1
|
Horváth G, Herczeg D, Kovács B, Péntek Á, Kaczur B, Herczeg G. Microplastic uptake with food increases risk-taking of a wide-spread decomposer, the common pill bug Armadillidium vulgare. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126220. [PMID: 40210158 DOI: 10.1016/j.envpol.2025.126220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/20/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Exposure to microplastics (MPs) i.e., plastic fragments between 1 μm and 1 mm in diameter causing growing concern for wildlife and humanity. It is now evident that MPs can accumulate in soil, freshwater, seawater and the atmosphere; thus, living organisms are directly or indirectly exposed to these significant ecological stressors globally. Studies on the physiological effects of MPs in wildlife are emerging, yet, to date, only a handful of studies with a special focus on how MPs affect animal behaviour are available, and there is even less research on how different components of among- and within-individual behavioural variation are affected by MPs. The main goal of this study was to investigate how prolonged exposure (6 weeks) to 10 μm spherical polystyrene microplastics in food (24.85 particles/mg) influences individual variation in risk-taking behaviour in a widespread decomposer, the common pill bug Armadillidium vulgare. Our results indicate a strong MP effect on different levels of behavioural variation: (i) individual mean risk-taking increased, while (ii) a correlation between mean risk-taking and residual within-individual risk-taking variation emerged (risk-takers became less predictable) in the MP treated group. These findings underscore the intricate effects of MPs on individual behavioural variation, with potentially far-reaching ecological and evolutionary consequences given their pervasive presence in both terrestrial and aquatic ecosystems. The negative impacts of these changes are widespread; in our study, MP exposure may increase the susceptibility of A. vulgare to predation, potentially contributing to population decline.
Collapse
Affiliation(s)
- Gergely Horváth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary.
| | - Dávid Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Boglárka Kovács
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Ágnes Péntek
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Bettina Kaczur
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary; HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter Sétány 1/c, Budapest, H-1117, Hungary
| |
Collapse
|
2
|
Smallegange IM, Guenther A. A development-centric perspective on pace-of-life syndromes. Evol Lett 2025; 9:172-183. [PMID: 40191411 PMCID: PMC11968188 DOI: 10.1093/evlett/qrae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 04/09/2025] Open
Abstract
Organism responses to environmental change require coordinated changes across correlated traits, so-called syndromes. For example, animals differ in their "pace-of-life syndrome" (POLS); suites of correlated life-history, behavioral and physiological traits. But standard "gene-centric" evolutionary theory cannot explain why POLSs exist because it assumes that the expression of phenotypic traits of animals is determined by genotype-specified reaction norms; it ignores that developmental processes can bias the direction of evolution so that phenotypes no longer match genotype-by-environment interactions. Here we apply a development-centric perspective to derive new POLS hypotheses that can resolve the conflict that current POLS predictions fail to explain which species/populations are resilient to environmental change.
Collapse
Affiliation(s)
- Isabel M Smallegange
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anja Guenther
- Research Group Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
Ratz T, Montiglio PO. Prey or protection? Access to food alters individual responses to competition in black widow spiders. Behav Ecol 2025; 36:araf011. [PMID: 40008181 PMCID: PMC11851065 DOI: 10.1093/beheco/araf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Animals influence the phenotype and reproductive success of their conspecifics through competitive interactions. Such effects of competition can alter the intensity of selection and ultimately change the rate of evolution. However, the magnitude of the effects of competition, and their evolutionary impact, should vary depending on environmental conditions and individual responses among competitors. We tested whether a key environmental variable, resource availability, affects the response to competition in black widow spiders by manipulating access to prey and the level of competition. We examined if focal spiders modify their web structure and aggressiveness towards prey stimuli when a competitor is present, and whether these responses depend on prior prey access. We also tested if any effects of competition vary with individual differences among competitors. Access to resources changed how individuals respond to competition. Spiders with limited access to prey were less likely to attack prey stimuli in the presence of a conspecific competitor than spiders with greater access to prey, suggesting that limiting resources hinders competitive responses. In contrast, all spiders built better-protected webs in the presence of competitors, regardless of prior access to prey. Crucially, these responses differed among focal spiders and depended on individual competitors. Our findings highlight the importance of environmental conditions and individual differences in mediating the impact of social interactions on phenotypes and eventually on their evolution.
Collapse
Affiliation(s)
- Tom Ratz
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, CP-8888 Succursale Centre-ville, Montréal, QC, H2X 1Y4 QC, Canada
| |
Collapse
|
4
|
Santiago‐Arellano A, Alcocer J, de la Barrera E, Camacho‐Cervantes M. Twoline Skiffia's Latency to Exit a Refuge and to Locate Food When Socialising With Invaders and Raising Temperatures. Ecol Evol 2025; 15:e70813. [PMID: 39830703 PMCID: PMC11739607 DOI: 10.1002/ece3.70813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Aquatic ecosystems are reservoirs of biodiversity and are highly threatened. Among the main threats to biodiversity are invasive species and global warming, the later has allowed the establishment of invasive species from originally warmer climates outside their native range by reducing the barriers to their establishment and distribution. Behaviour is the immediate response that species modify to counteract changes in their environment. Latency to respond to certain stimuli is an indicator of different behavioural tendencies associated with boldness, for example, quickly leaving a shelter could lead to benefits like finding a mate or locating food faster. We investigated the latency to exit a refuge and to locate food of the native twoline skiffia (Skiffia bilineata) from central Mexico at three temperatures (18°C, 23°C and 28°C) and in the presence/absence of invasive guppies (Poecilia reticulata). Our results are the first to show native fish could benefit from associating with invaders when emerging from a refuge and locating food under higher temperatures, but they would find themselves at the extreme of their thermal tolerance. Evidence of positive outcomes from biological invasions is increasing; however, further research is needed to understand if potential benefits for natives are temporary, which may make biological invasions less detrimental during the initial stages.
Collapse
Affiliation(s)
- Abigail Santiago‐Arellano
- Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de México (UNAM), Ciudad UniversitariaMexico CityMexico
- Posgrado en Ciencias del Mar y LimnologíaUNAM, Ciudad UniversitariaMexico CityMexico
| | - Javier Alcocer
- Grupo de Investigación en Limnología Tropical, Facultad de Estudios Superiores IztacalaUNAMTlalnepantlaMexico
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUNAMMoreliaMexico
| | - Morelia Camacho‐Cervantes
- Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de México (UNAM), Ciudad UniversitariaMexico CityMexico
| |
Collapse
|
5
|
Płaskonka B, Zaborowska A, Mikulski A, Pietrzak B. Predation Risk Experienced by Tadpoles Shapes Personalities Before but Not After Metamorphosis. Ecol Evol 2024; 14:e70532. [PMID: 39539678 PMCID: PMC11560291 DOI: 10.1002/ece3.70532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Consistent inter-individual differences in behaviour, that is, personalities, can emerge as a result of inter-individual differences in ontogenetic experience, and predation risk is a potent one. As personalities develop over lifetime, however, they may also be broken by ontogenetic transitions of the individual. Here we first tested the hypothesis that consistent inter-individual differences in larval behaviour arise under predation challenge, and are entangled with differences in body size. We then tested the hypothesis that adult behavioural type is related to body size rather than to larval behavioural phenotype. To test these hypotheses, we performed a longitudinal study following the development of about 50 moor frogs, Rana arvalis. We manipulated their larval and current environment, and recorded their behaviours repeatedly, under control conditions, invertebrate predators' chemical cues or in live predator presence. Partially in line with our predictions, the ontogenetic experience of predator presence led to personality emergence in tadpoles, yet their behaviour was not explained by their body size. This pattern was lost over metamorphosis. According to predictions, pre-adult moor frog behaviour was affected by their body size-time to exit shelter was shorter in larger frogs-but neither by their behaviour as tadpoles nor by their larval environment, that is, tadpole predator-exposure experience. Our results show that individual behavioural tendencies can be well decoupled between prior and post metamorphosis, which adds to the growing empirical evidence supporting adaptive decoupling hypothesis.
Collapse
Affiliation(s)
- Barbara Płaskonka
- Department of Hydrobiology, Institute of Ecology, Faculty of BiologyUniversity of WarsawWarsawPoland
- Botanic Garden, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Anna Zaborowska
- Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
| | - Andrzej Mikulski
- Department of Hydrobiology, Institute of Ecology, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Barbara Pietrzak
- Department of Hydrobiology, Institute of Ecology, Faculty of BiologyUniversity of WarsawWarsawPoland
| |
Collapse
|
6
|
Grunst AS, Grunst ML. Animal personality in multiple stressor environments: the evolutionary ecology of among-individual differences in responses to stressor suites. Proc Biol Sci 2024; 291:20241620. [PMID: 39437842 PMCID: PMC11495964 DOI: 10.1098/rspb.2024.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Animal personality differences may have evolved as alternative strategies for negotiating multiple stressor landscapes. Indeed, ecologists are increasingly recognizing that interactions among multiple stressors can transform selective landscapes and behavioural and physiological responses to stress regimes. Yet, evaluating this hypothesis poses challenges, as most studies involving relationships between personality variation and the environment consider single stressors. Here, we review the literature to explore the theory and evidence that multiple stressor environments may mediate personality variation. We consider effects on evolution of personality variation, as influenced by life-history, energetic and behavioural trade-offs, and effects on phenotypic expression of personality traits. We then explore how personality variation may modulate behavioural and physiological responses to multiple stressors, and how differential responses may be affected by personality-dependent movement ecology and cognitive strategies. Among-individual differences in responses to multiple stressors are critical to elucidate, as multi-stress interactions may transform animal behavioural and physiological responses relative to those predicted under single stressor scenarios, and because among-individual variation comprises the basis for evolutionary shifts in stress responsiveness and population resiliency to global environmental change.
