified and were found to be localized in the cytosol of purified splenic amastigotes. When evaluated against lymphocytes of curedLeishmania-infected hamsters, the purified recombinant proteins (rLdcTryP and rLdTCP20) induced their proliferations as well as nitric oxide production. Similarly, these proteins also generated Th1-type cytokines (IFN-γ/IL-12) from stimulated PBMCs of cured/endemicLeishmaniapatients. Further, vaccination with rLdcTryP elicited noticeable delayed-type hypersensitivity response and offered considerably good prophylactic efficacy (~78% inhibition) againstL. donovanichallenge in hamsters, which was well supported by the increased mRNA expression of Th1 and Th2 cytokines. However, animals vaccinated with rLdTCP20 exhibited comparatively lesser prophylactic efficacy (~55%) with inferior immunological response. The results indicate the potentiality of rLdcTryP protein, between the two, as a suitable anti-leishmanial vaccine. Since, rLdTCP20 is also an important target, for optimization, further attempts towards determination of immunodominant regions for designing fusion peptides may be taken up.
Collapse
|
8
|
Evaluation of the immunogenicity and protective efficacy of Killed Leishmania donovani antigen along with different adjuvants against experimental visceral leishmaniasis. Med Microbiol Immunol 2014; 204:539-50. [DOI: 10.1007/s00430-014-0367-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
|
9
|
Jaiswal AK, Khare P, Joshi S, Kushawaha PK, Sundar S, Dube A. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis. PLoS One 2014; 9:e108556. [PMID: 25268700 PMCID: PMC4182492 DOI: 10.1371/journal.pone.0108556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/29/2014] [Indexed: 11/25/2022] Open
Abstract
In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prashant Khare
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sumit Joshi
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- * E-mail:
| |
Collapse
|
10
|
Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, Mitra K, Sundar S, Siddiqi MI, Dube A. Characterization of glycolytic enzymes--rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. PLoS One 2014; 9:e86073. [PMID: 24475071 PMCID: PMC3901665 DOI: 10.1371/journal.pone.0086073] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Th1 immune responses play an important role in controlling Visceral Leishmaniasis (VL) hence, Leishmania proteins stimulating T-cell responses in host, are thought to be good vaccine targets. Search of such antigens eliciting cellular responses in Peripheral blood mononuclear cells (PBMCs) from cured/exposed/Leishmania patients and hamsters led to the identification of two enzymes of glycolytic pathway in the soluble lysate of a clinical isolate of Leishmania donovani--Enolase (LdEno) and aldolase (LdAld) as potential Th1 stimulatory proteins. The present study deals with the molecular and immunological characterizations of LdEno and LdAld. The successfully cloned and purified recombinant proteins displayed strong ability to proliferate lymphocytes of cured hamsters' along with significant nitric-oxide production and generation of Th1-type cytokines (IFN-γ and IL-12) from stimulated PBMCs of cured/endemic VL patients. Assessment of their prophylactic potentials revealed ∼ 90% decrease in parasitic burden in rLdEno vaccinated hamsters against Leishmania challenge, strongly supported by an increase in mRNA expression levels of iNOS, IFN-γ, TNF-α and IL-12 transcripts along with extreme down-regulation of TGF-β, IL-4 and IL-10. However, animals vaccinated with rLdAld showed comparatively lesser prophylactic efficacy (∼ 65%) with inferior immunological response. Further, with a possible implication in vaccine design against VL, identification of potential T-cell epitopes of both the proteins was done using computational approach. Additionally, in-silico 3-D modelling of the proteins was done in order to explore the possibility of exploiting them as potential drug targets. The comparative molecular and immunological characterizations strongly suggest rLdEno as potential vaccine candidate against VL and supports the notion of its being effective T-cell stimulatory protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Protozoan/immunology
- Cricetinae
- Cytokines/biosynthesis
- Disease Models, Animal
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/immunology
- Fructose-Bisphosphate Aldolase/chemistry
- Fructose-Bisphosphate Aldolase/genetics
- Fructose-Bisphosphate Aldolase/metabolism
- Glycolysis
- Hypersensitivity, Delayed/immunology
- Immunoglobulin G/immunology
- Leishmania donovani/enzymology
- Leishmania donovani/genetics
- Leishmania donovani/immunology
- Leishmaniasis Vaccines/immunology
