1
|
Bellin N, Rossi V. To sleep or not to sleep: Dormancy and life history traits in Eucypris virens (Crustacea, Ostracoda). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:345-356. [PMID: 38284622 DOI: 10.1002/jez.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Dormancy represents an investment with its own costs and benefit. Besides the advantage obtained from the avoidance of harsh environments and from the synchronization of life cycles with seasonal changes, an organism could benefit from a temporary stop in growth and reproduction. To test this hypothesis a transgenerational experiment was carried out comparing the life history traits of clonal females of Eucypris virens from resting and non-resting eggs at two different photoperiods: short day length (6:18 L:D), proxy of favorable but unpredictable late winter-spring hydroperiod, and long day length (16:8 L:D) proxy of dry predictable unfavorable season, inducing resting egg production and within-generation plasticity (WGP). Clonal females that were dormancy deprived showed the highest age at first deposition and the lowest fecundity. Dormancy seems to work as a resetting mechanism of reproduction. Transgenerational plasticity (TGP) had a bounce back pattern: the phenotype of F1 generation was influenced by cues experienced in the F0 generation but the effects of F0 exposure were not evident in the F2. TGP might be adaptive when a mother experiences some kind of seasonality or stochasticity producing both resting and nonresting eggs. A positive relationship between the number of resting eggs and the total number of eggs per females suggested the absence of trade-off between dormancy and reproduction. Both WGP and TGP increase the mother long term fitness with important consequences on population dynamics, on the way a species spread throughout space and time and might respond to climate change.
Collapse
Affiliation(s)
- Nicolò Bellin
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, University of Parma, Parma, Italy
- Department of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico
| | - Valeria Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|
3
|
Turnham KE, Aschaffenburg MD, Pettay DT, Paz-García DA, Reyes-Bonilla H, Pinzón J, Timmins E, Smith RT, McGinley MP, Warner ME, LaJeunesse TC. High physiological function for corals with thermally tolerant, host-adapted symbionts. Proc Biol Sci 2023; 290:20231021. [PMID: 37465983 PMCID: PMC10354691 DOI: 10.1098/rspb.2023.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, Pocillopora grandis, depends on mutualisms with the dinoflagellates Durusdinium glynnii and Cladocopium latusorum. Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant D. glynnii refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with D. glynnii are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Collapse
Affiliation(s)
- Kira E. Turnham
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - D. Tye Pettay
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902,USA
| | - David A. Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur 23096, México
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, Carretera al Sur 5.5, La Paz, C.P 23080, Mexico
| | - Jorge Pinzón
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ellie Timmins
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Bellworthy J, Pardo R, Scucchia F, Zaslansky P, Goodbody-Gringley G, Mass T. Physiological and morphological plasticity in Stylophora pistillata larvae from Eilat, Israel, to shallow and mesophotic light conditions. iScience 2023; 26:106969. [PMID: 37534177 PMCID: PMC10391605 DOI: 10.1016/j.isci.2023.106969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Mesophotic reefs have been proposed as climate change refugia but are not synonymous ecosystems with shallow reefs and remain exposed to anthropogenic impacts. Planulae from the reef-building coral Stylophora pistillata, Gulf of Aqaba, from 5- and 45-m depth were tested ex situ for capacity to settle, grow, and acclimate to reciprocal light conditions. Skeletons were scanned by phase contrast-enhanced micro-CT to study morphology. Deep planulae had reduced volume, smaller diameter on settlement, and greater algal symbiont density. Light conditions did not have significant impact on settlement or mortality rates. Photosynthetic acclimation of algal symbionts was evident within 21-35 days after settlement but growth rate and polyp development were slower for individuals translocated away from their parental origin compared to controls. Though our data reveal rapid symbiont acclimation, reduced growth rates and limited capacity for skeletal modification likely limit the potential for mesophotic larvae to settle on shallow reefs.
Collapse
Affiliation(s)
- Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Rachel Pardo
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Federica Scucchia
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Interuniversity Institute of Marine Sciences, Eilat, Israel
| | - Paul Zaslansky
- Department for Operative and Preventive Dentistry, Charité Dental School – Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
| |
Collapse
|
5
|
Fortuna R, Paquet M, Biard C, Élard L, Ferreira AC, Leroux-Coyaux M, Parenteau C, Silva LR, Théron F, Covas R, Doutrelant C. Egg components and offspring survival vary with group size and laying order in a cooperative breeder. Oecologia 2023; 202:129-142. [PMID: 37148378 DOI: 10.1007/s00442-023-05379-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Prenatal resource allocation to offspring can be influenced by maternal environment and offspring value, and affect offspring survival. An important pathway for flexible maternal allocation is via egg components such as nutrients and hormones. In cooperative breeders, females with helpers may increase resource allocation to eggs-'differential allocation'-or reduce it-'load-lightening'. Yet, helper effects on egg composition have been poorly studied. Moreover, it is unknown how helpers' presence modulates laying order effects on egg content and survival. Here, we investigated how maternal allocation varied with group size and laying order in the cooperatively breeding sociable weaver (Philetairus socius). We estimated interactive effects of helpers and laying order on allocation to egg mass, yolk nutrients-yolk mass, proteins, lipids, carotenoids, vitamin A and vitamin E-and hormones-testosterone, androstenedione, and corticosterone. Results concurred with the 'differential allocation' predictions. Females with more helpers produced later-laid eggs with heavier yolks and more lipids, and laid eggs overall richer in lipids. Proteins, antioxidants, and hormones were not found to vary with helper number. We then analyzed how helper number modulated laying order effects on survival. Females with more helpers did not specifically produce later-laid eggs with higher survival, but eggs laid by females with more helpers were overall more likely to fledge. These findings show that some egg components (yolk mass, lipids) can positively vary according to females' breeding group size, which may improve offspring fitness.
Collapse
Affiliation(s)
- Rita Fortuna
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France.
- Centre for Biodiversity Dynamics, Institutt for Biologi, NTNU, Trondheim, Norway.
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, 75007, Uppsala, Sweden
- Institute of Mathematics of Bordeaux, University of Bordeaux, CNRS, Bordeaux INP, Talence, France
| | - Clotilde Biard
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - Loïc Élard
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - André C Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mathieu Leroux-Coyaux
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Écologie et des Sciences de l'Environnement de Paris, IEES, 75005, Paris, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Liliana R Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Franck Théron
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
| | - Rita Covas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- DST-NRF Centre of Excellence, FitzPatrick Institute, University of Cape Town, Cape Town, South Africa
| | - Claire Doutrelant
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, 34293, Montpellier, France
- DST-NRF Centre of Excellence, FitzPatrick Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Jessop A, Deacon A, Barbosa M. The effect of phenotypic heterogeneity on behaviours linked to invasive success. Ethology 2023. [DOI: 10.1111/eth.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aaron Jessop
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| | - Amy Deacon
- Department of Life Sciences The University of West Indies St Augustine Trinidad and Tobago
| | - Miguel Barbosa
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
- Department of Biology & CESAM University of Aveiro Aveiro Portugal
| |
Collapse
|
8
|
MacLeod KJ, Monestier C, Ferrari MCO, McGhee KE, Sheriff MJ, Bell AM. Predator-induced transgenerational plasticity in animals: a meta-analysis. Oecologia 2022; 200:371-383. [PMID: 36319867 PMCID: PMC9675678 DOI: 10.1007/s00442-022-05274-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
There is growing evidence that the environment experienced by one generation can influence phenotypes in the next generation via transgenerational plasticity (TGP). One of the best-studied examples of TGP in animals is predator-induced transgenerational plasticity, whereby exposing parents to predation risk triggers changes in offspring phenotypes. Yet, there is a lack of general consensus synthesizing the predator-prey literature with existing theory pertaining to ecology and evolution of TGP. Here, we apply a meta-analysis to the sizable literature on predator-induced TGP (441 effect sizes from 29 species and 49 studies) to explore five hypotheses about the magnitude, form and direction of predator-induced TGP. Hypothesis #1: the strength of predator-induced TGP should vary with the number of predator cues. Hypothesis #2: the strength of predator-induced TGP should vary with reproductive mode. Hypothesis #3: the strength and direction of predator-induced TGP should vary among offspring phenotypic traits because some traits are more plastic than others. Hypothesis #4: the strength of predator-induced TGP should wane over ontogeny. Hypothesis #5: predator-induced TGP should generate adaptive phenotypes that should be more evident when offspring are themselves exposed to risk. We found strong evidence for predator-induced TGP overall, but no evidence that parental predator exposure causes offspring traits to change in a particular direction. Additionally, we found little evidence in support of any of the specific hypotheses. We infer that the failure to find consistent evidence reflects the heterogeneous nature of the phenomena, and the highly diverse experimental designs used to study it. Together, these findings set an agenda for future work in this area.
