1
|
Adams S, Tandonnet S, Pires-daSilva A. Balancing selfing and outcrossing: the genetics and cell biology of nematodes with three sexual morphs. Genetics 2025; 229:iyae173. [PMID: 39548861 PMCID: PMC11796466 DOI: 10.1093/genetics/iyae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024] Open
Abstract
Trioecy, a rare reproductive system where hermaphrodites, females, and males coexist, is found in certain algae, plants, and animals. Though it has evolved independently multiple times, its rarity suggests it may be an unstable or transitory evolutionary strategy. In the well-studied Caenorhabditis elegans, attempts to engineer a trioecious strain have reverted to the hermaphrodite/male system, reinforcing this view. However, these studies did not consider the sex-determination systems of naturally stable trioecious species. The discovery of free-living nematodes of the Auanema genus, which have naturally stable trioecy, provides an opportunity to study these systems. In Auanema, females produce only oocytes, while hermaphrodites produce both oocytes and sperm for self-fertilization. Crosses between males and females primarily produce daughters (XX hermaphrodites and females), while male-hermaphrodite crosses result in sons only. These skewed sex ratios are due to X-chromosome drive during spermatogenesis, where males produce only X-bearing sperm through asymmetric cell division. The stability of trioecy in Auanema is influenced by maternal control over sex determination and environmental cues. These factors offer insights into the genetic and environmental dynamics that maintain trioecy, potentially explaining its evolutionary stability in certain species.
Collapse
Affiliation(s)
- Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sophie Tandonnet
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | |
Collapse
|
2
|
Noah JM, Gorse M, Romain C, Gay EJ, Rouxel T, Balesdent M, Soyer JL. To be or not to be a nonhost species: A case study of the Leptosphaeria maculans and Brassica carinata interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70034. [PMID: 39606911 PMCID: PMC11603210 DOI: 10.1111/1758-2229.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
Leptosphaeria maculans is one of the major fungal pathogens on oilseed rape (Brassica napus), causing stem canker disease. The closely related Brassica species B. nigra, B. juncea, and B. carinata display extreme resistance toward stem canker. In this study, we demonstrate the nonhost status of B. carinata toward L. maculans in France through field experiments and inoculations performed in controlled conditions. A few isolates moderately adapted to B. carinata in controlled conditions were recovered in the field on B. nigra leaves, allowing us to investigate the unusual B. carinata-L. maculans interactions using molecular, macroscopic, and microscopic analyses. A cross between a L. maculans isolate adapted to B. napus and an isolate moderately adapted to B. carinata allowed the generation, in the lab, of recombinant L. maculans strains better adapted to B. carinata than the natural parental isolate obtained from B. nigra, and highlighted the polygenic determinism of the adaptation of L. maculans to B. carinata and B. napus. This biological material will allow further investigation of the molecular determinants of the adaptation of L. maculans to nonhost species and elucidate the genetic resistance basis of B. carinata.
Collapse
Affiliation(s)
- Julie M. Noah
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Mathilde Gorse
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | - Elise J. Gay
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | - Thierry Rouxel
- Université Paris‐Saclay, INRAE, UR BIOGERPalaiseauFrance
| | | | | |
Collapse
|
3
|
Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate. Microbiol Spectr 2024; 12:e0044124. [PMID: 39162516 PMCID: PMC11448445 DOI: 10.1128/spectrum.00441-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Trichoderma reesei, the main filamentous fungus used for industrial cellulase production, was long considered to be asexual. The recent discovery of the mating type locus in the natural isolate QM6a and the possibility to cross this sterile female strain with a fertile natural female strain opened up a new avenue for strain optimization. We crossed the hyperproducer RutC30 with a compatible female ascospore-derived isolate of the wild-type strain CBS999.97 and analyzed about 300 offspring. A continuous distribution of secreted protein levels was observed in the progeny, confirming the involvement of several mutated loci in the hyperproductive phenotype. A bias toward MAT1-2 strains was identified for higher producers, but not directly linked to the Mating-type locus itself. Transgressive phenotypes were observed in terms of both productivity and secretome quality, with offspring that outperform their parents for three enzymatic activities. Genomic sequences of the 10 best producers highlighted the genetic diversity generated and the involvement of parental alleles in hyperproduction and fertility. IMPORTANCE The filamentous fungus Trichoderma reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars. The filamentous fungus T. reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars, which can in turn be fermented to produce second-generation biofuels and bioproducts. Production performance improvement, which is essential to reduce production cost, relies on classical mutagenesis and genetic engineering techniques. Although sexual reproduction is a powerful tool for improving domesticated species, it is often difficult to apply to industrial fungi since most of them are considered asexual. In this study, we demonstrated that outbreeding is an efficient strategy to optimize T. reesei. Crossing between a natural isolate and a mutagenized strain generated a biodiverse progeny with some offspring displaying transgressive phenotype for cellulase activities.
Collapse
Affiliation(s)
- Laetitia Chan Ho Tong
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Etienne Jourdier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fadhel Ben Chaabane
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Thiziri Aouam
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Gwladys Chartier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Itzel Castro González
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Antoine Margeot
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Frederique Bidard
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| |
Collapse
|
4
|
Malukiewicz J, Warren K, Boere V, Bandeira ILC, Curi NHA, das Dores FT, Fitorra LS, Furuya HR, Igayara CS, Milanelo L, Moreira SB, Molina CV, Nardi MS, Nicola PA, Passamani M, Pedro VS, Pereira LCM, Petri B, Pissinatti A, Quirino AA, Rogers J, Ruiz-Miranda CR, Silva DL, Silva IO, Silva MOM, Summa JL, Zwarg T, Ackermann RR. Pelage variation and morphometrics of closely related Callithrix marmoset species and their hybrids. BMC Ecol Evol 2024; 24:122. [PMID: 39304843 DOI: 10.1186/s12862-024-02305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Hybrids are expected to show greater phenotypic variation than their parental species, yet how hybrid phenotype expression varies with genetic distances in closely-related parental species remains surprisingly understudied. Here, we investigate pelage and morphometric trait variation in anthropogenic hybrids between four species of Brazilian Callithrix marmosets, a relatively recent primate radiation. Marmoset species are distinguishable by pelage phenotype and morphological specializations for eating tree exudates. In this work, we (1) describe qualitative phenotypic pelage differences between parental species and hybrids; (2) test whether significant quantitative differences exist between parental and hybrid morphometric phenotypes; and (3) determine which hybrid morphometic traits show heterosis, dysgenesis, trangression, or intermediacy relative to the parental trait. We investigated cranial and post-cranial morphometric traits, as most hybrid morphological studies focus on the former instead of the latter. Finally, we estimate mitogenomic distances between marmoset species from previously published data. RESULTS Marmoset hybrid facial and overall body pelage variation reflected novel combinations of coloration and patterns present in parental species. In morphometric traits, C. jacchus and C. penicillata were the most similar, while C. aurita was the most distinct, and C. geoffroyi trait measures fell between these species. Only three traits in C. jacchus x C. penicillata hybrids showed heterosis. We observed heterosis and dysgenesis in several traits of C. penicillata x C. geoffroyi hybrids. Transgressive segregation was observed in hybrids of C. aurita and the other species. These hybrids were also C. aurita-like for a number of traits, including body length. Genetic distance was closest between C. jacchus and C. penicillata and farthest between C. aurita and the other species. CONCLUSION We attributed significant morphometric differences between marmoset species to variable levels of morphological specialization for exudivory in these species. Our results suggest that intermediate or parental species-like hybrid traits relative to the parental trait values are more likely in crosses between species with relatively lesser genetic distance. More extreme phenotypic variation is more likely in parental species with greater genetic distance, with transgressive traits appearing in hybrids of the most genetically distant parental species. We further suggest that fewer developmental disturbances can be expected in hybrids of more recently diverged parental species, and that future studies of hybrid phenotypic variation should investigate selective pressures on Callithrix cranial and post-cranial morphological traits.
Collapse
Affiliation(s)
- Joanna Malukiewicz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany.
- Faculty of Medicine, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, Pacaembu, 01246-903, São Paulo, Brazil.
| | - Kerryn Warren
- Department of Archaeology, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | - Vanner Boere
- Institute of Humanities, Arts, and Sciences at the Federal University of Southern Bahia, Rodovia de Acesso para Itabuna, km 39 - Ferradas, 45613-204, Itabuna, Brazil
| | - Illaira L C Bandeira
- Centro de Conservação e Manejo de Fauna da Caatinga, Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, BR 407, Km 12, lote 543, Projeto de Irrigação Nilo Coelho - S/N C1, 56300-000, Petrolina, Brazil
| | - Nelson H A Curi
- Curso de Medicina Veterinária, Centro Universitário de Lavras, Rua Padre José Poggel, 506 - Padre Dehon, 37203-593, Lavras, Brazil
| | - Fabio T das Dores
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Lilian S Fitorra
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Haroldo R Furuya
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Claudia S Igayara
- Zoológico Municipal de Guarulhos, Av. Doná Glória Pagnonceli, 344 - Jardim Rosa de Franca, Guarulhos, 07081-120, Guarulhos, Brazil
| | - Liliane Milanelo
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Silvia B Moreira
- Centro de Primatologia do Rio de Janeiro, Estr. do Paraíso, s/n - Paraíso, 25940-000, Guapimirim, Brazil
| | - Camila V Molina
- Programa de Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes , n° 1524 - Butantã, 05508-000, São Paulo, Brazil
| | - Marcello S Nardi
- Prefeitura Municipal de São Paulo, Secretaria Municipal do Verde e Meio Ambiente - DEPAVE, Avenida IV Centenario, portão 7A - Pq. Ibirapuera Jd. Luzitânia, 00000-000, São Paulo, Brazil
| | - Patricia A Nicola
- Programa de Pós-Graduação, Ciências da Saúde e Biológicas, Universidade Federal do Vale do São Francisco, Av. José de Sá Maniçoba, S/N - Centro, 56304-917 -, Petrolina, Brazil
| | - Marcelo Passamani
- Laboratório de Ecologia e Conservação de Mamíferos, Departamento de Ecologia e Conservação, Universidade Federal de Lavras, Av. Central s/n Campus Universitário, 37200-000, Lavras, Brazil
| | - Valeria S Pedro
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Luiz C M Pereira
- Centro de Conservação e Manejo de Fauna da Caatinga, Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, BR 407, Km 12, lote 543, Projeto de Irrigação Nilo Coelho - S/N C1, 56300-000, Petrolina, Brazil
| | - Bruno Petri
- Centro de Triagem e Recuperação de Animais Silvestres, Rodovia Parque, 8055 - Vila Santo Henrique, 03719-000, São Paulo, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro, Estr. do Paraíso, s/n - Paraíso, 25940-000, Guapimirim, Brazil
| | - Adriana Alves Quirino
- Centro de Conservação e Manejo de Fauna da Caatinga, Universidade Federal do Vale do São Francisco, Campus Ciências Agrárias, BR 407, Km 12, lote 543, Projeto de Irrigação Nilo Coelho - S/N C1, 56300-000, Petrolina, Brazil
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Dept. of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, 77030, Houston, USA
| | - Carlos R Ruiz-Miranda
- Laboratory of Environmental Sciences, Center for Biosciences and Biotechnology at Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia, 28013-602 , Campos dos Goytacazes, Brazil
| | - Daniel L Silva
- Núcleo de Pesquisas em Ciências Biológicas - NUPEB, Federal University of Ouro Preto, R. Três, 408-462, 35400-000, Ouro Preto, Brazil
| | - Ita O Silva
- Institute of Humanities, Arts, and Sciences at the Federal University of Southern Bahia, Rodovia de Acesso para Itabuna, km 39 - Ferradas, 45613-204, Itabuna, Brazil
| | - Monique O M Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, Km 07 - Zona Rural, 23890-000, Seropédica, Brazil
| | - Juliana L Summa
- Prefeitura Municipal de São Paulo, Secretaria Municipal do Verde e Meio Ambiente - DEPAVE, Avenida IV Centenario, portão 7A - Pq. Ibirapuera Jd. Luzitânia, 00000-000, São Paulo, Brazil
| | - Ticiana Zwarg
- Prefeitura Municipal de São Paulo, Secretaria Municipal do Verde e Meio Ambiente - DEPAVE, Avenida IV Centenario, portão 7A - Pq. Ibirapuera Jd. Luzitânia, 00000-000, São Paulo, Brazil
| | - Rebecca R Ackermann
- Department of Archaeology, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
5
|
Thompson KA, Brandvain Y, Coughlan JM, Delmore KE, Justen H, Linnen CR, Ortiz-Barrientos D, Rushworth CA, Schneemann H, Schumer M, Stelkens R. The Ecology of Hybrid Incompatibilities. Cold Spring Harb Perspect Biol 2024; 16:a041440. [PMID: 38151331 PMCID: PMC11368197 DOI: 10.1101/cshperspect.a041440] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Ecologically mediated selection against hybrids, caused by hybrid phenotypes fitting poorly into available niches, is typically viewed as distinct from selection caused by epistatic Dobzhansky-Muller hybrid incompatibilities. Here, we show how selection against transgressive phenotypes in hybrids manifests as incompatibility. After outlining our logic, we summarize current approaches for studying ecology-based selection on hybrids. We then quantitatively review QTL-mapping studies and find traits differing between parent taxa are typically polygenic. Next, we describe how verbal models of selection on hybrids translate to phenotypic and genetic fitness landscapes, highlighting emerging approaches for detecting polygenic incompatibilities. Finally, in a synthesis of published data, we report that trait transgression-and thus possibly extrinsic hybrid incompatibility in hybrids-escalates with the phenotypic divergence between parents. We discuss conceptual implications and conclude that studying the ecological basis of hybrid incompatibility will facilitate new discoveries about mechanisms of speciation.
