1
|
De Ruyck CC, Koper N. Ecological Drivers of Molt-Breeding Overlap, an Unusual Life-History Strategy of Small-Island Birds? Ecol Evol 2025; 15:e70607. [PMID: 39830705 PMCID: PMC11738649 DOI: 10.1002/ece3.70607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Terrestrial bird populations on small, species depauperate islands often experience selection for generalist foraging traits via ecological release; however, it is unclear how island conditions may uniquely influence other life-history characteristics of small-island birds, such as the unusually high rates of molt-breeding overlap exhibited on the island of Grenada. To explore this question, we collected data on the life cycles and diets of 10 commonly occurring Grenadian bird species to assess the degree of generalist foraging and evaluate how seasonal patterns in diet niche breadth and diet overlap among species relates to the high rates of molt-breeding overlap. We evaluated three hypotheses explaining drivers of molt-breeding overlap (constraints on molt rate, unpredictable food abundance, and limited duration of food abundance), and suggest that widespread overlap in small-island tropical communities may be the result of generalist foraging adaptations and restricted time periods of sufficient invertebrate availability for successful breeding and molt to occur. We found that these species typically exhibited low breeding period seasonality followed by synchronized peaks in molt intensity and molt-breeding overlap during peak rainfall and high invertebrate abundance. There was also greater diet overlap and wider niche widths of invertebrate resources in the wet season when molt-breeding overlap occurred, and greater niche partitioning of invertebrate items among species in the dry season suggesting that competitive interactions for invertebrates were stronger in the dry season. Birds also shared more plant food sources in the dry season when invertebrate abundance is low, though seasonal differences in plant diet diversity and niche width varied by species. These results provide evidence that scarce invertebrate resources and competition likely limit productivity and molt/self-maintenance in these island-adapted, species-depauperate communities, and drive high rates of molt-breeding overlap, a relatively uncommon life-history strategy.
Collapse
Affiliation(s)
| | - Nicola Koper
- Natural Resources InstituteUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
2
|
Henriksen RA, Woods R, Barnes I, Kennerley RJ, Borroto-Páez R, Brace S, Turvey ST. Genomics of historical museum collections clarifies species diversity in Cuban hutias ( Capromys). J Mammal 2024; 105:1365-1377. [DOI: 10.1093/jmammal/gyae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Abstract
Specimen-based taxonomic research is essential for understanding diversity and setting management frameworks for threatened mammal faunas, and ancient DNA techniques are increasingly used to extract information from taxonomically relevant historical specimens. The largest survivors of the depleted Caribbean mammal fauna are hutias in the genus Capromys, which is usually interpreted as containing a single species, C. pilorides. Previous studies have demonstrated genetic differentiation of Capromys populations across Cuba, but infrageneric species diversity and nomenclature remain unclear. We conducted ancient DNA analysis of historical Capromys samples using cytochrome b and complete mitogenome data sets, and including the 19th-century holotypes of 2 species now considered synonyms, C. fournieri and C. geayi. Our analyses identify distinct western and central/eastern Capromys clades that diverged 1.75 Mya based upon mitogenome data. These clades are separated by the Havana–Matanzas Channel, which represented a barrier to dispersal throughout the Neogene–Quaternary. Divergence date comparisons with other hutia species provide support for interpreting divergence between Capromys populations as species-level differentiation. Although we were unable to yield amplifiable DNA from the C. fournieri holotype, our analyses confidently assign the C. geayi holotype to the western Capromys clade. We therefore recognize 2 extant Capromys species: C. geayi (western Cuba) and C. pilorides (central/eastern Cuba and Cayman Islands).
Collapse
Affiliation(s)
- Rasmus Amund Henriksen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute, University of Copenhagen , 1350 Copenhagen K ,
| | - Roseina Woods
- Department of Earth Sciences, The Natural History Museum , London SW7 5BD ,
- Department of Biological Sciences, Royal Holloway University of London , Egham TW20 0EX ,
| | - Ian Barnes
- Department of Earth Sciences, The Natural History Museum , London SW7 5BD ,
| | - Rosalind J Kennerley
- Durrell Wildlife Conservation Trust , Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel Islands
- IUCN Species Survival Commission Small Mammal Specialist Group , 1196 Gland,
| | - Rafael Borroto-Páez
- Instituto de Geografía Tropical , Calle F No. 302 entre 13 y 15, Vedado, La Habana 10400 ,
| | - Selina Brace
- Department of Earth Sciences, The Natural History Museum , London SW7 5BD ,
| | - Samuel T Turvey
- IUCN Species Survival Commission Small Mammal Specialist Group , 1196 Gland,
- Institute of Zoology, Zoological Society of London , Regent’s Park, London NW1 4RY ,
| |
Collapse
|
3
|
Dalsgaard B, Temeles EJ. Hurricanes threaten species and alter evolutionary trajectories on tropical islands. Curr Biol 2024; 34:R1115-R1120. [PMID: 39561699 DOI: 10.1016/j.cub.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Hurricanes are natural phenomena, but anthropogenic climate change will cause hurricanes to be stronger and more frequent in the future. It has long been known that hurricanes impact plants and animals, but only recently has the impact on biodiversity been mapped globally, showing that species at risk of extinction due to hurricanes are largely restricted to tropical islands. Tropical islands harbor many plants and animals found nowhere else, many of which are currently threatened, and tropical islands have already suffered a disproportionate number of species extinctions due to human activity and introductions of non-native species. The big question is whether species on tropical islands are adapted to hurricane disturbance and will be able to cope with stronger and more frequent storms, or whether tropical islands will see a wave of hurricane-induced extinctions in the future. Here, we discuss this question and how hurricanes will reshuffle interactions between species - such as those between nectarivorous birds and their flowers - and will alter evolutionary trajectories for coadapted species. Moreover, we discuss the role of life history and other taxa-specific traits, such as diet preferences and dispersal ability, both to survive the direct and indirect impact of hurricanes and to recolonize islands when local populations have been eliminated. We also highlight how topographic complexity and island area may buffer against hurricanes; thus, biodiversity on small and low-lying islands should be more impacted than biodiversity on large and mountainous islands. We end by discussing conservation efforts to diminish the detrimental ecological and evolutionary effects of stronger and more frequent hurricanes on tropical islands.
Collapse
Affiliation(s)
- Bo Dalsgaard
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
4
|
Kemp ME. Assembly, Persistence, and Disassembly Dynamics of Quaternary Caribbean Frugivore Communities. Am Nat 2024; 204:400-415. [PMID: 39326059 DOI: 10.1086/731994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractHow communities assemble and restructure is of critical importance to ecological theory, evolutionary theory, and conservation, but long-term perspectives on the patterns and processes of community assembly are rarely integrated into traditional community ecology, and the utility of communities as an ecological concept has been repeatedly questioned in part because of a lack of temporal perspective. Through a synthesis of paleontological and neontological data, I reconstruct Caribbean frugivore communities over the Quaternary (2.58 million years ago to present). Numerous Caribbean frugivore lineages arise during periods coincident with the global origins of plant-frugivore mutualisms. The persistence of many of these lineages into the Quaternary is indicative of long-term community stability, but an analysis of Quaternary extinctions reveals a nonrandom loss of large-bodied mammalian and reptilian frugivores. Anthropogenic impacts, including human niche construction, underlie the recent reorganization of frugivore communities, setting the stage for continued declines and evolutionary responses in plants that have lost mutualistic partners. These impacts also support ongoing and future introductions of invader complexes: introduced plants and frugivores that further exacerbate native biodiversity loss by interacting more strongly with one another than with native plants or frugivores. This work illustrates the importance of paleontological data and perspectives in conceptualizing ecological communities, which are dynamic and important entities.
Collapse
|
5
|
Zander RH. Lineages of Fractal Genera Comprise the 88-Million-Year Steel Evolutionary Spine of the Ecosphere. PLANTS (BASEL, SWITZERLAND) 2024; 13:1559. [PMID: 38891367 PMCID: PMC11174399 DOI: 10.3390/plants13111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Fractal evolution is apparently effective in selectively preserving environmentally resilient traits for more than 80 million years in Streptotrichaceae (Bryophyta). An analysis simulated maximum destruction of ancestral traits in that large lineage. The constraints enforced were the preservation of newest ancestral traits, and all immediate descendant species obtained different new traits. Maximum character state changes in ancestral traits were 16 percent of all possible traits in any one sub-lineage, or 73 percent total of the entire lineage. Results showed, however, that only four ancestral traits were permanently eliminated in any one lineage or sub-lineage. A lineage maintains maximum biodiversity of temporally and regionally survival-effective traits at minimum expense to resilience across a geologic time of 88 million years for the group studied. Similar processes generating an extant punctuated equilibrium as bursts of about four descendants per genus and one genus per 1-2 epochs are possible in other living groups given similar emergent processes. The mechanism is considered complexity-related, the lineage being a self-organized emergent phenomenon strongly maintained in the ecosphere by natural selection on fractal genera.
Collapse
Affiliation(s)
- Richard H Zander
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, MI 63110, USA
| |
Collapse
|
6
|
Massip-Veloso Y, Hoagstrom CW, McMahan CD, Matamoros WA. Biogeography of Greater Antillean freshwater fishes, with a review of competing hypotheses. Biol Rev Camb Philos Soc 2024; 99:901-927. [PMID: 38205676 DOI: 10.1111/brv.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In biogeography, vicariance and long-distance dispersal are often characterised as competing scenarios. However, they are related concepts, both relying on collective geological, ecological, and phylogenetic evidence. This is illustrated by freshwater fishes, which may immigrate to islands either when freshwater connections are temporarily present and later severed (vicariance), or by unusual means when ocean gaps are crossed (long-distance dispersal). Marine barriers have a strong filtering effect on freshwater fishes, limiting immigrants to those most capable of oceanic dispersal. The roles of vicariance and dispersal are debated for freshwater fishes of the Greater Antilles. We review three active hypotheses [Cretaceous vicariance, Greater Antilles-Aves Ridge (GAARlandia), long-distance dispersal] and propose long-distance dispersal to be an appropriate model due to limited support for freshwater fish use of landspans. Greater Antillean freshwater fishes have six potential source bioregions (defined from faunal similarity): Northern Gulf of México, Western Gulf of México, Maya Terrane, Chortís Block, Eastern Panamá, and Northern South America. Faunas of the Greater Antilles are composed of taxa immigrating from many of these bioregions, but there is strong compositional disharmony between island and mainland fish faunas (>90% of Antillean species are cyprinodontiforms, compared to <10% in Northern Gulf of México and Northern South America, and ≤50% elsewhere), consistent with a hypothesis of long-distance dispersal. Ancestral-area reconstruction analysis indicates there were 16 or 17 immigration events over the last 51 million years, 14 or 15 of these by cyprinodontiforms. Published divergence estimates and evidence available for each immigration event suggests they occurred at different times and by different pathways, possibly with rafts of vegetation discharged from rivers or washed to sea during storms. If so, ocean currents likely provide critical pathways for immigration when flowing from one landmass to another. On the other hand, currents create dispersal barriers when flowing perpendicularly between landmasses. In addition to high salinity tolerance, cyprinodontiforms collectively display a variety of adaptations that could enhance their ability to live with rafts (small body size, viviparity, low metabolism, amphibiousness, diapause, self-fertilisation). These adaptations likely also helped immigrants establish island populations after arrival and to persist long term thereafter. Cichlids may have used a pseudo bridge (Nicaragua Rise) to reach the Greater Antilles. Gars (Lepisosteidae) may have crossed the Straits of Florida to Cuba, a relatively short crossing that is not a barrier to gene flow for several cyprinodontiform immigrants. Indeed, widespread distributions of Quaternary migrants (Cyprinodon, Gambusia, Kryptolebias), within the Greater Antilles and among neighbouring bioregions, imply that long-distance dispersal is not necessarily inhibitory for well-adapted species, even though it appears to be virtually impossible for all other freshwater fishes.