Collapse
Affiliation(s)
- Kirsty J. MacLeod
- Department of Biology, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, LL57 2UR UK
| | - Chloé Monestier
- Department of Evolution, Ecology and Behavior, Carle R. Woese Institute for Genomic Biolog, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, S7N 5B4, Saskatoon, SK Canada
| | - Katie E. McGhee
- Department of Biology, The University of the South, Sewanee, TN 37375 USA
| | - Michael J. Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747 USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, Carle R. Woese Institute for Genomic Biolog, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801 USA
| |
Collapse
|
9
|
Gompert Z, Flaxman SM, Feder JL, Chevin LM, Nosil P. Laplace's demon in biology: Models of evolutionary prediction. Evolution 2022; 76:2794-2810. [PMID: 36193839 DOI: 10.1111/evo.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/22/2023]
Abstract
Our ability to predict natural phenomena can be limited by incomplete information. This issue is exemplified by "Laplace's demon," an imaginary creature proposed in the 18th century, who knew everything about everything, and thus could predict the full nature of the universe forward or backward in time. Quantum mechanics, among other things, has cast doubt on the possibility of Laplace's demon in the full sense, but the idea still serves as a useful metaphor for thinking about the extent to which prediction is limited by incomplete information on deterministic processes versus random factors. Here, we use simple analytical models and computer simulations to illustrate how data limits can be captured in a Bayesian framework, and how they influence our ability to predict evolution. We show how uncertainty in measurements of natural selection, or low predictability of external environmental factors affecting selection, can greatly reduce predictive power, often swamping the influence of intrinsic randomness caused by genetic drift. Thus, more accurate knowledge concerning the causes and action of natural selection is key to improving prediction. Fortunately, our analyses and simulations show quantitatively that reasonable improvements in data quantity and quality can meaningfully increase predictability.
Collapse
Affiliation(s)
| | | | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Luis-Miguel Chevin
- CEFE, Univ Montpellier, Montpellier, France.,CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Patrik Nosil
- CEFE, Univ Montpellier, Montpellier, France.,CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
10
|
Lisi PJ, Hogan JD, Holt G, Moody KN, Wren JLK, Kobayashi DR, Blum MJ, McIntyre PB. Stream and ocean hydrodynamics mediate partial migration strategies in an amphidromous Hawaiian goby. Ecology 2022; 103:e3800. [PMID: 35726198 PMCID: PMC9788201 DOI: 10.1002/ecy.3800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Partial migration strategies, in which some individuals migrate but others do not, are widely observed in populations of migratory animals. Such patterns could arise via variation in migratory behaviors made by individual animals, via genetic variation in migratory predisposition, or simply by variation in migration opportunities mediated by environmental conditions. Here we use spatiotemporal variation in partial migration across populations of an amphidromous Hawaiian goby to test whether stream or ocean conditions favor completing its life cycle entirely within freshwater streams rather than undergoing an oceanic larval migration. Across 35 watersheds, microchemical analysis of otoliths revealed that most adult Awaous stamineus were freshwater residents (62% of n = 316 in 2009, 83% of n = 274 in 2011), but we found considerable variation among watersheds. We then tested the hypothesis that the prevalence of freshwater residency increases with the stability of stream flows and decreases with the availability of dispersal pathways arising from ocean hydrodynamics. We found that streams with low variation of daily discharge were home to a higher incidence of freshwater residents in each survey year. The magnitude of the shift in freshwater residency between survey years was positively associated with predicted interannual variability in the success of larval settlement in streams on each island based on passive drift in ocean currents. We built on these findings by developing a theoretical model of goby life history to further evaluate whether mediation of migration outcomes by stream and ocean hydrodynamics could be sufficient to explain the range of partial migration frequency observed across populations. The model illustrates that the proportion of larvae entering the ocean and differential survival of freshwater-resident versus ocean-going larvae are plausible mechanisms for range-wide shifts in migration strategies. Thus, we propose that hydrologic variation in both ocean and stream environments contributes to spatiotemporal variation in the prevalence of migration phenotypes in A. stamineus. Our empirical and theoretical results suggest that the capacity for partial migration could enhance the persistence of metapopulations of diadromous fish when confronted with variable ocean and stream conditions.
Collapse
Affiliation(s)
- Peter J. Lisi
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Washington Department of Fish and WildlifeMill CreekWashingtonUSA
| | - J. Derek Hogan
- Department of Life SciencesTexas A&M University–Corpus ChristiCorpus ChristiTexasUSA
| | - Galen Holt
- Centre for Regional and Rural FuturesDeakin UniversityWaurn PondsVictoriaAustralia
| | - Kristine N. Moody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA,Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Johanna L. K. Wren
- Department of OceanographySchool of Ocean and Earth Science and Technology (SOEST), University of Hawaiʻi at MānoaHonoluluHawaiʻiUSA,Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Donald R. Kobayashi
- Pacific Islands Fisheries Science Center, NOAA/NMFS, NOAA IRCHonoluluHawaiʻiUSA
| | - Michael J. Blum
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisianaUSA,Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Peter B. McIntyre
- Center for LimnologyUniversity of WisconsinMadisonWisconsinUSA,Department of Natural Resources and the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
11
|
Brutovský B. Scales of Cancer Evolution: Selfish Genome or Cooperating Cells? Cancers (Basel) 2022; 14:cancers14133253. [PMID: 35805025 PMCID: PMC9264996 DOI: 10.3390/cancers14133253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Cancer continuously evolves its ability to survive in time-varying microenvironment, which results, regarding the therapeutic context, in its therapeutic resistance. As it is accepted that the development of resistance is the direct consequence of intratumour heterogeneity, its evolutionary etiology is intensively studied. Models of carinogenesis are often assessed accordingly to how well they fit into the evolutionary scenario. In the paper, the relevant observations and concepts in cancer research, such as intratumour heterogeneity, cell plasticity, and Markov cell state dynamics, are reviewed and integrated into an evolutionary model. The possibility that the interaction between cancer cells can be interpreted as cooperation is proposed. Abstract The exploitation of the evolutionary modus operandi of cancer to steer its progression towards drug sensitive cancer cells is a challenging research topic. Integrating evolutionary principles into cancer therapy requires properly identified selection level, the relevant timescale, and the respective fitness of the principal selection unit on that timescale. Interpretation of some features of cancer progression, such as increased heterogeneity of isogenic cancer cells, is difficult from the most straightforward evolutionary view with the cancer cell as the principal selection unit. In the paper, the relation between the two levels of intratumour heterogeneity, genetic, due to genetic instability, and non-genetic, due to phenotypic plasticity, is reviewed and the evolutionary role of the latter is outlined. In analogy to the evolutionary optimization in a changing environment, the cell state dynamics in cancer clones are interpreted as the risk diversifying strategy bet hedging, optimizing the balance between the exploitation and exploration of the cell state space.
Collapse
Affiliation(s)
- Branislav Brutovský
- Department of Biophysics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 041 54 Košice, Slovakia
| |
Collapse
|
12
|
Galanto N, Sartor C, Moscato V, Lizama M, Lemer S. Effects of elevated temperature on reproduction and larval settlement in Leptastrea purpurea. CORAL REEFS (ONLINE) 2022; 41:293-302. [PMID: 35368716 PMCID: PMC8958488 DOI: 10.1007/s00338-022-02241-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED As global ocean temperatures continue to rise, severe declines in coral reef health and diversity are reported on a global scale. Recovery of coral reefs relies on reproduction and increased rates of successful recruitment, which can vary tremendously across coral species. We investigated the effects of increased temperatures in the environment of parental colonies on larval production, size, settlement and survival, in the heat-resistant coral Leptastrea purpurea in Guam. Thanks to two tank experiments (eleven and four weeks, respectively) conducted over two consecutive years we found that larvae released by heat-treated parents (30 °C) were significantly smaller in size but greater in number, had normal settlement behavior and increased post-settlement survival rates compared to those released by control parent colonies (28 °C). We conclude that changes in the environment of parental L. purpurea colonies trigger an anticipatory maternal effect which leads to the release of preconditioned larvae with an increased chance of survival. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00338-022-02241-y.
Collapse
Affiliation(s)
- Nikko Galanto
- University of Guam Marine Laboratory, Mangilao, GU 96923 USA
| | | | | | - Mykel Lizama
- University of Guam Marine Laboratory, Mangilao, GU 96923 USA
| | - Sarah Lemer
- University of Guam Marine Laboratory, Mangilao, GU 96923 USA
| |
Collapse
|
13
|
Karjalainen J, Tuloisela M, Nyholm K, Marjomäki TJ. Vendace (Coregonus albula) Disperse Their Eggs Widely during Spawning. ANN ZOOL FENN 2021. [DOI: 10.5735/086.058.0403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Juha Karjalainen
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Markus Tuloisela
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Kristiina Nyholm
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Timo J. Marjomäki
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
14
|
Rowiński PK, Sowersby W, Näslund J, Eckerström-Liedholm S, Gotthard K, Rogell B. Variation in developmental rates is not linked to environmental unpredictability in annual killifishes. Ecol Evol 2021; 11:8027-8037. [PMID: 34188869 PMCID: PMC8216982 DOI: 10.1002/ece3.7632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022] Open
Abstract
Comparative evidence suggests that adaptive plasticity may evolve as a response to predictable environmental variation. However, less attention has been placed on unpredictable environmental variation, which is considered to affect evolutionary trajectories by increasing phenotypic variation (or bet hedging). Here, we examine the occurrence of bet hedging in egg developmental rates in seven species of annual killifish that originate from a gradient of variation in precipitation rates, under three treatment incubation temperatures (21, 23, and 25°C). In the wild, these species survive regular and seasonal habitat desiccation, as dormant eggs buried in the soil. At the onset of the rainy season, embryos must be sufficiently developed in order to hatch and complete their life cycle. We found substantial differences among species in both the mean and variation of egg development rates, as well as species-specific plastic responses to incubation temperature. Yet, there was no clear relationship between variation in egg development time and variation in precipitation rate (environmental predictability). The exact cause of these differences therefore remains enigmatic, possibly depending on differences in other natural environmental conditions in addition to precipitation predictability. Hence, if species-specific variances are adaptive, the relationship between development and variation in precipitation is complex and does not diverge in accordance with simple linear relationships.