Collapse
Affiliation(s)
- Ken A Thompson
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities, St Paul, Minnesota 55108, USA
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Kira E Delmore
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Hannah Justen
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia, Queensland 4072, Australia
| | - Catherine A Rushworth
- Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322, USA
| | - Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca," A.C., Calnali 43240, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Rike Stelkens
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Peláez P, Lorenzana GP, Baesen K, Montes JR, De La Torre AR. Spatially heterogeneous selection and inter-varietal differentiation maintain population structure and local adaptation in a widespread conifer. BMC Ecol Evol 2024; 24:117. [PMID: 39227766 PMCID: PMC11373507 DOI: 10.1186/s12862-024-02304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plays a critical role in the ecology and economy of Western North America. This conifer species comprises two distinct varieties: the coastal variety (var. menziesii) along the Pacific coast, and the interior variety (var. glauca) spanning the Rocky Mountains into Mexico, with instances of inter-varietal hybridization in Washington and British Columbia. Recent investigations have focused on assessing environmental pressures shaping Douglas-fir's genomic variation for a better understanding of its evolutionary and adaptive responses. Here, we characterize range-wide population structure, estimate inter-varietal hybridization levels, identify candidate loci for climate adaptation, and forecast shifts in species and variety distribution under future climates. RESULTS Using a custom SNP-array, we genotyped 540 trees revealing four distinct clusters with asymmetric admixture patterns in the hybridization zone. Higher genetic diversity observed in coastal and hybrid populations contrasts with lower diversity in inland populations of the southern Rockies and Mexico, exhibiting a significant isolation by distance pattern, with less marked but still significant isolation by environment. For both varieties, we identified candidate loci associated with local adaptation, with hundreds of genes linked to processes such as stimulus response, reactions to chemical compounds, and metabolic functions. Ecological niche modeling revealed contrasting potential distribution shifts among the varieties in the coming decades, with interior populations projected to lose habitat and become more vulnerable, while coastal populations are expected to gain suitable areas. CONCLUSIONS Overall, our findings provide crucial insights into the population structure and adaptive potential of Douglas-fir, with the coastal variety being the most likely to preserve its evolutionary path throughout the present century, which carry implications for the conservation and management of this species across their range.
Collapse
Affiliation(s)
- Pablo Peláez
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Kailey Baesen
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Jose Ruben Montes
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | |
Collapse
|
7
|
Seleit A, Brettell I, Fitzgerald T, Vibe C, Loosli F, Wittbrodt J, Naruse K, Birney E, Aulehla A. Modular control of vertebrate axis segmentation in time and space. EMBO J 2024; 43:4068-4091. [PMID: 39122924 PMCID: PMC11405765 DOI: 10.1038/s44318-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
How the timing of development is linked to organismal size is a longstanding question. Although numerous studies have reported a correlation of temporal and spatial traits, the developmental or selective constraints underlying this link remain largely unexplored. We address this question by studying the periodic process of embryonic axis segmentation in-vivo in Oryzias fish. Interspecies comparisons reveal that the timing of segmentation correlates to segment, tissue and organismal size. Segment size in turn scales according to tissue and organism size. To probe for underlying causes, we genetically hybridised two closely related species. Quantitative analysis in ~600 phenotypically diverse F2 embryos reveals a decoupling of timing from size control, while spatial scaling is preserved. Using developmental quantitative trait loci (devQTL) mapping we identify distinct genetic loci linked to either the control of segmentation timing or tissue size. This study demonstrates that a developmental constraint mechanism underlies spatial scaling of axis segmentation, while its spatial and temporal control are dissociable modules.
Collapse
Affiliation(s)
- Ali Seleit
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ian Brettell
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tomas Fitzgerald
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Carina Vibe
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Felix Loosli
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Ruprecht Karls Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Kiyoshi Naruse
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Ewan Birney
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Alexander Aulehla
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Maier PA, Vandergast AG, Bohonak AJ. Yosemite toad (Anaxyrus canorus) transcriptome reveals interplay between speciation genes and adaptive introgression. Mol Ecol 2024; 33:e17317. [PMID: 38488670 DOI: 10.1111/mec.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
Genomes are heterogeneous during the early stages of speciation, with small 'islands' of DNA appearing to reflect strong adaptive differences, surrounded by vast seas of relative homogeneity. As species diverge, secondary contact zones between them can act as an interface and selectively filter through advantageous alleles of hybrid origin. Such introgression is another important adaptive process, one that allows beneficial mosaics of recombinant DNA ('rivers') to flow from one species into another. Although genomic islands of divergence appear to be associated with reproductive isolation, and genomic rivers form by adaptive introgression, it is unknown whether islands and rivers tend to be the same or different loci. We examined three replicate secondary contact zones for the Yosemite toad (Anaxyrus canorus) using two genomic data sets and a morphometric data set to answer the questions: (1) How predictably different are islands and rivers, both in terms of genomic location and gene function? (2) Are the adaptive genetic trait loci underlying tadpole growth and development reliably islands, rivers or neither? We found that island and river loci have significant overlap within a contact zone, suggesting that some loci are first islands, and later are predictably converted into rivers. However, gene ontology enrichment analysis showed strong overlap in gene function unique to all island loci, suggesting predictability in overall gene pathways for islands. Genome-wide association study outliers for tadpole development included LPIN3, a lipid metabolism gene potentially involved in climate change adaptation, that is island-like for all three contact zones, but also appears to be introgressing (as a river) across one zone. Taken together, our results suggest that adaptive divergence and introgression may be more complementary forces than currently appreciated.
Collapse
Affiliation(s)
- Paul A Maier
- Department of Biology, San Diego State University, San Diego, California, USA
- Family TreeDNA, Gene by Gene, Houston, Texas, USA
| | - Amy G Vandergast
- Western Ecological Research Center, San Diego Field Station, U.S. Geological Survey, San Diego, California, USA
| | - Andrew J Bohonak
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
9
|
Knapp SJ, Cole GS, Pincot DDA, Dilla-Ermita CJ, Bjornson M, Famula RA, Gordon TR, Harshman JM, Henry PM, Feldmann MJ. Transgressive segregation, hopeful monsters, and phenotypic selection drove rapid genetic gains and breakthroughs in predictive breeding for quantitative resistance to Macrophomina in strawberry. HORTICULTURE RESEARCH 2024; 11:uhad289. [PMID: 38487295 PMCID: PMC10939388 DOI: 10.1093/hr/uhad289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024]
Abstract
Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis, we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively small number of large-effect loci.
Collapse
Affiliation(s)
- Steven J Knapp
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Christine Jade Dilla-Ermita
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Marta Bjornson
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Randi A Famula
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Thomas R Gordon
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Julia M Harshman
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter M Henry
- Crop Improvement and Protection Research, USDA-ARS, 1636 E. Alisal Street, CA 93905, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
10
|
Powell DM. Losing the forest for the tree? On the wisdom of subpopulation management. Zoo Biol 2023; 42:591-604. [PMID: 37218348 DOI: 10.1002/zoo.21776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023]
Abstract
Animal habitats are changing around the world in many ways, presenting challenges to the survival of species. Zoo animal populations are also challenged by small population sizes and limited genetic diversity. Some ex situ populations are managed as subpopulations based on presumed subspecies or geographic locality and related concerns over genetic purity or taxonomic integrity. However, these decisions can accelerate the loss of genetic diversity and increase the likelihood of population extinction. Here I challenge the wisdom of subpopulation management, pointing out significant concerns in the literature with delineation of species, subspecies, and evolutionarily significant units. I also review literature demonstrating the value of gene flow for preserving adaptive potential, the often-misunderstood role of hybridization in evolution, and the likely overstated concerns about outbreeding depression, and preservation of local adaptations. I argue that the most effective way to manage animal populations for the long term be they in human care, in the wild, or if a captive population is being managed for reintroduction, is to manage for maximum genetic diversity rather than managing subpopulations focusing on taxonomic integrity, genetic purity, or geographic locale because selection in the future, rather than the past, will determine what genotypes and phenotypes are the most fit. Several case studies are presented to challenge the wisdom of subpopulation management and stimulate thinking about the preservation of genomes rather than species, subspecies, or lineages because those units evolved in habitats that are likely very different from those habitats today and in the future.