Collapse
Affiliation(s)
- Yibril Massip-Veloso
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | | | - Wilfredo A Matamoros
- Programa de Doctorado en Ciencias en Biodiversidad y Conservación de Ecosistemas Tropicales, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
- Field Museum of Natural History, Chicago, IL, 60605, USA
- Laboratorio de Diversidad Acuática y Biogeografía, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, C.P. 29039, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
7
|
Mônico PI, Soto-Centeno JA. Phylogenetic, morphological and niche differentiation unveil new species limits for the big brown bat ( Eptesicus fuscus). ROYAL SOCIETY OPEN SCIENCE 2024; 11:231384. [PMID: 38328571 PMCID: PMC10846953 DOI: 10.1098/rsos.231384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Phylogeographic accounts of mammals across fragmented landscapes show high levels of genetic, morphological and ecological variation. The big brown bat (Eptesicus fuscus) widely spans mainland landmasses from Canada to Ecuador and Colombia, and the insular Caribbean through The Bahamas and Greater and Lesser Antilles. Given the distribution of E. fuscus, we hypothesized that insular lineages could represent a different species aided by isolation. We assessed species limits by capitalizing on available mitochondrial and genomic data. Novel morphological and spatial datasets were produced to examine limits phenotypically and whether ecological niches could be associated with differences between groups. Phylogenetics strongly supported the Caribbean as unique compared to the mainland. Genomic data indicated high levels of genetic structure within the Caribbean and no detectable admixture of the Caribbean with continental lineages. Similarly, the Caribbean group shows high phenotypic disparity, and niche models revealed differences in habitat suitability between groups, concordant with the phylogenetic results. This study uncovered signals of divergence supporting the Caribbean clade of E. fuscus as unique through an integrative framework. We endorse re-evaluating the taxonomic status of Caribbean big brown bats as Eptesicus dutertreus. This recognition can help promote local conservation plans for insular lineages of big brown bats.
Collapse
Affiliation(s)
- Pedro Ivo Mônico
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
| | - J. Angel Soto-Centeno
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA
- Department of Mammalogy, American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
8
|
Pfingstl T, Bardel-Kahr I, Schäffer S. The Caribbean intertidal mite Alismobates inexpectatus (Acari, Oribatida), an unexpected case of cryptic diversity? ORG DIVERS EVOL 2023; 23:811-832. [PMID: 38046836 PMCID: PMC10689554 DOI: 10.1007/s13127-023-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/24/2023] [Indexed: 12/05/2023]
Abstract
Molecular genetic analyses of Caribbean populations of the supposedly widespread intertidal oribatid mite Alismobates inexpectatus revealed the existence of a cryptic species. The new species, Alismobates piratus sp. n., shows considerable COI and 18S rRNA gene sequence divergences and although morphometric analyses indicate considerable variation between the taxa, no distinguishing morphological feature could be detected. The extreme intertidal environment is suggested to be responsible for the observed morphological stasis of the two species and vicariance is supposed to be responsible for their speciation. Alismobates piratus sp. n. was found on Hispaniola, Guadeloupe, Barbados and Curaçao indicating a predominant distribution on the Greater and Lesser Antilles, whereas the occurrence of A. inexpectatus is primarily restricted to Central America, the northern Caribbean and the Greater Antilles. Haplotype network analyses indicate distinct geographic structuring and the absence of recent gene flow among the Antillean A. piratus sp. n. populations. Central American and Antillean populations of A. inexpectatus show similar patterns but populations from Bermuda and the Bahamas are characterized by a common origin and subsequent expansion. Genetic landscape analysis demonstrates that vast stretches of open ocean, like the Caribbean Basin and the Western Atlantic, act as rather effective barriers, whereas the continuous continental coastline of Central and North America may facilitate dispersal. Genetic data also indicates that the Gulf Stream plays an important role for the biogeography of intertidal oribatid mites as it may be responsible for the strong link between Central and North American populations as well as for the colonization of Bermuda. Supplementary Information The online version contains supplementary material available at 10.1007/s13127-023-00624-9.
Collapse
Affiliation(s)
- Tobias Pfingstl
- Institute of Biology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Iris Bardel-Kahr
- Institute of Biology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Sylvia Schäffer
- Institute of Biology, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
9
|
Mercado-Díaz JA, Lücking R, Moncada B, C St E Campbell K, Delnatte C, Familia L, Falcón-Hidalgo B, Motito-Marín A, Rivera-Queralta Y, Widhelm TJ, Thorsten Lumbsch H. Species assemblages of insular Caribbean Sticta (lichenized Ascomycota: Peltigerales) over ecological and evolutionary time scales. Mol Phylogenet Evol 2023:107830. [PMID: 37247703 DOI: 10.1016/j.ympev.2023.107830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Phylogenetic approaches to macroevolution have provided unique insight into evolutionary relationships, ancestral ranges, and diversification patterns for many taxa. Similar frameworks have also been developed to assess how environmental and/or spatial variables shape species diversity and distribution patterns at different spatial/temporal scales, but studies implementing these are still scarce for many groups, including lichens. Here, we combine phylogeny-based ancestral range reconstruction and diversification analysis with community phylogenetics to reconstruct evolutionary origins and assess patterns of taxonomic and phylogenetic relatedness between island communities of the lichenized fungal genus Sticta in the Caribbean. Sampling was carried out in the Greater Antilles (Cuba, Jamaica, Dominican Republic, and Puerto Rico) and Lesser Antilles (Dominica, Guadeloupe, and Martinique). Data for six molecular loci were obtained for 64 candidate Caribbean species and used to perform both macroevolutionary phylogenetics, which also included worldwide taxa, and phylobetadiversity analyses, which emphasized island-level communities. Our work uncovered high levels of island endemism (∼59%) in Caribbean Sticta. We estimate initial colonization of the region occurred about 19 Mya from a South American ancestor. Reverse migration events by Caribbean lineages to South America were also inferred. We found no evidence for increased diversification rates associated with range expansion into the Caribbean. Taxonomic and phylogenetic turnover between island-level communities was most strongly correlated with environmental variation rather than with geographic distance. We observed less dissimilarity among communities from the Dominican Republic and Jamaica than between these islands and the Lesser Antilles/Puerto Rico. High levels of hidden diversity and endemism in Caribbean Sticta reaffirm that islands are crucial for the maintenance of global biodiversity of lichenized fungi. Altogether, our findings suggest that strong evolutionary links exist between Caribbean and South American biotas but at regional scales, species assemblages exhibit complex taxonomic and phylogenetic relationships that are determined by local environments and shared evolutionary histories.
Collapse
Affiliation(s)
- Joel A Mercado-Díaz
- Committee on Evolutionary Biology, University of Chicago 1025 E. 57th Street, Chicago, Illinois 60637, U.S.A; Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Königin-Luise-Straße 6-8, 14195 Berlin, Germany.
| | - Bibiana Moncada
- Licenciatura en Biología, Universidad Distrital Francisco José de Caldas, Cra. 4 No. 26B-54, Torre de Laboratorios, Herbario, Bogotá, Colombia.
| | - Keron C St E Campbell
- Natural History Museum of Jamaica, Institute of Jamaica, 10-16 East Street, Kingston, Jamaica.
| | - Cesar Delnatte
- Biotope Amazonie, 3 rue Mezin Gildon, F-97354 Rémire-Montjoly, Guyane française.
| | - Lemuel Familia
- Departamento de Vida Silvestre, Ministerio de Medio Ambiente y Recursos Naturales, Avenida Cayetano Germosén esq. Avenida Gregorio Luperón, Ensanche El Pedregal, Santo Domingo, República Dominicana.
| | - Banessa Falcón-Hidalgo
- Jardín Botánico Nacional, Universidad de La Habana, Carretera "El Rocío" km 3.5, Calabazar, Boyeros, La Habana, Cuba.
| | - Angel Motito-Marín
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Yoira Rivera-Queralta
- Departamento de Biología Vegetal, Centro Oriental de Ecosistemas y Biodiversidad (BioEco), Código Postal 90100, José A. Saco 601, Esquina Barnada, Santiago de Cuba, Cuba.
| | - Todd J Widhelm
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| | - H Thorsten Lumbsch
- Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, U.S.A.
| |
Collapse
|
10
|
Kaya S, Kabasakal B, Erdoğan A. Geographic Genetic Structure of Alectoris chukar in Türkiye: Post-LGM-Induced Hybridization and Human-Mediated Contaminations. BIOLOGY 2023; 12:biology12030401. [PMID: 36979093 PMCID: PMC10045126 DOI: 10.3390/biology12030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Türkiye is considered an important evolutionary area for Chukar partridge (Alectoris chukar), since it is both a potential ancestral area and a diversification center for the species. Using 2 mitochondrial (Cty-b and D-loop) and 13 polymorphic microsatellite markers, we investigated the geographic genetic structure of A. chukar populations to determine how past climatic fluctuations and human activities have shaped the gene pool of this species in Türkiye. Our results indicate, firstly, that only A. chukar of the genus Alectoris is present in Türkiye (Anatolia and Thrace), with no natural or artificial gene flow from congenerics. Secondly, the geographic genetic structure of the species in Türkiye has been shaped by topographic heterogeneity, Pleistocene climatic fluctuations, and artificial transport by humans. Third, there appears to be three genetic clusters: Thracian, Eastern, and Western. Fourth, the post-LGM demographic expansion of the Eastern and Western populations has formed a hybrid zone in Central Anatolia (~8 kyBP). Fifth, the rate of China clade-B contamination in Türkiye is about 8% in mtDNA and about 12% in nuDNA, with the Southeastern Anatolian population having the highest contamination. Sixth, the Thracian population was the most genetically distinct, with the lowest genetic diversity and highest level of inbreeding and no China clad-B contamination. These results can contribute to the conservation regarding A. chukar populations, especially the Thracian population.