Collapse
Affiliation(s)
- Andrea S. Grunst
- Department of Biology, Indiana State University, Terre Haute, IN47809, USA
| | - Melissa L. Grunst
- Department of Biology, Indiana State University, Terre Haute, IN47809, USA
| |
Collapse
|
7
|
Kim S, Badhiwala KN, Duret G, Robinson JT. Phototaxis is a satiety-dependent behavioral sequence in Hydra vulgaris. J Exp Biol 2024; 227:jeb247503. [PMID: 39155640 PMCID: PMC11449437 DOI: 10.1242/jeb.247503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Understanding how internal states such as satiety are connected to animal behavior is a fundamental question in neuroscience. Hydra vulgaris, a freshwater cnidarian with only 12 neuronal cell types, serves as a tractable model system for studying state-dependent behaviors. We found that starved hydras consistently move towards light, while fed hydras do not. By modeling this behavior as a set of three sequences of head orientation, jump distance and jump rate, we demonstrate that the satiety state only affects the rate of the animal jumping to a new position, while the orientation and jump distance are unaffected. These findings yield insights into how internal states in a simple organism, Hydra, affect specific elements of a behavior, and offer general principles for studying the relationship between state-dependent behaviors and their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | | | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
8
|
Vinogradov IM, Zang C, Mahmud-Al-Hasan M, Head ML, Jennions MD. Inbreeding and high developmental temperatures affect cognition and boldness in guppies ( Poecilia reticulata). Proc Biol Sci 2024; 291:20240785. [PMID: 39317321 PMCID: PMC11421933 DOI: 10.1098/rspb.2024.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
Inbreeding impairs the cognitive abilities of humans, but its impact on cognition in other animals is poorly studied. For example, environmental stress (e.g. food limitation and extreme temperatures) often amplifies inbreeding depression in morphological traits, but whether cognition is similarly affected is unclear. We, therefore, tested if a higher temperature (30°C versus 26°C) during development exacerbates any difference in inhibitory control between inbred (f = 0.25) and outbred guppies (Poecilia reticulata). Inhibitory control is an aspect of cognition that is often measured in vertebrates using a detour test, in which animals have to navigate around a transparent barrier to reach a reward. We also tested if inbreeding and temperature affect 'boldness', which is a putative personality trait in guppies. Inbreeding lowered inhibitory control of guppies raised at the higher temperature but not those raised at the control temperature. Inbred fish were significantly less bold than outbred fish. In addition, males, but not females, raised at the higher temperature had significantly lower inhibitory control. There was no effect of temperature on the boldness of either sex. Our study is among the first to test if experimentally induced inbreeding impairs cognition in a non-domesticated vertebrate. We show that both inbreeding and higher temperatures during development can affect the behaviour and cognitive abilities of fish. These findings are noteworthy given the twin threats of rising global temperatures and more frequent inbreeding as habitat fragmentation reduces population sizes.
Collapse
Affiliation(s)
- I M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - C Zang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M Mahmud-Al-Hasan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
9
|
Camacho‐Cervantes M, Ojanguren AF. Within-population variation in an invasive fish' sociability when associating with conspecifics or heterospecifics. Ecol Evol 2024; 14:e70118. [PMID: 39091330 PMCID: PMC11293883 DOI: 10.1002/ece3.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Behavioural traits are key to promote invasion success because they are easier to adjust to changing environmental conditions than morphological or life history traits. Often, research has overlooked variance in behavioural traits within populations or has assumed it to be mere noise. However, a recent focus towards individual variation of behaviour of successful invaders has revealed new and more profound insights into the invasion process. Behavioural variation within a population could lead to more successful invasions, as they include individuals with diverse behaviours, which ensures at least some individuals could be able to cope with changing conditions. The aim of this research was to examine if invasive guppies (Poecilia reticulata) present within-population differences in their sociability (time spent associating with a shoal) when interacting with conspecifics or heterospecifics. Guppies presented significant differences in their individual tendencies to associate with conspecific or heterospecific shoals. There were among-individual differences in the time spent shoaling with conspecifics versus heterospecifics, where most individuals did not differ in their sociability with conspecifics or heterospecifics, and only 22% of individuals presented a higher tendency to associate with conspecifics. Our results are the first to show individual differences in fish' tendencies to associate with heterospecifics among individuals of the same population and rearing conditions. Given that associations with heterospecific natives have been found to be as beneficial as associations with conspecifics for invaders, our results contribute to the understanding of mechanisms behind heterospecific sociability between natives and invaders.
Collapse
Affiliation(s)
- Morelia Camacho‐Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Alfredo F. Ojanguren
- Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoAsturiasSpain
| |
Collapse
|
10
|
Su L, Lu L, Si M, Ding J, Li C. Effect of Population Density on Personality of Crayfish ( Procambarus clarkii). Animals (Basel) 2024; 14:1486. [PMID: 38791703 PMCID: PMC11117368 DOI: 10.3390/ani14101486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Personality is widely observed in animals and has important ecological and evolutionary implications. In addition to being heritable, personality traits are also influenced by the environment. Population density commonly affects animal behavior, but the way in which it shapes animal personality remains largely unknown. In this study, we reared juvenile crayfish at different population densities and measured their personality traits (shyness, exploration, and aggression) after reaching sexual maturity. Our results showed repeatability for each behavior in all treatments, except for the shyness of females at medium density. There was a negative correlation between shyness and exploration in each treatment, and aggression and exploration were positively correlated in medium- and high-density females. These indicate the presence of a behavior syndrome. On average, the crayfish raised at higher population densities were less shy, more exploratory, and more aggressive. We found no behavioral differences between the sexes in crayfish. These results suggested that population density may affect the average values of behavioral traits rather than the occurrence of personality traits. Our study highlights the importance of considering population density as a factor influencing personality traits in animals and, therefore, might help us to understand animal personality development.
Collapse
Affiliation(s)
- Li Su
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | - Leiyu Lu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | - Mengdi Si
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
| | | | - Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; (L.S.); (L.L.); (M.S.)
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Gan L, Tian S, Wang D, Liu W. Boldness suppresses hoarding behavior in food hoarding season and reduces over-wintering survival in a social rodent. Ecol Evol 2024; 14:e11252. [PMID: 38601856 PMCID: PMC11004661 DOI: 10.1002/ece3.11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
The "pace-of-life" syndrome (POLS) framework can encompass multiple personality axes that drive important functional behaviors (e.g., foraging behavior) and that co-vary with multiple life history traits. Food hoarding is an adaptive behavior important for an animal's ability to adapt to seasonal fluctuations in food availability. However, the empirical evidence for the relationships between animal personality and hoarding behavior remains unclear, including its fitness consequences in the POLS framework. In this study, the Mongolian gerbil (Meriones unguiculatus), a social rodent, was used as a model system to investigate how boldness or shyness is associated with food hoarding strategies during the food hoarding season and their impact on over-winter survival and reproduction at both individual and group levels. The results of this study showed that, compared with shy gerbils, bold gerbils had a lower effort foraging strategy during the food hoarding season and exhibited lower over-winter survival rates. However, bold-shy personality differences had no effect on over-winter reproduction. These findings suggest that the personality is a crucial factor influencing the foraging strategy during the food hoarding season in Mongolian gerbils. Personality may be related to energy states or the reaction to environmental changes (e.g., predation risk and food availability) in bold or shy social animals. These results reflect animal life history trade-offs between current versus future reproduction and reproduction versus self-maintenance, thereby helping Mongolian gerbils in adapting to seasonal fluctuations in their habitat.