- Leishmaniasis, Visceral/immunology
- Leishmaniasis, Visceral/prevention & control
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Models, Molecular
- Mycobacterium bovis/immunology
- Nitric Oxide/metabolism
- Phosphopyruvate Hydratase/chemistry
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/metabolism
- Protein Conformation
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Vaccination
Collapse
Affiliation(s)
- Reema Gupta
- Divisions of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikash Kumar
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Sumit Joshi
- Divisions of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Kalyan Mitra
- Electron Microscopy, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Anuradha Dube
- Divisions of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- * E-mail:
| |
Collapse
|
11
|
Kushawaha PK, Gupta R, Tripathi CDP, Khare P, Jaiswal AK, Sundar S, Dube A. Leishmania donovani triose phosphate isomerase: a potential vaccine target against visceral leishmaniasis. PLoS One 2012; 7:e45766. [PMID: 23049855 PMCID: PMC3454378 DOI: 10.1371/journal.pone.0045766] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/23/2012] [Indexed: 11/20/2022] Open
Abstract
Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.9–97.1 kDa, was assessed for its potential as a suitable vaccine candidate. The protein- L. donovani TPI (LdTPI) was cloned, expressed and purified which exhibited the homology of 99% with L. infantum TPI. The rLdTPI was further evaluated for its immunogenicity by lymphoproliferative response (LTT), nitric oxide (NO) production and estimation of cytokines in cured Leishmania patients/hamster. It elicited strong LTT response in cured patients as well as NO production in cured hamsters and stimulated remarkable Th1-type cellular responses including IFN-ã and IL-12 with extremely lower level of IL-10 in Leishmania-infected cured/exposed patients PBMCs in vitro. Vaccination with LdTPI-DNA construct protected naive golden hamsters from virulent L. donovani challenge unambiguously (∼90%). The vaccinated hamsters demonstrated a surge in IFN-ã, TNF-á and IL-12 levels but extreme down-regulation of IL-10 and IL-4 along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody. Thus, the results are suggestive of the protein having the potential of a strong candidate vaccine.
Collapse
Affiliation(s)
| | - Reema Gupta
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | | | - Prashant Khare
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Anil Kumar Jaiswal
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Benaras Hindu University, Varanasi, India
| | - Anuradha Dube
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
- * E-mail: ,
| |
Collapse
|
12
|
Evaluation of Leishmania donovani protein disulfide isomerase as a potential immunogenic protein/vaccine candidate against visceral Leishmaniasis. PLoS One 2012; 7:e35670. [PMID: 22539989 PMCID: PMC3335089 DOI: 10.1371/journal.pone.0035670] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
In Leishmania species, Protein disulfide isomerase (PDI) - a redox chaperone, is reported to be involved in its virulence and survival. This protein has also been identified, through proteomics, as a Th1 stimulatory protein in the soluble lysate of a clinical isolate of Leishmania donovani (LdPDI). In the present study, the molecular characterization of LdPDI was carried out and the immunogenicity of recombinant LdPDI (rLdPDI) was assessed by lymphocyte proliferation assay (LTT), nitric oxide (NO) production, estimation of Th1 cytokines (IFN-γ and IL-12) as well as IL-10 in PBMCs of cured/endemic/infected Leishmania patients and cured L. donovani infected hamsters. A significantly higher proliferative response against rLdPDI as well as elevated levels of IFN-γ and IL-12 were observed. The level of IL-10 was found to be highly down regulated in response to rLdPDI. A significant increase in the level of NO production in stimulated hamster macrophages as well as IgG2 antibody and a low level of IgG1 in cured patient's serum was observed. Higher level of IgG2 antibody indicated its Th1 stimulatory potential. The efficacy of pcDNA-LdPDI construct was further evaluated for its prophylactic potential. Vaccination with this construct conferred remarkably good prophylactic efficacy (∼90%) and generated a robust cellular immune response with significant increases in the levels of iNOS transcript as well as TNF-α, IFN-γ and IL-12 cytokines. This was further supported by the high level of IgG2 antibody in vaccinated animals. The in vitro as well as in vivo results thus indicate that LdPDI may be exploited as a potential vaccine candidate against visceral Leishmaniasis (VL).