Collapse
Affiliation(s)
- David M Powell
- Department of Reproductive & Behavioral Sciences, Saint Louis Zoo, Saint Louis, Missouri, USA
| |
Collapse
|
11
|
Oakley CG, Schemske DW, McKay JK, Ågren J. Ecological genetics of local adaptation in Arabidopsis: An 8-year field experiment. Mol Ecol 2023; 32:4570-4583. [PMID: 37317048 DOI: 10.1111/mec.17045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
There is considerable evidence for local adaptation in nature, yet important questions remain regarding its genetic basis. How many loci are involved? What are their effect sizes? What is the relative importance of conditional neutrality versus genetic trade-offs? Here we address these questions in the self-pollinating, annual plant Arabidopsis thaliana. We used 400 recombinant inbred lines (RILs) derived from two locally adapted populations in Italy and Sweden, grew the RILs and parents at the parental locations, and mapped quantitative trait loci (QTL) for mean fitness (fruits/seedling planted). We previously published results from the first 3 years of the study, and here add five additional years, providing a unique opportunity to assess how temporal variation in selection might affect QTL detection and classification. We found 10 adaptive and one maladaptive QTL in Italy, and six adaptive and four maladaptive QTL in Sweden. The discovery of maladaptive QTL at both sites suggests that even locally adapted populations are not always at their genotypic optimum. Mean effect sizes for adaptive QTL, 0.97 and 0.55 fruits in Italy and Sweden, respectively, were large relative to the mean fitness of the RILs (approximately 8 fruits/seedling planted at both sites). Both genetic trade-offs (four cases) and conditional neutrality (seven cases) contribute to local adaptation in this system. The 8-year dataset provided greater power to detect QTL and to estimate their locations compared to our previous 3-year study, identifying one new genetic trade-off and resolving one genetic trade-off into two conditionally adaptive QTL.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Botany and Plant Pathology, and the Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan, USA
| | - John K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Jon Ågren
- Plant Ecology and Evolution, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Armas F, Favila ME, González-Tokman D, Salomão RP, Baena-Díaz F. Experimental Crosses Between Two Dung Beetle Lineages Show Transgressive Segregation in Physiological Traits. NEOTROPICAL ENTOMOLOGY 2023; 52:442-451. [PMID: 36897325 DOI: 10.1007/s13744-023-01034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
Physiological traits in insects are intrinsically related to their behavior, fitness, and survival and can reflect adaptations to ecological stressors in different environments, leading to population differentiation that may cause hybrid failure. In this study, we characterized five physiological traits related to body condition (body size, body mass, amount of fat, total hemolymph protein, and phenoloxidase activity) in two geographically separated and recently differentiated lineages of Canthon cyanellus LeConte, 1859 within their natural distribution in Mexico. We also performed experimental hybrid crosses between these lineages to better understand the differentiation process and explore the presence of transgressive segregation over physiological traits in them. We found differences between lineages in all traits except body mass, suggesting selective pressures related to different ecological pressures. These differences were also apparent in the transgressive segregation of all traits in F1 and F2 hybrids, except for phenoloxidase activity. Protein content was sexually dimorphic in both parental lineages but was reversed in hybrids, suggesting a genetic basis for the differences between sexes. The negative sign of transgressive segregation for most traits indicates that hybrids would be smaller, thinner, and generally unfit. Our results suggest that these two lineages may undergo postzygotic reproductive isolation, confirming the cryptic diversity of this species complex.
Collapse
Affiliation(s)
- Fernanda Armas
- Instituto de Ecología A. C. Xalapa, Veracruz, 91070, México
| | - Mario E Favila
- Instituto de Ecología A. C. Xalapa, Veracruz, 91070, México.
| | | | - Renato P Salomão
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, México
| | | |
Collapse
|
13
|
Wei S, Zhang Q, Tang S, Liao W. Genetic and ecophysiological evidence that hybridization facilitated lineage diversification in yellow Camellia (Theaceae) species: a case study of natural hybridization between C. micrantha and C. flavida. BMC PLANT BIOLOGY 2023; 23:154. [PMID: 36944951 PMCID: PMC10031943 DOI: 10.1186/s12870-023-04164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hybridization is generally considered an important creative evolutionary force, yet this evolutionary process is still poorly characterized in karst plants. In this study, we focus on natural hybridization in yellow Camellia species, a group of habitat specialists confined to karst/non-karst habitats in southwestern China. RESULTS Based on population genome data obtain from double digest restriction-site associated DNA (ddRAD) sequencing, we found evidence for natural hybridization and introgression between C. micrantha and C. flavida, and specifically confirmed their hybrid population, C. "ptilosperma". Ecophysiological results suggested that extreme hydraulic traits were fixed in C. "ptilosperma", these being consistent with its distinct ecological niche, which lies outside its parental ranges. CONCLUSION The identified hybridization event is expected to have played a role in generating novel variation during, in which the hybrid population displays different phenological characteristics and novel ecophysiological traits associated with the colonization of a new niche in limestone karst.
Collapse
Affiliation(s)
- Sujuan Wei
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Qiwei Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shaoqing Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China.
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
14
|
Eliason CM, Cooper JC, Hackett SJ, Zahnle E, Pequeño Saco TZ, Maddox JD, Hains T, Hauber ME, Bates JM. Interspecific hybridization explains rapid gorget colour divergence in Heliodoxa hummingbirds (Aves: Trochilidae). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221603. [PMID: 36866078 PMCID: PMC9974296 DOI: 10.1098/rsos.221603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Hybridization is a known source of morphological, functional and communicative signal novelty in many organisms. Although diverse mechanisms of established novel ornamentation have been identified in natural populations, we lack an understanding of hybridization effects across levels of biological scales and upon phylogenies. Hummingbirds display diverse structural colours resulting from coherent light scattering by feather nanostructures. Given the complex relationship between feather nanostructures and the colours they produce, intermediate coloration does not necessarily imply intermediate nanostructures. Here, we characterize nanostructural, ecological and genetic inputs in a distinctive Heliodoxa hummingbird from the foothills of eastern Peru. Genetically, this individual is closely allied with Heliodoxa branickii and Heliodoxa gularis, but it is not identical to either when nuclear data are assessed. Elevated interspecific heterozygosity further suggests it is a hybrid backcross to H. branickii. Electron microscopy and spectrophotometry of this unique individual reveal key nanostructural differences underlying its distinct gorget colour, confirmed by optical modelling. Phylogenetic comparative analysis suggests that the observed gorget coloration divergence from both parentals to this individual would take 6.6-10 My to evolve at the current rate within a single hummingbird lineage. These results emphasize the mosaic nature of hybridization and suggest that hybridization may contribute to the structural colour diversity found across hummingbirds.
Collapse
Affiliation(s)
- Chad M. Eliason
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Grainger Bioinformatics Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Jacob C. Cooper
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
- Directora de Monitoreo y Evaluacion de Recursos Naturales del Territorio, Plataforma digital única del Estado Peruano, Iquitos, Perú
| | - Shannon J. Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Erica Zahnle
- Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66044, USA
| | - Tatiana Z. Pequeño Saco
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Joseph Dylan Maddox
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Laboratorio de Biotecnología y Bioenergética, Universidad Científica del Perú, Iquitos, Perú
| | - Taylor Hains
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| | - Mark E. Hauber
- Department of Evolution, Ecology, and Behaviour, School at Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - John M. Bates
- Negaunee Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA
| |
Collapse
|
15
|
Vila-Pouca C, De Waele H, Kotrschal A. The effect of experimental hybridization on cognition and brain anatomy: Limited phenotypic variation and transgression in Poeciliidae. Evolution 2022; 76:2864-2878. [PMID: 36181444 PMCID: PMC10091962 DOI: 10.1111/evo.14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 01/22/2023]
Abstract
Hybridization can promote phenotypic variation and often produces trait combinations distinct from the parental species. This increase in available variation can lead to the manifestation of functional novelty when new phenotypes bear adaptive value under the environmental conditions in which they occur. Although the role of hybridization as a driver of variation and novelty in traits linked to fitness is well recognized, it remains largely unknown whether hybridization can fuel behavioral novelty by promoting phenotypic variation in brain morphology and/or cognitive traits. To address this question, we investigated the effect of hybridization on brain anatomy, learning ability, and cognitive flexibility in first- and second-generation hybrids of two closely related fish species (Poecilia reticulata and Poecilia wingei). Overall, we found that F1 and F2 hybrids showed intermediate brain morphology and cognitive traits compared to parental groups. Moreover, as phenotypic dispersion and transgression were low for both brain and cognitive traits, we suggest that hybridization is not a strong driver of brain anatomical and cognitive diversification in these Poeciliidae. To determine the generality of this conclusion, hybridization experiments with cognitive tests need to be repeated in other families.
Collapse
Affiliation(s)
- Catarina Vila-Pouca
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, 6700 HB, The Netherlands
| | - Hannah De Waele
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, 6700 HB, The Netherlands
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, 6700 HB, The Netherlands
| |
Collapse
|
16
|
Muranaka T, Ito S, Kudoh H, Oyama T. Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis. iScience 2022; 25:104634. [PMID: 35800759 PMCID: PMC9253726 DOI: 10.1016/j.isci.2022.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation is the basis for trait adaptation via evolutionary selection. However, the driving forces behind quantitative trait variations remain unclear owing to their complexity at the molecular level. This study focused on the natural variation of the free-running period (FRP) of the circadian clock because FRP is a determining factor of the phase phenotype of clock-dependent physiology. Lemna aequinoctialis in Japan is a paddy field duckweed that exhibits a latitudinal cline of critical day length (CDL) for short-day flowering. We collected 72 strains of L. aequinoctialis and found a significant correlation between FRPs and locally adaptive CDLs, confirming that variation in the FRP-dependent phase phenotype underlies photoperiodic adaptation. Diel transcriptome analysis revealed that the induction timing of an FT gene is key to connecting the clock phase to photoperiodism at the molecular level. This study highlights the importance of FRP as a variation resource for evolutionary adaptation. Natural variation of flowering/circadian traits in a paddy-field duckweed is studied. Critical day length for flowering of the duckweed in Japan shows a latitudinal cline. A negative correlation between critical day length and circadian period was found. An FT gene responding to lengthening of the dark period was isolated.
