1
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Legrand N, McGregor S, Bull R, Bajis S, Valencia BM, Ronnachit A, Einsiedel L, Gessain A, Kaldor J, Martinello M. Clinical and Public Health Implications of Human T-Lymphotropic Virus Type 1 Infection. Clin Microbiol Rev 2022; 35:e0007821. [PMID: 35195446 PMCID: PMC8941934 DOI: 10.1128/cmr.00078-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is estimated to affect 5 to 10 million people globally and can cause severe and potentially fatal disease, including adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The burden of HTLV-1 infection appears to be geographically concentrated, with high prevalence in discrete regions and populations. While most high-income countries have introduced HTLV-1 screening of blood donations, few other public health measures have been implemented to prevent infection or its consequences. Recent advocacy from concerned researchers, clinicians, and community members has emphasized the potential for improved prevention and management of HTLV-1 infection. Despite all that has been learned in the 4 decades following the discovery of HTLV-1, gaps in knowledge across clinical and public health aspects persist, impeding optimal control and prevention, as well as the development of policies and guidelines. Awareness of HTLV-1 among health care providers, communities, and affected individuals remains limited, even in countries of endemicity. This review provides a comprehensive overview on HTLV-1 epidemiology and on clinical and public health and highlights key areas for further research and collaboration to advance the health of people with and at risk of HTLV-1 infection.
Collapse
Affiliation(s)
- Nicolas Legrand
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Skye McGregor
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Rowena Bull
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | - Sahar Bajis
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Amrita Ronnachit
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Lloyd Einsiedel
- Central Australian Health Service, Alice Springs, Northern Territory, Australia
| | - Antoine Gessain
- Institut Pasteur, Epidemiology and Physiopathology of Oncogenic Viruses Unit, Paris, France
| | - John Kaldor
- Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
3
|
Rodriguez-Brenes IA, Hofacre A, Fan H, Wodarz D. Complex Dynamics of Virus Spread from Low Infection Multiplicities: Implications for the Spread of Oncolytic Viruses. PLoS Comput Biol 2017; 13:e1005241. [PMID: 28107341 PMCID: PMC5249046 DOI: 10.1371/journal.pcbi.1005241] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
While virus growth dynamics have been well-characterized in several infections, data are typically collected once the virus population becomes easily detectable. Earlier dynamics, however, remain less understood. We recently reported unusual early dynamics in an experimental system using adenovirus infection of human embryonic kidney (293) cells. Under identical experimental conditions, inoculation at low infection multiplicities resulted in either robust spread, or in limited spread that eventually stalled, with both outcomes occurring with approximately equal frequencies. The reasons underlying these observations have not been understood. Here, we present further experimental data showing that inhibition of interferon-induced antiviral states in cells results in a significant increase in the percentage of robust infections that are observed, implicating a race between virus replication and the spread of the anti-viral state as a central mechanism. Analysis of a variety of computational models, however, reveals that this alone cannot explain the simultaneous occurrence of both viral growth outcomes under identical conditions, and that additional biological mechanisms have to be invoked to explain the data. One such mechanism is the ability of the virus to overcome the antiviral state through multiple infection of cells. If this is included in the model, two outcomes of viral spread are found to be simultaneously stable, depending on initial conditions. In stochastic versions of such models, the system can go by chance to either state from identical initial conditions, with the relative frequency of the outcomes depending on the strength of the interferon-based anti-viral response, consistent with the experiments. This demonstrates considerable complexity during the early phase of the infection that can influence the ability of a virus to become successfully established. Implications for the initial dynamics of oncolytic virus spread through tumors are discussed. We investigate in vitro adenovirus spread starting from the lowest infection multiplicities. This phase of virus dynamics remains poorly understood and is likely critical for ensuring that engineered oncolytic viruses successfully spread and destroy tumors. We find unexpectedly complex dynamics, which are analyzed with a combination of experiments and mathematical models. The experiments indicate that the induction of an interferon-based anti-viral state is a crucial underlying mechanism. The mathematical models demonstrate that this mechanism alone cannot explain the experiments, and that additional mechanisms must be invoked to account for the data. The models suggest that the ability of the virus to overcome the anti-viral state through multiple infection of cells might be one such mechanism.