Collapse
Affiliation(s)
- Lin Gan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life SciencesNanjing Normal UniversityNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shuang‐Jie Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Biotic InteractionsUniversity of Chinese Academy of SciencesBeijingChina
| | - De‐Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- School of Life SciencesShandong UniversityQingdaoChina
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Sepers B, Verhoeven KJF, van Oers K. Early developmental carry-over effects on exploratory behaviour and DNA methylation in wild great tits ( Parus major). Evol Appl 2024; 17:e13664. [PMID: 38487391 PMCID: PMC10937296 DOI: 10.1111/eva.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 03/17/2024] Open
Abstract
Adverse, postnatal conditions experienced during development are known to induce lingering effects on morphology, behaviour, reproduction and survival. Despite the importance of early developmental stress for shaping the adult phenotype, it is largely unknown which molecular mechanisms allow for the induction and maintenance of such phenotypic effects once the early environmental conditions are released. Here we aimed to investigate whether lasting early developmental phenotypic changes are associated with post-developmental DNA methylation changes. We used a cross-foster and brood size experiment in great tit (Parus major) nestlings, which induced post-fledging effects on biometric measures and exploratory behaviour, a validated personality trait. We investigated whether these post-fledging effects are associated with DNA methylation levels of CpG sites in erythrocyte DNA. Individuals raised in enlarged broods caught up on their developmental delay after reaching independence and became more explorative as days since fledging passed, while the exploratory scores of individuals that were raised in reduced broods remained stable. Although we previously found that brood enlargement hardly affected the pre-fledging methylation levels, we found 420 CpG sites that were differentially methylated between fledged individuals that were raised in small versus large sized broods. A considerable number of the affected CpG sites were located in or near genes involved in metabolism, growth, behaviour and cognition. Since the biological functions of these genes line up with the observed post-fledging phenotypic effects of brood size, our results suggest that DNA methylation provides organisms the opportunity to modulate their condition once the environmental conditions allow it. In conclusion, this study shows that nutritional stress imposed by enlarged brood size during early development associates with variation in DNA methylation later in life. We propose that treatment-associated DNA methylation differences may arise in relation to pre- or post-fledging phenotypic changes, rather than that they are directly induced by the environment during early development.
Collapse
Affiliation(s)
- Bernice Sepers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | - Koen J. F. Verhoeven
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kees van Oers
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Behavioural Ecology GroupWageningen University & Research (WUR)WageningenThe Netherlands
| |
Collapse
|
13
|
Rickward RA, Santostefano F, Wilson AJ. Among-individual behavioural variation in the ornamental red cherry shrimp, Neocaridina heteropoda. Ecol Evol 2024; 14:e11049. [PMID: 38389999 PMCID: PMC10883255 DOI: 10.1002/ece3.11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Personality variation, defined as among-individual differences in behaviour that are repeatable across time and context, is widely reported across animal taxa. From an evolutionary perspective, characterising the amount and structure of this variation is useful since differences among individuals are the raw material for adaptive behavioural evolution. However, behavioural variation among individuals also has implications for more applied areas of evolution and ecology-from invasion biology to ecotoxicology and selective breeding in captive systems. Here, we investigate the structure of personality variation in the red cherry shrimp, Neocaridina heteropoda, a popular ornamental species that is readily kept and bred under laboratory conditions and is emerging as a decapod crustacean model across these fields, but for which basic biological, ecological and behavioural data are limited. Using two assays and a repeated measures approach, we quantify behaviours putatively indicative of shy-bold variation and test for sexual dimorphism and/or size-dependent behaviours (as predicted by some state-dependent models of personality). We find moderate-to-high behavioural repeatabilities in most traits. Although strong individual-level correlations across behaviours are consistent with a major personality axis underlying these observed traits, the multivariate structure of personality variation does not fully match a priori expectations of a shy-bold axis. This may reflect our ecological naivety with respect to what really constitutes bolder, more risk-prone, behaviour in this species. We find no evidence for sexual dimorphism and only weak support for size-dependent behaviour. Our study contributes to the growing literature describing behavioural variation in aquatic invertebrates. Furthermore, it lays a foundation for further studies harnessing the potential of this emerging model system. In particular, this existing behavioural variation could be functionally linked to life-history traits and invasive success and serve as a target of artificial selection or bioassays. It thus holds significant promise in applied research across ecotoxicology, aquaculture and invasion biology.
Collapse
Affiliation(s)
| | - Francesca Santostefano
- Centre for Ecology and ConservationUniversity of ExeterCornwallUK
- Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalQuebecCanada
| | | |
Collapse
|
14
|
Westneat DF. Biological Links between Personality and Plasticity: Testing Some Alternative Hypotheses. Am Nat 2024; 203:174-188. [PMID: 38306285 DOI: 10.1086/727700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractWhen organisms respond behaviorally to a stimulus, they exhibit plasticity, but some individuals respond to the same stimulus consistently differently than others, thereby also exhibiting personality differences. Parent house sparrows express individual differences in how often they feed offspring and how that feeding rate changes with nestling age. Mean feeding rate and its slope with respect to nestling age were positively correlated at median nestling ages but not at hatching, indicating that individuality is primarily in plasticity. Individual differences could arise because of (1) interactions between environmental variables, (2) differences in underlying state or "quality," or (3) differences in the ability to update cues of changing nestling demand. Individual slopes were modestly repeatable across breeding attempts, hinting at the likely action of additional environmental variables, but only brood size was important. I also found few correlates suggesting quality differences. I used short-term brood size manipulations at two nestling ages to test divergent predictions between the three hypotheses. The pattern of correlations between response to the manipulation and individual slope did not fit any single hypothesis. Patterns of sparrow parental care reveal that personality and plasticity are not cleanly separable, and their biology is likely intertwined. New thinking may be needed about the factors parents use in decisions about care and the relevant fitness consequences.
Collapse
|
15
|
Barbee B, Pinter-Wollman N. Nutritional needs and mortality risk combine to shape foraging decisions in ants. Curr Zool 2023; 69:747-755. [PMID: 37876638 PMCID: PMC10591143 DOI: 10.1093/cz/zoac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/07/2022] [Indexed: 10/26/2023] Open
Abstract
When foraging, internal needs for particular nutrients might affect food choice, and external constraints, such as predation risk, might impact trade-offs between foraging and risk avoidance. Examining both internal and external constraints simultaneously can provide important insights into how animals make decisions. We examined how internal nutritional needs and external cues of mortality risk jointly impact the foraging behavior of ants. Ant colonies require carbohydrates to support workers energetically and proteins to raise brood. Furthermore, colonies adjust their foraging activity in response to the environment, such as food availability and the presence of predators or heterospecifics. Here we examine the foraging decisions of groups of Argentine ants Linepithema humile, which differ in their nutritional needs in high-risk environments. We starved groups of ants for either proteins or carbohydrates and determined the foraging choices that ants made when cues of heterospecifics were present. We found that ants preferentially forage for carbohydrates in high-risk conditions. Furthermore, starvation for carbohydrates increased the ants' preference for carbohydrates, even when cues of heterospecifics were present at both carbohydrates and protein resources. Starvation for protein also resulted in preferential foraging for carbohydrates, but it increased visitation to a protein food source in high-risk environments compared to when ants were starved for carbohydrates or for both resources. Examining the effect of both nutrition and mortality risk on foraging simultaneously provides insights about state-dependent risk-taking behavior that may have important implications for predicting the invasion of species into novel habitats.
Collapse
Affiliation(s)
- Bryce Barbee
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Wu Q, Rutschmann A, Miles DB, Richard M, Clobert J. Sex- and state-dependent covariation of risk-averse and escape behavior in a widespread lizard. Ecol Evol 2023; 13:e10723. [PMID: 38089898 PMCID: PMC10711521 DOI: 10.1002/ece3.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 10/16/2024] Open
Abstract
Mounting evidence has shown that personality and behavioral syndromes have a substantial influence on interspecific interactions and individual fitness. However, the stability of covariation among multiple behavioral traits involved in antipredator responses has seldom been tested. Here, we investigate whether sex, gravidity, and parasite infestations influence the covariation between risk aversion (hiding time within a refuge) and escape response (immobility, escape distance) using a viviparous lizard, Zootoca vivipara, as a model system. Our results demonstrated a correlation between risk-averse and escape behavior at the among-individual level, but only in gravid females. We found no significant correlations in either males or neonates. A striking result was the loss of association in postparturition females. This suggests that the "risk-averse - escape" syndrome is ephemeral and only emerges in response to constraints on locomotion driven by reproductive burden. Moreover, parasites have the potential to dissociate the correlations between risk aversion and escape response in gravid females, yet the causal chain requires further examination. Overall, our findings provide evidence of differences in the association between behaviors within the lifetime of an individual and indicate that individual states, sex, and life stages can together influence the stability of behavioral syndromes.