Collapse
Affiliation(s)
| | - Will Sowersby
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Biology Faculty of Science Osaka City University Osaka Japan
| | - Joacim Näslund
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| | | | - Karl Gotthard
- Department of Zoology Stockholm University Stockholm Sweden
| | - Björn Rogell
- Department of Zoology Stockholm University Stockholm Sweden
- Department of Aquatic Resources Institute of Freshwater Research Swedish University of Agricultural Sciences Drottningholm Sweden
| |
Collapse
|
15
|
Gillard MB, Castillo JM, Mesgaran MB, Futrell CJ, Grewell BJ. High aqueous salinity does not preclude germination of invasive
Iris pseudacorus
from estuarine populations. Ecosphere 2021. [DOI: 10.1002/ecs2.3486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Morgane B. Gillard
- USDA‐ARS Invasive Species and Pollinator Health Research Unit Department of Plant Sciences MS‐4 University of California Davis California95616USA
| | - Jesús M. Castillo
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla41080Spain
| | - Mohsen B. Mesgaran
- Department of Plant Sciences University of California Davis California95616USA
| | - Caryn J. Futrell
- USDA‐ARS Invasive Species and Pollinator Health Research Unit Department of Plant Sciences MS‐4 University of California Davis California95616USA
| | - Brenda J. Grewell
- USDA‐ARS Invasive Species and Pollinator Health Research Unit Department of Plant Sciences MS‐4 University of California Davis California95616USA
| |
Collapse
|
16
|
Crean AJ, Immler S. Evolutionary consequences of environmental effects on gamete performance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200122. [PMID: 33866815 DOI: 10.1098/rstb.2020.0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in pre- and post-release gamete environments can influence evolutionary processes by altering fertilization outcomes and offspring traits. It is now widely accepted that offspring inherit epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to eggs and sperm-acquired post-release may also persist post-fertilization with consequences for offspring developmental success and later-life fitness. In externally fertilizing species, gametes are directly exposed to anthropogenically induced environmental impacts including pollution, ocean acidification and climate change. When fertilization occurs within the female reproductive tract, although gametes are at least partially protected from external environmental variation, the selective environment is likely to vary among females. In both scenarios, gamete traits and selection on gametes can be influenced by environmental conditions such as temperature and pollution as well as intrinsic factors such as male and female reproductive fluids, which may be altered by changes in male and female health and physiology. Here, we highlight some of the pathways through which changes in gamete environments can affect fertilization dynamics, gamete interactions and ultimately offspring fitness. We hope that by drawing attention to this important yet often overlooked source of variation, we will inspire future research into the evolutionary implications of anthropogenic interference of gamete environments including the use of assisted reproductive technologies. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
17
|
Chen E, Zielinski C, Deno J, Singh R, Bell AM, Hellmann JK. The specificity of sperm-mediated paternal effects in threespine sticklebacks. Behav Ecol Sociobiol 2021; 75:68. [PMID: 37283951 PMCID: PMC10241442 DOI: 10.1007/s00265-021-03001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Parental effects may help offspring respond to challenging environments, but whether parental exposure to different environmental challenges induces similar responses in offspring is largely unknown. We compared the offspring of threespine stickleback (Gasterosteus aculeatus) fathers who had been exposed to a potentially threatening stimulus (net), a native predator (sculpin), or who had been left unexposed (control). Relative to offspring of control fathers, offspring of sculpin-exposed fathers were more responsive (greater change in activity) to a simulated sculpin predator attack, while offspring of net-exposed fathers were less responsive (fewer antipredator behaviors) and showed altered stress responses compared to the control. To evaluate whether parental exposure primes offspring to respond to specific stimuli (e.g., offspring of net-exposed fathers respond most strongly to a net), we then exposed offspring of each paternal treatment to nets, native sculpin models, or non-native trout models. Paternal treatment did not influence offspring response to different stimuli; instead, offspring were generally more responsive to the native sculpin predator compared to nets or non-native trout predator, suggesting that sticklebacks have innate predator recognition of native predators. Collectively, these results underscore that, while parental exposure to non-ecologically relevant stressors elicits effects in intergenerational studies, these findings may not mirror those produced when parents encounter ecologically relevant stressors. Knowing that parental effects can be predator-specific furthers our understanding of the ways in which parental effects may evolve to be adaptive and suggests the potential for transgenerational plasticity to affect how animals respond to human induced environmental change, including non-native predators.
Collapse
Affiliation(s)
- Eunice Chen
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Christian Zielinski
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack Deno
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Raiza Singh
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Alison M. Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jennifer K. Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Present address: Department of Biology, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
18
|
Cameron H, Johnson DW, Monro K, Marshall DJ. Multilevel Selection on Offspring Size and the Maintenance of Variation. Am Nat 2021; 197:448-460. [PMID: 33755536 DOI: 10.1086/712890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractMultilevel selection on offspring size occurs when offspring fitness depends on both absolute size (hard selection) and size relative to neighbors (soft selection). We examined multilevel selection on egg size at two biological scales-within clutches and among clutches from different females-using an external fertilizing tube worm. We exposed clutches of eggs to two sperm environments (limiting and saturating) and measured their fertilization success. We then modeled environmental (sperm-dependent) differences in hard and soft selection on individual eggs as well as selection on clutch-level traits (means and variances). Hard and soft selection differed in strength and form depending on sperm availability-hard selection was consistently stabilizing; soft selection was directional and favored eggs relatively larger (sperm limitation) or smaller (sperm saturation) than the clutch mean. At the clutch level, selection on mean egg size was largely concave, while selection on within-clutch variance was weak but generally negative-although some correlational selection occurred between these two traits. Importantly, we found that the optimal clutch mean egg size differed for mothers and offspring, suggesting some antagonism between the levels of selection. We thus identify several pathways that may maintain offspring size variation: environmentally (sperm-) dependent soft selection, antagonistic multilevel selection, and correlational selection on clutch means and variances. Multilevel approaches are powerful but seldom-used tools for studies of offspring size, and we encourage their future use.
Collapse
|
19
|
The Ecology of the Zebra Finch Makes It a Great Laboratory Model but an Outlier amongst Passerine Birds. BIRDS 2021. [DOI: 10.3390/birds2010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zebra Finches have become the most widely researched bird species outside of those used in agricultural production. Their adoption as the avian model of choice is largely down to a number of characteristics that make them easy to obtain and use in captivity. The main point of our paper is that the very characteristics that make the Zebra Finch a highly amenable laboratory model species mean that it is by definition different from many other passerine birds, and therefore not a good general model for many research areas. The Zebra Finch is likely to be particularly resilient to the effects of stress early in life, and is likely to show great flexibility in dealing with a wide variety of conditions later in life. Whilst it is tempting for researchers to turn to species such as the Zebra Finch, that can be the focus of manipulative work in the laboratory, we caution that the findings of such studies may confound our understanding of general avian biology. The Zebra Finch will remain an excellent species for laboratory work, and our paper should help to direct and interpret future work in the laboratory and the field.
Collapse
|
20
|
López Sánchez A, Pascual-Pardo D, Furci L, Roberts MR, Ton J. Costs and Benefits of Transgenerational Induced Resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:644999. [PMID: 33719325 PMCID: PMC7952753 DOI: 10.3389/fpls.2021.644999] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 05/20/2023]
Abstract
Recent evidence suggests that stressed plants employ epigenetic mechanisms to transmit acquired resistance traits to their progeny. However, the evolutionary and ecological significance of transgenerational induced resistance (t-IR) is poorly understood because a clear understanding of how parents interpret environmental cues in relation to the effectiveness, stability, and anticipated ecological costs of t-IR is lacking. Here, we have used a full factorial design to study the specificity, costs, and transgenerational stability of t-IR following exposure of Arabidopsis thaliana to increasing stress intensities by a biotrophic pathogen, a necrotrophic pathogen, and salinity. We show that t-IR in response to infection by biotrophic or necrotrophic pathogens is effective against pathogens of the same lifestyle. This pathogen-mediated t-IR is associated with ecological costs, since progeny from biotroph-infected parents were more susceptible to both necrotrophic pathogens and salt stress, whereas progeny from necrotroph-infected parents were more susceptible to biotrophic pathogens. Hence, pathogen-mediated t-IR provides benefits when parents and progeny are in matched environments but is associated with costs that become apparent in mismatched environments. By contrast, soil salinity failed to mediate t-IR against salt stress in matched environments but caused non-specific t-IR against both biotrophic and necrotrophic pathogens in mismatched environments. However, the ecological relevance of this non-specific t-IR response remains questionable as its induction was offset by major reproductive costs arising from dramatically reduced seed production and viability. Finally, we show that the costs and transgenerational stability of pathogen-mediated t-IR are proportional to disease pressure experienced by the parents, suggesting that plants use disease severity as an environmental proxy to adjust investment in t-IR.