Collapse
Affiliation(s)
- Ignacio A. Rodriguez-Brenes
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
| | - Andrew Hofacre
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, Irvine, California, United States of America
| | - Hung Fan
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, Irvine, California, United States of America
| | - Dominik Wodarz
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Dimber R, Guo Q, Bishop C, Adonis A, Buckley A, Kocsis A, Owen D, Kalk N, Newbould R, Gunn RN, Rabiner EA, Taylor GP. Evidence of Brain Inflammation in Patients with Human T-Lymphotropic Virus Type 1-Associated Myelopathy (HAM): A Pilot, Multimodal Imaging Study Using 11C-PBR28 PET, MR T1-Weighted, and Diffusion-Weighted Imaging. J Nucl Med 2016; 57:1905-1912. [PMID: 27561880 DOI: 10.2967/jnumed.116.175083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
HTLV-1-associated myelopathy (HAM; HTLV-1 is human T-lymphotropic virus type 1) is a chronic debilitating neuroinflammatory disease with a predilection for the thoracic cord. Tissue damage is attributed to the cellular immune response to HTLV-1-infected lymphocytes. The brains of HTLV-1-infected patients, with and without HAM but no clinical evidence of brain involvement, were examined using a specific 18-kDa translocator protein ligand, 11C-PBR28, and T1-weighted and diffusion-weighted MRI. METHODS Five subjects with HAM and 2 HTLV-1 asymptomatic carriers were studied. All underwent clinical neurologic assessment including cognitive function and objective measures of gait, quantification of HTLV-1 proviral load in peripheral blood mononuclear cells, and human leukocyte antigen-antigen D related expression on circulating CD8+ lymphocytes. 11C-PBR28 PET and MRI were performed on the same day. 11C-PBR28 PET total volume of distribution and distribution volume ratio (DVR) were estimated using 2-tissue-compartment modeling. MRI data were processed using tools from the FMRIB Software Library to estimate mean diffusivity (MD) and gray matter (GM) fraction changes. The results were compared with data from age-matched healthy volunteers. RESULTS Across the whole brain, the total volume of distribution for the subjects with HAM (5.44 ± 0.84) was significantly greater than that of asymptomatic carriers (3.44 ± 0.80). The DVR of the thalamus in patients with severe and moderate HAM was higher than that in the healthy volunteers, suggesting increased translocator protein binding (z > 4.72). Subjects with more severe myelopathy and with high DR expression on CD8+ lymphocytes had increased DVR and MD (near-significant correlation found for the right thalamus MD: P = 0.06). On the T1-weighted MRI scans, the GM fraction of the brain stem was reduced in all HTLV-1-infected patients compared with controls (P < 0.001), whereas the thalamus GM fraction was decreased in patients with HAM and correlated with the disease severity. There was no correlation between neurocognitive function and these markers of central nervous system inflammation. CONCLUSION This pilot study suggests that some patients with HAM have asymptomatic inflammation in the brain, which can be detected and monitored by 11C-PBR28 PET together with structural and diffusion-weighted MRI.
Collapse
Affiliation(s)
- Rahul Dimber
- Imanova, Centre for Imaging Sciences, London, United Kingdom
| | - Qi Guo
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Courtney Bishop
- Imanova, Centre for Imaging Sciences, London, United Kingdom
| | - Adine Adonis
- National Centre for Human Retrovirology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Aisling Buckley
- Department of Clinical Health Psychology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; and
| | - Agnes Kocsis
- Department of Clinical Health Psychology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom; and
| | - David Owen
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Nicola Kalk
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | | | - Roger N Gunn
- Imanova, Centre for Imaging Sciences, London, United Kingdom.,Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Eugenii A Rabiner
- Imanova, Centre for Imaging Sciences, London, United Kingdom.,Institute of Psychiatry, King's College London, London, United Kingdom
| | - Graham P Taylor
- National Centre for Human Retrovirology, St. Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Assone T, Paiva A, Fonseca LAM, Casseb J. Genetic Markers of the Host in Persons Living with HTLV-1, HIV and HCV Infections. Viruses 2016; 8:v8020038. [PMID: 26848682 PMCID: PMC4776193 DOI: 10.3390/v8020038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), hepatitis C virus (HCV) and human immunodeficiency virus type 1 (HIV-1) are prevalent worldwide, and share similar means of transmission. These infections may influence each other in evolution and outcome, including cancer or immunodeficiency. Many studies have reported the influence of genetic markers on the host immune response against different persistent viral infections, such as HTLV-1 infection, pointing to the importance of the individual genetic background on their outcomes. However, despite recent advances on the knowledge of the pathogenesis of HTLV-1 infection, gaps in the understanding of the role of the individual genetic background on the progress to disease clinically manifested still remain. In this scenario, much less is known regarding the influence of genetic factors in the context of dual or triple infections or their influence on the underlying mechanisms that lead to outcomes that differ from those observed in monoinfection. This review describes the main factors involved in the virus–host balance, especially for some particular human leukocyte antigen (HLA) haplotypes, and other important genetic markers in the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other persistent viruses, such as HIV and HCV.
Collapse
Affiliation(s)
- Tatiane Assone
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Arthur Paiva
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| | - Luiz Augusto M Fonseca
- Department of Preventive Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Jorge Casseb
- Laboratory of Dermatology and Immune deficiencies, Department of Dermatology, University of São Paulo Medical School, LIM56, Av. Dr. Eneas de Carvalho Aguiar 500, 3rd Floor, Building II, São Paulo, SP, Brazil.
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Stipp SR, Iniguez A, Wan F, Wodarz D. Timing of CD8 T cell effector responses in viral infections. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150661. [PMID: 26998338 PMCID: PMC4785989 DOI: 10.1098/rsos.150661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
CD8 T cell or cytotoxic T lymphocyte (CTL) responses are an important branch of the immune system in the fight against viral infections. The dynamics of anti-viral CTL responses have been characterized in some detail, both experimentally and with mathematical models. An interesting experimental observation concerns the timing of CTL responses. A recent study reported that in pneumonia virus of mice the effector CTL tended to arrive in the lung only after maximal virus loads had been achieved, an observation that seems at first counterintuitive because prevention of pathology would require earlier CTL-mediated activity. A delay in CTL-mediated effector activity has also been quoted as a possible explanation for the difficulties associated with CTL-based vaccines. This paper uses mathematical models to show that in specific parameter regimes, delayed CTL effector activity can be advantageous for the host in the sense that it can increase the chances of virus clearance. The increased ability of the CTL to clear the infection, however, is predicted to come at the cost of acute pathology, giving rise to a trade-off, which is discussed in the light of evolutionary processes. This work provides a theoretical basis for understanding the described experimental observations.