Collapse
Affiliation(s)
- Qiang Wu
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Donald B. Miles
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
| |
Collapse
|
17
|
Stamps JA, Biro PA. Time-specific convergence and divergence in individual differences in behavior: Theory, protocols and analyzes. Ecol Evol 2023; 13:e10615. [PMID: 38034332 PMCID: PMC10682899 DOI: 10.1002/ece3.10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 12/02/2023] Open
Abstract
Over the years, theoreticians and empiricists working in a wide range of disciplines, including physiology, ethology, psychology, and behavioral ecology, have suggested a variety of reasons why individual differences in behavior might change over time, such that different individuals become more similar (convergence) or less similar (divergence) to one another. Virtually none of these investigators have suggested that convergence or divergence will continue forever, instead proposing that these patterns will be restricted to particular periods over the course of a longer study. However, to date, few empiricists have documented time-specific convergence or divergence, in part because the experimental designs and statistical methods suitable for describing these patterns are not widely known. Here, we begin by reviewing an array of influential hypotheses that predict convergence or divergence in individual differences over timescales ranging from minutes to years, and that suggest how and why such patterns are likely to change over time (e.g., divergence followed by maintenance). Then, we describe experimental designs and statistical methods that can be used to determine if (and when) individual differences converged, diverged, or were maintained at the same level at specific periods during a longitudinal study. Finally, we describe why the concepts described herein help explain the discrepancy between what theoreticians and empiricists mean when they describe the "emergence" of individual differences or personality, how they might be used to study situations in which convergence and divergence patterns alternate over time, and how they might be used to study time-specific changes in other attributes of behavior, including individual differences in intraindividual variability (predictability), or genotypic differences in behavior.
Collapse
Affiliation(s)
- Judy A. Stamps
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | - Peter A. Biro
- School of Life and Environmental SciencesDeakin UniversityGeelongVictoriaAustralia
| |
Collapse
|
18
|
Luchiari AC, Maximino C. Fish personality: meta-theoretical issues, personality dimensions, and applications to neuroscience and psychopathology. PERSONALITY NEUROSCIENCE 2023; 6:e9. [PMID: 38107778 PMCID: PMC10725779 DOI: 10.1017/pen.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 12/19/2023]
Abstract
While the field of personality neuroscience has extensively focused on humans and, in a few cases, primates and rodents, a wide range of research on fish personality has emerged in the last decades. This research is focused mainly on the ecological and evolutionary causes of individual differences and also aimed less extensively at proximal mechanisms (e.g., neurochemistry or genetics). We argue that, if consistent and intentional work is made to solve some of the meta-theoretical issues of personality research both on fish and mammals, fish personality research can lead to important advances in personality neuroscience as a whole. The five dimensions of personality in fish (shyness-boldness, exploration-avoidance, activity, aggressiveness, and sociability) need to be translated into models that explicitly recognize the impacts of personality in psychopathology, synergizing research on fish as model organisms in experimental psychopathology, personality neuroscience, and ecological-ethological approaches to the evolutionary underpinnings of personality to produce a powerful framework to understand individual differences.
Collapse
Affiliation(s)
- Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Caio Maximino
- Laboratório de Neurociências e Comportamento, Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| |
Collapse
|
19
|
Gayford JH, Pearse WD, De La Parra Venegas R, Whitehead DA. Quantifying the behavioural consequences of shark ecotourism. Sci Rep 2023; 13:12938. [PMID: 37679396 PMCID: PMC10485054 DOI: 10.1038/s41598-023-39560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023] Open
Abstract
Shark populations globally are facing catastrophic declines. Ecotourism has been posited as a potential solution to many of the issues facing shark conservation, yet increasingly studies suggest that such activity may negatively influence aspects of shark ecology and so further pressure declining populations. Here we combine UAV videography with deep learning algorithms, multivariate statistics and hidden Markov models (HMM) to quantitatively investigate the behavioural consequences of ecotourism in the whale shark (Rhincodon typus). We find that ecotourism increases the probability of sharks being in a disturbed behavioural state, likely increasing energetic expenditure and potentially leading to downstream ecological effects. These results are only recovered when fitting models that account for individual variation in behavioural responses and past behavioural history. Our results demonstrate that behavioural responses to ecotourism are context dependent, as the initial behavioural state is important in determining responses to human activity. We argue that models incorporating individuality and context-dependence should, wherever possible, be incorporated into future studies investigating the ecological impacts of shark ecotourism, which are only likely to increase in importance given the expansion of the industry and the dire conservation status of many shark species.
Collapse
Affiliation(s)
- Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK.
- Shark Measurements, London, UK.
| | - William D Pearse
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
20
|
Jing CL, Lou YQ, Liu H, Song K, Fang Y, Höglund J, Halvarsson P, Sun YH. Avian malaria parasite infections do not affect personality in the chestnut thrush ( Turdus rubrocanus) on the Qinghai-Tibet Plateau. Heliyon 2023; 9:e20082. [PMID: 37809652 PMCID: PMC10559808 DOI: 10.1016/j.heliyon.2023.e20082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Personality traits, the consistent individual behavioral differences, are currently gaining much attention in studies of natural bird populations. However, associations between personality traits and parasite infections are not often investigated. Even less attention has been given to studies of birds in the high-elevation region such as the Tibetan plateau. This research aims to examine the relationship between avian malaria parasites and two personality traits in a population of the Chestnut Thrush (Turdus rubrocanus) breed in the Tibetan plateau. Our results revealed no evidence of sex bias in malaria parasite prevalence. Furthermore, we found no effect of infection status on two personality scores: activity and boldness. Additionally, no effects on the activity level or boldness were observed for different parasite lineages of Haemoproteus, Leucocytozoon, the sex of the birds, or their interactions. Similarly, we did not find any relationship between activity level and boldness with nestling numbers, sex, or their interactions. Notably, individuals with a larger number of offspring tended to display greater boldness. Our findings indicate that blood parasite infections are common in this population but do not significantly impact the personality of the birds.
Collapse
Affiliation(s)
- Chun-lei Jing
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Qiang Lou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Song
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yun Fang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jacob Höglund
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Peter Halvarsson
- Unit of Parasitology, Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, PO Box 7036, 75007, Uppsala, Sweden
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Li C, Zhang X, Cheng L, Zhang B, Zhang F. Food patch use of Japanese quail (Coturnix japonica) varies with personality traits. Front Zool 2023; 20:30. [PMID: 37653456 PMCID: PMC10468902 DOI: 10.1186/s12983-023-00510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND The classic optimal foraging theory (OFT) predicts animals' food patch use assuming that individuals in a population use the same strategy while foraging. However, due to the existence of animal personality, i.e. repeatable inter-individual differences and intra-individual consistency in behaviours over time and/or across contexts, individuals often exhibit different behavioural strategies, challenging the basic assumptions of the OFT. Here, we tested whether personality traits (boldness and exploration in open arena) of Japanese quail (Coturnix japonica, 38 females and 34 males) influenced their patch use in two foraging experiments with different inter-patch distances (i.e. 2 m in Experiment 1 and 3 m in Experiment 2). RESULTS The total feeding time and food intake of individuals did not differ between Experiment 1 and 2, but in both experiments, proactive (i.e. bolder and more explorative) individuals had longer feeding time and higher food intake than reactive individuals. In Experiment 1, proactive quails changed patches more frequently and had shorter mean patch residence time than reactive individuals, while the effects were not significant in Experiment 2. The quails reduced patch residence time along with feeding, and this trend was weakened in Experiment 2 which had longer inter-patch distance. CONCLUSIONS The above results suggest that personality traits affect animals' patch use, while the effects might be weakened with longer inter-patch distance. Our study highlights that animal personality should be considered when investigating animals' foraging behaviours because individuals may not adopt the same strategy as previously assumed. Furthermore, the interaction between personality traits and inter-patch distances, which is related to movement cost and capacity of information gathering, should also be considered.
Collapse
Affiliation(s)
- Chunlin Li
- School of Resources and Environmental Engineering, Anhui University, No.111, Jiulong Road, Hefei, 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, No.111, Jiulong Road, Hefei, 230601, China
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Dongzhi, 247230, China
| | - Xinyu Zhang
- School of Resources and Environmental Engineering, Anhui University, No.111, Jiulong Road, Hefei, 230601, China
| | - Lin Cheng
- Anhui Vocational and Technical College of Forestry, No. 99, Yulan Road, Hefei, 230031, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, No.111, Jiulong Road, Hefei, 230601, China
| | - Feng Zhang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, China.
| |
Collapse
|
22
|
Lopez LK, Gil MA, Crowley PH, Trimmer PC, Munson A, Ligocki IY, Michelangeli M, Sih A. Integrating animal behaviour into research on multiple environmental stressors: a conceptual framework. Biol Rev Camb Philos Soc 2023; 98:1345-1364. [PMID: 37004993 DOI: 10.1111/brv.12956] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 03/18/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
While a large body of research has focused on the physiological effects of multiple environmental stressors, how behavioural and life-history plasticity mediate multiple-stressor effects remains underexplored. Behavioural plasticity can not only drive organism-level responses to stressors directly but can also mediate physiological responses. Here, we provide a conceptual framework incorporating four fundamental trade-offs that explicitly link animal behaviour to life-history-based pathways for energy allocation, shaping the impact of multiple stressors on fitness. We first address how small-scale behavioural changes can either mediate or drive conflicts between the effects of multiple stressors and alternative physiological responses. We then discuss how animal behaviour gives rise to three additional understudied and interrelated trade-offs: balancing the benefits and risks of obtaining the energy needed to cope with stressors, allocation of energy between life-history traits and stressor responses, and larger-scale escape from stressors in space or time via large-scale movement or dormancy. Finally, we outline how these trade-offs interactively affect fitness and qualitative ecological outcomes resulting from multiple stressors. Our framework suggests that explicitly considering animal behaviour should enrich our mechanistic understanding of stressor effects, help explain extensive context dependence observed in these effects, and highlight promising avenues for future empirical and theoretical research.
