1
|
Arora T, Sharma G, Prashar V, Singh R, Sharma A, Changotra H, Parkash J. Mechanistic Evaluation of miRNAs and Their Targeted Genes in the Pathogenesis and Therapeutics of Parkinson's Disease. Mol Neurobiol 2025; 62:91-108. [PMID: 38823001 DOI: 10.1007/s12035-024-04261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
MicroRNA (miRNA) are usually 18-25 nucleotides long non-coding RNA targeting post-transcriptional regulation of genes involved in various biological processes. The function of miRNA is essential for maintaining a homeostatic cellular condition, regulating autophagy, cellular motility, and inflammation. Dysregulation of miRNA is responsible for multiple disorders, including neurodegeneration, which has emerged as a severe problem in recent times and has verified itself as a life-threatening condition that can be understood by the continuous destruction of neurons affecting various cognitive and motor functions. Parkinson's disease (PD) is the second most common, permanently debilitating neurodegenerative disorder after Alzheimer's, mainly characterized by uncontrolled tremor, stiffness, bradykinesia or akinesia (slowness in movement), and post-traumatic stress disorder. PD is mainly caused by the demolition of the primary dopamine neurotransmitter secretory cells and dopaminergic or dopamine secretory neurons in the substantia nigra pars compacta of the midbrain, which are majorly responsible for motor functions. In this study, a systematic evaluation of research articles from year 2017 to 2022 was performed on multiple search engines, and lists of miRNA being dysregulated in PD in different body components were generated. This study highlighted miR-7, miR-124, miR-29 family, and miR-425, showing altered expression levels during PD's progression, further regulating the expression of multiple genes responsible for PD.
Collapse
Affiliation(s)
- Tania Arora
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Gaurav Sharma
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Vikash Prashar
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Randeep Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Arti Sharma
- Department of Computational Biology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, 143101, Punjab, India
| | - Jyoti Parkash
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Gupta S, Ahuja N, Kumar S, Arora R, Kumawat S, Kaushal V, Gupta P. Rev-erbα regulate neurogenesis through suppression of Sox2 in neuronal cells to regenerate dopaminergic neurons and abates MPP + induced neuroinflammation. Free Radic Biol Med 2024; 223:144-159. [PMID: 39084577 DOI: 10.1016/j.freeradbiomed.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Parkinson's disease is a progressive neurodegenerative disease that affects the motor and non-motor circuits of the brain. Currently, there are no promising therapeutic measures for Parkinson's disease, and most strategies designed to alleviate the Parkinson's disease are palliative. The dearth of therapeutic interventions in Parkinson's disease has driven attention in the search for targets that may augment dopamine secretion, promote differentiation towards dopaminergic neuronal lineage, or aid in neuroprotection from neuronal stress and inflammation, and prevent Parkinson's disease associated motor impairment and behavioural chaos. The study first reports that Rev-erbα plays an important role in regulating the differentiation of undifferentiated neuronal cells towards dopaminergic neurons through abating Sox2 expression in human SH-SY5Y cells. Rev-erbα directly binds to the human Sox2 promoter region and represses their expression to promote differentiation towards dopaminergic neurons. We have reported a novel mechanism of Rev-erbα which effectively abrogates 1-methyl-4-phenylpyridinium induced cytotoxicity, inflammation, and oxidative stress, exerted a beneficial effect on transmembrane potential, and suppressed apoptosis in the neuronal in vitro model of Parkinson's disease. Rev-erbα ligand SR9011 was observed to ease the disease severity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mouse model of Parkinson's disease. Rev-erbα alleviates the locomotor behavioural impairment, prevents cognitive decline and promotes motor coordination in mice. Administration of Rev-erbα ligand also helps in replenishing the dopaminergic neurons and abrogating the neurotoxin mediated toxicity in an in vitro and in vivo Parkinson's disease model. We conclude that Rev-erbα emerges as a moonlighting nuclear receptor that could be targeted in the treatment and alleviation of Parkinson disease.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Nancy Ahuja
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Sumit Kumar
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rashmi Arora
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saumyata Kumawat
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Vipashu Kaushal