Collapse
Affiliation(s)
- Sarp Kaya
- First and Emergency Aid Programme, Department of Medical Services and Techniques, Vocational School of Burdur Health Services, Burdur Mehmet Akif Ersoy University, Burdur 15030, Turkey
| | - Bekir Kabasakal
- Department of Biology, Akdeniz University, Antalya 07058, Turkey
- Anesthesia Programme, Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, Antalya 07190, Turkey
- Correspondence:
| | - Ali Erdoğan
- Department of Biology, Akdeniz University, Antalya 07058, Turkey
| |
Collapse
|
11
|
Cerca J, Cotoras DD, Bieker VC, De-Kayne R, Vargas P, Fernández-Mazuecos M, López-Delgado J, White O, Stervander M, Geneva AJ, Guevara Andino JE, Meier JI, Roeble L, Brée B, Patiño J, Guayasamin JM, Torres MDL, Valdebenito H, Castañeda MDR, Chaves JA, Díaz PJ, Valente L, Knope ML, Price JP, Rieseberg LH, Baldwin BG, Emerson BC, Rivas-Torres G, Gillespie R, Martin MD. Evolutionary genomics of oceanic island radiations. Trends Ecol Evol 2023:S0169-5347(23)00032-0. [PMID: 36870806 DOI: 10.1016/j.tree.2023.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023]
Abstract
A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.
Collapse
Affiliation(s)
- José Cerca
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Darko D Cotoras
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rishi De-Kayne
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pablo Vargas
- Biodiversity and Conservation, Real Jardín Botánico, 28014 Madrid, Spain
| | - Mario Fernández-Mazuecos
- Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid (CIBC-UAM), Calle Darwin 2, 28049 Madrid, Spain
| | - Julia López-Delgado
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Oliver White
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Martin Stervander
- Bird Group, Natural History Museum, Akeman Street, Tring, Hertfordshire HP23 6AP, UK
| | - Anthony J Geneva
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ, USA
| | - Juan Ernesto Guevara Andino
- Grupo de Investigación en Biodiversidad Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
| | - Joana Isabel Meier
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Lizzie Roeble
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Baptiste Brée
- Université de Pau et des Pays de l'Adour (UPPA), Energy Environment Solutions (E2S), Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM), 64000 Pau, France
| | - Jairo Patiño
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Calle Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Canary Islands, 38206, Spain
| | - Juan M Guayasamin
- Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - María de Lourdes Torres
- Laboratorio de Biotecnología Vegetal, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador; Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador
| | - Hugo Valdebenito
- Galapagos Science Center, Universidad San Francisco de Quito (USFQ) and University of North Carolina (UNC) at Chapel Hill, San Cristobal, Galapagos, Ecuador; Herbarium of Economic Botany of Ecuador (Herabario QUSF), Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, Quito, Ecuador
| | | | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA; Laboratorio de Biología Evolutiva, Instituto Biósfera, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Calle Diego de Robles y Avenida Pampite, Cumbayá, 170901 Quito, Ecuador
| | - Patricia Jaramillo Díaz
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Department of Botany and Plant Physiology, University of Málaga, Málaga, Spain
| | - Luis Valente
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Box 11103, 9700, 5 CC Groningen, The Netherlands
| | - Matthew L Knope
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Jonathan P Price
- Department of Biology, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, 96720, HI, USA
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Bruce G Baldwin
- Jepson Herbarium and Department of Integrative Biology, 1001 Valley Life Sciences Building 2465, University of California, Berkeley, CA 94720-2465, USA
| | - Brent C Emerson
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, Spain
| | - Gonzalo Rivas-Torres
- Estación Científica Charles Darwin, Fundación Charles Darwin, Santa Cruz, Galápagos, Ecuador; Estación de Biodiversidad Tiputini, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Rosemary Gillespie
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
12
|
Vollstädt MGR, Galetti M, Kaiser‐Bunbury CN, Simmons BI, Gonçalves F, Morales‐Pérez AL, Navarro L, Tarazona‐Tubens FL, Schubert S, Carlo T, Salazar J, Faife‐Cabrera M, Strong A, Madden H, Mitchell A, Dalsgaard B. Plant–frugivore interactions across the Caribbean islands: Modularity, invader complexes and the importance of generalist species. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Maximilian G. R. Vollstädt
- Section for Molecular Ecology and Evolution, GLOBE Institute University of Copenhagen Copenhagen Denmark
| | - Mauro Galetti
- Department of Biology University of Miami Coral Gables Florida USA
- Instituto de Biociências, Departamento de Biodiversidade Universidade Estadual Paulista (UNESP) Rio Claro Brazil
| | - Christopher N. Kaiser‐Bunbury
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, Penryn Campus University of Exeter Penryn UK
| | - Benno I. Simmons
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, Penryn Campus University of Exeter Penryn UK
| | - Fernando Gonçalves
- Section for Molecular Ecology and Evolution, GLOBE Institute University of Copenhagen Copenhagen Denmark
| | | | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo Universidad de Vigo Vigo Spain
| | | | - Spencer Schubert
- Department of Biological Sciences Old Dominion University Norfolk Virginia USA
| | - Tomas Carlo
- Biology Department & Ecology Program The Pennsylvania State University University Park Pennsylvania USA
| | - Jackeline Salazar
- Escuela de Biología, Universidad Autónoma de Santo Domingo (UASD) Santo Domingo Dominican Republic
- Grupo Jaragua Inc. Santo Domingo Dominican Republic
| | - Michel Faife‐Cabrera
- Facultad de Ciencias Agropecuarias, Centro de Estudios Jardín Botánico Universidad Central “Marta Abreu” de Las Villas Santa Clara Cuba
| | - Allan Strong
- Rubenstein School of Environment and Natural Resources University of Vermont, Aiken Center Burlington Vermont USA
| | - Hannah Madden
- Caribbean Netherlands Science Institute (CNSI) Oranjestad The Netherlands
- NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University Den Burg The Netherlands
| | - Adam Mitchell
- Sint Eustatius National Parks Oranjestad Netherlands
| | - Bo Dalsgaard
- Section for Molecular Ecology and Evolution, GLOBE Institute University of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Frishkoff LO, Lertzman-Lepofsky G, Mahler DL. Evolutionary opportunity and the limits of community similarity in replicate radiations of island lizards. Ecol Lett 2022; 25:2384-2396. [PMID: 36192673 DOI: 10.1111/ele.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Ecological community structure ultimately depends on the production of community members by speciation. To understand how macroevolution shapes communities, we surveyed Anolis lizard assemblages across elevations on Jamaica and Hispaniola, neighbouring Caribbean islands similar in environment, but contrasting in the richness of their endemic evolutionary radiations. The impact of diversification on local communities depends on available spatial opportunities for speciation within or between ecologically distinct sub-regions. In the spatially expansive lowlands of both islands, communities converge in species richness and average morphology. But communities diverge in the highlands. On Jamaica, where limited highland area restricted diversification, communities remain depauperate and consist largely of elevational generalists. In contrast, a unique fauna of high-elevation specialists evolved in the vast Hispaniolan highlands, augmenting highland richness and driving islandwide turnover in community composition. Accounting for disparate evolutionary opportunities may illuminate when regional diversity will enhance local diversity and help predict when communities should converge in structure.
Collapse
|
14
|
Phylogenomic data resolve the historical biogeography and ecomorphs of Neotropical forest lizards (Squamata, Diploglossidae). Mol Phylogenet Evol 2022; 175:107577. [PMID: 35835424 DOI: 10.1016/j.ympev.2022.107577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
Few studies have been conducted on the biogeography and phylogenetic relationships of Neotropical forest lizards (Diploglossidae) because of incomplete taxon sampling, conflicting datasets, and low statistical support at phylogenetic nodes. Here, we enhance a recent nine-gene dataset with a genomic dataset of 3,232 loci and 642,775 aligned base pairs. The resulting phylogeny includes 30 diploglossid species, 10 of the 11 genera, and the three subfamilies. It shows significant support for all supra-specific taxa in either maximum likelihood or Bayesian analyses or both. With this well-supported phylogeny, we further investigate the historical biogeography of the group and how diploglossids reached the Caribbean islands. Our analyses indicate that Antillean diploglossid lizards originated from at least two overwater dispersals from South America. Our tests for the strength of convergent evolution between morphologically similar taxa support the recognition of a soil and a tree ecomorph. In addition, we propose grass, ground, rock, and swamp ecomorphs for species in this family based on ecological and morphological data and analyses.
Collapse
|
15
|
Mohammed RS, Turner G, Fowler K, Pateman M, Nieves-Colón MA, Fanovich L, Cooke SB, Dávalos LM, Fitzpatrick SM, Giovas CM, Stokowski M, Wrean AA, Kemp M, LeFebvre MJ, Mychajliw AM. Colonial legacies influence biodiversity lessons: how past trade routes and power dynamics shape present-day scientific research and professional opportunities for Caribbean scientists. Am Nat 2022; 200:140-155. [DOI: 10.1086/720154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Single-Island Endemism despite Repeated Dispersal in Caribbean Micrathena (Araneae: Araneidae): An Updated Phylogeographic Analysis. DIVERSITY 2022. [DOI: 10.3390/d14020128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Island biogeographers have long sought to elucidate the mechanisms behind biodiversity genesis. The Caribbean presents a unique stage on which to analyze the diversification process, due to the geologic diversity among the islands and the rich biotic diversity with high levels of island endemism. The colonization of such islands may reflect geologic heterogeneity through vicariant processes and/ or involve long-distance overwater dispersal. Here, we explore the phylogeography of the Caribbean and proximal mainland spiny orbweavers (Micrathena, Araneae), an American spider lineage that is the most diverse in the tropics and is found throughout the Caribbean. We specifically test whether the vicariant colonization via the contested GAARlandia landbridge (putatively emergent 33–35 mya), long-distance dispersal (LDD), or both processes best explain the modern Micrathena distribution. We reconstruct the phylogeny and test biogeographic hypotheses using a ‘target gene approach’ with three molecular markers (CO1, ITS-2, and 16S rRNA). Phylogenetic analyses support the monophyly of the genus but reject the monophyly of Caribbean Micrathena. Biogeographical analyses support five independent colonizations of the region via multiple overwater dispersal events, primarily from North/Central America, although the genus is South American in origin. There is no evidence for dispersal to the Greater Antilles during the timespan of GAARlandia. Our phylogeny implies greater species richness in the Caribbean than previously known, with two putative species of M. forcipata that are each single-island endemics, as well as deep divergences between the Mexican and Floridian M. sagittata. Micrathena is an unusual lineage among arachnids, having colonized the Caribbean multiple times via overwater dispersal after the submergence of GAARlandia. On the other hand, single-island endemism and undiscovered diversity are nearly universal among all but the most dispersal-prone arachnid groups in the Caribbean.