Collapse
Affiliation(s)
- Laura K Lopez
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- National Centre for Immunisation Research and Surveillance, Kids Research, Sydney Children's Hospitals Network, Corner Hawkesbury Road & Hainsworth Street, Westmead, New South Wales, 2145, Australia
| | - Michael A Gil
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Ramaley N122/Campus Box 334, Boulder, CO, 80309-0334, USA
| | - Philip H Crowley
- Department of Biology, University of Kentucky, 195 Huguelet Drive, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506-0225, USA
| | - Pete C Trimmer
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Psychology, University of Warwick, University Road, Coventry, CV4 7AL, UK
| | - Amelia Munson
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | - Isaac Y Ligocki
- Department of Biology, Millersville University of Pennsylvania, Roddy Science Hall, PO Box 1002, Millersville, PA, 17551, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Marcus Michelangeli
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, 2132 Wickson Hall, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
24
|
Weiss A, Feldblum JT, Altschul DM, Collins DA, Kamenya S, Mjungu D, Foerster S, Gilby IC, Wilson ML, Pusey AE. Personality traits, rank attainment, and siring success throughout the lives of male chimpanzees of Gombe National Park. PeerJ 2023; 11:e15083. [PMID: 37123001 PMCID: PMC10135409 DOI: 10.7717/peerj.15083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/25/2023] [Indexed: 05/02/2023] Open
Abstract
Personality traits in many taxa correlate with fitness. Several models have been developed to try to explain how variation in these traits is maintained. One model proposes that variation persists because it is linked to trade-offs between current and future adaptive benefits. Tests of this model's predictions, however, are scant in long-lived species. To test this model, we studied male chimpanzees living in Gombe National Park, Tanzania. We operationalized six personality traits using ratings on 19 items. We used 37 years of behavioral and genetic data to assemble (1) daily rank scores generated from submissive vocalizations and (2) records of male siring success. We tested whether the association between two personality traits, Dominance and Conscientiousness, and either rank or reproductive success, varied over the life course. Higher Dominance and lower Conscientiousness were associated with higher rank, but the size and direction of these relationships did not vary over the life course. In addition, independent of rank at the time of siring, higher Dominance and lower Conscientiousness were related to higher siring success. Again, the size and direction of these relationships did not vary over the life course. The trade-off model, therefore, may not hold in long-lived and/or slowly reproducing species. These findings also demonstrate that ratings are a valid way to measure animal personality; they are related to rank and reproductive success. These traits could therefore be used to test alternative models, including one that posits that personality variation is maintained by environmental heterogeneity, in studies of multiple chimpanzee communities.
Collapse
Affiliation(s)
- Alexander Weiss
- National Evolutionary Synthesis Center, Durham, NC, United States of America
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Scottish Primate Research Group, United Kingdom
| | - Joseph T. Feldblum
- Department of Anthropology, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
- Society of Fellows, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| | - Drew M. Altschul
- School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Scottish Primate Research Group, United Kingdom
- Mental Health Data Science, Edinburgh, United Kingdom
| | | | - Shadrack Kamenya
- Gombe Stream Research Centre, Jane Goodall Institute, Kigoma, Tanzania
| | - Deus Mjungu
- Gombe Stream Research Centre, Jane Goodall Institute, Kigoma, Tanzania
| | - Steffen Foerster
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| | - Ian C. Gilby
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States of America
- Institute of Human Origins, Arizona State University, Tempe, AZ, United States of America
| | - Michael L. Wilson
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, United States of America
- Institute on the Environment, University of Minnesota, St. Paul, MN, United States of America
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States of America
| |
Collapse
|
25
|
Toscano BJ, Allegue H, Gownaris NJ, Drausnik M, Yung Z, Bauloye D, Gorman F, Ver Pault M. Among‐individual behavioral responses to predation risk are invariant within two species of freshwater snails. Ethology 2023. [DOI: 10.1111/eth.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
| | - Hassen Allegue
- Département des Sciences Biologiques Université du Québec à Montréal Montréal Quebec Canada
| | - Natasha J. Gownaris
- Department of Environmental Studies, Gettysburg College Gettysburg Pennsylvania USA
| | - Marta Drausnik
- Department of Biology Trinity College Hartford Connecticut USA
| | - Zach Yung
- Department of Biology Trinity College Hartford Connecticut USA
| | - Daniel Bauloye
- Department of Biology Trinity College Hartford Connecticut USA
| | - Flynn Gorman
- Department of Biology Trinity College Hartford Connecticut USA
| | - Mia Ver Pault
- Department of Biology Trinity College Hartford Connecticut USA
| |
Collapse
|
26
|
Ehlman SM, Scherer U, Bierbach D, Francisco FA, Laskowski KL, Krause J, Wolf M. Leveraging big data to uncover the eco-evolutionary factors shaping behavioural development. Proc Biol Sci 2023; 290:20222115. [PMID: 36722081 PMCID: PMC9890127 DOI: 10.1098/rspb.2022.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mapping the eco-evolutionary factors shaping the development of animals' behavioural phenotypes remains a great challenge. Recent advances in 'big behavioural data' research-the high-resolution tracking of individuals and the harnessing of that data with powerful analytical tools-have vastly improved our ability to measure and model developing behavioural phenotypes. Applied to the study of behavioural ontogeny, the unfolding of whole behavioural repertoires can be mapped in unprecedented detail with relative ease. This overcomes long-standing experimental bottlenecks and heralds a surge of studies that more finely define and explore behavioural-experiential trajectories across development. In this review, we first provide a brief guide to state-of-the-art approaches that allow the collection and analysis of high-resolution behavioural data across development. We then outline how such approaches can be used to address key issues regarding the ecological and evolutionary factors shaping behavioural development: developmental feedbacks between behaviour and underlying states, early life effects and behavioural transitions, and information integration across development.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - David Bierbach
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Fritz A. Francisco
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California – Davis, Davis, CA 95616, USA
| | - Jens Krause
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Faculty of Life Sciences, Humboldt University, 10117 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, 10587 Berlin, Germany,Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| |
Collapse
|
27
|
Morris DW, Palmer S. Do animal personalities promote species coexistence? A test with sympatric boreal rodents. Ecology 2023; 104:e3913. [PMID: 36333888 DOI: 10.1002/ecy.3913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The coexistence of competing species requires density feedbacks that have a larger effect on their own species' population growth than they do on others in the assembly. The feedbacks are often associated with behavioral tradeoffs that enable species to differentially exploit underlying axes of heterogeneity. Conjoining theories of species coexistence with foraging behavior and density-dependent habitat selection reveals that such tradeoffs impinge on invasion probabilities and equilibrium dynamics emerging from species' differences in habitat use. The resulting habitat separation promotes coexistence by reducing the overall interaction among species. Differential habitat selection depends on the behavioral abilities of organisms to identify and exploit the most profitable habitats and resource patches. One might thus expect that each species will evolve behavioral types distinct from those of other potential competitors. Accordingly, we exposed four coexisting species in four genera of boreal rodents to open-field tests. We used principal components (PC) to summarize their behaviors along three independent axes corresponding with clines of exploratory, vigilant, and apprehensive personalities. We confirmed that the axes represented repeatable behaviors (personalities) and assessed differences among species with a general linear model (GLM). The GLM revealed highly distinct differences among species, and between pairs of species, on each PC. Even so, it is difficult to infer the adaptive advantages of personality to the habitat segregation that reduces otherwise high interactions among species. Rather, personalities are best interpreted as co-adaptive behaviors reflecting the complex of morphological, physiological and behavioral attributes that dictate tradeoffs and enable coexistence.
Collapse
Affiliation(s)
- Douglas W Morris
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Sommer Palmer
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
28
|
Gutiérrez F, Valdesoiro F. The evolution of personality disorders: A review of proposals. Front Psychiatry 2023; 14:1110420. [PMID: 36793943 PMCID: PMC9922784 DOI: 10.3389/fpsyt.2023.1110420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
Personality disorders (PDs) are currently considered dysfunctions. However, personality differences are older than humanity and are ubiquitous in nature, from insects to higher primates. This suggests that a number of evolutionary mechanisms-other than dysfunctions-may be able to maintain stable behavioral variation in the gene pool. First of all, apparently maladaptive traits may actually improve fitness by enabling better survival or successful mating or reproduction, as exemplified by neuroticism, psychopathy, and narcissism. Furthermore, some PDs may harm important biological goals while facilitating others, or may be globally beneficial or detrimental depending on environmental circumstances or body condition. Alternatively, certain traits may form part of life history strategies: Coordinated suites of morphological, physiological and behavioral characters that optimize fitness through alternative routes and respond to selection as a whole. Still others may be vestigial adaptations that are no longer beneficial in present times. Finally, variation may be adaptative in and by itself, as it reduces competition for finite resources. These and other evolutionary mechanisms are reviewed and illustrated through human and non-human examples. Evolutionary theory is the best-substantiated explanatory framework across the life sciences, and may shed light on the question of why harmful personalities exist at all.