Collapse
Affiliation(s)
- Shaun R. Stipp
- Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA, USA
| | - Abdon Iniguez
- Mathematical and Computational Systems Biology, University of California, Irvine, CA, USA
| | - Frederic Wan
- Department of Mathematics, University of California, Irvine, CA, USA
| | - Dominik Wodarz
- Department of Mathematics, University of California, Irvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
8
|
Evaluation of HTLV-1 activity in HAM/TSP patients using proviral load and Tax mRNA expression after In Vitro lymphocyte activation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:531-6. [PMID: 25429345 PMCID: PMC4242924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 04/20/2014] [Indexed: 12/02/2022]
Abstract
OBJECTIVES HTLV-1 is the first human retrovirus that has been recognized and is associated with HAM/TSP and ATLL. Studies have shown that less than five percent of HTLV-1 infected carriers develop HAM/TSP or ATLL and about ninety-five percent remain asymptomatic. Therefore, the proviral load with Tax may affect cellular genes such as cytokines and oncogenes, as well as involve in pathogenicity. MATERIALS AND METHODS Thirty HAM/TSP patients, thirty HTLV-1 healthy carriers, and MT-2 cell line were evaluated for HTLV-1 activity. PBMCs were isolated and activated using PMA and ionomycine. Real-time PCR and TaqMan methods were performed using specific primers and fluorescence probes for Tax expression and proviral load assessment. B2microglobulin (β2m) and albumin were used as controls in Tax expression and in proviral load, respectively. RESULTS An insignificant increase in Tax expression was observed in rest PBMCs of HAM/TSP patients compared to healthy carriers. However, after lymphocyte activation there was a significant increase in Tax expression in HAM/TSP patients (P=0.042). The Proviral load in patients was significantly higher than in carriers. Moreover, there was a significant correlation between Tax mRNA expression in activated PBMCs and proviral load (R=0.37, P=0.012). CONCLUSION Although proviral load had been addressed as a valuable index for monitoring HTLV-1 infected subjects, the results of this study demonstrated that Tax expression in activated PBMCs along with proviral load assessment in HAM/TSP patients are a more reliable factor for determining the prognosis and monitoring healthy carriers and HAM/TSP patients.
Collapse
|
9
|
Lim AG, Maini PK. HTLV-I infection: a dynamic struggle between viral persistence and host immunity. J Theor Biol 2014; 352:92-108. [PMID: 24583256 DOI: 10.1016/j.jtbi.2014.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
Human T-lymphotropic virus type I (HTLV-I) causes chronic infection for which there is no cure or neutralising vaccine. HTLV-I has been clinically linked to the development of adult T-cell leukaemia/lymphoma (ATL), an aggressive blood cancer, and HAM/TSP, a progressive neurological and inflammatory disease. Infected individuals typically mount a large, persistently activated CD8(+) cytotoxic T-lymphocyte (CTL) response against HTLV-I-infected cells, but ultimately fail to effectively eliminate the virus. Moreover, the identification of determinants to disease manifestation has thus far been elusive. A key issue in current HTLV-I research is to better understand the dynamic interaction between persistent infection by HTLV-I and virus-specific host immunity. Recent experimental hypotheses for the persistence of HTLV-I in vivo have led to the development of mathematical models illuminating the balance between proviral latency and activation in the target cell population. We investigate the role of a constantly changing anti-viral immune environment acting in response to the effects of infected T-cell activation and subsequent viral expression. The resulting model is a four-dimensional, non-linear system of ordinary differential equations that describes the dynamic interactions among viral expression, infected target cell activation, and the HTLV-I-specific CTL response. The global dynamics of the model is established through the construction of appropriate Lyapunov functions. Examining the particular roles of viral expression and host immunity during the chronic phase of HTLV-I infection offers important insights regarding the evolution of viral persistence and proposes a hypothesis for pathogenesis.
Collapse
Affiliation(s)
- Aaron G Lim
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
10
|
Ahmadi Ghezeldasht S, Shirdel A, Assarehzadegan MA, Hassannia T, Rahimi H, Miri R, Rezaee SAR. Human T Lymphotropic Virus Type I (HTLV-I) Oncogenesis: Molecular Aspects of Virus and Host Interactions in Pathogenesis of Adult T cell Leukemia/Lymphoma (ATL). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:179-95. [PMID: 24470860 PMCID: PMC3881257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022]
Abstract
The study of tumor viruses paves the way for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host tumor affecting immune-compromised patients. The processes ranging from viral infection to progressing malignancy are slow and usually insufficient for establishment of transformed cells that develop cancer in only a minority of infected subjects. Therefore, viral infection is usually not the only cause of cancer, and further environmental and host factors, may be implicated. HTLV-I, in particular, is considered as an oncovirus cause of lymphoproliferative disease such as adult T cell leukemia/lymphoma (ATL) and disturbs the immune responses which results in HTLV-I associated meylopathy/tropical spastic parapresis (HAM/TSP). HTLV-I infection causes ATL in a small proportion of infected subjects (2-5%) following a prolonged incubation period (15-30 years) despite a strong adaptive immune response against the virus. Overall, these conditions offer a prospect to study the molecular basis of tumorgenicity in mammalian cells. In this review, the oncogencity of HTLV-I is being considered as an oncovirus in context of ATL.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Abbas Shirdel
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Ali Assarehzadegan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Hassannia
- Internal Medicine Dept, Medical School, Arak University of Medical Sciences, Arak- Iran
| | - Hosian Rahimi
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Rahele Miri
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - S. A. Rahim Rezaee