Collapse
|
17
|
Biogeography of Long-Jawed Spiders Reveals Multiple Colonization of the Caribbean. DIVERSITY 2021. [DOI: 10.3390/d13120622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dispersal ability can affect levels of gene flow thereby shaping species distributions and richness patterns. The intermediate dispersal model of biogeography (IDM) predicts that in island systems, species diversity of those lineages with an intermediate dispersal potential is the highest. Here, we tested this prediction on long-jawed spiders (Tetragnatha) of the Caribbean archipelago using phylogenies from a total of 318 individuals delineated into 54 putative species. Our results support a Tetragnatha monophyly (within our sampling) but reject the monophyly of the Caribbean lineages, where we found low endemism yet high diversity. The reconstructed biogeographic history detects a potential early overwater colonization of the Caribbean, refuting an ancient vicariant origin of the Caribbean Tetragnatha as well as the GAARlandia land-bridge scenario. Instead, the results imply multiple colonization events to and from the Caribbean from the mid-Eocene to late-Miocene. Among arachnids, Tetragnatha uniquely comprises both excellently and poorly dispersing species. A direct test of the IDM would require consideration of three categories of dispersers; however, long-jawed spiders do not fit one of these three a priori definitions, but rather represent a more complex combination of attributes. A taxon such as Tetragnatha, one that readily undergoes evolutionary changes in dispersal propensity, can be referred to as a ‘dynamic disperser’.
Collapse
|
18
|
Spikes M, Rodríguez-Silva R, Bennett KA, Bräger S, Josaphat J, Torres-Pineda P, Ernst A, Havenstein K, Schlupp I, Tiedemann R. A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario. BMC Res Notes 2021; 14:425. [PMID: 34823576 PMCID: PMC8613956 DOI: 10.1186/s13104-021-05843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the Caribbean. RESULTS For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Miragoâne clade.
Collapse
Affiliation(s)
- Montrai Spikes
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Rodet Rodríguez-Silva
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Kerri-Ann Bennett
- Department of Life Sciences, The University of the West Indies (Mona Campus), Kingston, Jamaica
| | - Stefan Bräger
- German Oceanographic Museum (DMM), Katharinenberg 14-20, 18439, Stralsund, Germany
| | - James Josaphat
- Caribaea Intitiative and Université Des Antilles, Guadeloupe, Kingston, Jamaica
| | - Patricia Torres-Pineda
- Museo Nacional de Historia Natural Prof. "Eugenio de Jesús Marcano", Avenida Cesar Nicolás Penson, 10204, Santo Domingo, República Dominicana
| | - Anja Ernst
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Katja Havenstein
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany
| | - Ingo Schlupp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 26, 14476, Potsdam, Germany.
| |
Collapse
|
19
|
The evolutionary history of the Caribbean magnolias (Magnoliaceae): Testing species delimitations and biogeographical hypotheses using molecular data. Mol Phylogenet Evol 2021; 167:107359. [PMID: 34793981 DOI: 10.1016/j.ympev.2021.107359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
The Caribbean islands provide an ideal setting for studying biodiversity, given their complex geological and environmental history, and their historical and current geographical proximity to the American mainland. Magnolia, a flagship tree genus that has 15 endemic and threatened taxa (12 species and 3 subspecies) on the Caribbean islands, offers an excellent case study to empirically test Caribbean biogeographical hypotheses. We constructed phylogenetic hypotheses to: (1) reveal their evolutionary history, (2) test the current largely morphology-based classification and assess species limits, and (3) investigate major biogeographic hypotheses proposed for the region. Nuclear and chloroplast DNA sequence data of all 15 Caribbean Magnolia taxa are included, supplemented by a selection of American mainland species, and species representing most major clades of the Magnoliaceae family. We constructed phylogenetic hypotheses in a time-calibrated Bayesian framework, supplemented with haplotype network analyses and ancestral range estimations. Genetic synapomorphies in the studied markers confirm the species limits of 14 out of 15 morphologically recognizable Caribbean Magnolia taxa. There is evidence for four colonization events of Magnolia into the Caribbean from the American mainland, which most likely occurred by overwater dispersal, given age estimates of maximum 16 mya for their presence on the Caribbean islands.
Collapse
|
20
|
Colosimo G, Jackson AC, Benton A, Varela-Stokes A, Iverson J, Knapp CR, Welch M. Correlated population genetic structure in a three-tiered host-parasite system. The potential for coevolution and adaptive divergence. J Hered 2021; 112:590-601. [PMID: 34612500 DOI: 10.1093/jhered/esab058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/27/2021] [Indexed: 11/12/2022] Open
Abstract
Three subspecies of Northern Bahamian Rock Iguanas, Cyclura cychlura, are currently recognized: C. c. cychlura, restricted to Andros Island, and C. c. figginsi and C. c. inornata, native to the Exuma Island chain. Populations on Andros are genetically distinct from Exuma Island populations, yet genetic divergence among populations in the Exumas is inconsistent with the two currently recognized subspecies from those islands. The potential consequences of this discrepancy might include the recognition of a single subspecies throughout the Exumas rather than two. That inference also ignores evidence that populations of C. cychlura are potentially adaptively divergent. We compared patterns of population relatedness in a three-tiered host-parasite system: C. cychlura iguanas, their ticks (genus Amblyomma, preferentially parasitizing these reptiles), and Rickettsia spp. endosymbionts (within tick ectoparasites). Our results indicate that while C. c. cychlura on Andros is consistently supported as a separate clade, patterns of relatedness among populations of C. c. figginsi and C. c. inornata within the Exuma Island chain are more complex. The distribution of the hosts, different tick species, and Rickettsia spp., supports the evolutionary independence of C. c. inornata. Further, these patterns are also consistent with two independent evolutionarily significant units within C. c. figginsi. Our findings suggest coevolutionary relationships between the reptile hosts, their ectoparasites, and rickettsial organisms, suggesting local adaptation. This work also speaks to the limitations of using neutral molecular markers from a single focal taxon as the sole currency for recognizing evolutionary novelty in populations of endangered species.
Collapse
Affiliation(s)
- Giuliano Colosimo
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA.,San Diego Zoo Wildlife Alliance, Escondido, California, USA
| | - Anna C Jackson
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Amanda Benton
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Andrea Varela-Stokes
- College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John Iverson
- Department of Biology, Earlham College, Richmond, Indiana, USA
| | - Charles R Knapp
- Daniel P. Haerter Center for Conservation and Research, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Mark Welch
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
21
|
Vallès H, Labaude S, Bezault E, Browne D, Deacon A, Guppy R, Pujadas Clavel A, Cézilly F. Low contribution of Caribbean-based researchers to academic publications on biodiversity conservation in the insular Caribbean. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Reconstruction of the evolutionary biogeography reveal the origins and diversification of oysters (Bivalvia: Ostreidae). Mol Phylogenet Evol 2021; 164:107268. [PMID: 34302948 DOI: 10.1016/j.ympev.2021.107268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
Oysters (Bivalvia: Ostreidae Rafinesque, 1815) live in the intertidal and shallow subtidal areas worldwide. Despite their long evolutionary histories, abundant fossil records, global distribution, and ecological significance, a systematic time-dependent biogeographical analysis of this family is still lacking. Using combined mitochondrial (COI and 16S rRNA) and nuclear (18S rRNA, 28S rRNA, H3 and ITS2) gene makers for 80% (70/88) of the recognized extant Ostreidae, we reconstructed the global phylogenetic and biogeographical relationships throughout the evolutionary history of oysters. The result provided a holistic view of the origin, migration and dispersal patterns of Ostreidae. The phylogenetic results and fossil evidence indicated that Ostreidae originated from the circum-Arctic region in the Early Jurassic. The widening of the Atlantic Ocean and changes in the Tethys Ocean further facilitated their subsequent diversification during the Cretaceous and the Palaeogene periods. In particular, Crassostrea and Saccostrea exhibited relatively low dispersal abilities and their major diversifications were consistent with the tectonic events. Environmental adaptations and reproductive patterns, therefore, should play key roles in the formation of oyster distribution patterners, rather than the dispersal ability of their planktonic larvae. The diversity dynamics inferred by standard phylogenetic are consistent with the fossil record, however, further systematic classification, especially for fossil genus Ostrea, would enhance our understanding on extant and fossil oysters. The present study of the historical biogeography of oysters provides new insights into the evolution and speciation of oysters. Our findings also provide a foundation for the assessment of evolutionary patterns and ecological processes in intertidal and inshore life.
Collapse
|
23
|
Acha S, Linan A, MacDougal J, Edwards C. The evolutionary history of vines in a neotropical biodiversity hotspot: Phylogenomics and biogeography of a large passion flower clade (Passiflora section Decaloba). Mol Phylogenet Evol 2021; 164:107260. [PMID: 34273502 DOI: 10.1016/j.ympev.2021.107260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Because of their extraordinary flower and leaf morphology, passion flowers (Passifloraceae) have fascinated naturalists since their discovery. Within the large, diverse (600 species) genus Passiflora is an especially enigmatic and species-rich (120 spp.) subclade, Section Decaloba, which occurs in the Neotropics and has its center of diversity in Andean montane forests. A recent phylogenetic study of Passifloraceae showed that Section Decaloba was monophyletic, but was unable to resolve relationships within the clade, thus preventing inferences of evolutionary history and biogeography. The goal of this study was to elucidate the phylogeny and biogeography of Section Decaloba. We sampled 206 accessions representing 91 of the ~ 120 known species in section Decaloba and four outgroups, with samples derived predominantly from herbarium specimens. We generated DNA sequences using a high-throughput DNA sequencing technique called 2b-RAD, reconstructed the phylogeny, and conducted ancestral area reconstructions to infer the biogeographic history of the group. We recovered predominantly well-supported trees in which species were grouped into two main clades: 1) the Central American clade, within which the majority of nodes well supported and species were monophyletic and 2) the South American clade, a large clade that showed overall lower resolution and included several polyphyletic species and species complexes that need additional research. RASP analysis showed that section Decaloba originated in Central America around 10.4 Ma, and then dispersed to South America, the Greater Antilles, and the Bahamas. The South American clade diversified in the Northern Andes and then dispersed to the rest of South America, and Lesser Antilles. Results suggest that both long-distance dispersal and colonization of newly available habitats (i.e., in the Andes) likely promoted diversification of this clade. This study also illustrates how using herbarium specimens and a RAD-seq approach can produce phylogenies for broadly distributed, highly diverse, and poorly accessible groups of plants where field collections would be unfeasible.
