1
|
Huang L, Cheng T, Zhang X, Zhang H, Deshpande T, Li Y, Xu Z, Abowd GD, Fu Y, Liu Y, Hester J, Li J, Zhu H. Bioinspired Camouflage Fibers with Computer Vision-Guided Chromatic Adaptation. ACS NANO 2025. [PMID: 40378248 DOI: 10.1021/acsnano.5c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The development of intelligent camouflage systems demands advanced materials and control strategies for dynamic environmental adaptation. Here, we demonstrate a bioinspired camouflage system using hydroxypropyl cellulose (HPC), a cellulose derivative that forms cholesteric liquid crystals with mechanically tunable structural colors. By integrating HPC fibers with computer vision-assisted control, we achieve autonomous color matching with the environment through precise mechanical manipulation. Our system employs computer vision and a custom-designed wavelength-value (WV) mapping algorithm to analyze surroundings and control fiber tension, enabling direct modulation of the reflected wavelength. The closed-loop control system achieves color matching with less than 5% error at room temperature and maintains over 95% accuracy across temperatures from 15 to 35 °C. The HPC fibers exhibit reversible color transitions spanning the visible spectrum (400-700 nm). This integration of sustainable biomaterials with computer vision-guided mechanical control demonstrates an alternative approach for advanced camouflage applications, including military concealment and anticounterfeiting technologies.
Collapse
Affiliation(s)
- Luyao Huang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Tingyu Cheng
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xianzhe Zhang
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
| | - Haichao Zhang
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
| | - Tejonidhi Deshpande
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuanqiao Li
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhi Xu
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
| | - Gregory D Abowd
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
| | - Yun Fu
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
- Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yongmin Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Electrical and Computer Engineering, Northeastern University, Georgia Institute of Technology, Boston, Massachusetts 02115, United States
| | - Josiah Hester
- College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jun Li
- State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou 510640, China
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Liu Y, Bi R, Zhang X, Chen Y, Valenzuela C, Yang Y, Liu H, Yang L, Wang L, Feng W. Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage. Angew Chem Int Ed Engl 2025; 64:e202422636. [PMID: 39714338 DOI: 10.1002/anie.202422636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Multispectral camouflage materials that provide adaptable features across a wide spectrum, from visible light to radar frequencies, play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface. The resulting MXene-CLCE exhibits dynamic structural color changes, tunable infrared radiation, and switchable microwave shielding across wide ranges upon mechanical stretching, with its infrared stealth and microwave shielding properties being realized through the reconfiguration of surface morphology from planar to cracked states via mechanical actuation. A visible-to-infrared camouflage octopus-patterned MXene-CLCE is demonstrated to achieve a stealth effect across the visible-infrared spectrum upon mechanical stretching. As an illustration, proof-of-concept pneumatic-driven octopus-inspired soft models are demonstrated, which enables dynamic visible-infrared camouflage and microwave shielding switching between two compatible states. The research herein can offer new perspectives on the development of bioinspired smart camouflage materials and their application in various emerging fields such as smart optical stealth, dynamic thermal management, and switchable electromagnetic devices.
Collapse
Affiliation(s)
- Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ran Bi
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Le Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
- Binhai Industrial Research Institute, Tianjin University, Tianjin, 300452, P. R. China
| |
Collapse
|
3
|
Sreelatha LB, Tarroso P, Nokelainen O, Boratyński Z, Carretero MA. Environmental Gradients in Lizard Colouration. Ecol Evol 2025; 15:e71012. [PMID: 40027420 PMCID: PMC11871090 DOI: 10.1002/ece3.71012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Environmental pressures shape animal colouration, facilitating adaptation to local conditions. However, the extent to which climatic gradients drive colour variation in a species across its distributional range remains unclear. Here, we tested whether the dorsal colouration of Lusitanian wall lizards (Podarcis lusitanicus) varies spatially in response to environmental gradients across its distribution in the north-western Iberian Peninsula. We estimated dorsal colour brightness (i.e., lightness) from multispectral photographs of 463 animals, originating from 21 locations distributed across the species range. We studied direct and indirect (mediated by body mass) relationships between environmental variables and the lightness of lizards, by piecewise structural equation modelling. We simultaneously tested predictions from Gloger's (darker colouration in warm and humid environments), thermal melanism (darker colouration in colder environments), photoprotection (darker colouration in areas with higher intensity of solar radiation) and Bergmann's (larger body size in colder environments) hypotheses. We found that the lightness of lizards best follows predictions of Gloger's hypothesis for humidity, but not supporting the photoprotection hypothesis, independent of the populations' shared ancestry and geographic location. We found no support for direct thermal melanism, as temperature was not directly associated with lightness. Instead, the indirect effect of temperature on lightness through body size was detected. Consistent with Bergmann's hypothesis, lizards in colder regions tended to be larger and darker. Our study indicates that the evolution of lizard dorsal colouration is driven by variable climatic factors. Experimental tests are necessary to assess the mechanisms driving climatic effects on colouration across diverse environments, advancing beyond the simplistic correlations suggested by ecogeographic hypotheses.
Collapse
Affiliation(s)
- Lekshmi B. Sreelatha
- CIBIO‐InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOVairãoPortugal
| | - Pedro Tarroso
- CIBIO‐InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOVairãoPortugal
| | - Ossi Nokelainen
- Open Science CentreUniversity of JyväskyläJyväskyläFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Zbyszek Boratyński
- CIBIO‐InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOVairãoPortugal
| | - Miguel Angel Carretero
- CIBIO‐InBIO Associate Laboratory, Research Centre in Biodiversity and Genetic ResourcesUniversity of PortoVairãoPortugal
- Departamento de BiologiaFaculdade de Ciências da Universidade do PortoPortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIOVairãoPortugal
| |
Collapse
|
4
|
Marom S, Kiflawi M, Akkaynak D, Holzman R. Dynamic color change in the grouper Variola louti during interspecific interactions and swimming. Behav Ecol 2025; 36:araf005. [PMID: 40008180 PMCID: PMC11851106 DOI: 10.1093/beheco/araf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/02/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Animals can change their body color for various ecological functions. In fish, rapid dynamic color change is primarily known in contexts of intraspecific communication and camouflage, while examples in interspecific contexts are rare. We studied dynamic color changes and their associated behaviors in the grouper Variola louti in its native coral reef environment in the Red Sea. Using underwater videos to record natural behaviors and color-calibrated still images to measure body colors, we quantified color displays as the brightness of the body and the contrast of three distinct patterns: body patches, head stripe, and side bars. V. louti exhibited a diverse range of pattern displays, which rapidly transformed according to its behavioral shifts. A high-contrast head stripe pattern was observed when V. louti engaged in agonistic interspecific interactions, but was interestingly absent when hunting alone or in cooperation with moray eels. The brightness of V. louti's body color and the contrasts of the body patches and side bars were associated with its swimming behavior. Darker body colors and high contrast body patches and side bars were expressed when the fish rested on the bottom, whereas bright and uniform body colors were displayed when swimming higher above the reef. Our results suggest that V. louti utilizes dynamic color displays for camouflage and interspecific communication in agonistic and competitive interspecific interactions. These findings highlight the importance of dynamic color changes for communication and provide valuable insights into the behavioral ecology of animals.
Collapse
Affiliation(s)
- Sagi Marom
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- The Inter-University Institute for Marine Sciences, P.O. Box 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, P.O. Box 653, Beer Sheva 8410501, Israel
| | - Derya Akkaynak
- Hatter Department of Marine Technologies, Leon H. Charney School of Marine Sciences, University of Haifa, P.O. Box 3338, Haifa 3103301, Israel
| | - Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- The Inter-University Institute for Marine Sciences, P.O. Box 469, Eilat 88103, Israel
- Steinhardt Museum of Natural History, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Zhong Y, Tang W, Gui H, Sheng Q, Xu H, Qin K, Guo X, Yang H, Zou J. Human camouflage and expression via soft mask from reprogrammable chemical fluid skin. SCIENCE ADVANCES 2025; 11:eadq6141. [PMID: 39937920 PMCID: PMC11818024 DOI: 10.1126/sciadv.adq6141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
Developing a wearable, active, dynamic face-changing mask for human camouflage and expression is a substantial challenge. Many organisms achieve camouflage and expression through skin deformation and color change. Inspired by this, we report a reprogrammable chemical fluid skin, which achieves deformation through fluids like the skin of a pufferfish and achieves color change function like the skin of a chameleon. Based on the skin, we design a soft mask that allows switching between at least eight human faces at a time. The soft mask is lightweight, thin, and fits the wearer's head. Its actuation is silent and safe, and can realize facial switching, including facial color and shape. By wearing the soft mask, robots can show facial changes and expression modulation, and humans can change their faces as needed. Our work enables the implementation of transforming a human into other humans in the real world to achieve camouflage and expression, which, to date, exists only in people's imagination.