- Immunology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Rezaee S. AR, Immunology Research Centre, Immunology Dept. Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Tel:+98-511 8436626; E-mail:
| |
Collapse
|
11
|
Mayer EF, Ita F, Gonzalez E, Verdonck K, Bravo F, Clark D, Gotuzzo E. Association between onychodystrophy and human T-lymphotropic virus type 1 infection. Int J Infect Dis 2012; 17:e312-6. [PMID: 23245620 DOI: 10.1016/j.ijid.2012.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE To assess the association between human T-lymphotropic virus type 1 (HTLV-1) infection and onychodystrophy. METHODS This was a cross-sectional study. At our institute, we provide HTLV-1 testing to relatives of HTLV-1-infected people and patients with suspected HTLV-1-associated diseases. The diagnosis of onychodystrophy was made clinically before testing for HTLV-1; the number and distribution of affected nails was registered. We assessed the association between onychodystrophy and HTLV-1 through bi- and multivariable analyses. Logistic regression was used to adjust for age, sex, and indication for HTLV-1 testing, using six affected nails (90(th) percentile) as the cut-off point. RESULTS Between April 2006 and March 2008, we included 893 subjects; their mean age was 38 years (standard deviation 19 years), and 527 (59%) were women. Onychodystrophy of one or more nails was observed in 323 participants (36%), and 236 subjects (26%) were HTLV-1-positive. The median number of affected nails was higher in HTLV-1-positive than in HTLV-1-negative subjects (Mann-Whitney test, p < 0.001). Thirty-eight of 97 subjects with six or more affected nails (39%) were HTLV-1-infected, compared to 198 of 796 subjects with fewer than six affected nails (25%) (crude OR 1.9, 95% confidence interval (CI) 1.2-3.1; p = 0.003). This association remained significant in the multiple logistic regression model (adjusted OR 2.0, 95% CI 1.2-3.3; p = 0.005). CONCLUSIONS There is an independent association between HTLV-1 infection and onychodystrophy. Patients with an HTLV-1 infection might have a higher risk for onychomycosis given the abnormal nail plate and a decreased T-cell-mediated immunologic response.
Collapse
Affiliation(s)
- Erick F Mayer
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| | | | | | | | | | | | | |
Collapse
|
12
|
Primo J, Siqueira I, Nascimento MCF, Oliveira MF, Farre L, Carvalho EM, Bittencourt AL. High HTLV-1 proviral load, a marker for HTLV-1 associated myelopathy/tropical spastic paraparesis, is also detected in patients with infective dermatitis associated with HTLV-1. ACTA ACUST UNITED AC 2009; 42:761-4. [PMID: 19578703 DOI: 10.1590/s0100-879x2009005000008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Salvador (BA, Brazil) is an endemic area for human T-cell lymphotrophic virus type 1 (HTLV-1). The overall prevalence of HTLV-1 infection in the general population has been estimated to be 1.76%. HTLV-1 carriers may develop a variety of diseases such as adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and infective dermatitis associated with HTLV-1 (IDH). IDH is a chronic and severe form of childhood exudative and infective dermatitis involving mainly the scalp, neck and ears. It has recently been observed that 30% of patients with IDH develop juvenile HAM/TSP. The replication of HTLV-1 has been reported to be greater in adult HAM/TSP patients than in asymptomatic HTLV-1 carriers. In the current study, the proviral load of 28 children and adolescents with IDH not associated with HAM/TSP was determined and the results were compared to those obtained in 28 HTLV-1 adult carriers and 28 adult patients with HAM/TSP. The proviral load in IDH patients was similar to that of patients with HAM/TSP and much higher than that found in HTLV-1 carriers. The high levels of proviral load in IDH patients were not associated with age, duration of illness, duration of breast-feeding, or activity status of the skin disease. Since proviral load is associated with neurological disability, these data support the view that IDH patients are at high risk of developing HAM/TSP.
Collapse
Affiliation(s)
- J Primo
- Departamento de Medicina Interna, Complexo Hospitalar Universitário Prof. Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | | | | | | | | | | |
Collapse
|
13
|
Maragno L, Casseb J, Fukumori LMI, Sotto MN, Duarte AJDS, Festa-Neto C, Sanches JA. Human T-cell lymphotropic virus type 1 infective dermatitis emerging in adulthood. Int J Dermatol 2009; 48:723-30. [DOI: 10.1111/j.1365-4632.2009.04008.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
A new hypothesis for the pathogenesis of Human T-lymphotropic virus type 1 associated myelopathy/tropical spastic paraparesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.bihy.2009.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Inclusion body myositis associated with human T-lymphotropic virus-type I infection: eleven patients from an endemic area in Japan. J Neuropathol Exp Neurol 2008; 67:41-9. [PMID: 18091562 DOI: 10.1097/nen.0b013e31815f38b7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The objective of this study was to investigate the association of human T-lymphotropic virus-type I (HTLV-I) infection with sporadic inclusion body myositis in 11 patients from an endemic area in Japan. The clinical features were consistent with sporadic inclusion body myositis, and anti-HTLV-I antibodies were present in the sera of all patients. Their muscle biopsies showed the diagnostic features of inclusion body myositis, including endomysial T-cell infiltration, rimmed vacuoles, deposits of phosphorylated tau, and abnormal filaments in the nuclei and cytoplasm of the myofibers. The fibers expressed major histocompatibility complex class I antigens and were invaded by CD8 and CD4 cells. In a single human leukocyte antigen-A2-positive patient, in situ human leukocyte antigen-A*0201 / Tax11-19-pentamer staining showed pentamer-positive cells surrounding the muscle fibers. Double-immunogold silver staining and polymerase chain reaction in situ hybridization revealed that HTLV-I proviral DNA was localized on helper-inducer T cells, but not on muscle fibers. Human T-lymphotropic virus-type I proviral loads in peripheral blood mononuclear cells from each patient were similar to those in HTLV-I-associated myelopathy/tropical spastic paraparesis. This study suggests that HTLV-I infection may be one of the causes of sporadic inclusion body myositis, as has been reported in human immunodeficiency virus type-1 infection.