Collapse
Affiliation(s)
- Serena Acha
- Department of Biology, University of Missouri-St. Louis, One University Blvd, Research Hall St. Louis, MO 63121, USA; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; University of Florida Herbarium, Florida Museum of Natural History,1659 Museum Rd, Gainesville, FL 32611-7800, USA.
| | - Alexander Linan
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - John MacDougal
- Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; Harris-Stowe State University, 3026 Laclede Ave, St. Louis, MO 63103, USA
| | | |
Collapse
|
24
|
Woods R, Barnes I, Brace S, Turvey ST. Ancient DNA Suggests Single Colonization and Within-Archipelago Diversification of Caribbean Caviomorph Rodents. Mol Biol Evol 2021; 38:84-95. [PMID: 33035304 PMCID: PMC7783164 DOI: 10.1093/molbev/msaa189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining “ancestral-type” characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.
Collapse
Affiliation(s)
- Roseina Woods
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom.,Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
25
|
Bochaton C, Paradis E, Bailon S, Grouard S, Ineich I, Lenoble A, Lorvelec O, Tresset A, Boivin N. Large-scale reptile extinctions following European colonization of the Guadeloupe Islands. SCIENCE ADVANCES 2021; 7:7/21/eabg2111. [PMID: 34138736 PMCID: PMC8133755 DOI: 10.1126/sciadv.abg2111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Large-scale extinction is one of the defining challenges of our time, as human processes fundamentally and irreversibly reshape global ecosystems. While the extinction of large animals with popular appeal garners widespread public and research interest, the importance of smaller, less "charismatic" species to ecosystem health is increasingly recognized. Benefitting from systematically collected fossil and archaeological archives, we examined snake and lizard extinctions in the Guadeloupe Islands of the Caribbean. Study of 43,000 bone remains across six islands revealed a massive extinction of 50 to 70% of Guadeloupe's snakes and lizards following European colonization. In contrast, earlier Indigenous populations coexisted with snakes and lizards for thousands of years without affecting their diversity. Study of archaeological remains provides insights into the causes of snake and lizard extinctions and shows that failure to consider fossil-derived data probably contributes to substantial underestimation of human impacts to global biodiversity.
Collapse
Affiliation(s)
- Corentin Bochaton
- Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.
- Laboratoire "Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements" UMR 7209-CNRS, MNHN-Muséum national d'Histoire naturelle-Sorbonne Universités, 55 rue Buffon, CP 56, 75005 Paris, France
- Institut de Systématique, Évolution, Biodiversité ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE-Muséum national d'Histoire naturelle-Sorbonne Universités, 57 rue Cuvier, CP 30, 75005 Paris, France
- PACEA-UMR CNRS 5199, Université de Bordeaux, 33 615 Pessac Cedex, France
| | - Emmanuel Paradis
- Institut des Sciences de l'Évolution Montpellier ISEM, Université de Montpellier, IRD, CNRS, EPHE- Place Eugène Bataillon, CC 065 34095 Montpellier cedex 5, France
| | - Salvador Bailon
- Laboratoire "Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements" UMR 7209-CNRS, MNHN-Muséum national d'Histoire naturelle-Sorbonne Universités, 55 rue Buffon, CP 56, 75005 Paris, France
| | - Sandrine Grouard
- Laboratoire "Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements" UMR 7209-CNRS, MNHN-Muséum national d'Histoire naturelle-Sorbonne Universités, 55 rue Buffon, CP 56, 75005 Paris, France
| | - Ivan Ineich
- Institut de Systématique, Évolution, Biodiversité ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE-Muséum national d'Histoire naturelle-Sorbonne Universités, 57 rue Cuvier, CP 30, 75005 Paris, France
| | - Arnaud Lenoble
- PACEA-UMR CNRS 5199, Université de Bordeaux, 33 615 Pessac Cedex, France
| | - Olivier Lorvelec
- ESE, Ecology and Ecosystems Health, INRAE, Agrocampus Ouest, 65 rue de Saint-Brieuc, Bât. 15, CS 84215, 35042 Rennes, France
| | - Anne Tresset
- Laboratoire "Archéozoologie et Archéobotanique: Sociétés, Pratiques et Environnements" UMR 7209-CNRS, MNHN-Muséum national d'Histoire naturelle-Sorbonne Universités, 55 rue Buffon, CP 56, 75005 Paris, France
| | - Nicole Boivin
- Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.
- School of Social Science, University of Queensland, Brisbane, Queensland, Australia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| |
Collapse
|
26
|
Pfingstl T. First comprehensive insights into the biogeography of the Caribbean intertidal oribatid mite fauna (Ameronothroidea). NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1906136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Tobias Pfingstl
- Institute of Biology, Department for Biodiversity and Evolution, University of Graz, Universitaetsplatz 2, Graz, Austria
| |
Collapse
|
27
|
Rodriguez‐Silva R, Schlupp I. Biogeography of the West Indies: A complex scenario for species radiations in terrestrial and aquatic habitats. Ecol Evol 2021; 11:2416-2430. [PMID: 33767811 PMCID: PMC7981229 DOI: 10.1002/ece3.7236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/02/2022] Open
Abstract
Studies of the biogeography of the West Indies are numerous but not all taxonomic groups have received the same attention. Many of the contributions to this field have historically focused on terrestrial vertebrates from a perspective closely linked to the classical theory of island biogeography. However, some recent works have questioned whether some of the assumptions of this theory are too simplistic. In this review, we compiled information about the West Indies biogeography based on an extensive and rigorous literature search. While we offer some background of the main hypotheses that explain the origin of the Caribbean biota, our main purpose here is to highlight divergent diversification patterns observed in terrestrial versus aquatic groups of the West Indian biota and also to shed light on the unbalanced number of studies covering the biogeography of these groups of organisms. We use an objective method to compile existing information in the field and produce a rigorous literature review. Our results show that most of the relevant literature in the field is related to the study of terrestrial organisms (mainly vertebrates) and only a small portion covers aquatic groups. Specifically, livebearing fishes show interesting deviations from the species-area relationship predicted by classical island biogeography theory. We found that species richness on the Greater Antilles is positively correlated with island size but also with the presence of elevations showing that not only island area but also mountainous relief may be an important factor determining the number of freshwater species in the Greater Antilles. Our findings shed light on mechanisms that may differently drive speciation in aquatic versus terrestrial environments suggesting that ecological opportunity could outweigh the importance of island size in speciation. Investigations into freshwater fishes of the West Indies offer a promising avenue for understanding origins and subsequent diversification of the Caribbean biota.
Collapse
Affiliation(s)
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaNormanOKUSA
| |
Collapse
|
28
|
Chávez G, Landestoy T MA, Ross GS, Ugarte-Núñez JA. New distributional records of the Samana least gecko ( Sphaerodactylus samanensis, Cochran, 1932) with comments on its morphological variation and conservation status. PeerJ 2021; 9:e10404. [PMID: 33510965 PMCID: PMC7808264 DOI: 10.7717/peerj.10404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/31/2020] [Indexed: 11/29/2022] Open
Abstract
We report here five new localities across the distribution of the lizard Sphaerodactylus samanensis, extending its current geographic range to the west, in the Cordillera Central of Hispaniola. We also report phenotypic variation in the color pattern and scutellation on throat and pelvic regions of males from both eastern and western populations, which is described below. Furthermore, based on these new data, we confirm that the species is not fitting in its current IUCN category, and in consequence propose updating its conservation status.
Collapse
Affiliation(s)
- Germán Chávez
- Instituto Peruano de Herpetología, Lima, Perú.,División de Herpetología, CORBIDI, Lima, Perú
| | - Miguel A Landestoy T
- Escuela de Biología, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | | | | |
Collapse
|
29
|
Barrow LN, Bauernfeind SM, Cruz PA, Williamson JL, Wiley DL, Ford JE, Baumann MJ, Brady SS, Chavez AN, Gadek CR, Galen SC, Johnson AB, Mapel XM, Marroquin-Flores RA, Martinez TE, McCullough JM, McLaughlin JE, Witt CC. Detecting turnover among complex communities using null models: a case study with sky-island haemosporidian parasites. Oecologia 2021; 195:435-451. [PMID: 33484348 DOI: 10.1007/s00442-021-04854-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/08/2021] [Indexed: 11/26/2022]
Abstract
Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization-extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.