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Pappolla MA, Wu P, Fang X, Poeggeler B, Sambamurti K, Wisniewski T, Perry G. Stem Cell Interventions in Neurology: From Bench to Bedside. J Alzheimers Dis 2024; 101:S395-S416. [PMID: 39422938 DOI: 10.3233/jad-230897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Stem cell therapies are progressively redefining the treatment landscape for a spectrum of neurological and age-related disorders. This review discusses the molecular and functional attributes of stem cells, emphasizing the roles of neural stem cells and mesenchymal stem cells in the context of neurological diseases such as stroke, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. The review also explores the potential of stem cells in addressing the aging process. The paper analyzes stem cells' intrinsic properties of self-renewal, differentiation, and paracrine effects, alongside the importance of laboratory-modified stem cells like induced pluripotent stem cells and transgenic stem cells. Insights into disease-specific stem cell treatments are offered, reviewing both successes and challenges in the field. This includes the translational difficulties from rodent studies to human trials. The review concludes by acknowledging the uncharted territories that warrant further investigation, emphasizing the potential roles of stem cell-derived exosomes and indole-related molecules, and aiming at providing a basic understanding of stem cell therapies.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Wu
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Burkhard Poeggeler
- Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Gütersloh, Germany
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology, and Psychiatry, New York University Alzheimer's Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
Sarma S, Deka DJ, Rajak P, Laloo D, Das T, Chetia P, Saha D, Bharali A, Deka B. Potential injectable hydrogels as biomaterials for central nervous system injury: A narrative review. IBRAIN 2023; 9:402-420. [PMID: 38680508 PMCID: PMC11045191 DOI: 10.1002/ibra.12137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 05/01/2024]
Abstract
Numerous modalities exist through which the central nervous system (CNS) may sustain injury or impairment, encompassing traumatic incidents, stroke occurrences, and neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Presently available pharmacological and therapeutic interventions are incapable of restoring or regenerating damaged CNS tissue, leading to substantial unmet clinical needs among patients with CNS ailments or injuries. To address and facilitate the recovery of the impaired CNS, cell-based repair strategies encompass multiple mechanisms, such as neuronal replacement, therapeutic factor secretion, and the promotion of host brain plasticity. Despite the progression of cell-based CNS reparation as a therapeutic strategy throughout the years, substantial barriers have impeded its widespread implementation in clinical settings. The integration of cell technologies with advancements in regenerative medicine utilizing biomaterials and tissue engineering has recently facilitated the surmounting of several of these impediments. This comprehensive review presents an overview of distinct CNS conditions necessitating cell reparation, in addition to exploring potential biomaterial methodologies that enhance the efficacy of treating brain injuries.
Collapse
Affiliation(s)
- Santa Sarma
- Girijananda Chowdhury Institute of Pharmaceutical ScienceAssam Science and Technology UniversityGuwahatiAssamIndia
| | - Dhruva J. Deka
- Girijananda Chowdhury Institute of Pharmaceutical ScienceAssam Science and Technology UniversityGuwahatiAssamIndia
| | - Prakash Rajak
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
| | - Damiki Laloo
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Trishna Das
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Purbajit Chetia
- Department of PharmacologyNETES Institute of Pharmaceutical Science, Nemcare Group of Institutes, MirzaGuwahatiAssamIndia
| | - Dipankar Saha
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Alakesh Bharali
- Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhAssamIndia
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| | - Bhargab Deka
- School of Pharmaceutical SciencesGirijananda Chowdhury UniversityGuwahatiAssamIndia
| |
Collapse
|
5
|
Liu JP, Wang JL, Hu BE, Zou FL, Wu CL, Shen J, Zhang WJ. Olfactory ensheathing cells and neuropathic pain. Front Cell Dev Biol 2023; 11:1147242. [PMID: 37223000 PMCID: PMC10201020 DOI: 10.3389/fcell.2023.1147242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 08/29/2023] Open
Abstract
Damage to the nervous system can lead to functional impairment, including sensory and motor functions. Importantly, neuropathic pain (NPP) can be induced after nerve injury, which seriously affects the quality of life of patients. Therefore, the repair of nerve damage and the treatment of pain are particularly important. However, the current treatment of NPP is very weak, which promotes researchers to find new methods and directions for treatment. Recently, cell transplantation technology has received great attention and has become a hot spot for the treatment of nerve injury and pain. Olfactory ensheathing cells (OECs) are a kind of glial cells with the characteristics of lifelong survival in the nervous system and continuous division and renewal. They also secrete a variety of neurotrophic factors, bridge the fibers at both ends of the injured nerve, change the local injury microenvironment, and promote axon regeneration and other biological functions. Different studies have revealed that the transplantation of OECs can repair damaged nerves and exert analgesic effect. Some progress has been made in the effect of OECs transplantation in inhibiting NPP. Therefore, in this paper, we provided a comprehensive overview of the biology of OECs, described the possible pathogenesis of NPP. Moreover, we discussed on the therapeutic effect of OECs transplantation on central nervous system injury and NPP, and prospected some possible problems of OECs transplantation as pain treatment. To provide some valuable information for the treatment of pain by OECs transplantation in the future.