Collapse
Affiliation(s)
- Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - He Gui
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Qincheng Sheng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Kecheng Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xinyu Guo
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Ackroyd EJ, Heathcote RJP, Ioannou CC. Dynamic colour change in zebrafish ( Danio rerio) across multiple contexts. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241073. [PMID: 39780969 PMCID: PMC11706659 DOI: 10.1098/rsos.241073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Many animals are capable of rapid dynamic colour change, which is particularly well represented in fishes. The proximate mechanisms of dynamic colour change in fishes are well understood; however, less attention has been given to understanding its ecological relevance. In this study, we investigate dynamic colour change in zebrafish (Danio rerio) across multiple contexts, using a protocol to image the colouration of live fish without anaesthesia under standardized conditions. We show that zebrafish respond to different visual environments by darkening their overall colouration in a dark environment and lightening in a light environment. This is consistent with crypsis through background matching as a function of dynamic colour change. Additionally, we find that zebrafish use dynamic colour change to increase the internal contrast of their striped patterning in the presence of conspecifics. We speculate that this may function in social signalling and/or dazzle colouration. We find no effect of a predator stimulus on dynamic colour change. Finally, we discuss the potential for zebrafish to use multiple colouration strategies simultaneously as distance-dependent effects, considering the typical viewing distances of zebrafish and their predators.
Collapse
Affiliation(s)
- Ella J. Ackroyd
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Robert J. P. Heathcote
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Biology, University of Oxford, Oxford, UK
| | | |
Collapse
|
7
|
Chen X, Chen J, Song X, Du T, Deng X, Deng Z, Hu XG, Zeng X, Yang Z, Yang H, Lan R. Bioinspired Mechanochromic Liquid Crystal Materials: From Fundamentals to Functionalities and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403766. [PMID: 38780131 DOI: 10.1002/adma.202403766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Inspired by intriguing color changeable ability of natural animals, the design and fabrication of artificial mechanochromic materials capable of changing colors upon stretching or pressing have attracted intense scientific interest. Liquid crystal (LC) is a self-organized soft matter with anisotropic molecular alignment. Due to the sensitivity to various external stimulations, LC has been considered as an emerging and appealing responsive building block to construct intelligent materials and advanced devices. Recently, mechanochromic LC materials have becoming a hot topic in multifields from flexible artificial skins to visualized sensors and smart biomimetic devices. In this review, the recent progress of mechanochromic LCs is comprehensively summarized. Firstly, the mechanism and functionalities of mechanochromic LC is introduced, followed by preparation of various functional materials based on mechanochromic LCs. Then the applications of mechanochromic LCs are provided. Finally, the conclusion and outlooks of this field is given. This overview is hoped to provide inspiration in fabrication of advanced functional soft materials for scientists and engineers from multidisciplines including materials science, elastomers, chemistry, and physical science.
Collapse
Affiliation(s)
- Xinyu Chen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jingyu Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinyue Song
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Tongji Du
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinrui Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhaoping Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xingping Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhen Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruochen Lan
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
8
|
Sonner SC, Onthank KL. High energetic cost of color change in octopuses. Proc Natl Acad Sci U S A 2024; 121:e2408386121. [PMID: 39556731 PMCID: PMC11621519 DOI: 10.1073/pnas.2408386121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024] Open
Abstract
For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass. The metabolic demand of the fully activated chromatophore system is nearly as great as an octopus's resting metabolic rate. This high metabolic cost carries ecological and evolutionary implications, including selective pressures in octopuses that may influence the adoption of nocturnal lifestyles, the use of dens, the reduction of the chromatophore system in deep-sea species, and metabolic trade-offs associated with foraging.
Collapse
Affiliation(s)
- Sofie C. Sonner
- Department of Biological Sciences, Walla Walla University, College Place, WA99324
| | - Kirt L. Onthank
- Department of Biological Sciences, Walla Walla University, College Place, WA99324
| |
Collapse
|
9
|
Ospina-Rozo L, Medina I, Hugall A, Rankin KJ, Roberts NW, Roberts A, Mitchell A, Reid CAM, Moussalli A, Stuart-Fox D. Polarization and reflectance are linked to climate, size and mechanistic constraints in a group of scarab beetles. Sci Rep 2024; 14:29349. [PMID: 39592655 PMCID: PMC11599573 DOI: 10.1038/s41598-024-80325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Beetles exhibit an extraordinary diversity of brilliant and colourful appearances and optical effects invisible to humans. Their underlying mechanisms have received some attention, but we know little about the ecological variables driving their evolution. Here we investigated environmental correlates of reflectivity and circular polarization in a group of optically diverse beetles (Scarabaeidae-Rutelinae). We quantified the optical properties of 261 specimens representing 46 species using spectrophotometry and calibrated photographs. Then, we examined associations between these properties and environmental variables such as temperature, humidity and vegetation cover, controlling for body size and phylogenetic relatedness. Our results showed larger beetles have higher visible reflectivity in drier environments. Unexpectedly, near-infrared (NIR) reflectivity was not correlated with ecological variables. However, we found a correlation between humidity and polarization (chiral nanostructures). We identified trade-offs between optical properties: beetles without polarization-associated nanostructures had higher NIR reflectivity. By contrast, visible reflectivity was negatively correlated with the accumulation of pigments such as melanin. Our study highlights the value of a macroecological approach for testing alternative hypotheses to explain the diversity of optical effects in beetles and to understand the link between structure and function.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Iliana Medina
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Hugall
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Katrina J Rankin
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Mitchell
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Chris A M Reid
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Adnan Moussalli
- Sciences Department, Museum Victoria, GPO Box 666E, Melbourne, VIC, 3001, Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
10
|
Green SD, Wilson A, Stevens M. Background selection for camouflage shifts in accordance with color change in an intertidal prawn. Behav Ecol 2024; 35:arae060. [PMID: 39372492 PMCID: PMC11453103 DOI: 10.1093/beheco/arae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 10/08/2024] Open
Abstract
To maximize camouflage across visually heterogeneous habitats, animals have evolved a variety of strategies, including polyphenism, color change, and behavioral background matching. Despite the expected importance of behavioral processes for mediating camouflage, such as selection for matching substrates, behavior has received less attention than color traits themselves, and interactions between color change and behavior are largely unexplored. Here, we investigated behavioral background matching in green and red chameleon prawns (Hippolyte varians) over the course of a color change experiment. Prawns were housed on mismatching green and red seaweeds for 30 days and periodically given a choice test between the same seaweeds in y-choice trials over the experiment. We found that, as prawns change color and improve camouflage (to the perspective of a fish predator), there is a reinforcing shift in behavior. That is, as prawns shift from red to green color, or vice versa, their seaweed color preference follows this. We provide key empirical evidence that plasticity of appearance (color) is accompanied by a plastic shift in behavior (color preference) that reinforces camouflage in a color changing species on its natural substrate. Overall, our research highlights how short-term plasticity of behavior and longer-term color change act in tandem to maintain crypsis over time.
Collapse
Affiliation(s)
- Samuel D Green
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Martin Stevens
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
11
|
Hulthén K, Vinterstare J, Nilsson PA, Brönmark C. Finotypic plasticity: Predator-induced plasticity in fin size, darkness and display behaviour in a teleost fish. J Anim Ecol 2024; 93:1135-1146. [PMID: 38898692 DOI: 10.1111/1365-2656.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Fish fins are remarkable devices of propulsion. Fin morphology is intimately linked to locomotor performance, and hence to behaviours that influence fitness, such as foraging and predator avoidance. This foreshadows a connection between fin morphology and variation in predation risk. Yet, whether prey can adjust fin morphology according to changes in perceived risk within their lifetime (a.k.a. predator-induced plasticity) remains elusive. Here, we quantify the structural size of five focal fins in crucian carp (Carassius carassius) following controlled manipulations to perceived predation risk (presence/absence of pike Esox lucius). We also assess if crucian carp respond to increased predation risk by shifts in dorsal fin colouration, and test for differences in how fish actively use their dorsal fins by quantifying the area of the fin displayed in behavioural trials. We find that crucian carp show phenotypic plasticity with regards to fin size as predator-exposed fish consistently have larger fins. Individuals exposed to perceived predation risk also increased dorsal fin darkness and actively displayed a larger area of the fin to potential predators. Our results thus provide compelling evidence for predator-induced fin enlargement, which should result in enhanced escape swimming performance. Moreover, fin-size plasticity may evolve synergistically with fin colouration and display behaviour, and we suggest that the adaptive value of this synergy is to enhance the silhouette of deep-bodied and hard-to-capture prey to deter gape-limited predators prior to attack. Together, our results provide new perspectives on the role of predation risk in development and evolution of fins.