Collapse
|
13
|
Mazumder S, Maji M, Das A, Ali N. Potency, efficacy and durability of DNA/DNA, DNA/protein and protein/protein based vaccination using gp63 against Leishmania donovani in BALB/c mice. PLoS One 2011; 6:e14644. [PMID: 21311597 PMCID: PMC3032732 DOI: 10.1371/journal.pone.0014644] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/08/2011] [Indexed: 12/04/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by an intracellular protozoan parasite Leishmania, is fatal in the absence of treatment. At present there are no effective vaccines against any form of leishmaniasis. Here, we evaluate the potency, efficacy and durability of DNA/DNA, DNA-prime/Protein-boost, and Protein/Protein based vaccination against VL in a susceptible murine model. Methods and Findings To compare the potency, efficacy, and durability of DNA, protein and heterologous prime-boost (HPB) vaccination against Leishmania donovani, major surface glycoprotein gp63 was cloned into mammalian expression vector pcDNA3.1 for DNA based vaccines. We demonstrated that gp63 DNA based vaccination induced immune responses and conferred protection against challenge infection. However, vaccination with HPB approach showed comparatively enhanced cellular and humoral responses than other regimens and elicited early mixed Th1/Th2 responses before infection. Moreover, challenge with parasites induced polarized Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses compared to other vaccination strategies. Although, vaccination with gp63 DNA either alone or mixed with CpG- ODN or heterologously prime-boosting with CpG- ODN showed comparable levels of protection at short-term protection study, DNA-prime/Protein-boost in presence of CpG significantly reduced hepatic and splenic parasite load by 107 fold and 1010 fold respectively, in long-term study. The extent of protection, obtained in this study has till now not been achieved in long-term protection through HPB approach in susceptible BALB/c model against VL. Interestingly, the HPB regimen also showed marked reduction in the footpad swelling of BALB/c mice against Leishmania major infection. Conclusion/Significance HPB approach based on gp63 in association with CpG, resulted in robust cellular and humoral responses correlating with durable protection against L. donovani challenge till twelve weeks post-vaccination. These results emphasize the potential of DNA-prime/Protein-boost vaccination over DNA/DNA and Protein/Protein based vaccination in maintaining long-term immunity against intracellular pathogen like Leishmania.
Collapse
Affiliation(s)
- Saumyabrata Mazumder
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mithun Maji
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Amrita Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
14
|
Samant M, Gupta R, Kumari S, Misra P, Khare P, Kushawaha PK, Sahasrabuddhe AA, Dube A. Immunization with the DNA-Encoding N-Terminal Domain of Proteophosphoglycan ofLeishmania donovaniGenerates Th1-Type Immunoprotective Response against Experimental Visceral Leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2009; 183:470-9. [DOI: 10.4049/jimmunol.0900265] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Kumari S, Samant M, Khare P, Misra P, Dutta S, Kolli BK, Sharma S, Chang KP, Dube A. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur J Immunol 2009; 39:178-91. [PMID: 19053149 PMCID: PMC5056643 DOI: 10.1002/eji.200838389] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmania, naturally residing in the phagolysosomes of macrophages, is a suitable carrier for vaccine delivery. Genetic complementation of these trypanosomatid protozoa to partially rectify their defective heme-biosynthesis renders them inducible with delta-aminolevulinate to develop porphyria for selective photolysis, leaving infected host cells unscathed. Delivery of released "vaccines" to antigen-presenting cells is thus expected to enhance immune response, while their self-destruction presents added advantages of safety. Such suicidal L. amazonensis was found to confer immunoprophylaxis and immunotherapy on hamsters against L. donovani. Neither heat-killed nor live parasites without suicidal induction were effective. Photodynamic vaccination of hamsters with the suicidal mutants reduced the parasite loads by 99% and suppressed the development of disease. These suppressions were accompanied by an increase in Leishmania-specific delayed-type hypersensitivity and lymphoproliferation as well as in the levels of splenic iNOS, IFN-gamma, and IL-12 expressions and of Leishmania-specific IgG2 in the serum. Moreover, a single intravenous administration of T cells from vaccinated hamsters was shown to confer on naïve animals an effective cellular immunity against L. donovani challenges. The absence of lesion development at vaccination sites and parasites in the draining lymphnodes, spleen and liver further indicates that the suicidal mutants provide a safe platform for vaccine delivery against experimental visceral leishmaniasis.