Collapse
Affiliation(s)
- Ana López Sánchez
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Ana López Sánchez,
| | - David Pascual-Pardo
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Leonardo Furci
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Roberts
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Jurriaan Ton
- Plant Production and Protection (P3) Centre, Institute for Sustainable Food, Department of Animal and Plant Sciences, The University of Sheffield, Sheffield, United Kingdom
- Jurriaan Ton,
| |
Collapse
|
21
|
Plard F, Chamiot-Clerc B, Cohas A. Influences of climatic and social environment on variable maternal allocation among offspring in Alpine marmots. J Anim Ecol 2020; 90:471-482. [PMID: 33155282 DOI: 10.1111/1365-2656.13380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/28/2022]
Abstract
In an environment with limited resources, parents may trade-off the number of offspring produced against offspring mass. To maximize fitness under unpredictable environments, females must not only maximize mean annual reproductive success but also minimize between-year variation in reproductive success. Thus, preferred strategies of maternal allocation might be to maximize the mass of their offspring or to produce a number of offspring of variable body masses. Many social species have evolved in variable and unpredictable environments where only the social environment can be predicted. If mothers seem to alter their total reproductive allocation to offspring depending on their social environment, how the total expenditure is allocated between the different offspring is still unknown. Here, we analysed how climatic and social environments influence strategies of maternal allocation and how these strategies impact pup first-year survival in a wild population of Alpine marmots monitored between 1990 and 2016. We found that females acted as income breeders using resources immediately available for reproduction. Our results showed that the proportion of maternal mass allocated to offspring varied mainly with litter size. However, how maternal allocation is shared between pups depended on climatic and social environments. In general, mothers tended to have litters of greater average mass and small variability in favourable social environments or when resources are abundant and lighter average pup mass but high variability in unfavourable social environments or when resources are scarce. This variable allocation could correspond to dynamic bet-hedging such that mothers influence the variance of pup mass within the litter in response to poor current environmental conditions. Our analysis of first-year survival showed that females should maximize the body mass of their young whatever the conditions will be because pups of higher mass have higher survival, regardless of environmental conditions. When resources are scarce, this strategy might not be achievable for all pups so that mothers produced variable pups. In large litters, this strategy increased first-year survival. Because pup variability affects parental fitness, differential allocation between pups of the same litter could have large consequences on fitness and thus on reproductive strategies of social species.
Collapse
Affiliation(s)
- Floriane Plard
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard (Lyon I), Villeurbanne, France
| | - Benoit Chamiot-Clerc
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard (Lyon I), Villeurbanne, France.,Department of Aquaculture and Fish Biology, Hólar University, Sauðrkrókur, Iceland
| | - Aurélie Cohas
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard (Lyon I), Villeurbanne, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
22
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
23
|
Foster T, Gilmour J. Egg size and fecundity of biannually spawning corals at Scott Reef. Sci Rep 2020; 10:12313. [PMID: 32703979 PMCID: PMC7378250 DOI: 10.1038/s41598-020-68289-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 05/20/2020] [Indexed: 12/05/2022] Open
Abstract
Egg size and fecundity are often used as proxies for coral reproductive success and health. The amount of energy a coral invests in reproduction reflects its environmental conditions during gametogenesis. Additionally, assuming resources for reproduction are limited, it is thought that an increase in egg size should result in a decrease in the number of eggs produced i.e. investing in many small eggs or fewer larger eggs. The biannually spawning populations of Scott Reef offer a unique opportunity to compare the egg size and polyp fecundity of corals exposed to different environmental conditions during gametogenesis, prior to spawning in autumn (March) and spring (October). In this study, we investigated the relationship between egg size and polyp fecundity within and between seven Acropora species from 2008 to 2010. We also quantified the fecundity and egg size of four Acropora species that spawn during both autumn and spring (2008–2010). We found no seasonal variability in egg size and fecundity in the species studied here, possibly as a result of a summer light regime being impacted by high cloud cover in cyclone season. There was high natural variability and no apparent trade-off between egg size and fecundity, both within and between each species. These findings challenge the assumption that egg size and fecundity are negatively correlated, or that a simple, energetically constrained trade-off exists between the two.
Collapse
Affiliation(s)
- Taryn Foster
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia.
| | - James Gilmour
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
24
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 DOI: 10.1101/370320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/27/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|
25
|
Van Dooren TJM, Silveira AB, Gilbault E, Jiménez-Gómez JM, Martin A, Bach L, Tisné S, Quadrana L, Loudet O, Colot V. Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3588-3602. [PMID: 32166321 PMCID: PMC7307858 DOI: 10.1093/jxb/eraa132] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 05/25/2023]
Abstract
There is renewed interest in whether environmentally induced changes in phenotypes can be heritable. In plants, heritable trait variation can occur without DNA sequence mutations through epigenetic mechanisms involving DNA methylation. However, it remains unknown whether this alternative system of inheritance responds to environmental changes and if it can provide a rapid way for plants to generate adaptive heritable phenotypic variation. To assess potential transgenerational effects induced by the environment, we subjected four natural accessions of Arabidopsis thaliana together with the reference accession Col-0 to mild drought in a multi-generational experiment. As expected, plastic responses to drought were observed in each accession, as well as a number of intergenerational effects of the parental environments. However, after an intervening generation without stress, except for a very few trait-based parental effects, descendants of stressed and non-stressed plants were phenotypically indistinguishable irrespective of whether they were grown in control conditions or under water deficit. In addition, genome-wide analysis of DNA methylation and gene expression in Col-0 demonstrated that, while mild drought induced changes in the DNA methylome of exposed plants, these variants were not inherited. We conclude that mild drought stress does not induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Tom J M Van Dooren
- CNRS - UMR 7618 Institute of Ecology and Environmental Sciences (iEES) Paris, Sorbonne University, Case 237, 4, place Jussieu, 75005 Paris, France
| | - Amanda Bortolini Silveira
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Elodie Gilbault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Antoine Martin
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Liên Bach
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Sébastien Tisné
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Leandro Quadrana
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Colot
- Institut de Biologie de l’Ecole Normale Supérieure, (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| |
Collapse
|
26
|
Scholl JP, Calle L, Miller N, Venable DL. Offspring polymorphism and bet hedging: a large-scale, phylogenetic analysis. Ecol Lett 2020; 23:1223-1231. [PMID: 32406146 DOI: 10.1111/ele.13522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/17/2019] [Accepted: 02/25/2020] [Indexed: 11/29/2022]
Abstract
Offspring polymorphism is a reproductive strategy where individual organisms simultaneously produce offspring that differ in morphology and ecology. It occurs across the Tree of Life but is particularly common among plants, where it is termed seed (diaspore) heteromorphism. The prevalence of this strategy in unpredictably varying environments has resulted in the assumption that it serves as a bet-hedging mechanism. We found 101 examples of this strategy in southwestern North America. We provide phylogenetically informed evidence for the hypothesis that the occurrence of seed heteromorphism increases with increasing environmental variability, though this pattern was only significant for aridity, one of our two rainfall variability metrics. We provide a strong test of bet hedging for a large, taxonomically diverse set of seed heteromorphic species, lending support to the hypothesis that bet hedging is an important mechanistic driver for the evolution of seed heteromorphism.
Collapse
Affiliation(s)
- Joshua P Scholl
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Leonardo Calle
- Department of Forest Management, University of Montana, Missoula, MT, 59802, USA
| | - Nick Miller
- The Nature Conservancy, Tucson, AZ, 85719, USA
| | - D Lawrence Venable
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
27
|
Dias E, Barros AG, Hoffman JC, Antunes C, Morais P. Habitat use and food sources of European flounder larvae ( Platichthys flesus, L. 1758) across the Minho River estuary salinity gradient (NW Iberian Peninsula). REGIONAL STUDIES IN MARINE SCIENCE 2020; 34:10.1016/j.rsma.2020.101196. [PMID: 33426248 PMCID: PMC7787986 DOI: 10.1016/j.rsma.2020.101196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The European flounder (Platichthys flesus Linnaeus, 1758) exhibits plasticity for several life traits throughout its distribution range, including ontogenetic habitat shifts during early life, as well as the timing and duration of spawning. Estuaries are preferred as nursery habitat; however, the importance of specific salinity zones for larval development is not well-understood. Therefore, we aimed to identify the significance of distinct estuarine salinity habitats (i.e., tidal freshwater, brackish) along the Minho River estuary (NW-Iberian Peninsula, Europe) for larval development by combining field observations with carbon (C) and nitrogen (N) stable isotope analysis. Sampling occurred between January 2015 and January 2016 in six sampling stations across the estuarine salinity gradient. A total of 29 larvae were collected in the Minho River estuary from March till September 2015. Spawning likely occurred near the river mouth because the highest abundance of larvae occurred in the brackish estuary. Timing for migration towards freshwater was variable with metamorphosis likely occurring in both brackish and freshwater habitats. European flounder larvae obtained their diet from the benthic food web, indicating that benthic habitat is fundamental for larval development, including prior to settlement. This study provides further evidence on the behavioral plasticity of European flounder during early life regarding both habitat use and timing of migration towards freshwater habitats. Additionally, this study demonstrates the importance of preserving estuarine connectivity for this migratory species.