Collapse
Affiliation(s)
- Kaj Hulthén
- Aquatic Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | - Jerker Vinterstare
- Aquatic Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | - P Anders Nilsson
- Aquatic Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| | - Christer Brönmark
- Aquatic Ecology Unit, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Huang T, Song B, Chen Z, Sun H, Niu Y. Pollinator shift ensures reproductive success in a camouflaged alpine plant. ANNALS OF BOTANY 2024; 134:325-336. [PMID: 38720433 PMCID: PMC11232517 DOI: 10.1093/aob/mcae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 10049, People's Republic of China
| | - Bo Song
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Zhe Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| | - Yang Niu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, People's Republic of China
| |
Collapse
|
13
|
Guo B, Wang Y, Cao C, Qu Z, Song J, Li S, Gao J, Song P, Zhang G, Shi Y, Tang L. Large-Scale, Mechanically Robust, Solvent-Resistant, and Antioxidant MXene-Based Composites for Reliable Long-Term Infrared Stealth. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309392. [PMID: 38403451 PMCID: PMC11077694 DOI: 10.1002/advs.202309392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 02/27/2024]
Abstract
MXene-based thermal camouflage materials have gained increasing attention due to their low emissivity, however, the poor anti-oxidation restricts their potential applications under complex environments. Various modification methods and strategies, e.g., the addition of antioxidant molecules and fillers have been developed to overcome this, but the realization of long-term, reliable thermal camouflage using MXene network (coating) with excellent comprehensive performance remains a great challenge. Here, a MXene-based hybrid network comodified with hyaluronic acid (HA) and hyperbranched polysiloxane (HSi) molecules is designed and fabricated. Notably, the presence of appreciated HA molecules restricts the oxidation of MXene sheets without altering infrared stealth performance, superior to other water-soluble polymers; while the HSi molecules can act as efficient cross-linking agents to generate strong interactions between MXene sheets and HA molecules. The optimized MXene/HA/HSi composites exhibit excellent mechanical flexibility (folded into crane structure), good water/solvent resistance, and long-term stable thermal camouflage capability (with low infrared emissivity of ≈0.29). The long-term thermal camouflage reliability (≈8 months) under various outdoor weathers and the scalable coating capability of the MXene-coated textile enable them to disguise the IR signal of various targets in complex environments, indicating the great promise of achieved material for thermal camouflage, IR stealth, and counter surveillance.
Collapse
Affiliation(s)
- Bi‐Fan Guo
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Ye‐Jun Wang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Cheng‐Fei Cao
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300Australia
| | - Zhang‐Hao Qu
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Jiang Song
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Shi‐Neng Li
- College of Chemistry and Materials EngineeringZhejiang A&F UniversityHangzhou311300China
| | - Jie‐Feng Gao
- College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225002China
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUniversity of Southern QueenslandSpringfield4300Australia
| | - Guo‐Dong Zhang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| | - Yong‐Qian Shi
- College of Environment and Safety EngineeringFuzhou UniversityFuzhou350116China
| | - Long‐Cheng Tang
- College of Material, Chemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material Technology of MoEKey Laboratory of Silicone Materials Technology of Zhejiang ProvinceHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
14
|
Alvi MH, Maqsood H, Iftikhar F, Akhtar S, Khan MQ, Nawab Y, Kim IS. Fabrication of Multifunctional Tents Using Canvas Fabric. ACS OMEGA 2024; 9:17706-17725. [PMID: 38680368 PMCID: PMC11044260 DOI: 10.1021/acsomega.3c09249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Herein, this study was compiled to investigate a suitable solution for the fabrication and development of the multifunctional defense tent from previously reported research. The military always needs to protect their soldiers and equipment from detection. The advancement of infrared detection technology emphasizes the significance of infrared camouflage materials, reducing thermal emissions for various applications. Objects emit infrared radiation detectable by devices, making military targets easily identifiable. Infrared camouflage mitigates detection by lowering an object's infrared radiation, achieved by methods such as reducing surface temperature, which is crucial in designing military tents with infrared (IR) camouflage, considering water repellency and antibacterial features. Water repellency, as well as antimicrobial properties, in army tents is also important as they have to survive in different situations. All these problems should be addressed with the required properties; therefore, the authors try to introduce a new method from which multifunctional tents can be produced through economical, multifunctional, and sustainable materials that have IR protection, water repellency, ultraviolet (UV) protection, air filtration and permeability, and antimicrobial properties. There is still no tent that performs multiple functions at a time, even those functions that do not correlate with each other such as water repellency, IR protection, antimicrobial, and air permeability. So, a multifunctional tent could be the solution to all these problems having all the properties discussed above. In this study based on the literature review, authors concluded a method for the required tent for canvas fabric coated with zinc sulfide (ZnS), graphene oxide (GO), and zinc oxide (ZnO), or these materials should be incorporated in fiber formation because fiber composition has more impact. These multifunctional tents will be very beneficial due to their multifunctions like weather resistance, durability, and long life. These would help the army in their missions by concealing their soldiers and equipment from detection by cameras and providing filtered air inside the tent in case of gases or explosions. The proposed method will help to fulfill the stated and implied needs of customers.
Collapse
Affiliation(s)
- Muhammad
Abbas Haider Alvi
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hira Maqsood
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Fatima Iftikhar
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Saeed Akhtar
- Department of Clothing, School of Engineering
& Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Yasir Nawab
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ick Soo Kim
- Division of Frontier Fiber, Institute
of Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research
(ICCER), Faculty of Textile Sciences, Shinshu
University, Nagano 386-8567, Japan
| |
Collapse
|
15
|
Xu ZH, Xu S, Qian C, Xu W, Ren H, Su W, Chen QD, Chen H, Sun HB. Chimera metasurface for multiterrain invisibility. Proc Natl Acad Sci U S A 2024; 121:e2309096120. [PMID: 38285934 PMCID: PMC10861904 DOI: 10.1073/pnas.2309096120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024] Open
Abstract
Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.
Collapse
Affiliation(s)
- Zhao-Hua Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Su Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Chao Qian
- Zhejiang University-University of Ilinois Urbana-Champaign Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou310027, China
- Zhejiang University-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
| | - Wenya Xu
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Hang Ren
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Wenming Su
- Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Qi-Dai Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
| | - Hongsheng Chen
- Zhejiang University-University of Ilinois Urbana-Champaign Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou310027, China
- Zhejiang University-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua321099, China
| | - Hong-Bo Sun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun130012, China
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing100084, China
| |
Collapse
|
16
|
Pan R, Hua T, Ding Y, Bai H, Jiang Y, Wang Z, Hu M, Chen G, Wu X, Chang G. Study on changing disciplinarian of beak colors in ducks and the regulation network based on transcriptome sequencing. Poult Sci 2024; 103:103266. [PMID: 38039827 PMCID: PMC10698678 DOI: 10.1016/j.psj.2023.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
Beak color in ducks is a primary characteristic of local breeds and genetic resources. Among them, black beaks, a rare packaging trait of high-quality duck products, have attracted much attention. In this study, Runzhou White Created ducks (black beak) and white-feathered Putian black ducks (yellow beak) were used to construct the F2 generation resource population to study the changing discipline of beak color combined with the beak color statistics of gray-beaked ducklings of Runzhou White Created ducks. Subsequently, transcriptome sequencing was performed to identify genetic markers related to beak color. To explore the rules of beak color change and its regulatory network, trends, and trend analysis and weighted gene co-expression network analysis(WGCNA)were performed. The screening results were verified by real-time quantitative polymerase chain reaction. A large difference was observed between the beak colors of birds from the F1 generation at 0 and 42 d of age. The F2 generation results show that nearly half of the black-beaked ducklings become green-beaked; the proportion of black spots for gray- and patterned-beaked ducklings increases with age, with most becoming green-beaked. Moreover, the beak color darkened from the first day, and the gray color value decreased significantly from the second day. Transcriptome sequencing indicated that TYR was differentially expressed between black and yellow beaks at 4 to 6 wk of age, and trend and WGCNA analyses showed that EDNRB signaling pathway genes and MITF were highly expressed in the first week, and TYR, TYRP1, and DCT were highly expressed at 4 to 6 wk of age. Therefore, there is melanin synthesis and deposition after hatching for gray- and patterned-beaked ducklings, while the yellow pigment might be deposited in the epidermis of beaks for black-beaked ducklings. The EDNRB signaling pathway is probably involved in early melanosome maturation and melanin formation in duck beaks, and genes such as TYR can maintain the black-beak phenotype.
Collapse
Affiliation(s)
- Rui Pan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tian Hua
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifan Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Min Hu
- Zhenjiang Tiancheng Agricultural Science and Technology Co., Ltd., Zhenjiang 212000, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
17
|
Sun BJ, Li WM, Lv P, Wen GN, Wu DY, Tao SA, Liao ML, Yu CQ, Jiang ZW, Wang Y, Xie HX, Wang XF, Chen ZQ, Liu F, Du WG. Genetically Encoded Lizard Color Divergence for Camouflage and Thermoregulation. Mol Biol Evol 2024; 41:msae009. [PMID: 38243850 PMCID: PMC10835340 DOI: 10.1093/molbev/msae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Collapse
Affiliation(s)
- Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Lv
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guan-Nan Wen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Yang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shi-Ang Tao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming-Ling Liao
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Chang-Qing Yu
- Ecology Laboratory, Beijing Ecotech Science and Technology Ltd, Beijing 100190, China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Iyengar EV, Hoffman AR, Russell JC. Benthic Pond Macroinvertebrates Coexist with Nearby Potentially Predatory Fish. THE BIOLOGICAL BULLETIN 2024; 246:11-21. [PMID: 39977649 DOI: 10.1086/732340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
AbstractIn ponds of the northeastern United States, benthic macroinvertebrates can dominate the local biomass. Isopods, predatory leeches, and fingernail clams can attain dense populations and suffer heavy predation pressure by fish. We predicted that pond benthic macroinvertebrates would recognize the proximity of predatory fish and avoid or vacate that area as an inducible behavioral defense. We deployed cages with and without predatory fish (sunfish and golden shiners) in a naturally fishless pond in October and November of 2020 and 2021. After at least 2 days, we collected leaf packs from directly under the cages and compared the number of invertebrates residing within. Surprisingly, the population densities of the dominant taxa (isopods, leeches, and clams) suggested that they did not avoid fish. Leeches and isopods may even reside in higher numbers near live sunfish, perhaps because feces from the fish augment the locally available food and nutrient levels. Our present field results support earlier laboratory findings: benthic macroinvertebrates in ponds may not respond to fish cues. Bottom-up control may dominate in ponds, providing important implications for conservation of these threatened ecosystems.