Collapse
Affiliation(s)
- Shraddha Kumari
- Divisions of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Mukesh Samant
- Divisions of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Prashant Khare
- Divisions of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Pragya Misra
- Divisions of Parasitology, Central Drug Research Institute, Lucknow, India
| | - Sujoy Dutta
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Bala Krishna Kolli
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Sharad Sharma
- Divisions of Toxicology, Central Drug Research Institute, Lucknow, India
| | - Kwang Poo Chang
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Anuradha Dube
- Divisions of Parasitology, Central Drug Research Institute, Lucknow, India
| |
Collapse
|
16
|
Kumari S, Samant M, Misra P, Khare P, Sisodia B, Shasany AK, Dube A. Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1 kDa offers long-lasting protection against experimental visceral leishmaniasis. Vaccine 2008; 26:5700-11. [PMID: 18762224 DOI: 10.1016/j.vaccine.2008.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Our earlier studies identified a fraction (F2) of Leishmania donovani soluble promastigote antigen belonging to 97.4-68 kDa for its ability to stimulate Th1-type cellular responses in cured visceral leishmaniasis (VL) patients as well as in cured hamsters. A further fractionation of F2-fraction into seven subfractions (F2.1-F2.7) and re-assessment for their immunostimulatory responses revealed that out of these, only four (F2.4-F2.7) belonging to 89.9-97.1 kDa, stimulated remarkable Th1-type cellular responses either individually or in a pooled form (P4-7). In this study these potential subfractions were further assessed for their prophylactic potential in combination with BCG against L. donovani challenge in hamsters. Optimum parasite inhibition ( approximately 99%) was obtained in hamsters vaccinated with pooled subfractions and they survived for 1 year. The protection was further supported by remarkable lymphoproliferative, IFN-gamma and IL-12 responses along with profound delayed type hypersensitivity and increased levels of Leishmania-specific IgG2 antibody as observed on days 45, 90 and 120 post-challenge suggesting that a successful subunit vaccine against VL may require multiple Th1-immunostimulatory proteins. MALDI-TOF-MS/MS analysis of these subfractions further revealed that of the 19 identified immunostimulatory proteins, Elongation factor-2, p45, Heat shock protein-70/83, Aldolase, Enolase, Triosephosphate isomerase, Disulfideisomerase and Calreticulin were the major ones in these subfractions.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Akilov OE, Donovan MJ, Stepinac T, Carter CR, Whitcomb JP, Hasan T, McDowell MA. T helper type 1 cytokines and keratinocyte growth factor play a critical role in pseudoepitheliomatous hyperplasia initiation during cutaneous leishmaniasis. Arch Dermatol Res 2007; 299:315-25. [PMID: 17643254 DOI: 10.1007/s00403-007-0765-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/14/2007] [Accepted: 06/17/2007] [Indexed: 11/30/2022]
Abstract
Pseudoepitheliomatous hyperplasia (PEH) is an exuberant proliferation of the epidermis. The underlying mechanism(s) that lead to PEH have not been completely elucidated. Here, we characterize PEH during the healing stages of cutaneous leishmanial ulcers in mice. During experimental cutaneous leishmaniasis (CL) C57BL/6 mice produce PEH, and BALB/c do not. A series of immunohistochemical and immunological studies were performed to identify the secretory products of PEH regulation. We observed that the distribution of TNF-alpha and IFN-gamma under PEH had a stripe-like diffuse pattern and localized in the upper part of the papillary dermis directly under the proliferating epidermis. Macrophages were identified as the major source of TNF-alpha (56.3%). The importance of IFN-gamma and TNF-alpha in PEH development was proven by the initiation of PEH after three intralesional injections of TNF-alpha and IFN-gamma every three days in infected BALB/c mice. In C57BL/6 mice, keratinocyte growth factor (KGF) expressing cells were found immediately under the basal membrane of the hyperplastic epidermis in comparison with sporadic KGF positive cells deep in the dermis of BALB/c mice. Quantitative RT-PCR analysis demonstrated increased KGF and KGF receptor expression in uninfected C57BL/6 mice as compared to BALB/c mice. These data indicate that Th1 cytokines and KGF play a critical role in PEH initiation during CL.