Collapse
|
17
|
Owusu EY, Kusi F, Kena AW, Akromah R, Attamah P, Awuku FJ, Mensah G, Lamini S, Zakaria M. Genetic control of earliness in cowpea ( Vigna unguiculata (L) Walp). Heliyon 2022; 8:e09852. [PMID: 35847611 PMCID: PMC9283894 DOI: 10.1016/j.heliyon.2022.e09852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 10/31/2022] Open
Abstract
Global climate change is expected to further intensify the already harsh conditions in the dry savannah ecological zones of sub-Saharan Africa, posing serious threats to food and income security of millions of smallholder farmers. Breeding cowpea for improved earliness could help minimize this risk, by ensuring that the crops complete their lifecycle before the cessation of rainfall. In this study, we crossed two sets of cowpea lines showing contrasting phenotypes for earliness in terms of days to 50% flowering (DFF). One set of the lines comprised three extra-early parents (viz.: Sanzi-Nya, Tobonaa and CB27, 30-35 DFF), and the other set consisted of three early-to-medium maturity lines (viz.: Kirkhouse-Benga, Wang-Kae and Padi-Tuya, 42-45 DFF). The derived crosses and their parents were evaluated for key earliness-related traits at Nyankpala and Manga sites of CSIR-Savanna Agricultural Research Institute (SARI), Ghana. To unravel the genetic control of measured traits, we compared the appropriateness of Chi-square goodness of fit tests using classical Mendelian ratios, and frequency distribution (histogram)-related statistics such as skewness and kurtosis. The Chi-square test suggested a single dominant gene mode of inheritance for earliness, whereas the quantitative methods implicated duplicate epistasis and complementary epistatic gene actions. Our results show that coercing segregating lines to fit into classical Mendelian ratios to determine the genetic control of earliness could be misleading, due to its subjectivity. Thus, the genetic control of earliness in cowpea is governed by complementary and duplicate epistasis. The most applicable breeding approach for traits influenced by duplicate epitasis is selection of desirable recombinants from segregating populations developed from bi-parental crosses. Complementary epitasis, as found in the Wang-Kae × CB27 cross, could be exploited in developing improved extra-early lines through backcrossing. Heritability and genetic advance estimates were high for days to first flower appearance (DFFA) and days to 95 % pod maturity (DNPM) in the Padi-Tuya × CB27 and Kirkhouse-Benga x CB27 crosses, indicating that breeding for extra-earliness is feasible. CB27 could be a good donor for introgression of earliness into medium to late maturing improved cowpea varieties, because crosses developed from it had high heritability and genetic advance estimates.
Collapse
Affiliation(s)
- Emmanuel Yaw Owusu
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana.,Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Kusi
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| | | | - Richard Akromah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Patrick Attamah
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| | - Frederick Justice Awuku
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| | - Gloria Mensah
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| | - Salim Lamini
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| | - Mukhtaru Zakaria
- Council for Scientific and Industrial Research - Savanna Agricultural Research Institute, Ghana
| |
Collapse
|
18
|
Yang F, Wan H, Li J, Wang Q, Yang N, Zhu X, Liu Z, Yang Y, Ma W, Fan X, Yang W, Zhou Y. Pentaploidization Enriches the Genetic Diversity of Wheat by Enhancing the Recombination of AB Genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:883868. [PMID: 35845672 PMCID: PMC9281561 DOI: 10.3389/fpls.2022.883868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Allohexaploidization and continuous introgression play a key role in the origin and evolution of bread wheat. The genetic bottleneck of bread wheat resulting from limited germplasms involved in the origin and modern breeding may be compensated by gene flow from tetraploid wheat through introgressive hybridization. The inter-ploidy hybridization between hexaploid and tetraploid wheat generates pentaploid hybrids first, which absorbed genetic variations both from hexaploid and tetraploid wheat and have great potential for re-evolution and improvement in bread wheat. Therefore, understanding the effects of the pentaploid hybrid is of apparent significance in our understanding of the historic introgression and in informing breeding. In the current study, two sets of F2 populations of synthetic pentaploid wheat (SPW1 and SPW2) and synthetic hexaploid wheat (SHW1 and SHW2) were created to analyze differences in recombination frequency (RF) of AB genomes and distorted segregation of polymorphic SNP markers through SNP genotyping. Results suggested that (1) the recombination of AB genomes in the SPW populations was about 3- to 4-fold higher than that in the SHW populations, resulting from the significantly (P < 0.01) increased RF between adjacent and linked SNP loci, especially the variations that occurred in a pericentromeric region which would further enrich genetic diversity; (2) the crosses of hexaploid × tetraploid wheat could be an efficient way to produce pentaploid derivatives than the crosses of tetraploid × hexaploid wheat according to the higher germination rate found in the former crosses; (3) the high proportion of distorted segregation loci that skewed in favor of the female parent genotype/allele in the SPW populations might associate with the fitness and survival of the offspring. Based on the presented data, we propose that pentaploid hybrids should increasingly be used in wheat breeding. In addition, the contribution of gene flow from tetraploid wheat to bread wheat mediated by pentaploid introgressive hybridization also was discussed in the re-evolution of bread wheat.
Collapse
Affiliation(s)
- Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Ning Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinguo Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zehou Liu
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wujun Ma
- Australia-China Joint Centre for Wheat Improvement, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China (Ministry of Agriculture and Rural Affairs of P.R.C.), Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Pouca CV, Vedder S, Kotrschal A. Hybridization may promote variation in cognitive phenotypes in experimental guppy hybrids. Am Nat 2022; 200:607-619. [DOI: 10.1086/720731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Borredá C, Perez-Roman E, Talon M, Terol J. Comparative transcriptomics of wild and commercial Citrus during early ripening reveals how domestication shaped fruit gene expression. BMC PLANT BIOLOGY 2022; 22:123. [PMID: 35300613 PMCID: PMC8928680 DOI: 10.1186/s12870-022-03509-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/03/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Interspecific hybridizations and admixtures were key in Citrus domestication, but very little is known about their impact at the transcriptomic level. To determine the effects of genome introgressions on gene expression, the transcriptomes of the pulp and flavedo of three pure species (citron, pure mandarin and pummelo) and four derived domesticated genetic admixtures (sour orange, sweet orange, lemon and domesticated mandarin) have been analyzed at color break. RESULTS Many genes involved in relevant physiological processes for domestication, such sugar/acid metabolism and carotenoid/flavonoid synthesis, were differentially expressed among samples. In the low-sugar, highly acidic species lemon and citron, many genes involved in sugar metabolism, the TCA cycle and GABA shunt displayed a reduced expression, while the P-type ATPase CitPH5 and most subunits of the vacuolar ATPase were overexpressed. The red-colored species and admixtures were generally characterized by the overexpression in the flavedo of specific pivotal genes involved in the carotenoid biosynthesis, including phytoene synthase, ζ-carotene desaturase, β-lycopene cyclase and CCD4b, a carotenoid cleavage dioxygenase. The expression patterns of many genes involved in flavonoid modifications, especially the flavonoid and phenylpropanoid O-methyltransferases showed extreme diversity. However, the most noticeable differential expression was shown by a chalcone synthase gene, which catalyzes a key step in the biosynthesis of flavonoids. This chalcone synthase was exclusively expressed in mandarins and their admixed species, which only expressed the mandarin allele. In addition, comparisons between wild and domesticated mandarins revealed that the major differences between their transcriptomes concentrate in the admixed regions. CONCLUSION In this work we present a first study providing broad evidence that the genome introgressions that took place during citrus domestication largely shaped gene expression in their fruits.
Collapse
Affiliation(s)
- Carles Borredá
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Estela Perez-Roman
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Manuel Talon
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Javier Terol
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
21
|
Majtyka T, Borczyk B, Ogielska M, Stöck M. Morphometry of two cryptic tree frog species at their hybrid zone reveals neither intermediate nor transgressive morphotypes. Ecol Evol 2022; 12:e8527. [PMID: 35127036 PMCID: PMC8794711 DOI: 10.1002/ece3.8527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Under incomplete reproductive isolation, secondary contact of diverged allopatric lineages may lead to the formation of hybrid zones that allow to study recombinants over several generations as excellent systems of genomic interactions resulting from the evolutionary forces acting on certain genes and phenotypes. Hybrid phenotypes may either exhibit intermediacy or, alternatively, transgressive traits, which exceed the extremes of their parents due to epistasis and segregation of complementary alleles. While transgressive morphotypes have been examined in fish, reptiles, birds, and mammals, studies in amphibians are rare. Here, we associate microsatellite-based genotypes with morphometrics-based morphotypes of two tree frog species of the Hyla arborea group, sampled across a hybrid zone in Poland, to understand whether the genetically differentiated parental species also differ in morphology between each other and their hybrids and whether secondary contact leads to the evolution of intermediate or transgressive morphotypes. Using univariate approaches, explorative multivariate methods (principal component analyses) as well as techniques with prior grouping (discriminant function analyses), we find that morphotypes of both parental species and hybrids differ from each other. Importantly, hybrid morphotypes are neither intermediate nor transgressive but found to be more similar to H. orientalis than to H. arborea.
Collapse
Affiliation(s)
- Tomasz Majtyka
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Maria Ogielska
- Department of Evolutionary Biology and Conservation of VertebratesUniversity of WrocławWrocławPoland
| | - Matthias Stöck
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
22
|
Soliman M, Bocchini M, Stein J, Ortiz JPA, Albertini E, Delgado L. Environmental and Genetic Factors Affecting Apospory Expressivity in Diploid Paspalum rufum. PLANTS 2021; 10:plants10102100. [PMID: 34685909 PMCID: PMC8537111 DOI: 10.3390/plants10102100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
In angiosperms, gametophytic apomixis (clonal reproduction through seeds) is strongly associated with polyploidy and hybridization. The trait is facultative and its expressivity is highly variable between genotypes. Here, we used an F1 progeny derived from diploid apomictic (aposporic) genotypes of Paspalum rufum and two F2 families, derived from F1 hybrids with different apospory expressivity (%AES), to analyze the influence of the environment and the transgenerational transmission of the trait. In addition, AFLP markers were developed in the F1 population to identify genomic regions associated with the %AES. Cytoembryological analyses showed that the %AES was significantly influenced by different environments, but remained stable across the years. F1 and F2 progenies showed a wide range of %AES variation, but most hybrids were not significantly different from the parental genotypes. Maternal and paternal genetic linkage maps were built covering the ten expected linkage groups (LG). A single-marker analysis detected at least one region of 5.7 cM on LG3 that was significantly associated with apospory expressivity. Our results underline the importance of environmental influence in modulating apospory expressivity and identified a genomic region associated with apospory expressivity at the diploid level.
Collapse
Affiliation(s)
- Mariano Soliman
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Marika Bocchini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
| | - Emidio Albertini
- Department Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.B.); (E.A.)
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Rosario S2125ZAA, Zavalla, Argentina; (M.S.); (J.S.); (J.P.A.O.)