Collapse
|
19
|
Yao B, Xu X, Han Z, Xu W, Yang G, Guo J, Li G, Wang Q, Wang H. Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci Bull (Beijing) 2023; 68:2962-2972. [PMID: 37940450 DOI: 10.1016/j.scib.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Cephalopods have evolved an all-soft skin that can rapidly display colors for protection, predation, or communication. Development of synthetic analogs to mimic such color-changing abilities in the infrared (IR) region is pivotal to a variety of technologies ranging from soft robotics, flexible displays, dynamic thermoregulatory systems, to adaptive IR disguise platforms. However, the integration of tissue-like mechanical properties and rapid IR modulation ability into smart materials remains challenging. Here, by drawing inspiration from cephalopod skin, we develop an all-soft adaptive IR composite that can dynamically change its IR appearance upon equiaxial stretching. The biomimetic composite is built entirely from soft materials of liquid metal droplets and elastic elastomer, which are analogs of chromatophores and dermal layer of cephalopod skin, respectively. Driven by externally applied strains, the liquid metal inclusions transition between a contracted droplet state with corrugated surface and an expanded platelet state with relatively smooth surface, enabling dynamic variations in the IR reflectance/emissivity of the composite and ultimately resulting in reversible IR adaption. Strain-actuated flexible IR displays and pneumatically-driven soft devices that can dynamically manipulate their IR appearance are demonstrated as examples of the applicability of this material in emerging adaptive soft electronics.
Collapse
Affiliation(s)
- Bin Yao
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China; State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Xinwei Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Wenhan Xu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Guang Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Jing Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guixin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA.
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
20
|
Tartu S, Lorrain-Soligon L, Cheron M, Dupoué A, Brischoux F. Colouration matters in dull toads: ultraviolet adornment for ladies and agrochemicals fading effects. Oecologia 2023; 203:491-502. [PMID: 37982911 DOI: 10.1007/s00442-023-05482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Integument colouration can influence many aspects of fitness, and is under strong sexual selection. Amphibians often express sexual dichromatism, and ultra-violet (UV) colouration is usually biased toward males as a sexual signal. As an honest signal, colouration is related to several individual traits, but can also be related to environmental factors such as anthropogenic pollutants, to which amphibians are highly sensitive. In this study, we investigated sexual dichromatism and UV reflectance covering a large visual spectrum (wavelength ranging from 300 to 700 nm) on different body areas (throat, ventral and dorsal areas), in a widespread amphibian species, the spiny toad (Bufo spinosus). Then, we tested the impact of chronic exposure to two widespread herbicides (glyphosate's primary metabolite [AMPA] and Nicosulfuron) on their colouration. We found a strong but unexpected sexual dichromatism with females reflecting more in the UV spectrum (throat and ventral area) than males, suggesting these body parts might be critical in intra-specific signalling. Females with higher ventral UV reflectance were in better body condition, suggesting an honest signal role of UV reflectance which could influence male choice. Throat colouration was further differentially influenced by agrochemicals according to sexes. In AMPA-exposed males, throat was more saturated in yellow-orange than in control males, and Nicosulfuron exposure decreased the throat's reflectance hue in females, which can bear consequences on mate attractiveness. Future studies need to investigate the underlying mechanisms that are altered by agrochemical exposure.
Collapse
Affiliation(s)
- Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Université de la Rochelle, 79360, Villiers-en-Bois, France.
| | - Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Université de la Rochelle, 79360, Villiers-en-Bois, France.
| | - Marion Cheron
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Université de la Rochelle, 79360, Villiers-en-Bois, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, Plouzane, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Université de la Rochelle, 79360, Villiers-en-Bois, France
| |
Collapse
|
21
|
Best RM, Swan AL, Ellsworth SA, Levitan DR. The Sexually Dichromatic Use of Chromatophores for Cryptic Coloration in the Shrimp Neopontonides beaufortensis. THE BIOLOGICAL BULLETIN 2023; 245:120-128. [PMID: 39316740 DOI: 10.1086/731494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractSexual dimorphism typically arises as a result of sexual selection or sex-specific natural selection. Species that exhibit cryptic coloration provide an excellent system for studying sex-specific selection for sexual dichromatism. In this study, we examined the sexually dichromatic use of chromatophores in the seawhip shrimp, Neopontonides beaufortensis (Borradaile, 1920), which commonly resides on colonies of Leptogorgia virgulata (Lamarck, 1815), a gorgonian octocoral that occurs in multiple color morphs. We documented the frequency of cryptic coloration in N. beaufortensis and tested colony color preference in relation to their current color. In the field, individuals always matched the color of the L. virgulata colony they were found on or were largely translucent. However, when given a choice, individuals chose colonies at random, independent of color. Additionally, we quantified locations across the bodies of males and females that differ most in chromatophore usage and tested the ability of both sexes to change color over 7 days. Females housed with L. virgulata colonies that differed in color from their starting color changed their coloration over the 7 days to better match the colony, while males remained translucent regardless of the color of colony they were housed with. Neopontonides beaufortensis individuals differed most in their coloration in regions corresponding to the saddle region and areas of the abdomen, locations in which females carry their eggs during development. These findings provide insight into the ecological factors underlying sexual dichromatism and shed light on the potential sex-specific selective mechanisms responsible for sexually dimorphic traits.
Collapse
|
22
|
Widmann ME, van Elden S, Meeuwig JJ. Colour change and colour phases in Lethrinidae with insights into ecology. Ecol Evol 2023; 13:e10735. [PMID: 38077506 PMCID: PMC10701182 DOI: 10.1002/ece3.10735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 10/16/2024] Open
Abstract
Colour change is used by a wide range of animals. It is used for intra- and interspecific communication and crypsis, and can occur on morphological and physiological levels. Bony fish employ rapid physiological colour change and display various types of patterns and colouration (colour phases) useful for aposematic and cryptic purposes. Using an existing database of benthic stereo-baited remote underwater video systems from two locations in Western Australia, we tested whether the frequency of colour phases of emperors, Lethrinidae, varied by species. We described colour phases and rapid physiological colour change in 16 species of lethrinids, and related occurrences of colour change to feeding activity and life stages. Dark and light colour phases were observed in nine of the 16 evaluated species of which seven also displayed physiological colour change. Frequency of colour phases varied between species, suggesting that the display of different dark patterns may be especially important for certain species. Both juveniles and adults showed the ability to change between different colour patterns. The change into a mottled pattern mainly occurred while feeding or when approaching to feed, suggesting that it may be triggered by feeding and the associated decrease in environmental awareness. Colour change is a commonly observed strategy in lethrinids and may have evolved as an adaptation for increased foraging success or to reduce aggression from conspecifics. Physiological colour change allows lethrinids to quickly adapt to various cues from the environment and can therefore be considered a versatile physiological mechanism in this family.
Collapse
Affiliation(s)
- Myriam E. Widmann
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Sean van Elden
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jessica J. Meeuwig
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
23
|
Xie J, Wei S, Lu W, Wu S, Zhang Y, Wang R, Zhu N, Chen T. Environment-Interactive Programmable Deformation of Electronically Innervated Synergistic Fluorescence-Color/Shape Changeable Hydrogel Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304204. [PMID: 37496099 DOI: 10.1002/smll.202304204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Utilization of life-like hydrogels to replicate synergistic shape/color changeable behaviors of living organisms has been long envisaged to produce robust functional integrated soft actuators/robots. However, it remains challenging to construct such hydrogel systems with integrated functionality of remote, localized and environment-interactive control over synergistic discoloration/actuation. Herein, inspired by the evolution-optimized bioelectricity stimulus and multilayer structure of natural reptile skins, electronically innervated fluorescence-color switchable hydrogel actuating systems with bio-inspired multilayer structure comprising of responsive fluorescent hydrogel sheet and conductive Graphene/PDMS film with electrothermal effect is presented. Such rational structure enables remote control over synergistic fluorescence-color and shape changes of the systems via the cascading "electrical trigger-Joule heat generation-hydrogel shrinkage" mechanism. Consequently, local/sequential control of discoloration/actuation are achieved due to the highly controllable electrical stimulus in terms of amplitude and circuit design. Furthermore, by joint use with acoustic sensors, soft chameleon robots with unprecedented environment-interactive adaptation are demonstrated, which can intelligently sense environment signals to adjust their color/shape-changeable behaviors. This work opens previously unidentified avenues for functional integrated soft actuators/robots and will inspire life-like intelligent systems for versatile uses.