Collapse
Affiliation(s)
- Oleg E Akilov
- Center for Global Health and Infectious Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46656, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Garg R, Singh N, Dube A. Intake of nutrient supplements affects multiplication of Leishmania donovani in hamsters. Parasitology 2005; 129:685-91. [PMID: 15648691 DOI: 10.1017/s0031182004006055] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of the essential nutrients, vitamins A, B (complex), C and E and iron, as prophylactic as well as supportive therapy in experimental visceral leishmaniasis (VL), was studied in hamsters. Prophylactic administration of vitamin C (50, 100 and 250 mg/kg) from day 15 to day 0 (15 doses) significantly reduced the intake of Leishmania donovani in hamsters but had no therapeutic effect. In contrast, vitamins A, B complex and E and iron, whether used prophylactically or therapeutically, promoted parasite multiplication. The efficacy of sodium stibogluconate, a reference antileishmanial drug, was appreciably improved in animals administered prophylactically with vitamin C. However, supplementation of vitamin C during established infections resulted in reduced drug action. The results show that the prophylactic use of vitamin C may prevent the onset of leishmania infection and cautions against the indiscriminate use of nutrient supplements such as vitamin A, B complex, and E and iron in VL endemic areas.
Collapse
Affiliation(s)
- Ravendra Garg
- Central Drug Research Institute, Lucknow - 226001, India
| | | | | |
Collapse
|
19
|
Rodilla F, Magraner J, Aznar J, Orovitg F, Alcácer F, Colomina J, Ferriols F. Amphotericin B for visceral leishmaniasis resistant to pentavalent antimonial drugs in AIDS. Ann Pharmacother 1994; 28:1305. [PMID: 7849352 DOI: 10.1177/106002809402801120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
20
|
Abstract
OBJECTIVE To review the epidemiology, clinical presentation, risk factors for transmission, and pathogenesis of leishmaniasis, as well as current treatment options for this disease. DATA SOURCES/DATA SELECTION: We reviewed unclassified medical-threat briefing material, subject-matter reviews, and case reports from the world's infectious disease literature. We concentrated on literature pertaining to the pathogenesis and management of leishmaniasis indigenous to Southwest Asia. DATA EXTRACTION Data from subject reviews published in the English language were evaluated. Case reports and clinical trials provided supplemental data on evolving theories and management options. DATA SYNTHESIS The clinical presentation of leishmaniasis is highly variable. Management relies heavily upon the use of parenteral antimonial drugs. Although these agents are effective in most cases, toxicity and the emergence of resistance limit the usefulness of standard therapies. Alternative treatment modalities include heat, surgical curettage, ketoconazole, metronidazole, pentamidine, rifampin, amphotericin B, aminoglycosides, allopurinol, and immunotherapy. CONCLUSIONS Although the number of reported cases of leishmaniasis in the US has generally been low, there is a possibility that more cases may be reported in the future because of the large number of military personnel returning to this country from endemic areas. Medical personnel, particularly those working in governmental institutions, should be familiar with the pathogenesis of this unusual infection as well as potential treatment options.
Collapse
Affiliation(s)
- J T Moss
- Pharmacy Branch, Academy of Health Sciences, Ft. Sam Houston, TX
| | | |
Collapse
|
21
|
Handman E. Study of Leishmania major-infected macrophages by use of lipophosphoglycan-specific monoclonal antibodies. Infect Immun 1990; 58:2297-302. [PMID: 1694823 PMCID: PMC258811 DOI: 10.1128/iai.58.7.2297-2302.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leishmania major infection of macrophages is followed by a time-dependent appearance of lipophosphoglycan (LPG) that can be detected on the surface of infected cells by monoclonal antibodies. The origin of these LPG epitopes is probably the intracellular amastigote. LPG epitopes could be detected on the amastigote and the infected macrophage by a number of monoclonal antibodies directed to several distinct determinants on the phosphoglycan moiety. The macrophage-expressed LPG may be modified because, unlike the parasite LPG as expressed on promastigotes or amastigotes, it could not be radiolabeled by galactose oxidase or periodate treatment of infected cells followed by reduction with 3H-labeled sodium borohydride. Some LPG epitopes displayed on the macrophage may be anchored with glycosylphosphatidylinositol, and some may be in the water-soluble phosphoglycan form bound to macrophage integrins involved in its specific recognition. The water-soluble population could be released from the infected macrophage by gentle protease treatment.