- Correspondence:
| |
Collapse
|
23
|
Huang M, Qin R, Li C, Liu C, Jiang Y, Yu J, Chang D, Roberts PA, Chen Q, Wang C. Transgressive resistance to Heterodera glycines in chromosome segment substitution lines derived from susceptible soybean parents. THE PLANT GENOME 2021; 14:e20091. [PMID: 33817979 DOI: 10.1002/tpg2.20091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Chromosome segment substitution lines (CSSLs) are valuable genetic resources for quantitative trait loci (QTL) mapping of complex agronomic traits especially suitable for minor effect QTL. Here, 162 BC3 F7 -BC7 F3 CSSLs derived from crossing two susceptible parent lines, soybean [Glycine max (L.) Merr.] 'Suinong14' (recurrent parent) × wild soybean (G. soja Siebold & Zucc.) ZYD00006, were used for QTL mapping of soybean cyst nematode (SCN, Heterodera glycine Ichinohe) resistance based on female index (FI) and cysts per gram root (CGR) through phenotypic screening and whole-genome resequencing of CSSLs. Phenotypic results displayed a wide range of distribution and transgressive lines in both HG Type 2.5.7 FI and CGR and demonstrated a higher correlation between CGR and root weight (R2 = .5424) compared with than between FI and CGR (R2 = .0018). Using the single-marker analysis nonparametric mapping test, 33 significant QTL were detected on 18 chromosomes contributing resistance to FI and CGR. Fourteen QTL contributing 5.6-15.5% phenotypic variance (PVE) to FI were revealed on 11 chromosomes, and 16 QTL accounting for 6.1-36.2% PVE in CGR were detected on 14 chromosomes with strong additive effect by multiple-QTL model (MQM) mapping. Twenty-five and 13 out of all 38 QTL identified for FI and CGR on 20 chromosomes were from ZYD00006 and Suinong14, respectively. The CSSLs with the combination of positive alleles for FI, CGR, and root weight exhibited low nematode reproduction. For the first time, QTL associated with CGR have been detected, and both FI and CGR should be considered for breeding purposes in the absence of strong resistance genes such as rhg1 and Rhg4.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| | - Chunyan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyao Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Philip A Roberts
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Qingshan Chen
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
24
|
Brice C, Zhang Z, Bendixsen D, Stelkens R. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. Am Nat 2021; 198:E53-E67. [PMID: 34403309 DOI: 10.1086/715356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractExtreme F2 phenotypes known as transgressive segregants can cause increased or decreased fitness in hybrids beyond the ranges seen in parental populations. Despite the usefulness of transgression for plant and animal breeding and its potential role in hybrid speciation, the genetic mechanisms and predictors of transgressive segregation remain largely untested. We generated seven hybrid crosses between five widely divergent Saccharomyces yeast species and measured the fitness of the parents and their viable F1 and F2 hybrids in seven stressful environments. We found that on average 16.6% of all replicate F2 hybrids had higher fitness than both parents. Against our predictions, transgression frequency was not a function of parental genetic and phenotypic distances across test environments. Within environments, some relationships were significant, but not in the predicted direction; for example, genetic distance was negatively related to transgression in ethanol and hydrogen peroxide. Significant effects of hybrid cross, test environment, and cross × environment interactions suggest that the amount of transgression produced in a hybrid cross is highly context specific and that outcomes of hybridization differ even among crosses made from the same two parents. If the goal is to reliably predict hybrid fitness and forecast the evolutionary potential of admixed populations, we need more efforts to identify patterns beyond the idiosyncrasies caused by specific genomic or environmental contexts.
Collapse
|
25
|
Goulet-Scott BE, Garner AG, Hopkins R. Genomic analyses overturn two long-standing homoploid hybrid speciation hypotheses. Evolution 2021; 75:1699-1710. [PMID: 34101168 DOI: 10.1111/evo.14279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023]
Abstract
The importance of hybridization in generating biological diversity has been historically controversial. Previously, inference about hybridization was limited by dependence on morphological data; with the advent of the next-generation sequencing tools for nonmodel organisms, the evolutionary significance of hybridization is more evident. Here, we test classic hypotheses of hybrid origins of two species in the Phlox pilosa complex. Morphological intermediacy motivated the hypotheses that Phlox amoena lighthipei and Phlox pilosa deamii were independent homoploid hybrid lineages derived from P. amoena amoena and P. pilosa pilosa. We use double-digest restriction site-associated DNA sequencing of individuals from throughout the range of these taxa to conduct the most thorough analysis of evolutionary history in this system to date. Surprisingly, we find no support for the hybrid origin of P. pilosa deamii or P. amoena lighthipei. Our data do identify a history of admixture in individuals collected at a contemporary hybrid zone between the putative parent lineages. We show that three very different evolutionary histories, only one of which involves hybrid origin, have produced intermediate or recombinant morphological traits between P. amoena amoena and P. pilosa pilosa. Although morphological data are still an efficient means of generating hypotheses about past gene flow, genomic data are now the standard of evidence for elucidating evolutionary history.
Collapse
Affiliation(s)
- Benjamin E Goulet-Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Austin G Garner
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138.,Arnold Arboretum of Harvard University, Boston, Massachusetts, 02131
| |
Collapse
|
26
|
|
27
|
Atsumi K, Lagisz M, Nakagawa S. Nonadditive genetic effects induce novel phenotypic distributions in male mating traits of F1 hybrids. Evolution 2021; 75:1304-1315. [PMID: 33818793 DOI: 10.1111/evo.14224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Hybridization is a source of phenotypic novelty and variation because of increased additive genetic variation. Yet, the roles of nonadditive allelic interactions in shaping phenotypic mean and variance of hybrids have been underappreciated. Here, we examine the distributions of male-mating traits in F1 hybrids via a meta-analysis of 3208 effect sizes from 39 animal species pairs. Although additivity sets phenotypic distributions of F1s to be intermediate, F1s also showed recessivity and resemblance to maternal species. F1s expressed novel phenotypes (beyond the range of both parents) in 65% of species pairs, often associated with increased phenotypic variability. Overall, however, F1s expressed smaller variation than parents in 51% of traits. Although genetic divergence between parents did not impact phenotypic novelty, it increased phenotypic variability of F1s. By creating novel phenotypes with increased variability, nonadditivity of heterozygotic genome may play key roles in determining mating success of F1s, and their subsequent extinction or speciation.
Collapse
Affiliation(s)
- Keisuke Atsumi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
Pabuayon ICM, Kitazumi A, Cushman KR, Singh RK, Gregorio GB, Dhatt B, Zabet-Moghaddam M, Walia H, de los Reyes BG. Novel and Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice Created by Physiological Coupling-Uncoupling and Network Rewiring Effects. FRONTIERS IN PLANT SCIENCE 2021; 12:615277. [PMID: 33708229 PMCID: PMC7940525 DOI: 10.3389/fpls.2021.615277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/03/2021] [Indexed: 06/01/2023]
Abstract
The phenomenon of transgressive segregation, where a small minority of recombinants are outliers relative to the range of parental phenotypes, is commonly observed in plant breeding populations. While this phenomenon has been attributed to complementation and epistatic effects, the physiological and developmental synergism involved have not been fully illuminated by the QTL mapping approach alone, especially for stress-adaptive traits involving highly complex interactions. By systems-level profiling of the IR29 × Pokkali recombinant inbred population of rice, we addressed the hypothesis that novel salinity tolerance phenotypes are created by reconfigured physiological networks due to positive or negative coupling-uncoupling of developmental and physiological attributes of each parent. Real-time growth and hyperspectral profiling distinguished the transgressive individuals in terms of stress penalty to growth. Non-parental network signatures that led to either optimal or non-optimal integration of developmental with stress-related mechanisms were evident at the macro-physiological, biochemical, metabolic, and transcriptomic levels. Large positive net gain in super-tolerant progeny was due to ideal complementation of beneficial traits while shedding antagonistic traits. Super-sensitivity was explained by the stacking of multiple antagonistic traits and loss of major beneficial traits. The synergism uncovered by the phenomics approach in this study supports the modern views of the Omnigenic Theory, emphasizing the synergy or lack thereof between core and peripheral components. This study also supports a breeding paradigm rooted on genomic modeling from multi-dimensional genetic, physiological, and phenotypic profiles to create novel adaptive traits for new crop varieties of the 21st century.
Collapse
Affiliation(s)
- Isaiah C. M. Pabuayon
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Kevin R. Cushman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | | | - Balpreet Dhatt
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | |
Collapse
|
29
|
Macagno ALM, Edgerton TJ, Moczek AP. Incipient hybrid inferiority between recently introduced, diverging dung beetle populations. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Understanding why and how certain clades emerge as speciation hotspots is a fundamental objective of evolutionary biology. Here we investigate divergences between exotic Onthophagus taurus, a dung beetle introduced into the USA and Australia in the 1970s, as a potential model for the widespread recent speciation events characterizing the genus Onthophagus. To do so, we hybridized O. taurus derived from Eastern US (EUS) and Western Australian (WA) populations, and assessed fitness-relevant trait expression in first- and second-generation hybrids. We found that dams invest more in offspring provisioning when paired with a sire from the same population, and that WA dams crossed with EUS sires produce smaller and lighter F1 hybrids, with an unexpectedly male-biased sex ratio. Furthermore, fewer F2 hybrids with vertically inherited WA cytoplasm and microbiome emerged compared with WA backcrosses with WA cytoplasm/microbiome, suggesting that combinations of nuclear genome, cytoplasm and/or microbiome may contribute to hybrid viability. Lastly, we document a dominance of WA genotypes over body size at the point of inflection between minor and major male morphs, a trait of significance in mate competition, which has diverged remarkably between these populations. We discuss our results in light of the evolutionary ecology of onthophagine beetles and the role of developmental evolution in clade diversification.
Collapse
Affiliation(s)
| | | | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
30
|
Messina FJ, Lish AM, Springer A, Gompert Z. Colonization of Marginal Host Plants by Seed Beetles (Coleoptera: Chrysomelidae): Effects of Geographic Source and Genetic Admixture. ENVIRONMENTAL ENTOMOLOGY 2020; 49:938-946. [PMID: 32484545 DOI: 10.1093/ee/nvaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The ability to adapt to a novel host plant may vary among insect populations with different genetic histories, and colonization of a marginal host may be facilitated by genetic admixture of disparate populations. We assembled populations of the seed beetle, Callosobruchus maculatus (F.), from four continents, and compared their ability to infest two hosts, lentil and pea. We also formed two cross-continent hybrids (Africa × N.A. and Africa × S.A.). In pre-selection assays, survival was only ~3% in lentil and ~40% in pea. For three replicate populations per line, colonization success on lentil was measured as cumulative exit holes after 75-175 d. On pea, we estimated the change in larval survival after five generations of selection. Females in all lines laid few eggs on lentil, and survival of F1 larvae was uniformly <5%. Subsequently, however, the lines diverged considerably in population growth. Performance on lentil was highest in the Africa × N.A. hybrid, which produced far more adults (mean > 11,000) than either parental line. At the other extreme, Asian populations on lentil appeared to have gone extinct. The Africa × N.A. line also exhibited the highest survival on pea, and again performed better than either parent line. However, no line displayed a rapid increase in survival on pea, as is sometimes observed on lentil. Our results demonstrate that geographic populations can vary substantially in their responses to the same novel resource. In addition, genetic admixtures (potentially caused by long-distance transport of infested seeds) may facilitate colonization of an initially poor host.