Collapse
Affiliation(s)
- Junni Xie
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yi Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ruijia Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Tevs DR, Mukhalian JA, Simpson E, Cox CL, Schrey AW, McBrayer LD. DNA Methylation and Counterdirectional Pigmentation Change following Immune Challenge in a Small Ectotherm. Physiol Biochem Zool 2023; 96:418-429. [PMID: 38237192 DOI: 10.1086/727692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AbstractBy allowing for increased absorption or reflectance of solar radiation, changes in pigmentation may assist ectotherms in responding to immune challenges by enabling a more precise regulation of behavioral fever or hypothermia. Variation in epigenetic characteristics may also assist in regulating immune-induced pigmentation changes and managing the body's energetic reserves following infection. Here, we explore how dorsal pigmentation, metabolic rate, and DNA methylation in the Florida scrub lizard (Sceloporus woodi) respond to two levels of immune challenge across two habitat types. We found changes in pigmentation that are suggestive of efforts to assist in behavioral fever and hypothermia depending on the intensity of immune challenge. We also found correlations between DNA methylation in liver tissue and pigmentation change along the dorsum, indicating that color transitions may be part of a multifaceted immune response across tissue types. The relationship between immune response and metabolic rate supports the idea that energetic reserves may be conserved for the costs associated with behavioral fever when immune challenge is low and the immune functions when immune challenge is high. While immune response appeared to be unaffected by habitat type, we found differences in metabolic activity between habitats, suggesting differences in the energetic costs associated with each. To our knowledge, these results present the first potential evidence of pigmentation change in ectotherms in association with immune response. The relationship between immune response, DNA methylation, and pigmentation change also highlights the importance of epigenetic mechanisms in organism physiology.
Collapse
|
25
|
Souza JADE, Medeiros ADDE, Dolibaina DR, Kerpel SM. A new species of Vehilius Godman, 1900 (Lepidoptera, Hesperiidae, Hesperiinae) endemic to the Caatinga, northeastern Brazil: taxonomy, biology and behavior. Zootaxa 2023; 5360:239-254. [PMID: 38220614 DOI: 10.11646/zootaxa.5360.2.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 01/16/2024]
Abstract
A new species belonging to the genus Vehilius Godman, 1900, Vehilius jabre Medeiros, Souza & Kerpel sp. nov., endemic to the Caatinga biome, northeastern Brazil, is here described based on data from adult and immature stages. Information about the biology, hostplant, distribution, and adult and larval behavior of the new species is provided. The new species is morphologically similar to Vehilius warreni (Weeks, 1901), but can be distinguished by a set of characters on wings and male and female genitalia. Adults and genitalia for both sexes of V. jabre sp. nov. and V. warreni are illustrated and compared.
Collapse
Affiliation(s)
- Janiely Alves DE Souza
- Laboratrio de Ecologia e Interaes de Insetos da Caatinga; Unidade Acadmica de Cincias Biolgicas; Centro de Sade e Tecnologia Rural; Universidade Federal de Campina Grande; CEP 58700-970; Patos; Paraba; Brasil.
| | - Adalberto Dantas DE Medeiros
- Laboratrio de Ecologia e Interaes de Insetos da Caatinga; Unidade Acadmica de Cincias Biolgicas; Centro de Sade e Tecnologia Rural; Universidade Federal de Campina Grande; CEP 58700-970; Patos; Paraba; Brasil.
| | | | - Solange Maria Kerpel
- Laboratrio de Ecologia e Interaes de Insetos da Caatinga; Unidade Acadmica de Cincias Biolgicas; Centro de Sade e Tecnologia Rural; Universidade Federal de Campina Grande; CEP 58700-970; Patos; Paraba; Brasil.
| |
Collapse
|
26
|
Liedtke HC, Lopez-Hervas K, Galván I, Polo-Cavia N, Gomez-Mestre I. Background matching through fast and reversible melanin-based pigmentation plasticity in tadpoles comes with morphological and antioxidant changes. Sci Rep 2023; 13:12064. [PMID: 37495600 PMCID: PMC10371988 DOI: 10.1038/s41598-023-39107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Facultative colour change is widespread in the animal kingdom, and has been documented in many distantly related amphibians. However, experimental data testing the extent of facultative colour change, and associated physiological and morphological implications are comparatively scarce. Background matching in the face of spatial and temporal environmental variation is thought to be an important proximate function of colour change in aquatic amphibian larvae. This is particularly relevant for species with long larval periods such as the western spadefoot toad, Pelobates cultripes, whose tadpoles spend up to six months developing in temporary waterbodies with temporally variable vegetation. By rearing tadpoles on different coloured backgrounds, we show that P. cultripes larvae can regulate pigmentation to track fine-grained differences in background brightness, but not hue or saturation. We found that colour change is rapid, reversible, and primarily achieved through changes in the quantity of eumelanin in the skin. We show that this increased eumelanin production and/or maintenance is also correlated with changes in morphology and oxidative stress, with more pigmented tadpoles growing larger tail fins and having an improved redox status.
Collapse
Affiliation(s)
- H Christoph Liedtke
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain.
| | - Karem Lopez-Hervas
- Max Planck Institute for Evolutionary Biology, August-Thienemann Str. 2, 24306, Plön, Germany
| | - Ismael Galván
- Department of Evolutionary Ecology, National Museum of Natural Sciences, CSIC, 28006, Madrid, Spain
| | - Nuria Polo-Cavia
- Department of Biology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Ivan Gomez-Mestre
- Ecology Evolution and Development Group. Biological Station of Doñana - CSIC, 41092, Seville, Spain
| |
Collapse
|
27
|
Batabyal A, Zambre A, Mclaren T, Rankin KJ, Somaweera R, Stuart‐Fox D, Thaker M. The extent of rapid colour change in male agamid lizards is unrelated to overall sexual dichromatism. Ecol Evol 2023; 13:e10293. [PMID: 37435020 PMCID: PMC10329938 DOI: 10.1002/ece3.10293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Dynamic colour change is widespread in ectothermic animals, but has primarily been studied in the context of background matching. For most species, we lack quantitative data on the extent of colour change across different contexts. It is also unclear whether and how colour change varies across body regions, and how overall sexual dichromatism relates to the extent of individual colour change. In this study, we obtained reflectance measures in response to different stimuli for males and females of six species of agamid lizards (Agamidae, sister family to Chameleonidae) comprising three closely related species pairs. We computed the colour volume in a lizard-vision colour space occupied by males and females of each species and estimated overall sexual dichromatism based on the area of non-overlapping male and female colour volumes. As expected, males had larger colour volumes than females, but the extent of colour change in males differed between species and between body regions. Notably, species that were most sexually dichromatic were not necessarily those in which males showed the greatest individual colour change. Our results indicate that the extent of colour change is independent of the degree of sexual dichromatism and demonstrate that colour change on different body regions can vary substantially even between pairs of closely related species.
Collapse
Affiliation(s)
- Anuradha Batabyal
- Department of Physical and Natural SciencesFLAME UniversityPuneIndia
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
| | - Amod Zambre
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Tess Mclaren
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Katrina J. Rankin
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Ruchira Somaweera
- Stantec AustraliaPerthWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Maria Thaker
- Centre for Ecological SciencesIndian Institute of ScienceBengaluruIndia
| |
Collapse
|
28
|
Yang C, Chen S, Wang J. Ontogenetic color change in the tail of blue-tailed skinks ( Plestodion elegans). Ecol Evol 2023; 13:e10152. [PMID: 37287854 PMCID: PMC10242887 DOI: 10.1002/ece3.10152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ontogenetic color change in animals is an interesting evolution-related phenomenon that has been studied by evolutionary biologists for decades. However, obtaining quantitative and continuous color measurements throughout the life cycle of animals is a challenge. To understand the rhythm of change in tail color and sexual dichromatism, we used a spectrometer to measure the tail color of blue-tailed skink (Plestiodon elegans) from birth to sexual maturity. Lab color space was selected due to its simplicity, fastness, and accuracy and depends on the visual sense of the observer for measuring the tail color of skinks. A strong relationship was observed between color indexes (values of L*, a*, b*) and growth time of skink. The luminance of tail color decreased from juveniles to adults in both sexes. Moreover, we observed differences in color rhythms between the sexes, which may be influenced by different behavioral strategies used by them. This study provides continuous measurements of change in tail color in skinks from juveniles to adults and offers insights into their sex-based differences. While this study does not provide direct evidence to explain the potential factors that drive dichromatism between the sexes of lizards, our finding could serve as a reference for future studies exploring possible mechanisms of ontogenetic color change in reptiles.
Collapse
Affiliation(s)
- Chen Yang
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationSouthwest Minzu UniversityChenghuChina
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Siheng Chen
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Jie Wang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
29
|
Feng C, Mao M, Zhang X, Liao Y, Xiao X, Liu H, Liu K. Programmable microfluidics for dynamic multiband camouflage. MICROSYSTEMS & NANOENGINEERING 2023; 9:43. [PMID: 37033108 PMCID: PMC10073183 DOI: 10.1038/s41378-023-00494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/19/2023]
Abstract
Achieving multiband camouflage covering both visible and infrared regions is challenging due to the broad bandwidth and differentiated regulation demand in diverse regions. In this work, we propose a programmable microfluidic strategy that uses dye molecules in layered fluids to manipulate visible light- and infrared-semitransparent solvent to manipulate infrared light. With three primary fluid inputs, we achieve 64 chromaticity values and 8 emissivities from 0.42 to 0.90. In view of the wide tuning range, we demonstrate that the microfluidic film can dynamically change its surface reflectance to blend into varying backgrounds in both visible and infrared images. Moreover, we fabricate the microfluidic device in a textile form and demonstrate its ability to match exactly with the colors of natural leaves of different seasons in the full hyperspectrum range. Considering the broadband modulation and ease of operation, the programmable microfluidic strategy provides a feasible approach for smart optical surfaces in long-span optical spectra.