Collapse
Affiliation(s)
- Fernando Gutiérrez
- Hospital Clínic de Barcelona, Institute of Neuroscience, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | |
Collapse
|
29
|
Kanno Y, Locklear ML, Platis NM, Lewis ST. Body condition metrics explain fish movement in experimental streams. J Zool (1987) 2023. [DOI: 10.1111/jzo.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Y. Kanno
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
- Graduate Degree Program in Ecology Colorado State University Fort Collins CO USA
| | - M. L. Locklear
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - N. M. Platis
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| | - S. T. Lewis
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
30
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
31
|
Prabh N, Linnenbrink M, Jovicic M, Guenther A. Fast adjustment of pace-of-life and risk-taking to changes in food quality by altered gene expression in house mice. Ecol Lett 2023; 26:99-110. [PMID: 36366786 DOI: 10.1111/ele.14137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022]
Abstract
The pace-of-life syndrome hypothesis provides a framework for the adaptive integration of behaviour, physiology and life history between and within species. It suggests that behaviours involving a risk of death or injury should co-vary with a higher allocation to fast reproduction. Empirical support for this hypothesis is mixed, presumably because important influencing factors such as environmental variation, are usually neglected. By experimentally manipulating food quality of wild mice living under semi-natural conditions for three generations, we show that individuals adjust their life history strategies and risk-taking behaviours as well as trait covariation (Nindividuals = 1442). These phenotypic differences are correlated to differences in transcriptomic gene expression of primary metabolic processes in the liver while no changes in gene frequencies occurred. Our discussion emphasises the need to integrate the role of environmental conditions and phenotypic plasticity in shaping relationships among behaviour, physiology and life history in response to changing environmental conditions.
Collapse
Affiliation(s)
- Neel Prabh
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Milan Jovicic
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Anja Guenther
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
32
|
Tyack PL, Thomas L, Costa DP, Hall AJ, Harris CM, Harwood J, Kraus SD, Miller PJO, Moore M, Photopoulou T, Pirotta E, Rolland RM, Schwacke LH, Simmons SE, Southall BL. Managing the effects of multiple stressors on wildlife populations in their ecosystems: developing a cumulative risk approach. Proc Biol Sci 2022; 289:20222058. [PMID: 36448280 PMCID: PMC9709579 DOI: 10.1098/rspb.2022.2058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Assessing cumulative effects of human activities on ecosystems is required by many jurisdictions, but current science cannot meet regulatory demands. Regulations define them as effect(s) of one human action combined with other actions. Here we argue for an approach that evaluates the cumulative risk of multiple stressors for protected wildlife populations within their ecosystems. Monitoring effects of each stressor is necessary but not sufficient to estimate how multiple stressors interact to affect wildlife populations. Examining the mechanistic pathways, from cellular to ecological, by which stressors affect individuals can help prioritize stressors and interpret how they interact. Our approach uses health indicators to accumulate the effects of stressors on individuals and to estimate changes in vital rates, driving population status. We advocate using methods well-established in human health and integrating them into ecosystem-based management to protect the health of commercially and culturally important wildlife populations and to protect against risk of extinction for threatened species. Our approach will improve abilities to conserve and manage ecosystems but will also demand significant increases in research and monitoring effort. We advocate for increased investment proportional to the economic scale of human activities in the Anthropocene and their pervasive effects on ecology and biodiversity.
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Len Thomas
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| | - Ailsa J Hall
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Catriona M Harris
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - John Harwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Scott D Kraus
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Michael Moore
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Theoni Photopoulou
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Rosalind M Rolland
- Anderson-Cabot Center for Ocean Life, New England Aquarium, Boston, MA, USA
| | | | - Samantha E Simmons
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Brandon L Southall
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA.,Southall Environmental Associates, Inc., Aptos, CA, USA
| |
Collapse
|
33
|
Burslem A, Isojunno S, Pirotta E, Miller PJO. Modelling the impact of condition-dependent responses and lipid-store availability on the consequences of disturbance in a cetacean. CONSERVATION PHYSIOLOGY 2022; 10:coac069. [PMID: 36415287 PMCID: PMC9672687 DOI: 10.1093/conphys/coac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Lipid-store body condition is fundamental to how animals cope with environmental fluctuations, including anthropogenic change. As it provides an energetic buffer, body condition is expected to influence risk-taking strategies, with both positive and negative relationships between body condition and risk-taking posited in the literature. Individuals in good condition may take more risks due to state-dependent safety ('ability-based' explanation), or alternatively fewer risks due to asset protection and reduced need to undertake risky foraging ('needs-based' explanation). Such state-dependent responses could drive non-linear impacts of anthropogenic activities through feedback between body condition and behavioural disturbance. Here, we present a simple bioenergetic model that explicitly incorporates hypothetical body condition-dependent response strategies for a cetacean, the sperm whale. The model considered the consequences of state-dependent foraging cessation and availability of wax ester (WE) lipids for calf provisioning and female survival. We found strikingly different consequences of disturbance depending on strategy and WE availability scenarios. Compared with the null strategy, where responses to disturbance were independent of body condition, the needs-based strategy mitigated predicted reductions in provisioning by 10%-13%, while the ability-based strategy exaggerated reductions by 63%-113%. Lower WE availability resulted in more extreme outcomes because energy stores were smaller relative to the daily energy balance. In the 0% availability scenario, while the needs-based strategy reduced deaths by 100%, the ability-based strategy increased them by 335% relative to null and by 56% relative to the same strategy under the 5%-6.7% WE availability scenario. These results highlight that state-dependent disturbance responses and energy store availability could substantially impact the population consequences of disturbance. Our ability to set appropriate precautionary disturbance thresholds therefore requires empirical tests of ability- vs needs-based response modification as a function of body condition and a clearer understanding of energy store availability.
Collapse
Affiliation(s)
- Alec Burslem
- Corresponding author: Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK. Tel: +44 (0) 7984318003.
| | - Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, School of Mathematics, The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife KY16 9LZ, UK
| | - Patrick J O Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
34
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.6084/m9.figshare.c.6315476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
35
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 PMCID: PMC9709565 DOI: 10.1098/rsos.221189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
36
|
State and physiology behind personality in arthropods: a review. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the endeavour to understand the causes and consequences of the variation in animal personality, a wide range of studies were carried out, utilising various aspects to make sense of this biological phenomenon. One such aspect integrated the study of physiological traits, investigating hypothesised physiological correlates of personality. Although many of such studies were carried out on vertebrates (predominantly on birds and mammals), studies using arthropods (mainly insects) as model organisms were also at the forefront of this area of research. In order to review the current state of knowledge on the relationship between personality and the most frequently studied physiological parameters in arthropods, we searched for scientific articles that investigated this relationship. In our review, we only included papers utilising a repeated-measures methodology to be conceptually and formally concordant with the study of animal personality. Based on our literature survey, metabolic rate, thermal physiology, immunophysiology, and endocrine regulation, as well as exogenous agents (such as toxins) were often identified as significant affectors shaping animal personality in arthropods. We found only weak support for state-dependence of personality when the state is approximated by singular elements (or effectors) of condition. We conclude that a more comprehensive integration of physiological parameters with condition may be required for a better understanding of state’s importance in animal personality. Also, a notable knowledge gap persists in arthropods regarding the association between metabolic rate and hormonal regulation, and their combined effects on personality. We discuss the findings published on the physiological correlates of animal personality in arthropods with the aim to summarise current knowledge, putting it into the context of current theory on the origin of animal personality.
Collapse
|
37
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.5281/zenodo.7299681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
38
|
Skinner M, Brown S, Kumpan LT, Miller N. Snake personality: Differential effects of development and social experience. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Mohring B, Angelier F, Jaatinen K, Steele B, Lönnberg E, Öst M. Drivers of within- and among-individual variation in risk-taking behaviour during reproduction in a long-lived bird. Proc Biol Sci 2022; 289:20221338. [PMID: 36126681 PMCID: PMC9489283 DOI: 10.1098/rspb.2022.1338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/30/2022] [Indexed: 01/17/2023] Open
Abstract
Plastic and selective mechanisms govern parental investment adjustments to predation threat. We investigated the relative importance of plasticity and selection in risk-taking propensity of incubating female common eiders Somateria mollissima facing unprecedented predation in SW Finland, Baltic Sea. Using a 12-year individual-based dataset, we examined within- and among-individual variation in flight initiation distance (FID), in relation to predation risk, nest detectability, individual traits and reproductive investment (NFID = 1009; Nindividual = 559). We expected females nesting in riskier environments (higher predation risk, lower nest concealment) to mitigate environmentally imposed risk by exhibiting longer FIDs, and females investing more in current reproduction (older, in better condition or laying larger clutches) to display shorter FIDs. The target of predation-adult or offspring-affected the mechanisms adapting risk-taking propensity; females plastically increased their FID under higher adult predation risk, while risk-avoiding breeders were predominant on islands with higher nest predation risk. Risk-taking females selected thicker nest cover, consistent with personality-matching habitat choice. Females plastically attenuated their anti-predator response (shorter FIDs) with advancing age, and females in better body condition were more risk-taking, a result explained by selection processes. Future research should consider predator type when investigating the fitness consequences of risk-taking strategies.