Collapse
Affiliation(s)
- Ji-peng Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jia-ling Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Bai-er Hu
- Department of Physical Examination, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Fei-long Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Chang-lei Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Shen
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
7
|
Zheng Q, Ba X, Wang Q, Cheng J, Nan J, He T. Functional differentiation of the dorsal striatum: a coordinate-based neuroimaging meta-analysis. Quant Imaging Med Surg 2023; 13:471-488. [PMID: 36620169 PMCID: PMC9816733 DOI: 10.21037/qims-22-133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/17/2022] [Indexed: 01/11/2023]
Abstract
Background The dorsal striatum, a nucleus in the basal ganglia, plays a key role in the execution of cognitive functions in the human brain. Recent studies have focused on how the dorsal striatum participates in a single cognitive function, whereas the specific roles of the caudate and putamen in performing multiple cognitive functions remain unclear. In this paper we conducted a meta-analysis of the relevant neuroimaging literature to understand the roles of subregions of the dorsal striatum in performing different functions. Methods PubMed, Web of Science, and BrainMap Functional Database were searched to find original functional magnetic resonance imaging (fMRI) studies conducted on healthy adults under reward, memory, emotion, and decision-making tasks, and relevant screening criteria were formulated. Single task activation, contrast activation, and conjunction activation analyses were performed using the activation likelihood estimation (ALE) method for the coordinate-based meta-analysis to evaluate the differences and linkages. Results In all, 112 studies were included in this meta-analysis. Analysis revealed that, of the 4 single activation tasks, reward, memory, and emotion tasks all activated the putamen more, whereas decision-making tasks activated the caudate body. Contrast analysis showed that the caudate body played an important role in the 2 cooperative activation tasks, but conjunction activation results found that more peaks appeared in the caudate head. Discussion Different subregions of the caudate and putamen assume different roles in processing complex cognitive behaviors. Functional division of the dorsal striatum identified specific roles of 15 different subregions, reflecting differences and connections between the different subregions in performing different cognitive behaviors.
Collapse
Affiliation(s)
- Qian Zheng
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaojuan Ba
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Qiang Wang
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junying Cheng
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaofen Nan
- College of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Taigang He
- Biomedical Research Unit, Royal Brompton Hospital and Imperial College London, London, UK;,Cardiovascular Sciences Research Centre, St George’s, University of London, London, UK
| |
Collapse
|
8
|
Cha Y, Park TY, Leblanc P, Kim KS. Current Status and Future Perspectives on Stem Cell-Based Therapies for Parkinson's Disease. J Mov Disord 2023; 16:22-41. [PMID: 36628428 PMCID: PMC9978267 DOI: 10.14802/jmd.22141] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.
Collapse
Affiliation(s)
- Young Cha
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Tae-Yoon Park
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Pierre Leblanc
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Department of Psychiatry and Molecular Neurobiology Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
9
|
Uwishema O, Onyeaka H, Badri R, Yücel AN, Korkusuz AK, Ajagbe AO, Abuleil A, Chaaya C, Alhendawi BHM, Chalhoub E. The understanding of Parkinson's disease through genetics and new therapies. Brain Behav 2022; 12:e2577. [PMID: 35451243 PMCID: PMC9120874 DOI: 10.1002/brb3.2577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Parkinson's disease is one of the progressive neurodegenerative diseases from which people suffer for years. The mechanism of this disease is associated with a decrease in the number of dopaminergic neurons in the substantia nigra (SN) while Lewy bodies are still present. As a result, both motor-ridity, tremor, and bradykinesia-and non-motor symptoms such as anxiety and depression. Nowadays, it is well known that the cause behind Parkinson's disease is mainly environmental changes, genetic susceptibility, and toxins. Unfortunately, there is no cure for the disease but treatments. The replacement of lost neurons, α-synuclein and apomorphine, is currently being studied for new therapies. This article focuses on history, mechanism, factors causing Parkinson's disease as well as future therapies for the cure of the diseases. METHODOLOGY Data were collected from medical journals published on PubMed, The Lancet, Cells, and Nature Reviews Neurology databases with a predefined search strategy. All articles considering new therapies for Parkinson's disease were considered. RESULTS The pathophysiology of Parkinson's disease is currently reasonably understood. However, there is no definitive cure so all the treatments focus mainly on reducing or limiting the symptoms. Current treatment studies focus on genetics, replacing lost neurons, α-synuclein and apomorphine. CONCLUSION Parkinson's disease is the most common movement disorder worldwide because of the loss of dopaminergic neurons in the substantia nigra. Its symptoms include motor dysfunctions such as rigidity, tremor, and bradykinesia and non-motor dysfunctions such as anxiety and depression. Through genetics, environmental changes and toxins analysis, it is now known that future new therapies are working on replacing lost neurons, α-synuclein and apomorphine.