Collapse
|
16
|
Akimoto M, Kozako T, Sawada T, Matsushita K, Ozaki A, Hamada H, Kawada H, Yoshimitsu M, Tokunaga M, Haraguchi K, Uozumi K, Arima N, Tei C. Anti-HTLV-1 tax antibody and tax-specific cytotoxic T lymphocyte are associated with a reduction in HTLV-1 proviral load in asymptomatic carriers. J Med Virol 2007; 79:977-86. [PMID: 17516523 DOI: 10.1002/jmv.20807] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have suggested that higher anti-human T-lymphotropic virus 1 (HTLV-1) antibody titer and lower anti-HTLV-1 Tax antibody reactivity are risk factors for adult T-cell leukemia/lymphoma. In the present study, we analyzed the relationships between these factors and clarified their significance. Forty-five carriers were examined for anti-HTLV-1 and anti-Tax antibody by ELISA. In addition, 43 of the 45 carriers with HLA-A*0201 and/or A*2402 were examined for frequency of Tax-specific cytotoxic T lymphocytes (CTLs) using HTLV-1/HLA tetramers, and 44 were examined for proviral load by real-time PCR. The relationships between these factors were analyzed statistically. The frequencies of Tax11-19 and Tax301-309-specific CTLs were significantly higher in the anti-Tax antibody-positive group as compared with the antibody-negative group (P = 0.002 and 0.033, respectively). Anti-HTLV-1 antibody titer had a positive correlation with proviral load (P = 0.019), whereas anti-Tax antibody did not show a significant correlation. Higher frequencies of both Tax11-19 and Tax301-309-specific CTLs are related to a reduction in proviral load (P = 0.017 and 0.015, respectively). Synergistic interactions of humoral and cellular immunity against Tax protein were demonstrated in HTLV-1 carriers. Tax-specific CTL may reduce HTLV-1 proviral load to prevent asymptomatic carriers from developing adult T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Masaki Akimoto
- Department of Hematology and Immunology, Kagoshima University Hospital, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vitone F, Gibellini D, Schiavone P, D'Antuono A, Gianni L, Bon I, Re MC. Human T-lymphotropic virus type 1 (HTLV-1) prevalence and quantitative detection of DNA proviral load in individuals with indeterminate/positive serological results. BMC Infect Dis 2006; 6:41. [PMID: 16512894 PMCID: PMC1450284 DOI: 10.1186/1471-2334-6-41] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HTLV-1 infection is currently restricted to endemic areas. To define the prevalence of HTLV-1 infection in patients living in Italy, we first carried out a retrospective serological analysis in a group of people originating from African countries referred to our hospital from January 2003 to February 2005. We subsequently applied a real time PCR on peripheral blood mononuclear cells from subjects with positive or indeterminate serological results. METHODS All the sera were first analysed by serological methods (ELISA and/or Western Blotting) and then the peripheral blood mononuclear cells from subjects with positive or inconclusive serological results were analyzed for the presence of proviral DNA by a sensitive SYBR Green real time PCR. In addition, twenty HTLV-I ELISA negative samples were assayed by real time PCR approach as negative controls. RESULTS Serological results disclosed serum reactivity by ELISA (absorbance values equal or greater than the cut-off value) in 9 out of 3408 individuals attending the Sexually Transmitted Diseases Clinic and/or Oncology Department, and 2 out 534 blood donors enrolled as a control population. Irrespective of positive or inconclusive serological results, all these subjects were analyzed for the presence of proviral DNA in peripheral blood mononuclear cells by SYBR real time PCR. A clear-cut positive result for the presence of HTLV-1 DNA was obtained in two subjects from endemic areas. CONCLUSION SYBR real time PCR cut short inconclusive serological results. This rapid and inexpensive assay showed an excellent linear dynamic range, specificity and reproducibility readily revealing and quantifying the presence of virus in PBMCs. Our results highlight the need to monitor the presence of HTLV-1 in countries which have seen a large influx of immigrants in recent years. Epidemiological surveillance and correct diagnosis are recommended to verify the prevalence and incidence of a new undesirable phenomenon.
Collapse
Affiliation(s)
- Francesca Vitone
- Section of Microbiology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| | - Davide Gibellini
- Section of Microbiology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| | - Pasqua Schiavone
- Section of Microbiology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| | - Antonietta D'Antuono
- Dermatology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| | - Lorenzo Gianni
- Oncology Division, Ospedale Infermi, 47900 Rimini, Italy
| | - Isabella Bon
- Section of Microbiology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| | - Maria Carla Re
- Section of Microbiology, Department of Clinical and Experimental Medicine, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
18
|
Abstract
Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.