Collapse
Affiliation(s)
| | | | - Amy Springer
- Department of Biology, Utah State University, Logan, UT
| | | |
Collapse
|
31
|
Feller AF, Selz OM, McGee MD, Meier JI, Mwaiko S, Seehausen O. Rapid generation of ecologically relevant behavioral novelty in experimental cichlid hybrids. Ecol Evol 2020; 10:7445-7462. [PMID: 32760540 PMCID: PMC7391563 DOI: 10.1002/ece3.6471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 01/25/2023] Open
Abstract
The East African cichlid radiations are characterized by repeated and rapid diversification into many distinct species with different ecological specializations and by a history of hybridization events between nonsister species. Such hybridization might provide important fuel for adaptive radiation. Interspecific hybrids can have extreme trait values or novel trait combinations and such transgressive phenotypes may allow some hybrids to explore ecological niches neither of the parental species could tap into. Here, we investigate the potential of second-generation (F2) hybrids between two generalist cichlid species from Lake Malawi to exploit a resource neither parental species is specialized on: feeding by sifting sand. Some of the F2 hybrids phenotypically resembled fish of species that are specialized on sand sifting. We combined experimental behavioral and morphometric approaches to test whether the F2 hybrids are transgressive in both morphology and behavior related to sand sifting. We then performed a quantitative trait loci (QTL) analysis using RADseq markers to investigate the genetic architecture of morphological and behavioral traits. We show that transgression is present in several morphological traits, that novel trait combinations occur, and we observe transgressive trait values in sand sifting behavior in some of the F2 hybrids. Moreover, we find QTLs for morphology and for sand sifting behavior, suggesting the existence of some loci with moderate to large effects. We demonstrate that hybridization has the potential to rapidly generate novel and ecologically relevant phenotypes that may be suited to a niche neither of the parental species occupies. Interspecific hybridization may thereby contribute to the rapid generation of ecological diversity in cichlid radiations.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Oliver M. Selz
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Matthew D. McGee
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Joana I. Meier
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
- Department of ZoologyUniversity of CambridgeCambridgeUK
- St John’s CollegeUniversity of CambridgeCambridgeUK
| | - Salome Mwaiko
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| | - Ole Seehausen
- Division of Aquatic Ecology and EvolutionInstitute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Department of Fish Ecology and EvolutionCentre of Ecology, Evolution and BiogeochemistryEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
| |
Collapse
|
32
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|
33
|
Mérot C, Debat V, Le Poul Y, Merrill RM, Naisbit RE, Tholance A, Jiggins CD, Joron M. Hybridization and transgressive exploration of colour pattern and wing morphology in Heliconius butterflies. J Evol Biol 2020; 33:942-956. [PMID: 32255231 DOI: 10.1111/jeb.13626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022]
Abstract
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first- and second-generation hybrids produced by controlled crosses between either two co-mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major-effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.
Collapse
Affiliation(s)
- Claire Mérot
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,IBIS, Université Laval, Québec, QC, Canada
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Yann Le Poul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany
| | - Richard M Merrill
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität, München, Germany.,Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Russell E Naisbit
- Smithsonian Tropical Research Institute, Panama City, Panama.,Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Adélie Tholance
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Mathieu Joron
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,UMR 5175, CNRS-Centre d'Ecologie Fonctionnelle et Evolutive, Montpellier, France
| |
Collapse
|
34
|
Abstract
Introgressive hybridization can affect the evolution of populations in several important ways. It may retard or reverse divergence of species, enable the development of novel traits, enhance the potential for future evolution by elevating levels of standing variation, create new species, and alleviate inbreeding depression in small populations. Most of what is known of contemporary hybridization in nature comes from the study of pairs of species, either coexisting in the same habitat or distributed parapatrically and separated by a hybrid zone. More rarely, three species form an interbreeding complex (triad), reported in vertebrates, insects, and plants. Often, one species acts as a genetic link or conduit for the passage of genes (alleles) between two others that rarely, if ever, hybridize. Demographic and genetic consequences are unknown. Here we report results of a long-term study of interbreeding Darwin's finches on Daphne Major island, Galápagos. Geospiza fortis acted as a conduit for the passage of genes between two others that have never been observed to interbreed on Daphne: Geospiza fuliginosa, a rare immigrant, and Geospiza scandens, a resident. Microsatellite gene flow from G. fortis into G. scandens increased in frequency during 30 y of favorable ecological conditions, resulting in genetic and morphological convergence. G. fortis, G. scandens, and the derived dihybrids and trihybrids experienced approximately equal fitness. Especially relevant to young adaptive radiations, where species differ principally in ecology and behavior, these findings illustrate how new combinations of genes created by hybridization among three species can enhance the potential for evolutionary change.
Collapse
|
35
|
Smith AL, Hodkinson TR, Villellas J, Catford JA, Csergő AM, Blomberg SP, Crone EE, Ehrlén J, Garcia MB, Laine AL, Roach DA, Salguero-Gómez R, Wardle GM, Childs DZ, Elderd BD, Finn A, Munné-Bosch S, Baudraz MEA, Bódis J, Brearley FQ, Bucharova A, Caruso CM, Duncan RP, Dwyer JM, Gooden B, Groenteman R, Hamre LN, Helm A, Kelly R, Laanisto L, Lonati M, Moore JL, Morales M, Olsen SL, Pärtel M, Petry WK, Ramula S, Rasmussen PU, Enri SR, Roeder A, Roscher C, Saastamoinen M, Tack AJM, Töpper JP, Vose GE, Wandrag EM, Wingler A, Buckley YM. Global gene flow releases invasive plants from environmental constraints on genetic diversity. Proc Natl Acad Sci U S A 2020; 117:4218-4227. [PMID: 32034102 PMCID: PMC7049112 DOI: 10.1073/pnas.1915848117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.
Collapse
Affiliation(s)
- Annabel L Smith
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland;
- School of Agriculture and Food Science, University of Queensland, Gatton, 4343, Australia
| | - Trevor R Hodkinson
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Jesus Villellas
- Departamento Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (MNCN-CSIC), E-28006 Madrid, Spain
| | - Jane A Catford
- Department of Geography, King's College London, WC2B 4BG London, United Kingdom
| | - Anna Mária Csergő
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department of Botany, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
- Soroksár Botanical Garden, Faculty of Horticultural Science, Szent István University, 1118 Budapest, Hungary
| | - Simone P Blomberg
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Maria B Garcia
- Pyrenean Institute of Ecology, CSIC, 50059 Zaragoza, Spain
| | - Anna-Liisa Laine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Deborah A Roach
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | | | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom
| | - Bret D Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Alain Finn
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat, University of Barcelona, 08028 Barcelona, Spain
| | - Maude E A Baudraz
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Judit Bódis
- Georgikon Faculty, University of Pannonia, H-8360 Keszthely, Hungary
| | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, M1 5GD Manchester, United Kingdom
| | - Anna Bucharova
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 72074 Tübingen, Germany
- Ecosystem and Biodiversity Research Group, Institute of Landscape Ecology, University of Münster, 48149 Münster, Germany
| | - Christina M Caruso
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
| | - John M Dwyer
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
- CSIRO Land & Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia
| | - Ben Gooden
- CSIRO Health & Biosecurity, CSIRO, Black Mountain, ACT 2601, Australia
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Liv Norunn Hamre
- Department of Environmental Sciences, Western Norway University of Applied Sciences, N-6856 Sogndal, Norway
| | - Aveliina Helm
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - Ruth Kelly
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Lauri Laanisto
- Biodiversity and Nature Tourism, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Michele Lonati
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Melanie Morales
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, 08028 Barcelona, Spain
- Research Group of Plant Biology under Mediterranean Conditions, Faculty of Biology, University of Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Siri Lie Olsen
- Norwegian Institute for Nature Research, N-0349 Oslo, Norway
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia
| | - William K Petry
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Satu Ramula
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Pil U Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
- The National Research Centre for the Working Environment, 2100 København Ø, Denmark
| | - Simone Ravetto Enri
- Department of Agricultural, Forest and Food Science, University of Torino, 10015 Grugliasco, Italy
| | - Anna Roeder
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig (iDiv), 04318 Leipzig, Germany
| | - Marjo Saastamoinen
- Helsinki Institute of Life Science, University of Helsinki, 00100 Helsinki, Finland
- Organismal and Evolutionary Research Programme, University of Helsinki, 00014 Helsinki, Finland
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | - Gregory E Vose
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697
| | - Elizabeth M Wandrag
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Cork T23 N73K, Ireland
| | - Yvonne M Buckley
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
36
|
Shahzad K, Zhang X, Guo L, Qi T, Tang H, Zhang M, Zhang B, Wang H, Qiao X, Feng J, Wu J, Xing C. Comparative transcriptome analysis of inbred lines and contrasting hybrids reveals overdominance mediate early biomass vigor in hybrid cotton. BMC Genomics 2020; 21:140. [PMID: 32041531 PMCID: PMC7011360 DOI: 10.1186/s12864-020-6561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Heterosis breeding is the most useful method for yield increase around the globe. Heterosis is an intriguing process to develop superior offspring to either parent in the desired character. The biomass vigor produced during seedling emergence stage has a direct influence on yield heterosis in plants. Unfortunately, the genetic basis of early biomass vigor in cotton is poorly understood. Results Three stable performing F1 hybrids varying in yield heterosis named as high, medium and low hybrids with their inbred parents were used in this study. Phenotypically, these hybrids established noticeable biomass heterosis during the early stage of seedling growth in the field. Transcriptome analysis of root and leaf revealed that hybrids showed many differentially expressed genes (DEGs) relative to their parents, while the comparison of inbred parents showed limited number of DEGs indicating similarity in their genetic constitution. Further analysis indicated expression patterns of most DEGs were overdominant in both tissues of hybrids. According to GO results, functions of overdominance genes in leaf were enriched for chloroplast, membrane, and protein binding, whereas functions of overdominance genes in root were enriched for plasma membrane, extracellular region, and responses to stress. We found several genes of circadian rhythm pathway related to LATE ELONGATED HYPOCOTYL (LHY) showed downregulated overdominant expressions in both tissues of hybrids. In addition to circadian rhythm, several leaf genes related to Aux/IAA regulation, and many root genes involved in peroxidase activity also showed overdominant expressions in hybrids. Twelve genes involved in circadian rhythm plant were selected to perform qRT-PCR analysis to confirm the accuracy of RNA-seq results. Conclusions Through genome-wide comparative transcriptome analysis, we strongly predict that overdominance at gene expression level plays a pivotal role in early biomass vigor of hybrids. The combinational contribution of circadian rhythm and other metabolic process may control vigorous growth in hybrids. Our result provides an important foundation for dissecting molecular mechanisms of biomass vigor in hybrid cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China.