Collapse
Affiliation(s)
- Ester Dias
- CIMAR/CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Ana Gabriela Barros
- CIMAR/CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campos de Gualtar, 4710-057 Braga, Portugal
| | - Joel C. Hoffman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, Minnesota, 55804, USA
| | - Carlos Antunes
- CIMAR/CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, 4450-208 Matosinhos, Portugal
- Aquamuseu do Rio Minho, Parque do Castelinho s/n, 4920-290 Vila Nova de Cerveira, Portugal
| | - Pedro Morais
- CCMAR – Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Rodríguez-Ruiz G, López P, Martín J. Dietary vitamin D in female rock lizards induces condition-transfer effects in their offspring. Behav Ecol 2020. [DOI: 10.1093/beheco/araa008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
One way that maternal effects may benefit the offspring is by informing them about the characteristics of the environment. Through gestation, environmentally induced maternal effects might promote in the offspring-specific behavioral responses like dispersal or residence according to their new habitat characteristics. Females of the Carpetan rock lizard (Iberolacerta cyreni) seem to choose their home ranges using the smell of provitamin D3 in scent marks produced by males. Here, we supplemented gravid females of I. cyreni with dietary provitamin D3 or vitamin D3 to examine whether these food resources, also associated with the scent of males, affect the motivation to disperse and the locomotor performance of their offspring. Our results suggest that the supplementary availability of the resource (vitamin D3) to mothers may provoke condition-transfer maternal effects that motivate the residence or the dispersal of the offspring in their postnatal habitat. Thus, hatchlings of supplemented females had a lower dispersal trend in spite of having a greater climbing ability than hatchlings from nonsupplemented females. This suggests that the levels of provitamin D3 and vitamin D3 inside the body of the mother could act as an informative compound of the habitat quality for the offspring.
Collapse
Affiliation(s)
- Gonzalo Rodríguez-Ruiz
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pilar López
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - José Martín
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
29
|
Brutovsky B, Horvath D. In Silico implementation of evolutionary paradigm in therapy design: Towards anti-cancer therapy as Darwinian process. J Theor Biol 2020; 485:110038. [PMID: 31580834 DOI: 10.1016/j.jtbi.2019.110038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 02/02/2023]
Abstract
In here presented in silico study we suggest a way how to implement the evolutionary principles into anti-cancer therapy design. We hypothesize that instead of its ongoing supervised adaptation, the therapy may be constructed as a self-sustaining evolutionary process in a dynamic fitness landscape established implicitly by evolving cancer cells, microenvironment and the therapy itself. For these purposes, we replace a unified therapy with the 'therapy species', which is a population of heterogeneous elementary therapies, and propose a way how to turn the toxicity of the elementary therapy into its fitness in a way conforming to evolutionary causation. As a result, not only the therapies govern the evolution of different cell phenotypes, but the cells' resistances govern the evolution of the therapies as well. We illustrate the approach by the minimalistic ad hoc evolutionary model. Its results indicate that the resistant cells could bias the evolution towards more toxic elementary therapies by inhibiting the less toxic ones. As the evolutionary causation of cancer drug resistance has been intensively studied for a few decades, we refer to cancer as a special case to illustrate purely theoretical analysis.
Collapse
Affiliation(s)
- B Brutovsky
- Department of Biophysics, Faculty of Science, Jesenna 5, P. J. Safarik University, Jesenna 5, Kosice 04154, Slovakia.
| | - D Horvath
- Technology and Innovation Park, Center of Interdisciplinary Biosciences, P. J. Safarik University, Jesenna 5, Kosice 04154, Slovakia
| |
Collapse
|
30
|
Toepfer P, O'Donnell KJ, Entringer S, Heim CM, Lin DTS, MacIsaac JL, Kobor MS, Meaney MJ, Provençal N, Binder EB, Wadhwa PD, Buss C. A Role of Oxytocin Receptor Gene Brain Tissue Expression Quantitative Trait Locus rs237895 in the Intergenerational Transmission of the Effects of Maternal Childhood Maltreatment. J Am Acad Child Adolesc Psychiatry 2019; 58:1207-1216. [PMID: 30858011 PMCID: PMC6733663 DOI: 10.1016/j.jaac.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Women exposed to childhood maltreatment (CM) are more likely to exhibit insensitive parenting, which may have consequences for their offspring's development. Variation in the oxytocin-receptor gene (OXTR) moderates risk of CM-associated long-term sequelae associated with mother-child attachment, although functionality of previously investigated single nucleotide polymorphisms (SNPs) remained elusive. Here, we investigated the role of OXTR rs237895, a brain tissue expression quantitative trait locus (eQTL), as a moderator of the relationship between CM and maternal behavior (MB) and the association between MB and offspring attachment security. METHOD Of 110 women with information on rs237895 genotype (T-allele = 64, CC = 46), 107 had information on CM (CTQ) and 99 on standardized observer-based ratings of MB at 6 months postpartum (responsivity and detachment), which were used in principal component analysis to obtain a latent factor representing MB. Offspring (n = 86) attachment was evaluated at 12 months of age. Analyses predicting MB were adjusted for socioeconomic status, age, postpartum depression, and genotype-based ethnicity. Analyses predicting child attachment were adjusted for infant sex, socioeconomic status, and postpartum depression. RESULTS rs237895 significantly moderated the relationship between CM and MB (F1;66 = 7.99, p < .01), indicating that CM was associated with maternal insensitivity only in high-OXTR-expressing T-allele carriers but not in low-OXTR-expressing CC homozygotes. Moreover, maternal insensitivity predicted offspring insecure attachment (B = -0.551; p < .05). CONCLUSION Women with a high OXTR expressing genotype are more susceptible to CM-related impairments in MB that, in turn, predict attachment security in their children, supporting the role of the OT system in the intergenerational transmission of risk associated with maternal CM.
Collapse
Affiliation(s)
- Philipp Toepfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, Canada
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California, Irvine
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Penn State University, University Park, PA
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, Canada; Singapore Institute for Clinical Sciences, Singapore
| | - Nadine Provençal
- Max-Planck Institute of Psychiatry, Munich, Germany; Simon Fraser University, Faculty of Health Sciences, Burnaby, and BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elisabeth B Binder
- Max-Planck Institute of Psychiatry, Munich, Germany; Emory University School of Medicine, Atlanta, GA
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, University of California, Irvine
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Development, Health, and Disease Research Program, University of California, Irvine.
| |
Collapse
|
31
|
Donelan SC, Hellmann JK, Bell AM, Luttbeg B, Orrock JL, Sheriff MJ, Sih A. Transgenerational Plasticity in Human-Altered Environments. Trends Ecol Evol 2019; 35:115-124. [PMID: 31706627 DOI: 10.1016/j.tree.2019.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023]
Abstract
Our ability to predict how species will respond to human-induced rapid environmental change (HIREC) may depend upon our understanding of transgenerational plasticity (TGP), which occurs when environments experienced by previous generations influence phenotypes of subsequent generations. TGP evolved to help organisms cope with environmental stressors when parental environments are highly predictive of offspring environments. HIREC can alter conditions that favored TGP in historical environments by reducing parents' ability to detect environmental conditions, disrupting previous correlations between parental and offspring environments, and interfering with the transmission of parental cues to offspring. Because of the propensity to produce errors in these processes, TGP will likely generate negative fitness outcomes in response to HIREC, though beneficial fitness outcomes may occur in some cases.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Barney Luttbeg
- Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, OK 74078, USA
| | - John L Orrock
- Department of Integrative Biology, 145 Noland Hall, 250 North Mills Street, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
32
|
Ding J, Yang W, Yang Y, Ai S, Bai X, Zhang Y. Variations in tree sparrow (Passer montanus) egg characteristics under environmental metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:946-955. [PMID: 31412498 DOI: 10.1016/j.scitotenv.2019.06.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/08/2019] [Accepted: 06/08/2019] [Indexed: 06/10/2023]
Abstract
Environmental metal pollution is known to adversely affect bird reproduction, for which the variations of egg characteristics are considered very important. Our study explored whether variations in egg characteristics, such as egg volume, eggshell spotting pattern, eggshell coloration, and eggshell thickness, were correlated with heavy metal levels (Cu, Zn, Pb, and Cd) and Ca levels in the eggshells of tree sparrows (Passer montanus), a widespread passerine species. Eggs were collected from a long-term heavy metal polluted area (Baiyin, BY, northwest China) and a relatively unpolluted area (Liujiaxia, LJX, northwest China). Our results showed that the embryonated (eggshell: Cu: p = 0.003, Pb: p = 0.002) and non-embryonated (egg contents: Pb: p = 0.044, Ca: p = 0.045) eggs collected from BY contained relatively higher metal concentrations than those from LJX. Eggs from BY were smaller in volume (p < 0.01) and thinner in eggshell thickness (p < 0.01) than those from LJX. Mean egg volume increased with clutch size in BY (p = 0.017), which was also accompanied by an increase in the within-clutch coefficient of variation (CV) for egg volume (p = 0.045). Clutches with a higher CV for egg volume tended to contain higher concentrations of Zn and Pb (Zn: p = 0.084; Pb: p = 0.081) in the eggshells from BY. No differences were found in the eggshell spotting coverage ratio of eggs; however, eggshells were much darker in BY than in LJX. A more aggregated eggshell spotting distribution indicated higher eggshell Zn and Pb levels (BY: Zn: p = 0.040, Pb: p = 0.076; LJX: Pb: p = 0.066). The results demonstrate that the egg characteristics of tree sparrows can be used as indicators of metal pollution, especially for the within-clutch CV for egg volume, eggshell spotting pattern and eggshell coloration.