Collapse
Affiliation(s)
- Lisa N Barrow
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Selina M Bauernfeind
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Paxton A Cruz
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jessie L Williamson
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Daniele L Wiley
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - John E Ford
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Matthew J Baumann
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Serina S Brady
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Andrea N Chavez
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Bureau of Land Management, Rio Puerco District Office, Albuquerque, NM, USA
- Cibola National Forest and National Grasslands, Albuquerque, NM, USA
| | - Chauncey R Gadek
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Spencer C Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, USA
- Biology Department, University of Scranton, Scranton, PA, USA
| | - Andrew B Johnson
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Xena M Mapel
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Rosario A Marroquin-Flores
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Taylor E Martinez
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
- Department of Molecular Medicine and Pharmacology, University of South Florida, Tampa, FL, USA
| | - Jenna M McCullough
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jade E McLaughlin
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Christopher C Witt
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
30
|
Characterization of Color Pattern Dimorphism in Turks and Caicos Boas, Chilabothrus chrysogaster chrysogaster, on Big Ambergris Cay, Turks and Caicos Islands. J HERPETOL 2020. [DOI: 10.1670/18-051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Buckley M, Harvey VL, Orihuela J, Mychajliw AM, Keating JN, Milan JNA, Lawless C, Chamberlain AT, Egerton VM, Manning PL. Collagen Sequence Analysis Reveals Evolutionary History of Extinct West Indies Nesophontes (Island-Shrews). Mol Biol Evol 2020; 37:2931-2943. [PMID: 32497204 PMCID: PMC7530613 DOI: 10.1093/molbev/msaa137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Ancient biomolecule analyses are proving increasingly useful in the study of evolutionary patterns, including extinct organisms. Proteomic sequencing techniques complement genomic approaches, having the potential to examine lineages further back in time than achievable using ancient DNA, given the less stringent preservation requirements. In this study, we demonstrate the ability to use collagen sequence analyses via proteomics to assist species delimitation as a foundation for informing evolutionary patterns. We uncover biogeographic information of an enigmatic and recently extinct lineage of Nesophontes across their range on the Caribbean islands. First, evolutionary relationships reconstructed from collagen sequences reaffirm the affinity of Nesophontes and Solenodon as sister taxa within Solenodonota. This relationship helps lay the foundation for testing geographical isolation hypotheses across islands within the Greater Antilles, including movement from Cuba toward Hispaniola. Second, our results are consistent with Cuba having just two species of Nesophontes (N. micrus and N. major) that exhibit intrapopulation morphological variation. Finally, analysis of the recently described species from the Cayman Islands (N. hemicingulus) indicates that it is a closer relative to N. major rather than N. micrus as previously speculated. This proteomic sequencing improves our understanding of the origin, evolution, and distribution of this extinct mammal lineage, particularly with respect to the approximate timing of speciation. Such knowledge is vital for this biodiversity hotspot, where the magnitude of recent extinctions may obscure true estimates of species richness in the past.
Collapse
Affiliation(s)
- Michael Buckley
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Virginia L Harvey
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Johanset Orihuela
- Department of Earth and Environment, Florida International University, Miami, FL
| | - Alexis M Mychajliw
- La Brea Tar Pits & Museum, Natural History Museum of Los Angeles County, Los Angeles, CA
| | - Joseph N Keating
- School of Earth Sciences, University of Bristol, Life Sciences Building, Bristol, United Kingdom
| | - Juan N Almonte Milan
- Museo Nacional de Historia Natural “Prof. Eugenio de Jesús Marcano”, Santo Domingo, Dominican Republic
| | - Craig Lawless
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andrew T Chamberlain
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - Victoria M Egerton
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Children’s Museum of Indianapolis, Natural Sciences, Indianapolis, IN
| | - Phillip L Manning
- Interdisciplinary Centre for Ancient Life, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
- The Children’s Museum of Indianapolis, Natural Sciences, Indianapolis, IN
| |
Collapse
|
32
|
Hua X, Bromham L. Modeling colonization rates over time: Generating null models and testing model adequacy in phylogenetic analyses of species assemblages*. Evolution 2020; 74:2605-2616. [DOI: 10.1111/evo.14086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xia Hua
- Mathematical Sciences Institute Australian National University Canberra ACT 2601 Australia
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT 2601 Australia
| | - Lindell Bromham
- Division of Ecology and Evolution Research School of Biology Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
33
|
Dupérré N, Francisco C, Santana-Propper E, Agnarsson I, Binford GJ. Heteroonops (Araneae, Oonopidae) spiders from Hispaniola: the discovery of ten new species. Zookeys 2020; 964:1-30. [PMID: 32939145 PMCID: PMC7471135 DOI: 10.3897/zookeys.964.51554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The Caribbean biodiversity hotspot harbors vast reserves of undiscovered species. A large-scale inventory of Caribbean arachnids (CarBio) is uncovering new species across the arachnid tree of life, and allowing inference of the evolutionary history that has generated this diversity. Herein we describe ten new species of Heteroonops (Oonopidae, or goblin spiders), from Hispaniola: H.scapulasp. nov., H.jurassicussp. nov., H.aylinalegreaesp. nov., H.verrucasp. nov., H.renebarbaisp. nov., H.yumasp. nov., H.carlosviquezisp. nov., H.gabrielsantosisp. nov., H.solanllycarreroaesp. nov. and H.constanzasp. nov. The occurrence of the pantropical type species Heteroonopsspinimanus (Simon, 1891) is reported and new localities are given for: H.validus (Bryant, 1948), H.vega (Platnick & Dupérré, 2009) and H.castelloides (Platnick & Dupérré, 2009). Molecular phylogenies indicate substantial genetic divergence separating these taxa. This work adds to evidence that the depth of diversity in the Caribbean biodiversity hotspot is particularly striking for tiny taxa living in leaf litter.
Collapse
Affiliation(s)
- Nadine Dupérré
- Technical Assistant, Department of Arachnology, Centrum für Naturkunde, Universität de Hamburg, Germany Universität de Hamburg Hamburg Germany
| | - Charlotte Francisco
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| | - Ella Santana-Propper
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| | - Ingi Agnarsson
- University of Vermont, Department of Biology, 109 Carrigan Drive, Burlington, VT, 05405-0086, USA University of Vermont Burlington United States of America.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA National Museum of Natural History Washington United States of America
| | - Greta J Binford
- Lewis & Clark College, 0615 SW Palatine Hill Rd. Portland, Oregon, 97219, USA Lewis & Clark College Portland United States of America
| |
Collapse
|
34
|
Woods R, Turvey ST, Brace S, McCabe CV, Dalén L, Rayfield EJ, Brown MJF, Barnes I. Rapid size change associated with intra-island evolutionary radiation in extinct Caribbean "island-shrews". BMC Evol Biol 2020; 20:106. [PMID: 32811443 PMCID: PMC7437022 DOI: 10.1186/s12862-020-01668-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Caribbean offers a unique opportunity to study evolutionary dynamics in insular mammals. However, the recent extinction of most Caribbean non-volant mammals has obstructed evolutionary studies, and poor DNA preservation associated with tropical environments means that very few ancient DNA sequences are available for extinct vertebrates known from the region's Holocene subfossil record. The endemic Caribbean eulipotyphlan family Nesophontidae ("island-shrews") became extinct ~ 500 years ago, and the taxonomic validity of many Nesophontes species and their wider evolutionary dynamics remain unclear. Here we use both morphometric and palaeogenomic methods to clarify the status and evolutionary history of Nesophontes species from Hispaniola, the second-largest Caribbean island. RESULTS Principal component analysis of 65 Nesophontes mandibles from late Quaternary fossil sites across Hispaniola identified three non-overlapping morphometric clusters, providing statistical support for the existence of three size-differentiated Hispaniolan Nesophontes species. We were also able to extract and sequence ancient DNA from a ~ 750-year-old specimen of Nesophontes zamicrus, the smallest non-volant Caribbean mammal, including a whole-mitochondrial genome and partial nuclear genes. Nesophontes paramicrus (39-47 g) and N. zamicrus (~ 10 g) diverged recently during the Middle Pleistocene (mean estimated divergence = 0.699 Ma), comparable to the youngest species splits in Eulipotyphla and other mammal groups. Pairwise genetic distance values for N. paramicrus and N. zamicrus based on mitochondrial and nuclear genes are low, but fall within the range of comparative pairwise data for extant eulipotyphlan species-pairs. CONCLUSIONS Our combined morphometric and palaeogenomic analyses provide evidence for multiple co-occurring species and rapid body size evolution in Hispaniolan Nesophontes, in contrast to patterns of genetic and morphometric differentiation seen in Hispaniola's extant non-volant land mammals. Different components of Hispaniola's mammal fauna have therefore exhibited drastically different rates of morphological evolution. Morphological evolution in Nesophontes is also rapid compared to patterns across the Eulipotyphla, and our study provides an important new example of rapid body size change in a small-bodied insular vertebrate lineage. The Caribbean was a hotspot for evolutionary diversification as well as preserving ancient biodiversity, and studying the surviving representatives of its mammal fauna is insufficient to reveal the evolutionary patterns and processes that generated regional diversity.
Collapse
Affiliation(s)
- Roseina Woods
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Christopher V McCabe
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RL, UK
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-10405, Stockholm, Sweden
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Bristol, BS8 1RL, UK
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| |
Collapse
|
35
|
Chamberland L, Salgado-Roa FC, Basco A, Crastz-Flores A, Binford GJ, Agnarsson I. Phylogeography of the widespread Caribbean spiny orb weaver Gasteracantha cancriformis. PeerJ 2020; 8:e8976. [PMID: 32391201 PMCID: PMC7196328 DOI: 10.7717/peerj.8976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.
Collapse
Affiliation(s)
- Lisa Chamberland
- Department of Biology, University of Vermont, Burlington, VT, USA
| | - Fabian C. Salgado-Roa
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogota, Colombia
| | - Alma Basco
- University of Puerto Rico at Rio Piedras, San Juan, Puerto Rico
| | | | | | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
36
|
Morales-Malacara JB, Castaño-Meneses G, Klompen H, Mancina CA. New Species of the Genus Periglischrus (Acari: Spinturnicidae) from Monophyllus Bats (Chiroptera: Phyllostomidae) in the West Indies, Including a Morphometric Analysis of Its Intraspecific Variation. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:418-436. [PMID: 31746340 DOI: 10.1093/jme/tjz198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The discovery of a new species, Periglischrus empheresotrichus, was determined through a review of museum collections, as well as a field survey of ectoparasites of island bats. This new species parasitizes on two bat species of the genus Monophyllus Leach, the Greater Antillean Long-tongued bat Monophyllus redmani Leach and the Lesser Antillean Long-tongued bat Monophyllus plethodon Miller. The female, male, deuthonymphs, and protonymph are described and illustrated. P. empheresotrichus n. sp. has an insular distribution, we evaluated the morphological variation of the adult populations, and concluded that intra-specific variation is correlated both with host species and locality (island) in the West Indies.