Collapse
Affiliation(s)
- Chunzao Feng
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Mingran Mao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Xiaohui Zhang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Yutian Liao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Xiaohui Xiao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Huidong Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072 Hubei China
| |
Collapse
|
30
|
Park C, No S, Yoo S, Oh D, Hwang Y, Kim Y, Kang C. Testing multiple hypotheses on the colour change of treefrogs in response to various external conditions. Sci Rep 2023; 13:4203. [PMID: 36918652 PMCID: PMC10015036 DOI: 10.1038/s41598-023-31262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Amphibians are famous for their ability to change colours. And a considerable number of studies have investigated the internal and external factors that affect the expression of this phenotypic plasticity. Evidence to date suggests that thermoregulation and camouflage are the main pressures that influence frogs' adaptive colour change responses. However, certain gaps in our knowledge of this phenomenon remain, namely: (i) how do frogs adjust their colour in response to continuously changing external conditions?; (ii) what is the direction of change when two different functions of colour (camouflage and thermoregulation) are in conflict?; (iii) does reflectance in the near-infrared region show thermally adaptive change?; and (iv) is the colour change ability of each frog an individual trait (i.e., consistent within an individual over time)? Using Dryophytes japonicus (Hylidae, Hyla), we performed a series of experiments to answer the above questions. We first showed that frogs' responses to continuously-changing external conditions (i.e., background colour and temperature) were not linear and limited to the range they experience under natural conditions. Second, when a functional conflict existed, camouflage constrained the adaptive response for thermoregulation and vice versa. Third, though both temperature and background colour induced a change in near-infrared reflectance, this change was largely explained by the high correlation between colour (reflectance in the visible spectrum) and near-infrared reflectance. Fourth, within-individual variation in colour change capacity (i.e., the degree of colour change an individual can display) was lower than inter-individual variation, suggesting individuality of colour change capacity; however, we also found that colour change capacity could change gradually with time within individuals. Our results collectively reveal several new aspects of how evolution shapes the colour change process and highlight how variation in external conditions restricts the extent of colour change in treefrogs.
Collapse
Affiliation(s)
- Chohee Park
- Department of Biosciences, Mokpo National University, Cheonggye, Muan, Jeollanamdo, 58554, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Seongsoo No
- Department of Biosciences, Mokpo National University, Cheonggye, Muan, Jeollanamdo, 58554, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Sohee Yoo
- Department of Biosciences, Mokpo National University, Cheonggye, Muan, Jeollanamdo, 58554, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Dogeun Oh
- Department of Biosciences, Mokpo National University, Cheonggye, Muan, Jeollanamdo, 58554, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Yerin Hwang
- Department of Biosciences, Mokpo National University, Cheonggye, Muan, Jeollanamdo, 58554, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Yongsu Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Changku Kang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea. .,Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
31
|
Sexual dimorphism in dynamic body color in the green anole lizard. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
Abstract
Animals capable of rapid (i.e., physiological) body color change may use color to respond quickly to changing social or physical environments. Because males and females often differ in their environments, the sexes may use changes in body color differently, reflecting sexual dimorphism in ecological, behavioral, or morphological traits. Green anole lizards, Anolis carolinensis, frequently switch their dorsal body color between bright green and dark brown, a change that requires only seconds, but little is known regarding sexual dimorphism in their color change. We tested three hypotheses for the function of body color (thermoregulation, camouflage via background-matching, and social communication) to determine the ecological role(s) of physiological color change in anoles. First, we examined instantaneous body color to determine relationships between body color and body temperature, substrate color and type, and whether these varied between the sexes. Next, we examined the association between color change and behavioral displays. Altogether, we found that males were more likely to be green than females, and larger lizards were more often green than smaller ones, but there was no evidence that anole body color was associated with body temperature or background color during the summer breeding season. Instead, our results show that although the sexes change their color at approximately the same rates, males changed color more frequently during social displays, while females remained green when displaying. In sum, social communication appears to be the primary function of anole color change, although the functions of body color may differ in the nonbreeding season.
Significance statement
Many animals can change their body color in response to their environments, and in many species, males and females experience different environments. In this study, we examined whether the sexes of green anole lizards use the ability to rapidly change their body color between green and brown for different functions. We found that, when a lizard was first sighted, its body color did not appear to match its background color in either sex (suggesting that color change does not contribute to avoidance of detection by potential predators), and body color was not associated with temperature for either sex (i.e., color was unlikely to influence body temperature). Yet, males changed color more often when performing social displays to other lizards, while females remained green during social displays. Thus, rapid color change plays an important role in social communication in both sexes, highlighting how males and females may use the same behavior to convey different messages.
Collapse
|
32
|
Malik HR, Bertolesi GE, McFarlane S. TRPM8 thermosensation in poikilotherms mediates both skin colour and locomotor performance responses to cold temperature. Commun Biol 2023; 6:127. [PMID: 36721039 PMCID: PMC9889708 DOI: 10.1038/s42003-023-04489-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Thermoregulation is a homeostatic process to maintain an organism's internal temperature within a physiological range compatible with life. In poikilotherms, body temperature fluctuates with that of the environment, with both physiological and behavioral responses employed to modify body temperature. Changing skin colour/reflectance and locomotor activity are both well-recognized temperature regulatory mechanisms, but little is known of the participating thermosensor/s. We find that Xenopus laevis tadpoles put in the cold exhibit a temperature-dependent, systemic, and rapid melanosome aggregation in melanophores, which lightens the skin. Cooling also induces a reduction in the locomotor performance. To identify the cold-sensor, we focus on transient receptor potential (trp) channel genes from a Trpm family. mRNAs for several Trpms are present in Xenopus tails, and Trpm8 protein is present in skin melanophores. Temperature-induced melanosome aggregation is mimicked by the Trpm8 agonist menthol (WS12) and blocked by a Trpm8 antagonist. The degree of skin lightening induced by cooling is correlated with locomotor performance, and both responses are rapidly regulated in a dose-dependent and correlated manner by the WS12 Trpm8 agonist. We propose that TRPM8 serves as a cool thermosensor in poikilotherms that helps coordinate skin lightening and behavioural locomotor performance as adaptive thermoregulatory responses to cold.
Collapse
Affiliation(s)
- Hannan R. Malik
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Gabriel E. Bertolesi
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| | - Sarah McFarlane
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB Canada
| |
Collapse
|
33
|
Ospina-Rozo L, Roberts A, Stuart-Fox D. A generalized approach to characterize optical properties of natural objects. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
To understand the diversity of ways in which natural materials interact with light, it is important to consider how their reflectance changes with the angle of illumination or viewing and to consider wavelengths beyond the visible. Efforts to characterize these optical properties, however, have been hampered by heterogeneity in measurement techniques, parameters and terminology. Here, we propose a standardized set of measurements, parameters and terminology to describe the optical properties of natural objects based on spectrometry, including angle-dependent effects, such as iridescence and specularity. We select a set of existing measurements and parameters that are generalizable to any wavelength range and spectral shape, and we highlight which subsets of measures are relevant to different biological questions. As a case study, we have applied these measures to 30 species of Christmas beetles, in which we observed previously unrealized diversity in visible and near-infrared reflectance. As expected, reflection of short wavelengths was associated with high spectral purity and angle dependence. In contrast to simple, artificial structures, iridescence and specularity were not strongly correlated, highlighting the complexity and modularity of natural materials. Species did not cluster according to spectral parameters or genus, suggesting high lability of optical properties. The proposed standardization of measures and parameters will improve our understanding of biological adaptations for manipulating light by facilitating the systematic comparison of complex optical properties, such as glossy or metallic appearances and visible or near-infrared iridescence.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| | - Ann Roberts
- ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, University of Melbourne , VIC 3010 , Australia
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne , VIC 3010 , Australia
| |
Collapse
|
34
|
Court M, Paula JR, Macau M, Otjacques E, Repolho T, Rosa R, Lopes VM. Camouflage and Exploratory Avoidance of Newborn Cuttlefish under Warming and Acidification. BIOLOGY 2022; 11:1394. [PMID: 36290300 PMCID: PMC9598447 DOI: 10.3390/biology11101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Ocean warming and acidification have been shown to elicit deleterious effects on cephalopod mollusks, especially during early ontogeny, albeit effects on behavior remain largely unexplored. This study aimed to evaluate, for the first time, the effect of end-of-the-century projected levels of ocean warming (W; + 3 °C) and acidification (A; 980 µatm pCO2) on Sepia officinalis hatchlings' exploratory behavior and ability to camouflage in different substrate complexities (sand and black and white gravel). Cuttlefish were recorded in open field tests, from which mobility and exploratory avoidance behavior data were obtained. Latency to camouflage was registered remotely, and pixel intensity of body planes and background gravel were extracted from photographs. Hatching success was lowered under A and W combined (AW; 72.7%) compared to control conditions (C; 98.8%). Motion-related behaviors were not affected by the treatments. AW delayed camouflage response in the gravel substrate compared to W alone. Moreover, cuttlefish exhibited a higher contrast and consequently a stronger disruptive pattern under W, with no changes in background matching. These findings suggest that, although climate change may elicit relevant physiological challenges to cuttlefish, camouflage and mobility of these mollusks are not undermined under the ocean of tomorrow.