Collapse
Affiliation(s)
- Jian Ding
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ying Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shiwei Ai
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaojuan Bai
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
33
|
Proulx SR, Dey S, Guzella T, Teotónio H. How differing modes of non-genetic inheritance affect population viability in fluctuating environments. Ecol Lett 2019; 22:1767-1775. [PMID: 31436016 DOI: 10.1111/ele.13355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Different modes of non-genetic inheritance are expected to affect population persistence in fluctuating environments. We here analyse Caenorhabditis elegans density-independent per capita growth rate time series on 36 populations experiencing six controlled sequences of challenging oxygen level fluctuations across 60 generations, and parameterise competing models of non-genetic inheritance in order to explain observed dynamics. Our analysis shows that phenotypic plasticity and anticipatory maternal effects are sufficient to explain growth rate dynamics, but that a carryover model where 'epigenetic' memory is imperfectly transmitted and might be reset at each generation is a better fit to the data. We further find that this epigenetic memory is asymmetric since it is kept for longer when populations are exposed to the more challenging environment. Our analysis suggests that population persistence in fluctuating environments depends on the non-genetic inheritance of phenotypes whose expression is regulated across multiple generations.
Collapse
Affiliation(s)
- Stephen R Proulx
- Department of Ecology, Evolution, and Marine Biology, UC Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Snigdhadip Dey
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Thiago Guzella
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| | - Henrique Teotónio
- Institut de Biologie de L'École Normale Suṕerieure, CNRS, Inserm, PSL Research University, F-75005, Paris, France
| |
Collapse
|
34
|
Hsu BY, Verhagen I, Gienapp P, Darras VM, Visser ME, Ruuskanen S. Between- and Within-Individual Variation of Maternal Thyroid Hormone Deposition in Wild Great Tits ( Parus major). Am Nat 2019; 194:E96-E108. [PMID: 31490720 DOI: 10.1086/704738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Maternal hormones are often considered a mediator of anticipatory maternal effects; namely, mothers adjust maternal hormone transfer to prepare the offspring for the anticipated environment. The flexibility for mothers to adjust hormone transfer is therefore a prerequisite for such anticipatory maternal effects. Nevertheless, previous studies have focused only on the average differences of maternal hormone transfer between groups and neglected the substantial individual variation, despite the fact that individual plasticity in maternal hormone transfer is actually the central assumption. In this study, we studied the between- and within-individual variation of maternal thyroid hormones (THs) in egg yolk of wild great tits (Parus major) and estimated the individual plasticity of maternal yolk THs across environmental temperature, clutch initiation dates, and egg laying order using linear mixed effects models. Interestingly, our models provide statistical evidence that the two main THs-the main biologically active hormone T3 and T4, which is mostly considered a prohormone-exhibited different variation patterns. Yolk T3 showed significant between-individual variation on the average levels, in line with its previously reported moderate heritability. Yolk T4, however, showed significant between-clutch variation in the pattern over the laying sequence, suggesting a great within-individual plasticity. Our findings suggest that the role and function of the hormone within the endocrine axis likely influences its flexibility to respond to environmental change. Whether the flexibility of T4 deposition brings a fitness advantage should be examined along with its potential effects on offspring, which remain to be further investigated.
Collapse
|
35
|
Bell AM, Hellmann JK. An Integrative Framework for Understanding the Mechanisms and Multigenerational Consequences of Transgenerational Plasticity. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2019; 50:97-118. [PMID: 36046014 PMCID: PMC9427003 DOI: 10.1146/annurev-ecolsys-110218-024613] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Transgenerational plasticity (TGP) occurs when the environment experienced by a parent influences the development of their offspring. In this article, we develop a framework for understanding the mechanisms and multi-generational consequences of TGP. First, we conceptualize the mechanisms of TGP in the context of communication between parents (senders) and offspring (receivers) by dissecting the steps between an environmental cue received by a parent and its resulting effects on the phenotype of one or more future generations. Breaking down the problem in this way highlights the diversity of mechanisms likely to be involved in the process. Second, we review the literature on multigenerational effects and find that the documented patterns across generations are diverse. We categorize different multigenerational patterns and explore the proximate and ultimate mechanisms that can generate them. Throughout, we highlight opportunities for future work in this dynamic and integrative area of study.
Collapse
Affiliation(s)
- Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Program in Neuroscience and Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
36
|
Gossieaux P, Leclerc M, Van de Walle J, Poisson Y, Toni P, Landes J, Bourret A, Garant D, Pelletier F, Bélisle M. Offspring mass variation in tree swallows: A case of bet‐hedging? Ecosphere 2019; 10:e02607. [PMID: 35865407 PMCID: PMC9286465 DOI: 10.1002/ecs2.2607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022] Open
Abstract
The evolution of reproductive strategies is affected by the ability of organisms to deal with future environmental conditions. When environments are temporally unpredictable, however, it is difficult to anticipate optimal offspring phenotype. Diversification of offspring phenotypes, a strategy called diversified bet‐hedging, may allow parents to maximize their fitness by reducing between‐year variation in reproductive success. The link between diversification of offspring phenotypes and individual reproductive success, however, has rarely been documented empirically. We used an eight‐year dataset (1215 broods, 870 females) on individually marked tree swallows (Tachycineta bicolor) to assess whether intra‐brood mass variation was compatible with a diversified bet‐hedging strategy. Intra‐brood mass variation was weakly, but significantly repeatable within females, suggesting consistent individual differences. Greater intra‐brood mass variation, however, was not associated with reduced between‐year variation in reproductive success or increased female reproductive success. Moreover, contrary to diversified bet‐hedging expectations, fledging success of large broods was greater when hatchlings had similar rather than variable masses. Our results suggest that intra‐brood mass variation may not result from diversified bet‐hedging, but rather from complex interactions between environmental, brood, and maternal characteristics.
Collapse
Affiliation(s)
- Philippine Gossieaux
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Martin Leclerc
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Joanie Van de Walle
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Yoanna Poisson
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Pauline Toni
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Julie Landes
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Audrey Bourret
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Dany Garant
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Fanie Pelletier
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| | - Marc Bélisle
- Département de Biologie Université de Sherbrooke 2500 Boulevard de l'Université Sherbrooke Quebec J1K 2R1 Canada
| |
Collapse
|
37
|
Santacruz-Castro AM. Regional variability in reproductive traits of the Acropora hyacinthus species complex in the Western Pacific Region. PLoS One 2019; 14:e0208605. [PMID: 30695041 PMCID: PMC6350966 DOI: 10.1371/journal.pone.0208605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
Understanding natural variations in the life history traits of reef-building corals under different environmental conditions is an area of active research. This study compares variability in the reproductive and genetic traits of the hermaphroditic broadcast spawning coral Acropora hyacinthus, from the Western Pacific Region, across six different latitudes [Japan (33° and 31°N), Taiwan (23°, 22° and 21°N), and Indonesia (5°S)]. Egg sizes among corals in the lowest latitude studied were significantly larger than those at high latitudes, while the mean number of eggs were significantly different only among high latitude and two out of the three mid latitude locations studied. Egg numbers were significantly negatively correlated with egg and testis volumes, indicating reproductive trade-offs across locations. Female gonad volumes were smaller at high latitudes but significantly larger at lower latitudes, being positively correlated with seawater temperatures. Furthermore, high genetic similarities among populations suggest active gene flow among low-, mid- and high-latitude locations. An exception to this trend, the mid-latitude location of Penghu (off western Taiwan) formed an independent group with highly similar genetic and reproductive traits, suggesting reproductive isolation with local adaptations. This study reports natural spatial variations in the reproductive traits of A. hyacinthus at different latitudinal locations, which may serve as baseline information to predict how the life histories of corals in general respond to the impacts of climate change.