Collapse
Affiliation(s)
- Patricia Katri
- Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250, USA.
| | | |
Collapse
|
19
|
Rafatpanah H, Pravica V, Farid R, Abbaszadegan MR, Tabatabaei A, Goharjoo A, Etemadi MM, Hutchinson IV. Association of a novel single nucleotide polymorphism in the human perforin gene with the outcome of HTLV-I infection in patients from Northeast Iran (Mash-had). Hum Immunol 2004; 65:839-46. [PMID: 15336785 DOI: 10.1016/j.humimm.2004.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Human T lymphotropic virus I (HTLV-I)-specific cytotoxic T lymphocytes (CTL) recognize the products of the HTLV-I Tax, in the context of HLA-A2 and kill their target through a perforin-dependent mechanism. The efficiency of the CTL response may lead HTLV-I-infected individuals to remain carriers or to the development of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Perforin is a cytolytic molecule that contributes to CTL-mediated killing of virus-infected cells. Thus polymorphism in the perforin gene may determine the efficiency of the CTL response in HTLV-I-infected individuals. In this study, we performed single-stranded conformational polymorphism (SSCP) and DNA sequencing to analyze the promoter, 5' UTR and first intron of the perforin gene to identify novel polymorphisms. We detected a novel polymorphism in the first intron at position +418*C/T, relative to the transcription start site. Genotyping of patients with HAM/TSP, HTLV-I carriers, and healthy controls revealed that the frequency of the C allele was statistically significantly increased in HAM/TSP patients compared with healthy controls group (p = 0.005). The frequency of the C allele was higher, but not significantly so, in the HAM/TSP group compared with HTLV-I carriers (p = 0.09), whereas there was no difference between HTLV-I carriers and healthy controls. Our results suggest that the perforin +418*C/T polymorphism is associated with the outcome of HTLV-I infection.
Collapse
Affiliation(s)
- Houshang Rafatpanah
- Immunology Research Group, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Goon PKC, Igakura T, Hanon E, Mosley AJ, Barfield A, Barnard AL, Kaftantzi L, Tanaka Y, Taylor GP, Weber JN, Bangham CRM. Human T cell lymphotropic virus type I (HTLV-I)-specific CD4+ T cells: immunodominance hierarchy and preferential infection with HTLV-I. THE JOURNAL OF IMMUNOLOGY 2004; 172:1735-43. [PMID: 14734756 DOI: 10.4049/jimmunol.172.3.1735] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4(+) T cells predominate in early lesions in the CNS in the inflammatory disease human lymphotropic T cell virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP), but the pathogenesis of the disease remains unclear and the HTLV-I-specific CD4(+) T cell response has been little studied. We quantified the IFN-gamma-producing HTLV-I-specific CD4(+) T cells, in patients with HAM/TSP and in asymptomatic carriers with high proviral load, to test two hypotheses: that HAM/TSP patients and asymptomatic HTLV-I carriers with a similar proviral load differ in the immunodominance hierarchy or the total frequency of specific CD4(+) T cells, and that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I. The strongest CD4(+) T cell response in both HAM/TSP patients and asymptomatic carriers was specific to Env. This contrasts with the immunodominance of Tax in the HTLV-I-specific CD8(+) T cell response. The median frequency of HTLV-I-specific IFN-gamma(+) CD4(+) T cells was 25-fold greater in patients with HAM/TSP (p = 0.0023, Mann-Whitney) than in asymptomatic HTLV-I carriers with a similar proviral load. Furthermore, the frequency of CD4(+) T cells infected with HTLV-I (expressing Tax protein) was significantly greater (p = 0.0152, Mann-Whitney) among HTLV-I-specific cells than CMV-specific cells. These data were confirmed by quantitative PCR for HTLV-I DNA. We conclude that the high frequency of specific CD4(+) T cells was associated with the disease HAM/TSP, and did not simply reflect the higher proviral load that is usually found in HAM/TSP patients. Finally, we conclude that HTLV-I-specific CD4(+) T cells are preferentially infected with HTLV-I.
Collapse
Affiliation(s)
- Peter K C Goon
- Department of Immunology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wodarz D, Jansen VAA. A dynamical perspective of CTL cross-priming and regulation: implications for cancer immunology. Immunol Lett 2003; 86:213-27. [PMID: 12706524 DOI: 10.1016/s0165-2478(03)00023-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytotoxic T lymphocytes (CTL) responses are required to fight many diseases such as viral infections and tumors. At the same time, they can cause disease when induced inappropriately. Which factors regulate CTL and decide whether they should remain silent or react is open to debate. The phenomenon called cross-priming has received attention in this respect. That is, CTL expansion occurs if antigen is recognized on the surface of professional antigen presenting cells (APCs). This is in contrast to direct presentation where antigen is seen on the surface of the target cells (e.g. infected cells or tumor cells). Here we introduce a mathematical model, which takes the phenomenon of cross-priming into account. We propose a new mechanism of regulation which is implicit in the dynamics of the CTL: According to the model, the ability of a CTL response to become established depends on the ratio of cross-presentation to direct presentation of the antigen. If this ratio is relatively high, CTL responses are likely to become established. If this ratio is relatively low, tolerance is the likely outcome. The behavior of the model includes a parameter region where the outcome depends on the initial conditions. We discuss our results with respect to the idea of self/non-self discrimination and the danger signal hypothesis. We apply the model to study the role of CTL in cancer initiation, cancer evolution/progression, and therapeutic vaccination against cancers.