| |
Collapse
|
37
|
Najeeb S, Ali J, Mahender A, Pang Y, Zilhas J, Murugaiyan V, Vemireddy LR, Li Z. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice ( Oryza sativa L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2020; 40:10. [PMID: 31975784 PMCID: PMC6944268 DOI: 10.1007/s11032-019-1090-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/12/2019] [Indexed: 05/09/2023]
Abstract
An attempt was made in the current study to identify the main-effect and co-localized quantitative trait loci (QTLs) for germination and early seedling growth traits under low-temperature stress (LTS) conditions in rice. The plant material used in this study was an early backcross population of 230 introgression lines (ILs) in BCIF7 generation derived from the Weed Tolerant Rice-1 (WTR-1) (as the recipient) and Haoannong (HNG) (as the donor). Genetic analyses of LTS tolerance revealed a total of 27 main-effect quantitative trait loci (M-QTLs) mapped on 12 chromosomes. These QTLs explained more than 10% of phenotypic variance (PV), and average PV of 12.71% while employing 704 high-quality SNP markers. Of these 27 QTLs distributed on 12 chromosomes, 11 were associated with low-temperature germination (LTG), nine with low-temperature germination stress index (LTGS), five with root length stress index (RLSI), and two with biomass stress index (BMSI) QTLs, shoot length stress index (SLSI) and root length stress index (RLSI), seven with seed vigor index (SVI), and single QTL with root length (RL). Among them, five significant major QTLs (qLTG(I) 1 , qLTGS(I) 1-2 , qLTG(I) 5 , qLTGS(I) 5 , and qLTG(I) 7 ) mapped on chromosomes 1, 5, and 7 were associated with LTG and LTGS traits and the PV explained ranged from 16 to 23.3%. The genomic regions of these QTLs were co-localized with two to six QTLs. Most of the QTLs were growth stage-specific and found to harbor QTLs governing multiple traits. Eight chromosomes had more than four QTLs and were clustered together and designated as promising LTS tolerance QTLs (qLTTs), as qLTT 1 , qLTT 2 , qLTT 3 , qLTT 5 , qLTT 6 , qLTT 8 , qLTT 9 , and qLTT 11 . A total of 16 putative candidate genes were identified in the major M-QTLs and co-localized QTL regions distributed on different chromosomes. Overall, these significant genomic regions of M-QTLs are responsible for multiple traits and this suggested that these could serve as the best predictors of LTS tolerance at germination and early seedling growth stages. Furthermore, it is necessary to fine-map these regions and to find functional markers for marker-assisted selection in rice breeding programs for cold tolerance.
Collapse
Affiliation(s)
- S. Najeeb
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Science & Technology (SKAUST), Khudwani, Kashmir 190025 India
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - Y.L. Pang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018 People’s Republic of China
| | - J. Zilhas
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
| | - V. Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), 4031 Los Baños, Laguna Philippines
- Plant Nutrition, Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, 53012 Bonn, Germany
| | - Lakshminarayana R. Vemireddy
- Department of Genetics and Plant Breeding, Sri Venkateswara Agricultural College, Acharya NG Ranga Agricultural University, Tirupati, Andhra Pradesh 517502 India
| | - Z. Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 People’s Republic of China
| |
Collapse
|
38
|
Luján ÀH, Ferrandiz-Rovira M, Torres C, Bertolero A. Intraspecific variation in digit reduction in Testudo: the case of the Hermann’s tortoise. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Levin DA. Plant speciation in the age of climate change. ANNALS OF BOTANY 2019; 124:769-775. [PMID: 31250895 PMCID: PMC6868396 DOI: 10.1093/aob/mcz108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Species diversity is likely to undergo a sharp decline in the next century. Perhaps as many as 33 % of all plant species may expire as a result of climate change. All parts of the globe will be impacted, and all groups of organisms will be affected. Hundreds of species throughout the world have already experienced local extinction. PERSPECTIVES While thousands of species may become extinct in the next century and beyond, species formation will still occur. I consider which modes of plant species formation are likely to prevail in the next 500 years. I argue that speciation primarily will involve mechanisms that produce reproductively isolated lineages within less (often much less) than 100 generations. I will not especially consider the human element in promoting species formation, because it will continue and because the conclusions presented here are unaffected by it. The impact of climate change may be much more severe and widespread. CONCLUSIONS The most common modes of speciation likely to be operative in the next 500 years ostensibly will be auto- and allopolyploidy. Polyploid species or the antecedents thereof can arise within two generations. Moreover, polyploids often have broader ecological tolerances, and are likely to be more invasive than are their diploid relatives. Polyploid species may themselves spawn additional higher level polyploids either through crosses with diploid species or between pre-existing polyploids. The percentage of polyploid species is likely to exceed 50 % within the next 500 years vs. 35 % today. The stabilized hybrid derivatives (homoploid hybrid speciation) could emerge within a hundred generations after species contact, as could speciation involving chromosomal rearrangements (and perhaps number), but the number of such events is likely to be low. Speciation involving lineage splitting will be infrequent because the formation of substantive pre- and post-zygotic barriers typically takes many thousands of years.
Collapse
Affiliation(s)
- Donald A Levin
- Department of Integrative Biology, University of Texas, Austin, USA
| |
Collapse
|
40
|
de Los Reyes BG. Genomic and epigenomic bases of transgressive segregation - New breeding paradigm for novel plant phenotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110213. [PMID: 31521221 DOI: 10.1016/j.plantsci.2019.110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
For a holistic approach in developing the stress-resilient crops of the 21st century, modern genomic biology will need to re-envision the underappreciated phenomena in classical genetics, and incorporate them into the new plant breeding paradigm. Advances in evolutionary genomics support a theory that genetic recombination under genome shock during hybridization of widely divergent parents is an important driver of adaptive speciation, by virtue of the novelties of rare hybrids and recombinants. The enormous potential of genetic network rewiring to generate developmental or physiological novelties with adaptive advantage to special ecological niches has been appreciated. Developmental and physiological reconfiguration through network rewiring involves intricate molecular synergies controlled both at the genetic and epigenetic levels, as typified by the phenomenon of transgressive segregation, observed in both natural and breeding populations. This paper presents modern views on the possible molecular underpinnings of transgressive phenotypes as they are created in plant breeding, expanded from classical explanations through the Omnigenic Theory for quantitative traits and modern paradigms of epigenetics. Perspectives on how genomic biology can fully exploit this phenomenon to create novel phenotypes beyond what could be achieved through the more reductionist approach of functional genomics are presented in context of genomic modeling.
Collapse
Affiliation(s)
- Benildo G de Los Reyes
- Department of Plant and Soil Science Texas Tech University 215 Experimental Sciences Building, Lubbock, TX 806-834-6421, USA.
| |
Collapse
|
41
|
Lachmuth S, Molofsky J, Milbrath L, Suda J, Keller SR. Associations between genomic ancestry, genome size and capitula morphology in the invasive meadow knapweed hybrid complex ( Centaurea × moncktonii) in eastern North America. AOB PLANTS 2019; 11:plz055. [PMID: 31632628 PMCID: PMC6790064 DOI: 10.1093/aobpla/plz055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Plant invasions are prime opportunities for studying hybridization and the nature of species boundaries, but hybrids also complicate the taxonomic treatment and management of introduced taxa. In this study, we use population genomics to estimate the extent of genomic admixture and test for its association with morphology and genome size in a hybrid complex of knapweeds invasive to North America: meadow knapweed (Centaurea × moncktonii) and its parental species (C. jacea and C. nigra). We sampled 20 populations from New York and Vermont, USA, and used genotyping by sequencing to identify single nucleotide polymorphisms in order to estimate genome-wide ancestry and classify individuals into hybrid genotype classes. We then tested for association between degree of genomic introgression and variation in a subset of traits diagnostic for the parental taxa, namely capitula morphology and monoploid genome size. Genomic clustering revealed two clearly defined lineages, as well as many admixed individuals forming a continuous gradation of introgression. Individual assignments to hybrid genotype classes revealed many advanced generation intercrosses and backcrosses, suggesting introgression has been extensive and unimpeded by strong reproductive barriers between taxa. Variation in capitula traits between the two unadmixed, presumed parental, lineages exhibited continuous, and in some cases transgressive, segregation among introgressed hybrids. Genome size was also divergent between lineages, although advanced generation hybrids had smaller genomes relative to additive expectations. Our study demonstrates deep introgression between the porous genomes of a hybrid invasive species complex. In addition to strong associations among genomic ancestry, genome size and morphology, hybrids expressed more extreme phenotypic values for capitula traits and genome size, indicating transgressive segregation, as well as a bias towards smaller genomes, possibly due to genomic downsizing. Future studies will apply these results to experimentally test how introgression, transgressive segregation and genome size reduction interact to confer invasiveness.
Collapse
Affiliation(s)
- Susanne Lachmuth
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
- Martin Luther University Halle Wittenberg, Institute of Biology, Geobotany & Botanical Garden, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Jane Molofsky
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
| | - Lindsey Milbrath
- United Sates Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, USA
| | - Jan Suda
- Charles University Prague, Department of Botany, Prague, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Průhonice, Czech Republic
| | - Stephen R Keller
- University of Vermont, Department of Plant Biology, Burlington, VT, USA
| |
Collapse
|
42
|
Bresadola L, Caseys C, Castiglione S, Buerkle CA, Wegmann D, Lexer C. Admixture mapping in interspecific Populus hybrids identifies classes of genomic architectures for phytochemical, morphological and growth traits. THE NEW PHYTOLOGIST 2019; 223:2076-2089. [PMID: 31104343 PMCID: PMC6771622 DOI: 10.1111/nph.15930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/06/2019] [Indexed: 05/03/2023]
Abstract
The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.
Collapse
Affiliation(s)
- Luisa Bresadola
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
| | - Céline Caseys
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Department of Plant SciencesUniversity of California DavisOne Shields AvenueDavisCA95616USA
| | - Stefano Castiglione
- Department of Chemistry and Biology ‘A. Zambelli’University of SalernoVia Giovanni Paolo II 13284084Fisciano, SalernoItaly
| | - C. Alex Buerkle
- Department of BotanyUniversity of Wyoming1000 E. University Ave.LaramieWY82071USA
| | - Daniel Wegmann
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Swiss Institute of Bioinformatics1700FribourgSwitzerland
| | - Christian Lexer
- Department of BiologyUniversity of FribourgChemin du Musée 101700FribourgSwitzerland
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaRennweg 12A‐1030ViennaAustria
| |
Collapse
|
43
|
Torres Cleuren YN, Ewe CK, Chipman KC, Mears ER, Wood CG, Al-Alami CEA, Alcorn MR, Turner TL, Joshi PM, Snell RG, Rothman JH. Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. eLife 2019; 8:48220. [PMID: 31414984 PMCID: PMC6754231 DOI: 10.7554/elife.48220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Innovations in metazoan development arise from evolutionary modification of gene regulatory networks (GRNs). We report widespread cryptic variation in the requirement for two key regulatory inputs, SKN-1/Nrf2 and MOM-2/Wnt, into the C. elegans endoderm GRN. While some natural isolates show a nearly absolute requirement for these two regulators, in others, most embryos differentiate endoderm in their absence. GWAS and analysis of recombinant inbred lines reveal multiple genetic regions underlying this broad phenotypic variation. We observe a reciprocal trend, in which genomic variants, or knockdown of endoderm regulatory genes, that result in a high SKN-1 requirement often show low MOM-2/Wnt requirement and vice-versa, suggesting that cryptic variation in the endoderm GRN may be tuned by opposing requirements for these two key regulatory inputs. These findings reveal that while the downstream components in the endoderm GRN are common across metazoan phylogeny, initiating regulatory inputs are remarkably plastic even within a single species.