Collapse
Affiliation(s)
- Mélanie Court
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - José Ricardo Paula
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Macau
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Tiago Repolho
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa Madeira Lopes
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| |
Collapse
|
35
|
The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage. Vision (Basel) 2022; 6:vision6040059. [PMID: 36278671 PMCID: PMC9590006 DOI: 10.3390/vision6040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
No animal can so effectively camouflage in such a wide range of environments as the octopus. Thanks to their highly malleable skin, they are capable of adapting their body patterns to the brightness and texture of their immediate environment, and they often seemingly match the colour of background objects. However, octopuses are colour-blind as their eyes have only one type of visual pigment. Therefore, chromatophores in their skin are likely to respond to changes in brightness, not chromaticity. To determine whether octopuses actually match background colours, we used a SpectraScan® PR-655 spectroradiometer to measure the reflectance spectra of Octopus tetricus skin in captivity. The spectra were compared with those of green algae, brown algae, and sponges—all of these being colourful objects commonly found in the octopus’s natural environment. Even though we show that octopuses change both lightness and chromaticity, allowing them to potentially camouflage in a wide range of backgrounds in an effective manner, the overall octopus colours did not reach the same level of saturation compared to some background objects. Spectra were then modelled under the visual systems of four potential octopus predators: one dichromatic fish (Heller’s barracuda), two trichromatic fish (blue-spotted stingray and two-spotted red snapper), and one tetrachromatic bird (wedge-tailed shearwater). We show that octopuses are able to match certain background colours for some visual systems. How a colour-blind animal is capable of colour-matching is still unknown.
Collapse
|
36
|
Assis BA, Avery JD, Earley RL, Langkilde T. Masculinized Sexual Ornaments in Female Lizards Correlate with Ornament-Enhancing Thermoregulatory Behavior. Integr Org Biol 2022; 4:obac029. [PMID: 36034057 PMCID: PMC9409079 DOI: 10.1093/iob/obac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The adaptive significance of colorful or exaggerated traits (i.e., ornaments) expressed in females is often unclear. Competing hypotheses suggest that expression of female ornaments arises from maladaptive (or neutral) genetic inheritance from males along with incomplete epigenetic regulation, or from positive selection for ornaments in females under social competition. Whether costly or advantageous, the visibility of such traits can sometimes be behaviorally modulated in order to maximize fitness. Female eastern fence lizards express blue badges that are variable in size and color saturation. These are rudimentary compared to those seen in males and carry important costs such as reduced mating opportunities. Body temperature is a well-established enhancer of badge color, and thus thermoregulation may be one way these animals modulate badge visibility. We quantified realized body temperatures of female lizards paired in laboratory trials and observed that females with larger badges attained higher body temperatures when freely allowed to thermoregulate, sometimes beyond physiological optima. In this association between phenotype and behavior, females with larger badges exhibited thermoregulatory patterns that increase their badges’ visibility. This signal-enhancing behavior is difficult to reconcile with the widely held view that female ornaments are maladaptive, suggesting they may carry context-dependent social benefits.
Collapse
Affiliation(s)
- B A Assis
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| | - J D Avery
- Department of Ecosystem Science and Management, Intercollege Graduate Degree Program in Ecology, Pennsylvania State University , University Park, PA 16802
| | - R L Earley
- Department of Biological Sciences, University of Alabama , Tuscaloosa, AL 35487
| | - T Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802
| |
Collapse
|
37
|
Zhang P, de Haan LT, Debije MG, Schenning APHJ. Liquid crystal-based structural color actuators. LIGHT, SCIENCE & APPLICATIONS 2022; 11:248. [PMID: 35931672 PMCID: PMC9356073 DOI: 10.1038/s41377-022-00937-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/25/2022] [Accepted: 07/17/2022] [Indexed: 05/08/2023]
Abstract
Animals can modify their body shape and/or color for protection, camouflage and communication. This adaptability has inspired fabrication of actuators with structural color changes to endow soft robots with additional functionalities. Using liquid crystal-based materials for actuators with structural color changes is a promising approach. In this review, we discuss the current state of liquid crystal-based actuators with structural color changes and the potential applications of these structural color actuators in soft robotic devices.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Laurens T de Haan
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Michael G Debije
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| | - Albert P H J Schenning
- Stimuli-responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
38
|
Bu X, Bai H. Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Raynal RS, Schwanz LE, Riley JL, Umbers KDL. Genetic and environmental drivers of colour and pattern in the Australian jacky dragon (Amphibolurus muricatus). J Evol Biol 2022; 35:1229-1239. [PMID: 35861703 PMCID: PMC9544122 DOI: 10.1111/jeb.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022]
Abstract
The underlying drivers of variation in the colouration (colour and pattern) of animals can be genetic, non‐genetic, or more likely, a combination of both. Understanding the role of heritable genetic elements, as well as non‐genetic factors such as age, habitat or temperature, in shaping colouration can provide insight into the evolution and function of these traits, as well as the speed of response to changing environments. This project examined the genetic and non‐genetic drivers of continuous variation in colouration in a lizard, the jacky dragon (Amphibolurus muricatus). We leveraged a large captive experiment that manipulated parental and offspring thermal environment to simultaneously estimate the genetic and non‐genetic drivers of variation in colouration. We found that the overall brightness, the elongation of the longitudinal stripes on the dorsum and the contrast between light and dark patches of the pattern were all heritable. Colouration varied according to the age of the hatchling; however, the thermal environment of neither the parents nor offspring contributed significantly to colouration. It appears that developmental plasticity and maternal effects associated with temperature are not important drivers of variation in our measures of colouration.
Collapse
Affiliation(s)
- Rebecca S Raynal
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Julia L Riley
- Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.,Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Kate D L Umbers
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
40
|
Badiane A, Dupoué A, Blaimont P, Miles DB, Gilbert AL, Leroux-Coyau M, Kawamoto A, Rozen-Rechels D, Meylan S, Clobert J, Le Galliard JF. Environmental conditions and male quality traits simultaneously explain variation of multiple colour signals in male lizards. J Anim Ecol 2022; 91:1906-1917. [PMID: 35837855 PMCID: PMC9542398 DOI: 10.1111/1365-2656.13773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Male lizards often display multiple pigment‐based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated. Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation. We performed an integrative study to examine the covariation between three colour signals (melanin‐based black, carotenoid‐based yellow–orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizards Zootoca vivipara from 13 populations. We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis. We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism.
Collapse
Affiliation(s)
- Arnaud Badiane
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | - Andréaz Dupoué
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | | | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Mathieu Leroux-Coyau
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | - Anna Kawamoto
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | - David Rozen-Rechels
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | - Sandrine Meylan
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale (SETE), USR5321, CNRS, Moulis, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), Paris, France.,Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), Département de biologie, Ecole Normale Supérieure, CNRS, PSL Research University, UMS 3194, Saint-Pierre-lès-Nemours, France
| |
Collapse
|
41
|
Fuller RC, McGhee KE, Sandkam B, Schrader M, Travis J. Polyphenisms and polymorphisms: Genetic variation in plasticity and color variation within and among bluefin killifish populations. Evolution 2022; 76:1590-1606. [PMID: 35598089 DOI: 10.1111/evo.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 01/22/2023]
Abstract
The presence of stable color polymorphisms within populations begs the question of how genetic variation is maintained. Consistent variation among populations in coloration, especially when correlated with environmental variation, raises questions about whether environmental conditions affect either the fulcrum of those balanced polymorphisms, the plastic expression of coloration, or both. Color patterns in male bluefin killifish provoke both types of questions. Red and yellow morphs are common in all populations. Blue males are more common in tannin-stained swamps relative to clear springs. Here, we combined crosses with a manipulation of light to explore how genetic variation and phenotypic plasticity shape these patterns. We found that the variation in coloration is attributable mainly to two axes of variation: (1) a red-yellow axis with yellow being dominant to red, and (2) a blue axis that can override red-yellow and is controlled by genetics, phenotypic plasticity, and genetic variation for phenotypic plasticity. The variation among populations in plasticity suggests it is adaptive in some populations but not others. The variation among sires in plasticity within the swamp population suggests balancing selection may be acting not only on the red-yellow polymorphism but also on plasticity for blue coloration.
Collapse
Affiliation(s)
- Rebecca C Fuller
- Department of Evolution, Ecology, and Behavior, University of Illinois, Champaign, Illinois, USA
| | - Katie E McGhee
- Department of Biology, University of the South, Sewanee, Tennessee, USA
| | - Benjamin Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Matthew Schrader
- Department of Biology, University of the South, Sewanee, Tennessee, USA
| | - Joseph Travis
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
42
|
Alfakih A, Watt PJ, Nadeau NJ. The physiological cost of colour change: evidence, implications and mitigations. J Exp Biol 2022; 225:275479. [PMID: 35593398 DOI: 10.1242/jeb.210401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animals benefit from phenotypic plasticity in changing environments, but this can come at a cost. Colour change, used for camouflage, communication, thermoregulation and UV protection, represents one of the most common plastic traits in nature and is categorised as morphological or physiological depending on the mechanism and speed of the change. Colour change has been assumed to carry physiological costs, but current knowledge has not advanced beyond this basic assumption. The costs of changing colour will shape the evolution of colour change in animals, yet no coherent research has been conducted in this area, leaving a gap in our understanding. Therefore, in this Review, we examine the direct and indirect evidence of the physiological cost of colour change from the cellular to the population level, in animals that utilise chromatophores in colour change. Our Review concludes that the physiological costs result from either one or a combination of the processes of (i) production, (ii) translocation and (iii) maintenance of pigments within the colour-containing cells (chromatophores). In addition, both types of colour change (morphological and physiological) pose costs as they require energy for hormone production and neural signalling. Moreover, our Review upholds the hypothesis that, if repetitively used, rapid colour change (i.e. seconds-minutes) is more costly than slow colour change (days-weeks) given that rapidly colour-changing animals show mitigations, such as avoiding colour change when possible. We discuss the potential implications of this cost on colour change, behaviour and evolution of colour-changing animals, generating testable hypotheses and emphasising the need for future work to address this gap.