Collapse
Affiliation(s)
- Adriana Maria Santacruz-Castro
- Department of Life Science, National Taiwan Normal University and and Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
38
|
Bellworthy J, Menoud M, Krueger T, Meibom A, Fine M. Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba. ACTA ACUST UNITED AC 2019; 222:jeb.186940. [PMID: 30446540 DOI: 10.1242/jeb.186940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Coral reefs are degrading from the effects of anthropogenic activities, including climate change. Under these stressors, their ability to survive depends upon existing phenotypic plasticity, but also transgenerational adaptation. Parental effects are ubiquitous in nature, yet empirical studies of these effects in corals are scarce, particularly in the context of climate change. This study exposed mature colonies of the common reef-building coral Stylophora pistillata from the Gulf of Aqaba to seawater conditions likely to occur just beyond the end of this century during the peak planulae brooding season (Representative Concentration Pathway 8.5: pH -0.4 and +5°C beyond present day). Parent and planulae physiology were assessed at multiple time points during the experimental incubation. After 5 weeks of incubation, the physiology of the parent colonies exhibited limited treatment-induced changes. All significant time-dependent changes in physiology occurred in both ambient and treatment conditions. Planulae were also resistant to future ocean conditions, with protein content, symbiont density, photochemistry, survival and settlement success not significantly different compared with under ambient conditions. High variability in offspring physiology was independent of parental or offspring treatments and indicate the use of a bet-hedging strategy in this population. This study thus demonstrates weak climate-change-associated carryover effects. Furthermore, planulae display temperature and pH resistance similar to those of adult colonies and therefore do not represent a larger future population size bottleneck. The findings add support to the emerging hypothesis that the Gulf of Aqaba may serve as a coral climate change refugium aided by these corals' inherent broad physiological resistance.
Collapse
Affiliation(s)
- Jessica Bellworthy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel .,The Interuniversity Institute for Marine Sciences in Eilat, P.O. Box 469, Eilat 88103, Israel
| | - Malika Menoud
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland.,Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584CC Utrecht, The Netherlands
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland.,Institute of Earth Sciences, Center for Advanced Surface Analysis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, P.O. Box 469, Eilat 88103, Israel
| |
Collapse
|
39
|
Endriss SB, Vahsen ML, Bitume EV, Grey Monroe J, Turner KG, Norton AP, Hufbauer RA. The importance of growing up: juvenile environment influences dispersal of individuals and their neighbours. Ecol Lett 2018; 22:45-55. [PMID: 30450720 DOI: 10.1111/ele.13166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022]
Abstract
Dispersal is a key ecological process that is strongly influenced by both phenotype and environment. Here, we show that juvenile environment influences dispersal not only by shaping individual phenotypes, but also by changing the phenotypes of neighbouring conspecifics, which influence how individuals disperse. We used a model system (Tribolium castaneum, red flour beetles) to test how the past environment of dispersing individuals and their neighbours influences how they disperse in their current environment. We found that individuals dispersed especially far when exposed to a poor environment as adults if their phenotype, or even one-third of their neighbours' phenotypes, were shaped by a poor environment as juveniles. Juvenile environment therefore shapes dispersal both directly, by influencing phenotype, as well as indirectly, by influencing the external social environment. Thus, the juvenile environment of even a minority of individuals in a group can influence the dispersal of the entire group.
Collapse
Affiliation(s)
- Stacy B Endriss
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.,Department of Natural Resources, Cornell University, Ithaca, NY, USA
| | - Megan L Vahsen
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ellyn V Bitume
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.,Exotic and Invasive Weeds Research Unit, U.S. Department of Agriculture - Agricultural Research Service, Albany, CA, USA
| | - J Grey Monroe
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Kathryn G Turner
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Andrew P Norton
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Ruth A Hufbauer
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
40
|
Schmidt KA, Massol F. Habitat selection and the value of information in heterogenous landscapes. OIKOS 2018. [DOI: 10.1111/oik.05722] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenneth A. Schmidt
- Dept of Biological Sciences, MS 3131, Texas Tech Univ Lubbock TX 79409 USA
| | - François Massol
- Univ. de Lille, CNRS, UMR 8198 ‐ Evo‐Eco‐Paleo, SPICI group Lille France
| |
Collapse
|
41
|
Sato A. Chaperones, Canalization, and Evolution of Animal Forms. Int J Mol Sci 2018; 19:E3029. [PMID: 30287767 PMCID: PMC6213012 DOI: 10.3390/ijms19103029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Over half a century ago, British developmental biologist Conrad Hal Waddington proposed the idea of canalization, that is, homeostasis in development. Since the breakthrough that was made by Rutherford and Lindquist (1998), who proposed a role of Hsp90 in developmental buffering, chaperones have gained much attention in the study of canalization. However, recent studies have revealed that a number of other molecules are also potentially involved in canalization. Here, I introduce the emerging role of DnaJ chaperones in canalization. I also discuss how the expression levels of such buffering molecules can be altered, thereby altering organismal development. Since developmental robustness is maternally inherited in various organisms, I propose that dynamic bet hedging, an increase in within-clutch variation in offspring phenotypes that is caused by unpredictable environmental challenges to the mothers, plays a key role in altering the expression levels of buffering molecules. Investigating dynamic bet hedging at the molecular level and how it impacts upon morphological phenotypes will help our understanding of the molecular mechanisms of canalization and evolutionary processes.
Collapse
Affiliation(s)
- Atsuko Sato
- Department of Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan.
- Marine Biological Association of the UK, The Laboratory, Plymouth PL1 2PB, UK.
| |
Collapse
|
42
|
Giovannini I, Altiero T, Guidetti R, Rebecchi L. Will the Antarctic tardigrade Acutuncus antarcticus be able to withstand environmental stresses related to global climate change? ACTA ACUST UNITED AC 2018; 221:jeb.160622. [PMID: 29242185 DOI: 10.1242/jeb.160622] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Abstract
Because conditions in continental Antarctica are highly selective and extremely hostile to life, its biota is depauperate, but well adapted to live in this region. Global climate change has the potential to impact continental Antarctic organisms because of increasing temperatures and ultraviolet radiation. This research evaluates how ongoing climate changes will affect Antarctic species, and whether Antarctic organisms will be able to adapt to the new environmental conditions. Tardigrades represent one of the main terrestrial components of Antarctic meiofauna; therefore, the pan-Antarctic tardigrade Acutuncus antarcticus was used as model to predict the fate of Antarctic meiofauna threatened by climate change. Acutuncus antarcticus individuals tolerate events of desiccation, increased temperature and UV radiation. Both hydrated and desiccated animals tolerate increases in UV radiation, even though the desiccated animals are more resistant. Nevertheless, the survivorship of hydrated and desiccated animals is negatively affected by the combination of temperature and UV radiation, with the hydrated animals being more tolerant than desiccated animals. Finally, UV radiation has a negative impact on the life history traits of successive generations of A. antarcticus, causing an increase in egg reabsorption and teratological events. In the long run, A. antarcticus could be at risk of population reductions or even extinction. Nevertheless, because the changes in global climate will proceed gradually and an overlapping of temperature and UV increase could be limited in time, A. antarcticus, as well as many other Antarctic organisms, could have the potential to overcome global warming stresses, and/or the time and capability to adapt to the new environmental conditions.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Tiziana Altiero
- Department of Education and Humanities, University of Modena and Reggio Emilia, 42121 Reggio Emilia, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
43
|
Hertler SC. Beyond birth order: The biological logic of personality variation among siblings. COGENT PSYCHOLOGY 2017. [DOI: 10.1080/23311908.2017.1325570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Steven C. Hertler
- Department of Psychology, College of New Rochelle, New Rochelle, NY 10805, USA
| |
Collapse
|
44
|
Meade L, Harley E, Cotton A, Howie JM, Pomiankowski A, Fowler K. Variation in the benefits of multiple mating on female fertility in wild stalk-eyed flies. Ecol Evol 2017; 7:10103-10115. [PMID: 29238540 PMCID: PMC5723596 DOI: 10.1002/ece3.3486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/04/2017] [Indexed: 01/22/2023] Open
Abstract
Polyandry, female mating with multiple males, is widespread across many taxa and almost ubiquitous in insects. This conflicts with the traditional idea that females are constrained by their comparatively large investment in each offspring, and so should only need to mate once or a few times. Females may need to mate multiply to gain sufficient sperm supplies to maintain their fertility, especially in species in which male promiscuity results in division of their ejaculate among many females. Here, we take a novel approach, utilizing wild-caught individuals to explore how natural variation among females and males influences fertility gains for females. We studied this in the Malaysian stalk-eyed fly species Teleopsis dalmanni. After an additional mating, females benefit from greatly increased fertility (proportion fertile eggs). Gains from multiple mating are not uniform across females; they are greatest when females have high fecundity or low fertility. Fertility gains also vary spatially, as we find an additional strong effect of the stream from which females were collected. Responses were unaffected by male mating history (males kept with females or in male-only groups). Recent male mating may be of lesser importance because males in many species, including T. dalmanni, partition their ejaculate to maintain their fertility over many matings. This study highlights the importance of complementing laboratory studies with data on wild-caught populations, where there is considerable heterogeneity between individuals. Future research should focus on environmental, demographic and genetic factors that are likely to significantly influence variation in individual female fecundity and fertility.