Collapse
Affiliation(s)
- Juan B Morales-Malacara
- Lab. Espeleobiología y Acarología, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Gabriela Castaño-Meneses
- Lab. Ecología de Artrópodos en Ambientes Extremos, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Hans Klompen
- Acarology Laboratory, Ohio State University, Columbus, OH
| | - Carlos A Mancina
- Departamento de Zoología, Instituto de Ecología y Sistemática, Academia de Ciencias de Cuba, Boyeros, Ciudad de La Habana, Cuba
| |
Collapse
|
37
|
Marivaux L, Vélez-Juarbe J, Merzeraud G, Pujos F, Viñola López LW, Boivin M, Santos-Mercado H, Cruz EJ, Grajales A, Padilla J, Vélez-Rosado KI, Philippon M, Léticée JL, Münch P, Antoine PO. Early Oligocene chinchilloid caviomorphs from Puerto Rico and the initial rodent colonization of the West Indies. Proc Biol Sci 2020; 287:20192806. [PMID: 32075529 PMCID: PMC7031660 DOI: 10.1098/rspb.2019.2806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/17/2020] [Indexed: 11/12/2022] Open
Abstract
By their past and present diversity, rodents are among the richest components of Caribbean land mammals. Many of these became extinct recently. Causes of their extirpation, their phylogenetic affinities, the timing of their arrival in the West Indies and their biogeographic history are all ongoing debated issues. Here, we report the discovery of dental remains from Lower Oligocene deposits (ca 29.5 Ma) of Puerto Rico. Their morphology attests to the presence of two distinct species of chinchilloid caviomorphs, closely related to dinomyids in a phylogenetic analysis, and thus of undisputable South American origin. These fossils represent the earliest Caribbean rodents known thus far. They could extend back to 30 Ma the lineages of some recently extinct Caribbean giant rodents (Elasmodontomys and Amblyrhiza), which are also retrieved here as chinchilloids. This new find has substantial biogeographic implications because it demonstrates an early dispersal of land mammals from South America to the West Indies, perhaps via the emergence of the Aves Ridge that occurred ca 35-33 Ma (GAARlandia hypothesis). Considering both this new palaeontological evidence and recent molecular divergence estimates, the natural colonization of the West Indies by rodents probably occurred through multiple and time-staggered dispersal events (chinchilloids, then echimyid octodontoids (spiny rats/hutias), caviids and lastly oryzomyin muroids (rice rats)).
Collapse
Affiliation(s)
- Laurent Marivaux
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier (UM), Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Jorge Vélez-Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - Gilles Merzeraud
- Géosciences Montpellier (UMR 5243, CNRS/UM/Université des Antilles), c.c. 060, Université de Montpellier (UM), Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - François Pujos
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CCT–CONICET–Mendoza, Avda. Ruiz Leal s/n, Parque Gral. San Martín, 5500 Mendoza, Argentina
| | - Lázaro W. Viñola López
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
| | - Myriam Boivin
- Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, IdGyM, Av. Bolivia 1661, San Salvador de Jujuy 4600, Jujuy, Argentina
| | - Hernán Santos-Mercado
- Department of Geology, University of Puerto Rico, Mayagüez Campus, PO Box 9017, Mayagüez 00681, Puerto Rico
| | - Eduardo J. Cruz
- Department of Geology, University of Puerto Rico, Mayagüez Campus, PO Box 9017, Mayagüez 00681, Puerto Rico
| | - Alexandra Grajales
- Department of Geology, University of Puerto Rico, Mayagüez Campus, PO Box 9017, Mayagüez 00681, Puerto Rico
| | - James Padilla
- Department of Geology, University of Puerto Rico, Mayagüez Campus, PO Box 9017, Mayagüez 00681, Puerto Rico
| | - Kevin I. Vélez-Rosado
- Museum of Paleontology and Department of Earth and Environmental Sciences, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
| | - Mélody Philippon
- Géosciences Montpellier (UMR 5243, Université des Antilles/CNRS/UM), Université des Antilles, Campus de Fouillole, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Jean-Len Léticée
- Géosciences Montpellier (UMR 5243, Université des Antilles/CNRS/UM), Université des Antilles, Campus de Fouillole, 97159 Pointe-à-Pitre Cedex, Guadeloupe, France
| | - Philippe Münch
- Géosciences Montpellier (UMR 5243, CNRS/UM/Université des Antilles), c.c. 060, Université de Montpellier (UM), Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Pierre-Olivier Antoine
- Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier (ISE-M, UMR 5554, CNRS/UM/IRD/EPHE), c.c. 064, Université de Montpellier (UM), Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
38
|
Crews SC, Esposito LA. Towards a synthesis of the Caribbean biogeography of terrestrial arthropods. BMC Evol Biol 2020; 20:12. [PMID: 31980017 PMCID: PMC6979080 DOI: 10.1186/s12862-019-1576-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The immense geologic and ecological complexity of the Caribbean has created a natural laboratory for interpreting when and how organisms disperse through time and space. However, competing hypotheses compounded with this complexity have resulted in a lack of unifying principles of biogeography for the region. Though new data concerning the timing of geologic events and dispersal events are emerging, powerful new analytical tools now allow for explicit hypothesis testing. Arthropods, with varying dispersal ability and high levels of endemism in the Caribbean, are an important, albeit understudied, biogeographic model system. Herein, we include a comprehensive analysis of every publicly available genetic dataset (at the time of writing) of terrestrial Caribbean arthropod groups using a statistically robust pipeline to explicitly test the current extent of biogeographic hypotheses for the region. RESULTS Our findings indicate several important biogeographic generalizations for the region: the South American continent is the predominant origin of Caribbean arthropod fauna; GAARlandia played a role for some taxa in aiding dispersal from South America to the Greater Antilles; founder event dispersal explains the majority of dispersal events by terrestrial arthropods, and distance between landmasses is important for dispersal; most dispersal events occurred via island hopping; there is evidence of 'reverse' dispersal from islands to the mainland; dispersal across the present-day Isthmus of Panama generally occurred prior to 3 mya; the Greater Antilles harbor more lineage diversity than the Lesser Antilles, and the larger Greater Antilles typically have greater lineage diversity than the smaller islands; basal Caribbean taxa are primarily distributed in the Greater Antilles, the basal-most being from Cuba, and derived taxa are mostly distributed in the Lesser Antilles; Jamaican taxa are usually endemic and monophyletic. CONCLUSIONS Given the diversity and deep history of terrestrial arthropods, incongruence of biogeographic patterns is expected, but focusing on both similarities and differences among divergent taxa with disparate life histories emphasizes the importance of particular qualities responsible for resulting diversification patterns. Furthermore, this study provides an analytical toolkit that can be used to guide researchers interested in answering questions pertaining to Caribbean biogeography using explicit hypothesis testing.
Collapse
Affiliation(s)
- Sarah C Crews
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Lauren A Esposito
- California Academy of Sciences, Institute for Biodiversity Science and Sustainability, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| |
Collapse
|
39
|
Čandek K, Agnarsson I, Binford GJ, Kuntner M. Caribbean golden orbweaving spiders maintain gene flow with North America. ZOOL SCR 2020. [DOI: 10.1111/zsc.12405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Klemen Čandek
- Evolutionary Zoology Laboratory Department of Organisms and Ecosystems Research National Institute of Biology Ljubljana Slovenia
- Evolutionary Zoology Laboratory Institute of Biology Research Centre of the Slovenian Academy of Sciences and Arts Ljubljana Slovenia
- Department of Biology Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
| | - Ingi Agnarsson
- Department of Biology University of Vermont Burlington VT USA
- Department of Entomology National Museum of Natural History Smithsonian Institution Washington D.C. USA
| | | | - Matjaž Kuntner
- Evolutionary Zoology Laboratory Department of Organisms and Ecosystems Research National Institute of Biology Ljubljana Slovenia
- Evolutionary Zoology Laboratory Institute of Biology Research Centre of the Slovenian Academy of Sciences and Arts Ljubljana Slovenia
- Department of Entomology National Museum of Natural History Smithsonian Institution Washington D.C. USA
- School of Life Sciences Hubei University Wuhan Hubei China
| |
Collapse
|
40
|
Loureiro LO, Engstrom MD, Lim BK. Comparative phylogeography of mainland and insular species of Neotropical molossid bats ( Molossus). Ecol Evol 2020; 10:389-409. [PMID: 31993120 PMCID: PMC6972955 DOI: 10.1002/ece3.5903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 01/01/2023] Open
Abstract
Historical events, habitat preferences, and geographic barriers might result in distinct genetic patterns in insular versus mainland populations. Comparison between these two biogeographic systems provides an opportunity to investigate the relative role of isolation in phylogeographic patterns and to elucidate the importance of evolution and demographic history in population structure. Herein, we use a genotype-by-sequencing approach (GBS) to explore population structure within three species of mastiff bats (Molossus molossus, M. coibensis, and M. milleri), which represent different ecological histories and geographical distributions in the genus. We tested the hypotheses that oceanic straits serve as barriers to dispersal in Caribbean bats and that isolated island populations are more likely to experience genetic drift and bottlenecks in comparison with highly connected ones, thus leading to different phylogeographic patterns. We show that population structures vary according to general habitat preferences, levels of population isolation, and historical fluctuations in climate. In our dataset, mainland geographic barriers played only a small role in isolation of lineages. However, oceanic straits posed a partial barrier to the dispersal for some populations within some species (M. milleri), but do not seem to disrupt gene flow in others (M. molossus). Lineages on distant islands undergo genetic bottlenecks more frequently than island lineages closer to the mainland, which have a greater exchange of haplotypes.
Collapse
Affiliation(s)
- Livia O. Loureiro
- Department of Natural HistoryRoyal Ontario MuseumTorontoONCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Mark D. Engstrom
- Department of Natural HistoryRoyal Ontario MuseumTorontoONCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoONCanada
| | - Burton K. Lim
- Department of Natural HistoryRoyal Ontario MuseumTorontoONCanada
| |
Collapse
|
41
|
Mechanisms of allopatric speciation in an Antillean damselfly genus (Odonata, Zygoptera): Vicariance or long-distance dispersal? Mol Phylogenet Evol 2019; 137:14-21. [DOI: 10.1016/j.ympev.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/13/2019] [Accepted: 04/17/2019] [Indexed: 01/27/2023]
|
42
|
Oaks JR, Siler CD, Brown RM. The comparative biogeography of Philippine geckos challenges predictions from a paradigm of climate-driven vicariant diversification across an island archipelago. Evolution 2019; 73:1151-1167. [PMID: 31017301 PMCID: PMC6767427 DOI: 10.1111/evo.13754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/10/2019] [Indexed: 01/05/2023]
Abstract
A primary goal of biogeography is to understand how large-scale environmental processes, like climate change, affect diversification. One often-invoked but seldom tested process is the "species-pump" model, in which repeated bouts of cospeciation are driven by oscillating climate-induced habitat connectivity cycles. For example, over the past three million years, the landscape of the Philippine Islands has repeatedly coalesced and fragmented due to sea-level changes associated with glacial cycles. This repeated climate-driven vicariance has been proposed as a model of speciation across evolutionary lineages codistributed throughout the islands. This model predicts speciation times that are temporally clustered around the times when interglacial rises in sea level fragmented the islands. To test this prediction, we collected comparative genomic data from 16 pairs of insular gecko populations. We analyze these data in a full-likelihood, Bayesian model-choice framework to test for shared divergence times among the pairs. Our results provide support against the species-pump model prediction in favor of an alternative interpretation, namely that each pair of gecko populations diverged independently. These results suggest the repeated bouts of climate-driven landscape fragmentation have not been an important mechanism of speciation for gekkonid lizards across the Philippine Archipelago.