Collapse
Affiliation(s)
- Ateah Alfakih
- Department of Biology, Faculty of Science and Arts, Albaha University, Almakhwah 65553, Saudi Arabia.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Penelope J Watt
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
43
|
Fark SN, Gerber S, Alonzo SH, Kindsvater HK, Meier JI, Seehausen O. Multispecies colour polymorphisms associated with contrasting microhabitats in two Mediterranean wrasse radiations. J Evol Biol 2022; 35:633-647. [PMID: 35304789 PMCID: PMC9311657 DOI: 10.1111/jeb.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/01/2022]
Abstract
Intraspecific colour polymorphisms (CPs) present unique opportunities to study fundamental evolutionary questions, such as the link between ecology and phenotype, mechanisms maintaining genetic diversity and their putative role in speciation. Wrasses are highly diverse in ecology and morphology and harbour a variety of colour‐polymorphic species. In the Mediterranean Sea, wrasses of the tribe Labrini evolved two species radiations each harbouring several species with a brown and a green morph. The colour morphs occur in complete sympatry in mosaic habitats with rocky outcrops and Neptune grass patches. Morph‐specific differences had not been characterized yet and the evolutionary forces maintaining them remained unknown. With genome‐wide data for almost all Labrini species, we show that species with CPs are distributed across the phylogeny, but show evidence of hybridization. This suggests that the colour morphs are either ancient and have been lost repeatedly, that they have evolved repeatedly or have been shared via hybridization. Focusing on two polymorphic species, we find that each colour morph is more common in the microhabitat providing the best colour match and that the morphs exhibit additional behavioural and morphological differences further improving crypsis in their respective microhabitats. We find little evidence for genetic differentiation between the morphs in either species. Therefore, we propose that these colour morphs represent a multi‐niche polymorphism as an adaptation to the highly heterogeneous habitat. Our study highlights how colour polymorphism (CP) can be advantageous in mosaic habitats and that Mediterranean wrasses are an ideal system to study trans‐species polymorphisms, i.e. polymorphisms maintained across several species, in adaptive radiations.
Collapse
Affiliation(s)
- Sarya N Fark
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Steve Gerber
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Holly K Kindsvater
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joana I Meier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Department of Zoology, University of Cambridge, Cambridge, UK.,Center of Ecology, Evolution & Biogeochemistry, Swiss Institute for Environmental Sciences and Technology (EAWAG), Kastanienbaum, Switzerland
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Center of Ecology, Evolution & Biogeochemistry, Swiss Institute for Environmental Sciences and Technology (EAWAG), Kastanienbaum, Switzerland
| |
Collapse
|
44
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
45
|
Heinze P, Dieker P, Rowland HM, Schielzeth H. Evidence for morph-specific substrate choice in a green-brown polymorphic grasshopper. Behav Ecol 2022; 33:17-26. [PMID: 35197804 PMCID: PMC8857936 DOI: 10.1093/beheco/arab133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022] Open
Abstract
Orthopteran insects are characterized by high variability in body coloration, in particular featuring a widespread green-brown color polymorphism. The mechanisms that contribute to the maintenance of this apparently balanced polymorphism are not yet understood. To investigate whether morph-dependent microhabitat choice might contribute to the continued coexistence of multiple morphs, we studied substrate choice in the meadow grasshopper Pseudochorthippus parallelus. The meadow grasshopper occurs in multiple discrete, genetically determined color morphs that range from uniform brown to uniform green. We tested whether three common morphs preferentially choose differently colored backgrounds in an experimental arena. We found that a preference for green backgrounds was most pronounced in uniform green morphs. If differential choices improve morph-specific performance in natural habitats via crypsis and/or thermoregulatory benefits, they could help to equalize fitness differences among color morphs and potentially produce frequency-dependent microhabitat competition, though difference appear too small to serve as the only explanation. We also measured the reflectance of the grasshoppers and backgrounds and used visual modeling to quantify the detectability of the different morphs to a range of potential predators. Multiple potential predators, including birds and spiders, are predicted to distinguish between morphs chromatically, while other species, possibly including grasshoppers themselves, will perceive only differences in brightness. Our study provides the first evidence that morph-specific microhabitat choice might be relevant to the maintenance of the green-brown polymorphisms in grasshoppers and shows that visual distinctness of color morphs varies between perceivers.
Collapse
Affiliation(s)
- Pauline Heinze
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| | - Petra Dieker
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| | - Hannah M Rowland
- Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße, Jena, Germany
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße, Jena, Germany
| |
Collapse
|
46
|
|
47
|
Zhao N, Ge X, Jiang K, Huang J, Wei K, Sun C, Chen SX. Ultrastructure and regulation of color change in blue spots of leopard coral trout Plectropomus leopardus. Front Endocrinol (Lausanne) 2022; 13:984081. [PMID: 36339398 PMCID: PMC9630599 DOI: 10.3389/fendo.2022.984081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The leopard coral trout generally exhibited numerous round, minute blue spots covering its head (about the size of nostril) and body (except ventral side). This is a characteristic that distinguishes them from similar species. Recently, however, we found the leopard coral trout with black spots. Here, the distribution and ultrastructure of chromatophores in the blue and black spots were investigated with light and transmission electron microscopies. The results showed that in the blue spots, two types of chromatophores are present in the dermis, with the light-reflecting iridophores located in the upper layer and the aggregated light-absorbing melanophores in the lower layer. Black spots have a similar chromatophore composition, except that the melanosomes within the melanophores disperse their dendritic processes to encircle the iridophores. Interestingly, after the treatment of forskolin, a potent adenylate cyclase activator, the blue spots on the body surface turned black. On the other hand, using the skin preparations in vitro, the electrical stimulation and norepinephrine treatment returned the spots to blue color again, indicating the sympathetic nerves were involved in regulating the coloration of blue spots. Taken together, our results revealed that the blue spots of the leopard coral trout can change color to black and vice versa, resulting from the differences in the distribution of melanosomes, which enriches our understanding of the body color and color changes of fishes.
Collapse
Affiliation(s)
- Nannan Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyu Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Ke Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Shi Xi Chen,
| |
Collapse
|
48
|
Liu Z, Bisoyi HK, Huang Y, Wang M, Yang H, Li Q. Thermo‐ and Mechanochromic Camouflage and Self‐Healing in Biomimetic Soft Actuators Based on Liquid Crystal Elastomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhongcheng Liu
- Institute of Advanced Materials School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| | - Yinliang Huang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Meng Wang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Hong Yang
- Institute of Advanced Materials School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials School of Chemistry and Chemical Engineering and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
49
|
Wuthrich KL, Nagel A, Swierk L. Rapid Body Color Change Provides Lizards with Facultative Crypsis in the Eyes of Their Avian Predators. Am Nat 2021; 199:277-290. [DOI: 10.1086/717678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Kelly Lin Wuthrich
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
| | - Amber Nagel
- Department of Chemical Engineering, University of Oklahoma, Norman, Oklahoma 73019
| | - Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, New York 13902
- School of the Environment, Yale University, New Haven, Connecticut 06511; and Amazon Conservatory for Tropical Studies, Iquitos, Loreto 16001, Perú
| |
Collapse
|
50
|
Liu Z, Bisoyi HK, Huang Y, Wang M, Yang H, Li Q. Thermo- and Mechanochromic Camouflage and Self-Healing in Biomimetic Soft Actuators Based on Liquid Crystal Elastomers. Angew Chem Int Ed Engl 2021; 61:e202115755. [PMID: 34904346 DOI: 10.1002/anie.202115755] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 12/15/2022]
Abstract
In nature, many mysterious creatures capable of deformation camouflage, color camouflage, and self-healing have inspired scientists to develop various biomimetic soft robots. However, the systematic integration of all the above functionalities into a single soft actuator system still remains a challenge. Here we chemically introduce a multi-stimuli-responsive tetraarylsuccinonitrile (TASN) chromophore into a liquid crystal elastomer (LCE) network through a facile thiol-ene photoaddition method. The obtained TASN-LCE soft actuators not only exhibit reversible shape-morphing and reversible color-changing behavior in response to heat and mechanical compression, but also show excellent self-healing, reprogramming and recycling characteristics. We hope that such a TASN-LCE actuator system endowed with dynamic distortion, thermo- and mechano-chromic camouflage, and self-healing functionalities would pave the way for further development of multifunctional biomimetic soft robotic devices.
Collapse
Affiliation(s)
- Zhongcheng Liu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical, Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| | - Yinliang Huang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Meng Wang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hong Yang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.,Advanced Materials and Liquid Crystal Institute and Chemical, Physics Interdisciplinary Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|