Collapse
Affiliation(s)
- Lara Meade
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Elisabeth Harley
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison Cotton
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- CoMPLEXUniversity College LondonLondonUK
- Bristol Zoological SocietyBristol Zoo GardensCliftonBristolUK
| | - James M. Howie
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- CoMPLEXUniversity College LondonLondonUK
| | - Kevin Fowler
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
45
|
Pedersen EJ, Stanley RR, Snelgrove PV, Guichard F. Experimental evidence for concentration-dependence and intraspecific variation of movement behaviour in American lobster (Homarus americanus) larvae. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Predicting dispersal paths of marine larvae with extended pelagic durations, such as American lobster (Homarus americanus H. Milne Edwards, 1837), requires understanding the cues to which larvae respond, and how that response reflects changes in larval behaviour. If larvae respond to conspecific presence by varying their movement, then this behaviour can bias laboratory estimates of environmental responses. We tested whether larvae actively decreased their local intraspecific density by measuring how the vertical distribution of larvae changed under high versus low concentrations of conspecifics. We observed weak increases in vertical dispersion at higher concentrations both in newly hatched larvae and in postlarvae, but not in intermediate larval stages. We also tested for differences in horizontal swimming behaviour in high and low concentrations, by fitting a novel random walk model that allowed us to model both larval interactions and persistent turning behaviours. We showed substantial reduction in diffusive behaviour under high concentration conditions resulting from more frequent turns by each larva, but no evidence for consistent avoidance of conspecifics. Our study is the first to demonstrate concentration-dependent behaviours in lobster larvae.
Collapse
Affiliation(s)
- Eric J. Pedersen
- McGill University, Department of Biology, 1205 Docteur Penfield Avenue, Montreal, QC H3A 1B1, Canada
- University of Wisconsin–Madison, Center for Limnology, 608 North Park Street, Madison, WI 53706, USA
| | - Ryan R.E. Stanley
- Memorial University of Newfoundland, Department of Ocean Science, Logy Bay, NL A1K 3E6, Canada
| | - Paul V.R. Snelgrove
- Memorial University of Newfoundland, Department of Ocean Science, Logy Bay, NL A1K 3E6, Canada
| | - Frédéric Guichard
- McGill University, Department of Biology, 1205 Docteur Penfield Avenue, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
46
|
The mean and variance of climate change in the oceans: hidden evolutionary potential under stochastic environmental variability in marine sticklebacks. Sci Rep 2017; 7:8889. [PMID: 28827678 PMCID: PMC5567136 DOI: 10.1038/s41598-017-07140-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/20/2017] [Indexed: 11/08/2022] Open
Abstract
Increasing climate variability may pose an even greater risk to species than climate warming because temperature fluctuations can amplify adverse impacts of directional warming on fitness-related traits. Here, the influence of directional warming and increasing climate variability on marine stickleback fish (Gasterosteus aculeatus) offspring size variation was investigated by simulating changes to the mean and variance of ocean temperatures predicted under climate change. Reproductive traits of mothers and offspring size reaction norms across four climate scenarios were examined to assess the roles of standing genetic variation, transgenerational and within-generation plasticity in adaptive potential. Mothers acclimated to directional warming produced smaller eggs than mothers in constant, ambient temperatures, whereas mothers in a predictably variable environment (weekly change between temperatures) produced a range of egg sizes, possibly reflecting a diversified bet hedging strategy. Offspring size post-hatch was mostly influenced by genotype by environment interactions and not transgenerational effects. Offspring size reaction norms also differed depending on the type of environmental predictability (predictably variable vs. stochastic), with offspring reaching the largest sizes in the stochastic environment. Release of cryptic genetic variation for offspring size in the stochastic environment suggests hidden evolutionary potential in this wild population to respond to changes in environmental predictability.
Collapse
|
47
|
Cameron H, Monro K, Marshall DJ. Should mothers provision their offspring equally? A manipulative field test. Ecol Lett 2017; 20:1025-1033. [PMID: 28726317 DOI: 10.1111/ele.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022]
Abstract
Within-brood variation in offspring size is universal, but its causes are unclear. Theoretical explanations for within-brood variation commonly invoke bet-hedging, although alternatives consider the role of sibling competition. Despite abundant theory, empirical manipulations of within-brood variation in offspring size are rare. Using a field experiment, we investigate the consequences of unequal maternal provisioning for both maternal and offspring fitness in a marine invertebrate. We create experimental broods of siblings with identical mean, but different variance, in offspring size, and different sibling densities. Overall, more-variable broods had higher mean performance than less-variable broods, suggesting benefits of unequal provisioning that arise independently of bet-hedging. Complementarity effects drove these benefits, apparently because offspring-size variation promotes resource partitioning. We suggest that when siblings compete for the same resources, and offspring size affects niche usage, the production of more-variable broods can provide greater fitness returns given the same maternal investment; a process unanticipated by the current theory.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
48
|
Edmunds PJ. Intraspecific variation in growth rate is a poor predictor of fitness for reef corals. Ecology 2017; 98:2191-2200. [PMID: 28555884 DOI: 10.1002/ecy.1912] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/23/2017] [Accepted: 05/05/2017] [Indexed: 01/29/2023]
Abstract
Genetic variation underlying differences in organism performance is subject to natural selection, and organisms with high values of genetically determined phenotypic measures of fitness should perform better than those that do not. Using small scleractinian corals (i.e., ≤40-mm diameter), this principle was tested with 20 yr of census data from St. John, US Virgin Islands. Using growth rate (change in diameter) as a measure of fitness, growth in one year was tested for association with growth and survivorship in the following two years, and this process was repeated over 20 yr using a 3-yr sliding window. Virtually all variation in growth was independent of colony size, and growth among pairs of years was highly variable, with corals that grew fast in one year rarely growing fast in the next 2 yr. While growth in some pairs of years was positively correlated, ≤4% of the growth variance was explained by growth in the preceding 2 yr. Survivorship was related positively to growth in the preceding year, but the association was weak, it did not extend over 3 yr, and was inconsistent over the study. These results demonstrate the importance of the environment in translating phenotypic measures of fitness into future performance, and for small Caribbean corals, they suggest that environmental conditions may preempt genotype in determining short-term success.
Collapse
Affiliation(s)
- Peter J Edmunds
- Department of Biology, California State University, 18111 Nordhoff Street, Northridge, California, 91330-8303, USA
| |
Collapse
|
49
|
Chamberland VF, Latijnhouwers KRW, Huisman J, Hartmann AC, Vermeij MJA. Costs and benefits of maternally inherited algal symbionts in coral larvae. Proc Biol Sci 2017; 284:20170852. [PMID: 28659451 PMCID: PMC5489732 DOI: 10.1098/rspb.2017.0852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates provide their offspring with symbionts. Yet the consequences of maternally inherited symbionts on larval fitness remain largely unexplored. In the stony coral Favia fragum (Esper 1797), mothers produce larvae with highly variable amounts of endosymbiotic algae, and we examined the implications of this variation in symbiont density on the performance of F. fragum larvae under different environmental scenarios. High symbiont densities prolonged the period that larvae actively swam and searched for suitable settlement habitats. Thermal stress reduced survival and settlement success in F. fragum larvae, whereby larvae with high symbiont densities suffered more from non-lethal stress and were five times more likely to die compared with larvae with low symbiont densities. These results show that maternally inherited algal symbionts can be either beneficial or harmful to coral larvae depending on the environmental conditions at hand, and suggest that F. fragum mothers use a bet-hedging strategy to minimize risks associated with spatio-temporal variability in their offspring's environment.
Collapse
Affiliation(s)
- Valérie F Chamberland
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- SECORE International, 4673 Northwest Parkway, Hilliard, OH 43026, USA
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| | - Kelly R W Latijnhouwers
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Jef Huisman
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Aaron C Hartmann
- Smithsonian Institution, National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, DC 20560, USA
- San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark J A Vermeij
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| |
Collapse
|
50
|
Welch MJ, Munday PL. Heritability of behavioural tolerance to high CO 2 in a coral reef fish is masked by nonadaptive phenotypic plasticity. Evol Appl 2017; 10:682-693. [PMID: 28717388 PMCID: PMC5511360 DOI: 10.1111/eva.12483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated limited potential for acclimation of adversely affected olfactory behaviours in reef fishes under elevated CO2, indicating that genetic adaptation will be required to maintain behavioural performance in the future. Adaptation depends on the presence of heritable phenotypic variation in the trait, which may differ between populations and environments. We used parent–offspring regressions to estimate the heritability (h2) of variation in behavioural tolerance to high CO2 (754 μatm) in both field‐collected and laboratory‐reared families of Acanthochromis polyacanthus. Tolerance to elevated CO2 was measured by determining the behavioural response of individuals to chemical alarm cues. Both populations exhibited high heritability of olfactory behaviour phenotype (father–mid‐offspring h2 = 0.56 & 0.65, respectively) when offspring were acutely exposed to high CO2 for 4 days. However, there was no heritability in the behavioural phenotype when juveniles were chronically exposed to high CO2 for 6 weeks in the laboratory‐reared families. Parental exposure to high CO2 during the breeding season did not alter this relationship between heritability and length of juvenile exposure to high CO2. These results demonstrate that variation in behavioural tolerance to high CO2 is heritable, but adaptive potential may be constrained by a loss of phenotypic variation when juveniles permanently experience a high‐CO2 environment, as will occur with rising CO2 levels in the ocean.
Collapse
Affiliation(s)
- Megan J Welch
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia.,College of Marine and Environmental Sciences James Cook University Townsville QLD Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville QLD Australia
| |
Collapse
|