Collapse
Affiliation(s)
- E Handman
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Müller I, Louis JA. Immunity to experimental infection with Leishmania major: generation of protective L3T4+ T cell clones recognizing antigen(s) associated with live parasites. Eur J Immunol 1989; 19:865-71. [PMID: 2500348 DOI: 10.1002/eji.1830190513] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exacerbation and resolution of lesions induced by Leishmania major promastigotes are, at least in part, the result of the activity of distinct parasite-specific L3T4+ T lymphocytes. The present report describes L. major-specific cloned L3T4+ T lymphocytes capable of transferring substantial protective immunity to normal highly susceptible BALB/c mice. The two protective T cell clones analyzed appear to recognize antigen associated only with live L. major parasites. Therefore, the pattern of antigen reactivity of these protective T cell clones is different from that of the previously described parasite-specific L3T4+ T cells which contribute to exacerbation of disease. The results presented in this report indicate that the two opposite effects of parasite-specific L3T4+ T cells on the disease process could be mediated by functionally similar L3T4+ T cells differing in their antigen specificity.
Collapse
Affiliation(s)
- I Müller
- Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | |
Collapse
|
23
|
|
24
|
Ogunkolade BW, Vouldoukis I, Frommel D, Davoust B, Rhodes-Feuillette A, Monjour L. Immunization of dogs with a Leishmania infantum-derived vaccine. Vet Parasitol 1988; 28:33-41. [PMID: 3291382 DOI: 10.1016/0304-4017(88)90016-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A partially-purified extract of Leishmania infantum has been administered to healthy dogs. Post-immunization sera were found to neutralize the infectivity of L. infantum and to abate the development of L. major. Muramyl dipeptide and one of its derivates, murabutide, were the best adjuvants.
Collapse
Affiliation(s)
- B W Ogunkolade
- Department of Tropical Medicine, Pitié-Salpétrière School of Medicine, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Ruebush MJ, Steel LK, Kennedy DA. Prostaglandin-mediated suppression of delayed-type hypersensitivity to infected erythrocytes during Babesia microti infection in mice. Cell Immunol 1986; 98:300-10. [PMID: 2944617 DOI: 10.1016/0008-8749(86)90290-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of suppression of delayed-type hypersensitivity (DTH) to intraerythrocytic Babesia microti which occurs during infection in mice was examined. The suppression was not specific for anti-parasite DTH; infected mice immunized and challenged with sheep red blood cells had a similar depression of anti-sheep red blood cell DTH. Sublethal or lethal irradiation did not significantly alter the suppression of the DTH response, and cyclophosphamide pretreatment of infected mice also had no effect on suppression. Multiple passive transfer experiments using serum or regional lymph node cells from immunized or infected and immunized (suppressed) donor animals failed to demonstrate any ability to transfer suppression of DTH. Adherent cells from the spleens or peritoneal exudates of suppressed mice, however, did significantly depress the ability of immunized mice to express a DTH response. The cells responsible for this suppression were Thy 1- and nonspecific esterase+. Treatment of suppressive cell populations with 10 micrograms/ml indomethacin for 24 hr in vitro abrogated their suppressive ability, and in vivo administration of indomethacin to suppressed mice also restored DTH to normal levels. By examining levels of prostaglandin E2 (PGE2) in supernates of cultured peritoneal exudate cells from immune or suppressed mice, it was shown that infected mice had peritoneal exudate cells which produced significantly more PGE2 than similar cells from immune mice. These data suggest that B. microti infection elicits synthesis of PGE2 by macrophage-like cells which results in suppression of DTH to parasite as well as heterologous antigens.