Collapse
Affiliation(s)
- Jamie R. Oaks
- Department of Biological Sciences & Museum of Natural HistoryAuburn UniversityAuburnAlabama36849
| | - Cameron D. Siler
- Sam Noble Oklahoma Museum of Natural History and Department of BiologyUniversity of OklahomaNormanOklahoma73072
| | - Rafe M. Brown
- Biodiversity Institute and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas66045
| |
Collapse
|
43
|
O’Connell MA, Hallett JG. Community ecology of mammals: deserts, islands, and anthropogenic impacts. J Mammal 2019. [DOI: 10.1093/jmammal/gyz010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - James G Hallett
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| |
Collapse
|
44
|
DaCosta JM, Miller MJ, Mortensen JL, Reed JM, Curry RL, Sorenson MD. Phylogenomics clarifies biogeographic and evolutionary history, and conservation status of West Indian tremblers and thrashers (Aves: Mimidae). Mol Phylogenet Evol 2019; 136:196-205. [PMID: 30999037 DOI: 10.1016/j.ympev.2019.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/26/2019] [Accepted: 04/14/2019] [Indexed: 01/06/2023]
Abstract
The West Indian avifauna has provided fundamental insights into island biogeography, taxon cycles, and the evolution of avian behavior. Our interpretations, however, should rely on robust hypotheses of evolutionary relationships and consistent conclusions about taxonomic status in groups with many endemic island populations. Here we present a phylogenetic study of the West Indian thrashers, tremblers, and allies, an assemblage of at least 5 species found on 29 islands, including what is considered the Lesser Antilles' only avian radiation. We improve on previous phylogenetic studies of this group by using double-digest restriction site-associated DNA sequencing (ddRAD-seq) to broadly sample loci scattered across the nuclear genome. A variety of analyses, based on either nucleotide variation in 2223 loci recovered in all samples or at 13,282 loci confidently scored as present or absent in all samples, converged on a single well-supported phylogenetic hypothesis. Results indicate that the resident West Indian taxa form a monophyletic group, exclusive of the Neotropical-Nearctic migratory Gray Catbird Dumetella carolinensis, which breeds in North America; this outcome differs from earlier studies suggesting that Gray Catbird was nested within a clade of island resident species. Thus, our findings imply a single colonization of the West Indies without the need to invoke a subsequent 'reverse colonization' of the mainland by West Indian taxa. Additionally, our study is the first to sample both endemic subspecies of the endangered White-breasted Thrasher Ramphocinclus brachyurus. We find that these subspecies have a long history of evolutionary independence with no evidence of gene flow, and are as genetically divergent from each other as other genera in the group. These findings support recognition of R. brachyurus (restricted to Martinique) and the Saint Lucia Thrasher R. sanctaeluciae as two distinct, single-island endemic species, and indicate the need to re-evaluate conservation plans for these taxa. Our results demonstrate the utility of phylogenomic datasets for generating robust systematic hypotheses.
Collapse
Affiliation(s)
- Jeffrey M DaCosta
- Department of Biology, Boston University, Boston, MA, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Matthew J Miller
- Department of Biology, Villanova University, Villanova, PA, USA; Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK, USA.
| | - Jennifer L Mortensen
- Department of Biology, Tufts University, Medford, MA, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - J Michael Reed
- Department of Biology, Tufts University, Medford, MA, USA
| | - Robert L Curry
- Department of Biology, Villanova University, Villanova, PA, USA
| | | |
Collapse
|
45
|
Dugo-Cota Á, Vilà C, Rodríguez A, Gonzalez-Voyer A. Ecomorphological convergence in Eleutherodactylus frogs: a case of replicate radiations in the Caribbean. Ecol Lett 2019; 22:884-893. [PMID: 30868693 DOI: 10.1111/ele.13246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/25/2018] [Accepted: 01/16/2019] [Indexed: 11/28/2022]
Abstract
Replicate radiations, the repeated multiplication of species associated with ecological divergence, have attracted much attention and generated as much debate. Due to the few well-studied cases, it remains unclear whether replicate radiations are an exceptional result of evolution or a relatively common example of the power of adaptation by natural selection. We examined the case of Eleutherodactylus frogs, which radiated in the Caribbean islands resulting in more than 160 species that occupy very diverse habitats. A time-calibrated phylogeny revealed that these frogs independently diversified on all larger islands producing species that occupy a broad range of microhabitats in different islands. Using phylogenetic comparative methods, we found an association between morphological traits and particular microhabitats, and for most microhabitats detected significant morphological convergence. Our results indicate Caribbean Eleutherodactylus are a novel example of replicate radiations, and highlight the predictability of evolutionary processes, as similar ecological opportunities can lead to similar outcomes.
Collapse
Affiliation(s)
- Álvaro Dugo-Cota
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Sevilla, España
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Estación Biológica de Doñana (EBD-CSIC), Av. Américo Vespucio 26, 41092, Sevilla, España
| | - Ariel Rodríguez
- Institut für Zoologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Alejandro Gonzalez-Voyer
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. México, 04510, México
| |
Collapse
|
46
|
Esposito LA, Prendini L. Island Ancestors and New World Biogeography: A Case Study from the Scorpions (Buthidae: Centruroidinae). Sci Rep 2019; 9:3500. [PMID: 30837519 PMCID: PMC6401060 DOI: 10.1038/s41598-018-33754-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/27/2018] [Indexed: 01/07/2023] Open
Abstract
Scorpions are an excellent system for understanding biogeographical patterns. Most major scorpion lineages predate modern landforms, making them suitable for testing hypotheses of vicariance and dispersal. The Caribbean islands are endowed with a rich and largely endemic scorpion fauna, the origins of which have not been previously investigated with modern biogeographical methods. Three sets of hypotheses have been proposed to explain present patterns of diversity in the Caribbean: (1) connections via land bridges, (2) vicariance events, and (3) overwater dispersal from continents and among islands. The present study investigates the biogeographical diversification of the New World buthid scorpion subfamily Centruroidinae Kraus, 1955, a clade of seven genera and more than 110 species; infers the ancestral distributions of these scorpions; and tests the relative roles of vicariance and dispersal in the formation of their present distributions. A fossil-calibrated molecular phylogeny was estimated with a Bayesian criterion to infer the dates of diversification events from which ancestral distributions were reconstructed, and the relative likelihood of models of vicariance vs. dispersal, calculated. Although both the timing of diversification and the ancestral distributions were congruent with the GAARlandia land-bridge hypothesis, there was no significant difference between distance-dependent models with or without the land-bridge. Heteroctenus Pocock, 1893, the Caribbean-endemic sister taxon of Centruroides Marx, 1890 provides evidence for a Caribbean ancestor, which subsequently colonized Central America and North America, and eventually re-colonized the Greater Antilles. This 'reverse colonization' event of a continent from an island demonstrates the importance of islands as a potential source of biodiversity.
Collapse
Affiliation(s)
- Lauren A Esposito
- Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA.
- Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
- Essig Museum of Entomology, 130 Mulford Hall, University of California, Berkeley, CA, 94720-3114, USA.
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA.
| | - Lorenzo Prendini
- Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024-5192, USA
| |
Collapse
|
47
|
Čandek K, Agnarsson I, Binford GJ, Kuntner M. Biogeography of the Caribbean Cyrtognatha spiders. Sci Rep 2019; 9:397. [PMID: 30674906 PMCID: PMC6344596 DOI: 10.1038/s41598-018-36590-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene flow and diversification of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifically, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversified on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
Collapse
Affiliation(s)
- Klemen Čandek
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia.
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia.
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
| | - Greta J Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA
| | - Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington D.C., USA
- College of Life Sciences, Hubei University, Wuhan, Hubei, China
- Evolutionary Zoology Laboratory, Institute of Biology, Research Centre of the Slovenian Academy of the Sciences and Arts, Ljubljana, Slovenia
| |
Collapse
|
48
|
Tong Y, Binford G, Rheims CA, Kuntner M, Liu J, Agnarsson I. Huntsmen of the Caribbean: Multiple tests of the GAARlandia hypothesis. Mol Phylogenet Evol 2019; 130:259-268. [DOI: 10.1016/j.ympev.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022]
|
49
|
Núñez R, Barro-Cañamero A, Minno MC, Fernández DM, Hausmann A. The herophile species group of Calisto (Lepidoptera : Nymphalidae : Satyrinae), new taxa and historical biogeography. INVERTEBR SYST 2019. [DOI: 10.1071/is18048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genus Calisto is endemic tothe West Indiesand the only representative there of the Satyrinae. Here wereconstruct the evolutionary relationshipsof the herophile group and describe five new species from Cuba: Calisto gundlachi sp. nov., Calisto siguanensis sp. nov., Calisto disjunctus sp. nov., Calisto sharkeyae sp. nov. and Calisto lastrai sp. nov.We employ one mitochondrial and four nuclear markers to assess the phylogenetic position, Maximum Likelihood and Bayesian Inference approaches, of the new taxa. Our phylogenetic trees yielded two strongly supported main clades with four of the new species included within them and C. sharkeyae as sister group to the rest of the major main clade. We conduct time-divergence estimations and ancestral area reconstructions using BEAST and BioGeoBEARS. The group originated 12.15 million years ago during the middle Miocene in north-eastern Cuba, Nipe-Sagua-Baracoa Massif. After 6 million years of in situ evolution most lineages started to colonise other Cuban territories and the Bahamas. This scenario is consistent with key geological events, including the closure of the western Havana–Matanzas channel 8–6 million years ago, the uplift of the Sierra Maestra 6–5 million years ago, and the land connections among Cuban regions during the Miocene–Pleistocene sea level drops. Dispersal and vicariance processes may have occurred, with populations surviving floodings on the major and minor mountain ranges, which remained as ‘islands’.
http://zoobank.org/urn:lsid:zoobank.org:act:03690F79-F938-42A0-B234-4A228D5C1913
Collapse
|
50
|
Mcglaughlin ME, Riley L, Helenurm K, Wallace LE. Does Channel Island Acmispon (Fabaceae) form cohesive evolutionary groups? WEST N AM NATURALIST 2018. [DOI: 10.3398/064.078.0414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Lynn Riley
- Department of Biology, University of South Dakota, Vermillion, SD 57069
| | - Kaius Helenurm
- Department of Biology, University of South Dakota, Vermillion, SD 57069
| | - Lisa E. Wallace
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529
| |
Collapse
|