Collapse
Affiliation(s)
- Bertille Mohring
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS – La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, 10160 Degerby, Finland
| | - Ben Steele
- School of Arts and Sciences, Colby-Sawyer College, New London, NH 03257, USA
| | | | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, 20500 Turku, Finland
- Novia University of Applied Sciences, 10600 Ekenäs, Finland
| |
Collapse
|
40
|
Amin B, Jennings DJ, Norman A, Ryan A, Ioannidis V, Magee A, Haughey HA, Haigh A, Ciuti S. Neonate personality affects early-life resource acquisition in a large social mammal. Behav Ecol 2022; 33:1025-1035. [PMID: 36382227 PMCID: PMC9664924 DOI: 10.1093/beheco/arac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Although it is widely acknowledged that animal personality plays a key role in ecology, current debate focuses on the exact role of personality in mediating life-history trade-offs. Crucial for our understanding is the relationship between personality and resource acquisition, which is poorly understood, especially during early stages of development. Here we studied how among-individual differences in behavior develop over the first 6 months of life, and their potential association with resource acquisition in a free-ranging population of fallow deer (Dama dama). We related neonate physiological (heart rate) and behavioral (latency to leave at release) anti-predator responses to human handling to the proportion of time fawns spent scanning during their first summer and autumn of life. We then investigated whether there was a trade-off between scanning time and foraging time in these juveniles, and how it developed over their first 6 months of life. We found that neonates with longer latencies at capture (i.e., risk-takers) spent less time scanning their environment, but that this relationship was only present when fawns were 3-6 months old during autumn, and not when fawns were only 1-2 months old during summer. We also found that time spent scanning was negatively related to time spent foraging and that this relationship became stronger over time, as fawns gradually switch from a nutrition rich (milk) to a nutrition poor (grass) diet. Our results highlight a potential mechanistic pathway in which neonate personality may drive differences in early-life resource acquisition of a large social mammal.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Alison Norman
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Andrew Ryan
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Vasiliki Ioannidis
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Alice Magee
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Hayley-Anne Haughey
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
41
|
Amin B, Verbeek L, Haigh A, Griffin LL, Ciuti S. Risk-taking neonates do not pay a survival cost in a free-ranging large mammal, the fallow deer ( Dama dama). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220578. [PMID: 36147938 PMCID: PMC9490327 DOI: 10.1098/rsos.220578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 05/10/2023]
Abstract
Recent debate has focused on whether variation in personality primarily reflects variation in resource allocation or resource acquisition of individuals. These two mechanisms predict different relationships between personality and survival. If personality mainly reflects variation in resource allocation, then bold (i.e. risk-taking) individuals are expected to live shorter lives, whereas the opposite pattern is expected with resource acquisition. Here we studied the relationship between neonate personality and early-life survival in 269 juveniles of a population of fallow deer (Dama dama). We found that bolder individuals paid no apparent survival cost. Interestingly, among-individual differences in the physiological response at capture (heart rates, which covary with the behavioural response, i.e. latency to leave) were linked to survival, where individuals with lower heart rates when handled by humans had a higher probability of early-life survival. This suggests that bolder individuals may be of higher state than their shyer counterparts. As the first study linking neonate personality to survival in a free-ranging mammal, we provide novel insights into drivers behind early-life individual variation.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura Verbeek
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L. Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
Amin B, Verbeek L, Haigh A, Griffin LL, Ciuti S. Risk-taking neonates do not pay a survival cost in a free-ranging large mammal, the fallow deer ( Dama dama). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220578. [PMID: 36147938 DOI: 10.6084/m9.figshare.c.6189637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 05/25/2023]
Abstract
Recent debate has focused on whether variation in personality primarily reflects variation in resource allocation or resource acquisition of individuals. These two mechanisms predict different relationships between personality and survival. If personality mainly reflects variation in resource allocation, then bold (i.e. risk-taking) individuals are expected to live shorter lives, whereas the opposite pattern is expected with resource acquisition. Here we studied the relationship between neonate personality and early-life survival in 269 juveniles of a population of fallow deer (Dama dama). We found that bolder individuals paid no apparent survival cost. Interestingly, among-individual differences in the physiological response at capture (heart rates, which covary with the behavioural response, i.e. latency to leave) were linked to survival, where individuals with lower heart rates when handled by humans had a higher probability of early-life survival. This suggests that bolder individuals may be of higher state than their shyer counterparts. As the first study linking neonate personality to survival in a free-ranging mammal, we provide novel insights into drivers behind early-life individual variation.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura Verbeek
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
Stiegler J, Lins A, Dammhahn M, Kramer-Schadt S, Ortmann S, Blaum N. Personality drives activity and space use in a mammalian herbivore. MOVEMENT ECOLOGY 2022; 10:33. [PMID: 35964147 PMCID: PMC9375925 DOI: 10.1186/s40462-022-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum. METHODS We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals' degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population. RESULTS We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant). CONCLUSIONS Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing-and possibly disturbing-focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes.
Collapse
Affiliation(s)
- Jonas Stiegler
- Institute of Biochemistry and Biology, Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany.
| | - Alisa Lins
- Institute of Biochemistry and Biology, Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| | - Melanie Dammhahn
- Department for Behavioral Biology, University of Münster, Münster, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
- Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | - Sylvia Ortmann
- Leibniz Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Niels Blaum
- Institute of Biochemistry and Biology, Plant Ecology and Nature Conservation, University of Potsdam, Potsdam, Germany
| |
Collapse
|
44
|
Knight CJ, Dunn RP, Long JD. Conspecific cues, not starvation, mediate barren urchin response to predation risk. Oecologia 2022; 199:859-869. [PMID: 35907124 DOI: 10.1007/s00442-022-05225-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Prey state and prey density mediate antipredator responses that can shift community structure and alter ecosystem processes. For example, well-nourished prey at low densities (i.e., prey with higher per capita predation risk) should respond strongly to predators. Although prey state and density often co-vary across habitats, it is unclear if prey responses to predator cues are habitat-specific. We used mesocosms to compare the habitat-specific responses of purple sea urchins (Strongylocentrotus purpuratus) to waterborne cues from predatory lobsters (Panulirus interruptus). We predicted that urchins from kelp forests (i.e., in well-nourished condition) tested at low densities typically observed in this habitat would respond more strongly to predation risk than barren urchins (i.e., in less nourished condition) tested at high densities typically observed in this habitat. Indeed, when tested at densities associated with respective habitats, urchins from forests, but not barrens, reduced kelp grazing by 69% when exposed to lobster risk cues. Barren urchins that were unresponsive to predator cues at natural, high densities suddenly responded strongly to lobster cues when conspecific densities were reduced. Strong responses of low densities of barren urchins persisted across feeding history (i.e. 0-64 days of starvation). This suggests that barren urchins can respond to predators but typically do not because of high conspecific densities. Because high densities of urchins in barrens should weaken the non-consumptive effects of lobsters, urchins in these habitats may continue to graze in the presence of predators thereby providing a feedback that maintains urchin barrens.
Collapse
Affiliation(s)
- Christopher J Knight
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA.
- Hopkins Marine Station, Department of Biology, Stanford University, 120 Ocean View Blvd, Pacific Grove, CA, 93950, USA.
| | - Robert P Dunn
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
- North Inlet-Winyah Bay National Estuarine Research Reserve, Georgetown, SC, 29440, USA
- Baruch Marine Field Laboratory, University of South Carolina, 2306 Crabhall Road Georgetown, Columbia, SC, 29440, USA
| | - Jeremy D Long
- Biology Department, San Diego State University, 5500 Campanile Drive, San Diego, San Diego, CA, 92182, USA
| |
Collapse
|
45
|
Beveridge D, Mitchell DJ, Beckmann C, Biro PA. Weak evidence that asset protection underlies temporal or contextual consistency in boldness of a terrestrial crustacean. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In recent years, many studies have investigated the potential state dependence of individual differences in behaviour, with the aim to understand the proximate and ultimate causes and consequences of animal personality. Among the potential state variables that could affect behavioural expression is size and mass, but few studies have found associations at the among-individual levels. Insufficient sampling and incorrect analysis of data are cited as impediments to detecting correlations, if they exist. Here, we conducted a study using 100 pillbugs (Armadillidium vulgare) and assayed their defensive behaviour 24 times each over time and across familiarity contexts, to test the asset protection hypothesis that predicts a negative correlation between boldness and mass, and with increases in mass over time. Multivariate mixed models revealed that despite mostly consistent individual behavioural differences over time (modest slope variance) and across contexts (near-parallel reaction norms), and 18-fold range in starting mass, there was no correlation between individual mean mass and boldness. However, individuals that gained more mass over time may have been more ‘shy’ compared to those gaining less mass, but the correlation was weak and observed variation in mass gain was small. There was also a mean level trend of increasing shyness over time that was coincident with mean level mass increases over time. Together, our study provides weak evidence for the asset protection hypothesis, whereby individuals that accumulate more resources are thought to protect them through risk averse behaviour.