Collapse
Affiliation(s)
- Dominik Wodarz
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, MP-665 Seattle, WA 98109, USA.
| | | |
Collapse
|
22
|
Barmak K, Harhaj E, Grant C, Alefantis T, Wigdahl B. Human T cell leukemia virus type I-induced disease: pathways to cancer and neurodegeneration. Virology 2003; 308:1-12. [PMID: 12706085 DOI: 10.1016/s0042-6822(02)00091-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection is associated with a number of pathologic abnormalities, including a variety of cancers, immunologic diseases, and neurologic disorders. Shortly after its discovery in 1980, human T cell leukemia virus type I (HTLV-I) was found to be the etiologic agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurologic disease characterized by demyelinating lesions in both the brain and the spinal cord. Approximately 5-10% of HTLV-I-infected individuals develop either ATL or HAM/TSP. Interestingly, the two diseases have vastly different pathologies and have rarely been found to occur within the same individual. While a number of host and viral factors including virus strain, viral load, and HLA haplotype have been hypothesized to influence disease outcome associated with HTLV-I infection, the relative contributions of such factors to disease pathogenesis have not been fully established. Recent research has suggested that the route of primary viral infection may dictate the course of disease pathogenesis associated with HTLV-I infection. Specifically, mucosal exposure to HTLV-I has been associated with cases of ATL, while primary viral infection based in the peripheral blood has been correlated with progression to HAM/TSP. However, the cellular and molecular mechanisms regulating disease progression resulting from primary viral invasion remain to be elucidated. Although a variety of factors likely influence these mechanisms, the differential immune response mounted by the host against the incoming virus initiated in either the peripheral blood or the mucosal compartments likely plays a key role in determining the outcome of HTLV-I infection. It has been proposed that the route of infection and size of the initial viral inoculum allows HTLV-I to infect different target cell populations, in turn influencing the breadth of the immune response mounted against HTLV-I and affecting disease pathogenesis. A model of HTLV-I-induced disease progression is presented, integrating information regarding the role of several host and viral factors in the genesis of both neoplasia and neurologic disease induced following HTLV-I infection, focusing specifically on differential viral invasion into the bone marrow (BM) and the influence of this event on the virus-specific CD8(+) cytotoxic T lymphocyte (CTL) response that is initiated following HTLV-I infection.
Collapse
Affiliation(s)
- Kate Barmak
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
23
|
Lomas M, Hanon E, Tanaka Y, Bangham CRM, Gould KG. Presentation of a new H-2D(k)-restricted epitope in the Tax protein of human T-lymphotropic virus type I is enhanced by the proteasome inhibitor lactacystin. J Gen Virol 2002; 83:641-650. [PMID: 11842259 DOI: 10.1099/0022-1317-83-3-641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tax, the trans-activator of human T-lymphotropic virus type I (HTLV-I), is the dominant target antigen for cytotoxic T lymphocytes (CTLs) in the majority of infected individuals, although the reason for this immunodominance is not clear. Tax has been shown to associate physically with the proteasome, a protease that is responsible for the generation of the majority of major histocompatibility complex (MHC) class I ligands recognized by CTLs. This association could lead to the preferential targeting of Tax to the MHC class I pathway and account for its high immunogenicity. Here, the CTL response to Tax was investigated in mice by priming with a Tax expression vector and boosting with a Tax recombinant vaccinia virus (modified vaccinia virus Ankara strain). This approach led to the identification of a new H-2D(k)-restricted epitope in Tax, amino acid residues 38-46, sequence ARLHRHALL. Surprisingly, presentation of this epitope was found to be enhanced by the proteasome inhibitor lactacystin, although Tax was shown to associate with proteasomes in murine cells. The difficulties encountered in generating Tax-specific CTL responses and the results of enzyme-linked immunospot (ELISpot) analysis suggested that Tax is only poorly immunogenic for CTLs in mice. Therefore, the immunodominance of Tax in human CTL responses to HTLV-I is probably not due to an intrinsic property of the protein itself, such as an association with the proteasome, but instead may result from the fact that Tax is the predominant protein synthesized early after infection.
Collapse
Affiliation(s)
- Mehnaaz Lomas
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Emmanuel Hanon
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Centre of Medical Science, Faculty of Medicine, University of the Ryukyus, Uehara-cho 207, Nishihara, Okinawa 903-0215, Japan2
| | - Charles R M Bangham
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| | - Keith G Gould
- Department of Immunology, Imperial College School of Medicine (St Mary's Campus), Norfolk Place, London W2 1PG, UK1
| |
Collapse
|
24
|
Wodarz D, Hall SE, Usuku K, Osame M, Ogg GS, McMichael AJ, Nowak MA, Bangham CR. Cytotoxic T-cell abundance and virus load in human immunodeficiency virus type 1 and human T-cell leukaemia virus type 1. Proc Biol Sci 2001; 268:1215-21. [PMID: 11410146 PMCID: PMC1088729 DOI: 10.1098/rspb.2001.1608] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The correlation between virus load and specific cytotoxic T-lymphocyte (CTL) frequency during the chronic phase in human immunodeficiency virus type 1 (HIV-1) infection has been found to be negative in cross-sectional studies. We report here that, in infection with the related retrovirus human T-cell leukaemia virus type 1 (HTLV-1), the correlation is positive in asymptomatic carriers and zero in patients with the associated inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). We demonstrate that the direction of the correlation may depend on the efficacy of the CTL response using mathematical models. We conclude that the CTL response is effective in asymptomatic carriers of HTLV-1, but ineffective in patients with HAM/TSP. Virus-mediated impairment of specific CTL production in HIV-1 infection can account for the negative correlation observed.