Collapse
|
26
|
Ruebush MJ, Troutman EH, Kennedy DA. Delayed-type hypersensitivity to Babesia microti-infected erythrocytes in mice. Cell Immunol 1986; 98:289-99. [PMID: 3757050 DOI: 10.1016/0008-8749(86)90289-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Strong delayed-type hypersensitivity (DTH) to Babesia microti was elicited when intraerythrocytic parasites (IEP) were inoculated subcutaneously into the flank of normal mice 6 to 14 days before challenge in the ipsilateral footpad with 10(8) IEP. Intraperitoneal or intravenous administration of antigen did not sensitize mice for DTH. When challenge was given 21 days after immunization, the response was approximately half of the maximum and then rose again slowly over the next 3 weeks to levels that were not significantly different from those maximal values. The response was similar in seven strains of mice, regardless of sex. The response was classified as a true DTH reaction on the basis of kinetics, histology, and the transfer of responsiveness with immune T lymphocytes of the Ly 1+ phenotype, but not with serum. The reaction was specific for IEP since control groups given two injections of red blood cells from uninfected syngeneic mice (NRBC) or one injection of NRBC or sheep red blood cells (SRBC) and one of IEP never developed significant footpad swelling. Freed parasites obtained by osmotic rupture, density gradient sedimentation, and lethally irradiated IEP were also effective for elicitation of DTH. Anti-IEP DTH was expressed in a dose-dependent fashion with 10(6), 10(7), or 10(8) parasites sufficing for immunizing inoculum as long as 10(8) parasites were used as the challenge dose. Mice immunized and challenged with 10(8) lethally irradiated IEP (60 krad, 60Co), were protected against subsequent intraperitoneal challenge with 10(8) viable IEP. If mice were infected intraperitoneally with 10(8) IEP at any time between 21 days before immunization to 2 hr after challenge, their ability to respond to immunization and challenge was profoundly depressed. These data suggest that development of a strong anti-parasite DTH response can occur in parallel with resistance to infection, but is not a rapid sequela of bloodborne infection.
Collapse
|
27
|
Colomer-Gould V, Glvao Quintao L, Keithly J, Nogueira N. A common major surface antigen on amastigotes and promastigotes of Leishmania species. J Exp Med 1985; 162:902-16. [PMID: 4031788 PMCID: PMC2187815 DOI: 10.1084/jem.162.3.902] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enzymatic surface iodination and biosynthetic labeling with [35S]methionine, combined with immunoprecipitation by sera from patients with different forms of Leishmaniasis revealed a 65,000 Mr glycoprotein as the immunodominant moiety in promastigotes and amastigotes of the nine Leishmania species and isolates examined. Sera from patients with one form of Leishmaniasis recognized this component strongly, not only in the homologous, but also in the heterologous species. In addition to the crossreactivity displayed by immune sera, the 65,000 Mr glycoprotein (gp) common to all Leishmania species presented a characteristic shift to Mr 50,000 when samples were run in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. These results are in agreement with our previous studies (7), where a simple and similar profile was obtained for several geographic isolates of L. donovani, with a major surface glycoprotein of 65,000 Mr displaying the same characteristics described here. The structural similarity of the major 65,000 Mr gp of the six Leishmania species was demonstrated by Cleveland mapping. It is suggested that immunological specificities may be contributed by minor differences in glycosylation of this molecule. In keeping with recent data (13-15), where strong cross protection among different Leishmania species has been obtained by prophylactic immunization with irradiated whole promastigotes, this glycoprotein may be a good candidate for an antigen to be used for immunoprophylaxis of all forms of Leishmaniasis.
Collapse
|
28
|
Handman E, Mitchell GF. Immunization with Leishmania receptor for macrophages protects mice against cutaneous leishmaniasis. Proc Natl Acad Sci U S A 1985; 82:5910-4. [PMID: 3862105 PMCID: PMC390663 DOI: 10.1073/pnas.82.17.5910] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Leishmania major receptor for macrophages is a lipid-containing glycoconjugate that is recognized by the monoclonal antibody WIC-79.3. When L. major promastigotes were incubated with Fab fragments of WIC-79.3 prior to injection into genetically susceptible mice, their infectivity was decreased. Fab fragments from an irrelevant control antibody of the same class had no effect. The L. major glycolipid was purified from detergent-solubilized promastigotes by affinity chromatography on immobilized WIC-79.3 and used to vaccinate mice that are genetically resistant or susceptible to disease. Genetically resistant mice could be protected totally from cutaneous disease with as little as 5 micrograms of glycolipid. A high but not absolute level of resistance was also induced in the susceptible mice, in which the disease is otherwise fatal. No protection was obtained with the carbohydrate fragment of the glycolipid alone or by injection of the glycolipid in the absence of adjuvant. Genetically susceptible mice, immunized and protected from disease as a result of multiple injections of live avirulent cloned promastigotes of L. major, produced antibodies to the glycolipid of L. major. No antibodies were detected in serum from chronically diseased mice. The data suggest that this functionally important antigen of L. major is a candidate vaccine against cutaneous leishmaniasis.
Collapse
|