Collapse
Affiliation(s)
- Yamila N Torres Cleuren
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chee Kiang Ewe
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Kyle C Chipman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Emily R Mears
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Cricket G Wood
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | | | - Melissa R Alcorn
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Thomas L Turner
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Pradeep M Joshi
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joel H Rothman
- Department of MCD Biology, University of California, Santa Barbara, Santa Barbara, United States.,School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
44
|
Baltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. BREEDING SCIENCE 2019; 69:227-233. [PMID: 31481831 PMCID: PMC6711729 DOI: 10.1270/jsbbs.18159] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/17/2018] [Indexed: 05/06/2023]
Abstract
Direct seeding of rice often results in poor crop establishment due to unlevelled fields, unpredicted heavy rains after sowing, and weed and pest invasion. Thus, it is important to develop varieties able to tolerate flooding during germination, also known as anaerobic germination (AG), to address these constraints. A study was conducted to identify QTLs associated with AG tolerance from an IR64/Kharsu 80A F2:3 mapping population using 190 lines phenotyped for seedling survival under the stress. Genotyping was performed using a genomewide 384-plex Indica/Indica SNP set. Four QTLs derived from Kharsu 80A providing increased tolerance to anaerobic germination were identified: three on chromosome 7 (qAG7.1, qAG7.2 and qAG7.3) and one on chromosome 3 (qAG3), with LOD values ranging from 5.7 to 7.7, and phenotypic variance explained (R2) from 8.1% to 12.6%. The QTLs identified in this study can be further investigated to better understand the genetic bases of AG tolerance in rice, and used for marker-assisted selection to develop more robust direct-seeded rice varieties.
Collapse
Affiliation(s)
- Miriam D. Baltazar
- International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
- University of the Philippines,
Los Banos, Laguna 4031,
Philippines
- Department of Biological Sciences, Cavite State University,
4122 Indang, Cavite,
Philippines
| | | | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University,
College Station, TX 77483,
USA
| | - Abdelbagi M. Ismail
- International Rice Research Institute,
DAPO Box 7777, Metro Manila,
Philippines
| | | | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University,
College Station, TX 77483,
USA
| |
Collapse
|
45
|
Benowitz KM, Coleman JM, Matzkin LM. Assessing the Architecture of Drosophila mojavensis Locomotor Evolution with Bulk Segregant Analysis. G3 (BETHESDA, MD.) 2019; 9:1767-1775. [PMID: 30926724 PMCID: PMC6505136 DOI: 10.1534/g3.119.400036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
Abstract
Behavior is frequently predicted to be especially important for evolution in novel environments. If these predictions are accurate, there might be particular patterns of genetic architecture associated with recently diverged behaviors. Specifically, it has been predicted that behaviors linked to population divergence should be underpinned by a few genes of relatively large effect, compared to architectures of intrapopulation behavioral variation, which is considered to be highly polygenic. More mapping studies of behavioral variation between recently diverged populations are needed to continue assessing the generality of these predictions. Here, we used a bulk segregant mapping approach to dissect the genetic architecture of a locomotor trait that has evolved between two populations of the cactophilic fly Drosophila mojavensis We created an F8 mapping population of 1,500 individuals from advanced intercross lines and sequenced the 10% of individuals with the highest and lowest levels of locomotor activity. Using three alternative statistical approaches, we found strong evidence for two relatively large-effect QTL that is localized in a region homologous to a region of densely packed behavior loci in Drosophila melanogaster, suggesting that clustering of behavior genes may display relatively deep evolutionary conservation. Broadly, our data are most consistent with a polygenic architecture, though with several loci explaining a high proportion of variation in comparison to similar behavioral traits. We further note the presence of several antagonistic QTL linked to locomotion and discuss these results in light of theories regarding behavioral evolution and the effect size and direction of QTL for diverging traits in general.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721
| | - Joshua M Coleman
- Department of Entomology, University of Arizona, Tucson, AZ 85721
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville AL 35899
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
46
|
Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice. G3-GENES GENOMES GENETICS 2019; 9:1655-1662. [PMID: 30894452 PMCID: PMC6505171 DOI: 10.1534/g3.119.201011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transgressive segregation produces hybrid progeny phenotypes that exceed the parental phenotypes. Unlike heterosis, extreme phenotypes caused by transgressive segregation are heritably stable. We examined transgressive phenotypes of flowering time in rice, and revealed transgressive segregation in F2 populations derived from a cross between parents with similar (proximal) days to heading (DTH). The DTH phenotypes of the A58 × Kitaake F2 progenies were frequently more extreme than those of either parent. These transgressive phenotypes were maintained in the F3 and F4 populations. Both A58 and Kitaake are japonica rice cultivars adapted to Hokkaido, Japan, which is a high-latitude region, and have a short DTH. Among the four known loci required for a short DTH, three loci had common alleles in A58 and Kitaake, implying there is a similar genetic basis for DTH between the two varieties. A genome-wide single nucleotide polymorphism (SNP) analysis based on the F4 population identified five new quantitative trait loci (QTL) associated with transgressive DTH phenotypes. Each of these QTL had different degrees of additive effects on DTH, and two QTL had an epistatic effect on each other. Thus, a genome-wide SNP analysis facilitated the detection of genetic loci associated with extreme DTH phenotypes, and revealed that the transgressive phenotypes were produced by exchanging the complementary alleles of a few minor QTL in the similar parental phenotypes.
Collapse
|
47
|
Dagilis AJ, Kirkpatrick M, Bolnick DI. The evolution of hybrid fitness during speciation. PLoS Genet 2019; 15:e1008125. [PMID: 31059513 PMCID: PMC6502311 DOI: 10.1371/journal.pgen.1008125] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 12/27/2022] Open
Abstract
The evolution of postzygotic reproductive isolation is an important component of speciation. But before isolation is complete there is sometimes a phase of heterosis in which hybrid fitness exceeds that of the two parental species. The genetics and evolution of heterosis and postzygotic isolation have typically been studied in isolation, precluding the development of a unified theory of speciation. Here, we develop a model that incorporates both positive and negative gene interactions, and accounts for the evolution of both heterosis and postzygotic isolation. We parameterize the model with recent data on the fitness effects of 10,000 mutations in yeast, singly and in pairwise epistatic combinations. The model makes novel predictions about the types of interactions that contribute to declining hybrid fitness. We reproduce patterns familiar from earlier models of speciation (e.g. Haldane's Rule and Darwin's Corollary) and identify new mechanisms that may underlie these patterns. Our approach provides a general framework for integrating experimental data from gene interaction networks into speciation theory and makes new predictions about the genetic mechanisms of speciation.
Collapse
Affiliation(s)
- Andrius J. Dagilis
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Mark Kirkpatrick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel I. Bolnick
- Integrative Biology Department, University of Texas at Austin, Austin, Texas, United States of America
- Department of Ecology and Evolutionary Biology, University of Connecticut, Mansfield, Connecticut, United States of America
| |
Collapse
|
48
|
Ng WL, Wu W, Zou P, Zhou R. Comparative transcriptomics sheds light on differential adaptation and species diversification between two Melastoma species and their F 1 hybrid. AOB PLANTS 2019; 11:plz019. [PMID: 31037213 PMCID: PMC6481908 DOI: 10.1093/aobpla/plz019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Variation in gene expression has been shown to promote adaptive divergence, and can lead to speciation. The plant genus Melastoma, thought to have diversified through adaptive radiation, provides an excellent model for the study of gene expressional changes during adaptive differentiation and following interspecific hybridization. In this study, we performed RNA-seq on M. candidum, M. sanguineum and their F1 hybrid, to investigate the role of gene expression in species diversification within the genus. Reference transcriptomes were assembled using combined data from both parental species, resulting in 50 519 and 48 120 transcripts for the leaf and flower petal, after removing redundancy. Differential expression analysis uncovered 3793 and 2116 differentially expressed (DE) transcripts, most of which are between M. candidum and M. sanguineum. Differential expression was observed for genes related to light responses, as well as genes that regulate the development of leaf trichomes, a trait that among others is thought to protect plants against sunlight, suggesting the differential adaptation of the species to sunlight intensity. The analysis of positively selected genes between the two species also revealed possible differential adaptation to other abiotic stresses such as drought and temperature. In the hybrid, almost all possible modes of expression were observed at the DE transcripts, although at most transcripts, the expression levels were similar to that of either parent instead of being intermediate. A small number of transgressively expressed transcripts that matched genes known to promote plant growth and adaptation to stresses in new environments were also found, possibly explaining the vigour observed in the hybrid. The findings in this study provided insights into the role of gene expression in the diversification of Melastoma, which we believe is an important example for more cross-taxa comparisons in the future.
Collapse
Affiliation(s)
- Wei Lun Ng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
49
|
Moran PA, Hunt J, Mitchell C, Ritchie MG, Bailey NW. Behavioural mechanisms of sexual isolation involving multiple modalities and their inheritance. J Evol Biol 2018; 32:243-258. [DOI: 10.1111/jeb.13408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Peter A. Moran
- School of Biological, Earth and Environmental Sciences University College Cork Cork Ireland
| | - John Hunt
- School of Science and Health Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Christopher Mitchell
- School of Science and Health Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Michael G. Ritchie
- Centre for Biological Diversity School of Biology University of St Andrews Fife UK
| | - Nathan W. Bailey
- Centre for Biological Diversity School of Biology University of St Andrews Fife UK
| |
Collapse
|
50
|
Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in Saccharomyces cerevisiae. Genetics 2018; 211:773-786. [PMID: 30498022 DOI: 10.1534/genetics.118.301546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genome variation and its effects on phenotypes have been widely analyzed in higher eukaryotes but less so in the model eukaryote Saccharomyces cerevisiae Here, we describe mitochondrial genome variation in 96 diverse S. cerevisiae strains and assess associations between mitochondrial genotype and phenotypes as well as nuclear-mitochondrial epistasis. We associate sensitivity to the ATP synthase inhibitor oligomycin with SNPs in the mitochondrially encoded ATP6 gene. We describe the use of iso-nuclear F1 pairs, the mitochondrial genome equivalent of reciprocal hemizygosity analysis, to identify and analyze mitochondrial genotype-dependent phenotypes. Using iso-nuclear F1 pairs, we analyze the oligomycin phenotype-ATP6 association and find extensive nuclear-mitochondrial epistasis. Similarly, in iso-nuclear F1 pairs, we identify many additional mitochondrial genotype-dependent respiration phenotypes, for which there was no association in the 96 strains, and again find extensive nuclear-mitochondrial epistasis that likely contributes to the lack of association in the 96 strains. Finally, in iso-nuclear F1 pairs, we identify novel mitochondrial genotype-dependent nonrespiration phenotypes: resistance to cycloheximide, ketoconazole, and copper. We discuss potential mechanisms and the implications of mitochondrial genotype and of nuclear-mitochondrial epistasis effects on respiratory and nonrespiratory quantitative traits.
Collapse
|