Significance statement
Individual variation in ‘state’, such as mass or energy reserves, is thought to be a predictor of individual differences in behaviour that are consistent over time. However, few studies reveal such links, and several studies suggest insufficient sampling may explain null results in most studies. We studied 100 animals sampled 24 times each in a controlled setting to reveal stable individual differences in mean behaviour over time and across contexts; however, individual behaviour was unrelated to large differences in individual mass but weakly related to increases in mass through time whereby individuals became more shy and those growing faster were somewhat more shy. Our results provide little evidence for the asset protection hypothesis.
Collapse
|
46
|
Mathot KJ, Arteaga-Torres JD, Wijmenga JJ. Individual risk-taking behaviour in black-capped chickadees ( Poecile atricapillus) does not predict annual survival. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220299. [PMID: 35911194 PMCID: PMC9326292 DOI: 10.1098/rsos.220299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Within species, individuals often show repeatable differences in behaviours, called 'animal personality'. One behaviour that has been widely studied is how quickly an individual resumes feeding after a disturbance, referred to as boldness or risk-taking. Depending on the mechanism(s) shaping risk-taking behaviour, risk-taking could be positively, negatively, or not associated with differences in overall survival. We studied risk-taking and survival in a population of free-living black-capped chickadees (Poecile atricapillus) in which we previously showed repeatable among-individual differences in risk-taking over the course of several months. We found no evidence that variation in risk-taking is associated with differences in annual survival. We suggest that variation in risk-taking is likely shaped by multiple mechanisms simultaneously, such that the net effect on survival is small or null. For example, among-individual differences in energy demand may favour greater risk-taking without imposing an overall mortality cost if higher energy demand covaries with escape flight performance. We propose directions for future work, including using a multi-trait, multi-year approach to study risk-taking, to allow for stronger inferences regarding the mechanisms shaping these behavioural decisions.
Collapse
Affiliation(s)
- Kimberley J. Mathot
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
- Canada Research Chair in Integrative Ecology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | - Jan J. Wijmenga
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
47
|
Jablonszky M, Canal D, Hegyi G, Krenhardt K, Laczi M, Markó G, Nagy G, Rosivall B, Szász E, Zsebők S, Garamszegi LZ. Individual differences in song plasticity in response to social stimuli and singing position. Ecol Evol 2022; 12:e8883. [PMID: 35509613 PMCID: PMC9058795 DOI: 10.1002/ece3.8883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Individual animals can react to the changes in their environment by exhibiting behaviors in an individual‐specific way leading to individual differences in phenotypic plasticity. However, the effect of multiple environmental factors on multiple traits is rarely tested. Such a complex approach is necessary to assess the generality of plasticity and to understand how among‐individual differences in the ability to adapt to changing environments evolve. This study examined whether individuals adjust different song traits to varying environmental conditions in the collared flycatcher (Ficedula albicollis), a passerine with complex song. We also aimed to reveal among‐individual differences in behavioral responses by testing whether individual differences in plasticity were repeatable. The presence of general plasticity across traits and/or contexts was also tested. To assess plasticity, we documented (1) short‐scale temporal changes in song traits in different social contexts (after exposition to male stimulus, female stimulus or without stimuli), and (2) changes concerning the height from where the bird sang (singing position), used as a proxy of predation risk and acoustic transmission conditions. We found population‐level relationships between singing position and both song length (SL) and complexity, as well as social context‐dependent temporal changes in SL and maximum frequency (MF). We found among‐individual differences in plasticity of SL and MF along both the temporal and positional gradients. These among‐individual differences in plasticity were repeatable. Some of the plastic responses correlated across different song traits and environmental gradients. Overall, our results show that the plasticity of bird song (1) depends on the social context, (2) exists along different environmental gradients, and (3) there is evidence for trade‐offs between the responses of different traits to different environmental variables. Our results highlight the need to consider individual differences and to investigate multiple traits along multiple environmental axes when studying behavioral plasticity.
Collapse
Affiliation(s)
- Mónika Jablonszky
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - David Canal
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary
| | - Gergely Hegyi
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Katalin Krenhardt
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Miklós Laczi
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary.,The Barn Owl Foundation Orosztony Hungary
| | - Gábor Markó
- Department of Plant Pathology Institute of Plant Protection Hungarian University of Agriculture and Life Sciences Budapest Hungary
| | - Gergely Nagy
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Balázs Rosivall
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Eszter Szász
- Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - Sándor Zsebők
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,Behavioural Ecology Group Department of Systematic Zoology and Ecology ELTE Eötvös Loránd University Budapest Hungary
| | - László Zsolt Garamszegi
- Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary.,MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group Institute of Physics ELTE Eötvös Loránd University Budapest Hungary
| |
Collapse
|
48
|
Dammhahn M, Lange P, Eccard JA. The landscape of fear has individual layers: an experimental test of among‐individual differences in perceived predation risk during foraging. OIKOS 2022. [DOI: 10.1111/oik.09124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Melanie Dammhahn
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Pauline Lange
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| | - Jana A. Eccard
- Animal Ecology, Inst. for Biochemistry and Biology, Faculty of Natural Sciences, Univ. of Potsdam Potsdam Germany
| |
Collapse
|
49
|
Netz C, Ramesh A, Gismann J, Gupte PR, Weissing FJ. Details matter when modelling the effects of animal personality on the spatial distribution of foragers. Proc Biol Sci 2022; 289:20210903. [PMID: 35232236 PMCID: PMC8889198 DOI: 10.1098/rspb.2021.0903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Christoph Netz
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Aparajitha Ramesh
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Pratik R Gupte
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
50
|
McKee G, Hornsby RL, Fischer F, Dunlop ES, Mackereth R, Pratt TC, Rennie M. Alternative migratory strategies related to life history differences in the Walleye (Sander vitreus). MOVEMENT ECOLOGY 2022; 10:10. [PMID: 35236408 PMCID: PMC8892756 DOI: 10.1186/s40462-022-00308-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While Pace of Life Syndrome predicts behavioural differences between individuals with differential growth and survival, testing these predictions in nature is challenging due to difficulties with measuring individual behaviour in the field. However, recent advances in acoustic telemetry technology have facilitated measurements of individual behaviour at scales not previously possible in aquatic ecosystems. METHODS Using a Walleye (Sander vitreus) population inhabiting Black Bay, Lake Superior, we examine whether life history characteristics differ between more and less mobile individuals as predicted by Pace of Life Syndrome. We tracked the movement of 192 individuals from 2016 to 2019 using an acoustic telemetry study, relating patterns in annual migratory behaviour to individual growth, and seasonal changes in optimal thermal-optical habitat. RESULTS We observed two consistent movement patterns in our study population-migratory individuals left Black Bay during late summer to early fall before returning to the bay, whereas residents remained within the bay year-round. The average maximum length of migrant Walleye was 5.5 cm longer than residents, and the sex ratios of Walleye caught during fall surveys was increasingly female-biased towards the mouth of Black Bay, suggesting that a majority of migrants were females. Further, Walleye occupancy outside of Black Bay was positively associated with increasing thermal-optical habitat. CONCLUSIONS Walleye in Black Bay appear to conform to Pace of Life Syndrome, with migrant individuals gaining increased fitness through increased maximum size, which, given size-dependent fecundity in this species, likely results in greater reproductive success (via greater egg deposition vs. non-migrants). Further, apparent environmental (thermal) controls on migration suggest that migratory Walleye (more so than residents) may be more sensitive to changing environmental conditions (e.g., warming climate) than residents.
Collapse
Affiliation(s)
- Graydon McKee
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B5E1 , Canada.
| | - Rachael L Hornsby
- Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E6S7, Canada
| | - Friedrich Fischer
- Upper Great Lakes Management Unit, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E6S7, Canada
| | - Erin S Dunlop
- Aquatic Research and Monitoring Section, Ontario Ministry of Natural Resources, Peterborough, ON, K0L0G2, Canada
| | - Robert Mackereth
- Center for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, P7E2V6, Canada
| | - Thomas C Pratt
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Sault Ste. Marie, ON, P6A2E5, Canada
| | - Michael Rennie
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B5E1 , Canada
- International Institute for Sustainable Development Experimental Lakes Area, Winnipeg, MB, R3B0Y4, Canada
| |
Collapse
|