Collapse
Affiliation(s)
- D Wodarz
- Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jeffery KJ, Siddiqui AA, Bunce M, Lloyd AL, Vine AM, Witkover AD, Izumo S, Usuku K, Welsh KI, Osame M, Bangham CR. The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:7278-84. [PMID: 11120862 DOI: 10.4049/jimmunol.165.12.7278] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inflammatory disease human T cell lymphotropic virus type I (HTLV-I)-associated myelopathy (HAM/TSP) occurs in only 1-2% of HTLV-I-infected individuals and is associated with a high provirus load of HTLV-I. We hypothesize that a person's risk of developing HAM/TSP depends upon the efficiency of their immune response to the virus, which differs between individuals because of polymorphism in genes that influence this response. Previously we showed that the possession of HLA-A*02 was associated with a lower risk of HAM/TSP, and with a lower provirus load in healthy carriers of HTLV-I. However, HLA-A*02 did not account for all the observed difference in the risk of HAM/TSP. Here we present evidence, in the same study population in Japan, that HLA-Cw*08 was also associated with disease protection (probability value, two-tailed test = 0.002) and with a lower proviral load in healthy carriers. Possession of the A*02 and/or Cw*08 genes prevented 36% of potential HAM/TSP cases. In contrast, HLA-B*5401 was associated with a higher susceptibility to HAM/TSP (probability value, two-tailed test = 0.0003) and with a higher provirus load in HAM/TSP patients. At a given provirus load, B*5401 appeared to increase the risk of disease. The fraction of HAM/TSP cases attributable to B*5401 was 17%. Furthermore, individuals who were heterozygous at all three HLA class I loci have a lower HTLV-I provirus load than those who were homozygous at one or more loci. These results are consistent with the proposal that a strong class I-restricted CTL response to HTLV-I reduces the proviral load and hence the risk of disease.
Collapse
Affiliation(s)
- K J Jeffery
- Department of Immunology, Imperial College School of Medicine, St. Mary's, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The main pathological feature of human T-lymphotropic virus type I (HTLV-I)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is chronic inflammation of the spinal cord characterized by perivascular cuffing of mononuclear cells accompanied by parenchymal lymphocytic infiltration. Although the exact mechanism of the pathogenesis of HAM/TSP is still obscure, immunological abnormalities arising from a high HTLV-I proviral load in peripheral blood lymphocytes (PBL) play an important role in the pathological process of spinal cord lesions in HAM/TSP patients. The relationship between HLA haplotype and the risk of the occurrence of HAM/TSP will be elucidated by results from studies of HLA allele typing. In addition, recent data indicate that HTLV-I and its expression are localized in infiltrated lymphocytes within the spinal cord lesions of HAM/TSP patients rather than in resident central nervous system (CNS) parenchymal cells. Although a bystander damage of the surrounding CNS tissues, in which CD8+ HTLV-I-specific cytotoxic T lymphocyte (CTL) attack HTLV-I-infected lymphocytes, might be involved in the pathological events of the spinal cords of HAM/ TSP patients as one of the actual pathogenetic mechanisms, heightened transmigrating activity of HTLV-I-infected CD4+ T lymphocytes to the CNS tissues may have a key role in the development of HAM/TSP. Therefore, although the exact mechanism underlying the high HTLV-I proviral load in PBL in HAM/TSP patients is still unknown, we must consider therapeutic approaches in HAM/TSP that eliminate HTLV-I-infected CD4+ T lymphocytes.
Collapse
Affiliation(s)
- T Nakamura
- First Department of Internal Medicine, Nagasaki University School of Medicine, Japan.
| |
Collapse
|
27
|
Abstract
Human T lymphotropic virus type 1 (HTLV-1) causes disabling and fatal diseases, yet there is no vaccine, no satisfactory treatment, and no means of assessing the risk of disease or prognosis in infected people. Recent research on the molecular virology and immunology of HTLV-1 shows the importance of the host's immune response in reducing the risk of these diseases, and is beginning to explain why some HTLV-1 infected people develop serious illnesses whereas most remain healthy life long carriers of the virus. These findings might be applicable to other persistent virus infections such as human immunodeficiency virus, hepatitis B, and hepatitis C.
Collapse
Affiliation(s)
- C R Bangham
- Department of Immunology, Imperial College School of Medicine, London, UK.
| |
Collapse
|
28
|
Abstract
A strong cytotoxic T lymphocyte response to HTLV-I protects against the associated inflammatory disease of the central nervous system, HAM/TSP (HTLV-I-associated myelopathy/tropical spastic paraparesis), by reducing the proviral load of HTLV-I; however, when the proviral load exceeds a threshold level, HTLV-I-specific cytotoxic T lymphocytes could contribute to inflammation.
Collapse
Affiliation(s)
- C R Bangham
- Department of Immunology, Imperial College School of Medicine, London, W2 1PG, UK.
| |
Collapse
|
29
|
Abundant Tax protein expression in CD4+ T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood 2000. [DOI: 10.1182/blood.v95.4.1386.004k22_1386_1392] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cellular immune response in human T-cell leukemia virus type I (HTLV-I) infection is not fully understood. A persistently activated cytotoxic T lymphocyte (CTL) response to HTLV-I is found in the majority of infected individuals. However, it remains unclear whether this CTL response is protective or causes tissue damage. In addition, several observations paradoxically suggest that HTLV-I is transcriptionally silent in most infected cells and, therefore, not detectable by virus-specific CTLs. With the use of a new flow cytometric procedure, we show here that a high proportion of naturally infected CD4+ peripheral blood mononuclear cells (PBMC) (between 10% and 80%) are capable of expressing Tax, the immunodominant target antigen recognized by virus-specific CTLs. Furthermore, we provide direct evidence that autologous CD8+ T cells rapidly kill CD4+ cells naturally infected with HTLV-I and expressing Tax in vitro by a perforin-dependent mechanism. Consistent with these observations, we observed a significant negative correlation between the frequency of Tax11-19-specific CD8+ T cells and the percentage of CD4+ T cells in peripheral blood of patients infected with HTLV-I. Those results are in accordance with the view that virus-specific CTLs participate in a highly efficient immune surveillance mechanism that persistently destroys Tax-expressing HTLV-I-infected CD4+ T cells in vivo.
Collapse
|