Collapse
Affiliation(s)
- Olivier Uwishema
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Project and EducationClinton Global Initiative UniversityNew YorkUSA
- Department of General MedicineFaculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| | - Helen Onyeaka
- Department of Chemical EngineeringSchool of Chemical EngineeringUniversity of BirminghamEdgbastonBirminghamUK
| | - Rawa Badri
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of ResearchMycetoma Research CentreKhartoumSudan
- Department of MedicineFaculty of MedicineUniversity of KhartoumKhartoumSudan
| | - Ayşe Nazlı Yücel
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineAnkara Yıldırım Beyazıt UniversityAnkaraTurkey
| | - Ahmet Kayhan Korkusuz
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineIstanbul Medipol UniversityIstanbulTurkey
- Department of Regenerative MedicineRegenerative and Restorative Medicine Research Center (REMER)Istanbul Medipol UniversityIstanbulTurkey
| | - Abayomi Oyeyemi Ajagbe
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health SciencesNile University of NigeriaAbujaNigeria
| | - Amro Abuleil
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of Health ScienceFaculty of Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Céline Chaaya
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineUniversity of Saint Joseph of BeirutBeirutLebanon
| | - Baraa H. M. Alhendawi
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineAl‐Quds University, Al‐Azhar branchGazaPalestine
| | - Elie Chalhoub
- Department of Research and EducationOli Health Magazine OrganizationKigaliRwanda
- Department of General MedicineFaculty of MedicineUniversity of Saint Joseph of BeirutBeirutLebanon
| |
Collapse
|
10
|
Wei J, Ho G, Takamatsu Y, Masliah E, Hashimoto M. Therapeutic Potential of α-Synuclein Evolvability for Autosomal Recessive Parkinson's Disease. PARKINSON'S DISEASE 2021; 2021:6318067. [PMID: 34858569 PMCID: PMC8632460 DOI: 10.1155/2021/6318067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
The majority of Parkinson's disease (PD) is sporadic in elderly and is characterized by α-synuclein (αS) aggregation and other alterations involving mitochondria, ubiquitin-proteasome, and autophagy. The remaining are familial PD associated with gene mutations of either autosomal dominant or recessive inheritances. However, the former ones are similar to sporadic PD, and the latter ones are accompanied by impaired mitophagy during the reproductive stage. Since no radical therapies are available for PD, the objective of this paper is to discuss a mechanistic role for amyloidogenic evolvability, a putative physiological function of αS, among PD subtypes, and the potential relevance to therapy. Presumably, αS evolvability might benefit familial PD due to autosomal dominant genes and also sporadic PD during reproduction, which may manifest as neurodegenerative diseases through antagonistic pleiotropy mechanism in aging. Indeed, there are some reports describing that αS prevents apoptosis and mitochondrial alteration under the oxidative stress conditions, notwithstanding myriads of papers on the neuropathology of αS. Importantly, β-synuclein (βS), the nonamyloidogenic homologue of αS, might buffer against evolvability of αS protofibrils associated with neurotoxicity. Finally, it is intriguing to predict that increased αS evolvability through suppression of βS expression might protect against autosomal recessive PD. Collectively, further studies are warranted to better understand αS evolvability in PD pathogenesis, leading to rational therapy development.
Collapse
Affiliation(s)
- Jianshe Wei
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway 92064, CA, USA
| | - Yoshiki Takamatsu
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Makoto Hashimoto
- Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
11
|
He Z, Ding Y, Mu Y, Xu X, Kong W, Chai R, Chen X. Stem Cell-Based Therapies in Hearing Loss. Front Cell Dev Biol 2021; 9:730042. [PMID: 34746126 PMCID: PMC8567027 DOI: 10.3389/fcell.2021.730042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, neural stem cell transplantation has received widespread attention as a new treatment method for supplementing specific cells damaged by disease, such as neurodegenerative diseases. A number of studies have proved that the transplantation of neural stem cells in multiple organs has an important therapeutic effect on activation and regeneration of cells, and restore damaged neurons. This article describes the methods for inducing the differentiation of endogenous and exogenous stem cells, the implantation operation and regulation of exogenous stem cells after implanted into the inner ear, and it elaborates the relevant signal pathways of stem cells in the inner ear, as well as the clinical application of various new materials. At present, stem cell therapy still has limitations, but the role of this technology in the treatment of hearing diseases has been widely recognized. With the development of related research, stem cell therapy will play a greater role in the treatment of diseases related to the inner ear.
Collapse
Affiliation(s)
- Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurong Mu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
García-López H, Obrero-Gaitán E, Castro-Sánchez AM, Lara-Palomo IC, Nieto-Escamez FA, Cortés-Pérez I. Non-Immersive Virtual Reality to Improve Balance and Reduce Risk of Falls in People Diagnosed with Parkinson's Disease: A Systematic Review. Brain Sci 2021; 11:brainsci11111435. [PMID: 34827433 PMCID: PMC8615507 DOI: 10.3390/brainsci11111435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Objective: To evaluate the effectiveness of non-immersive virtual reality in reducing falls and improving balance in patients diagnosed with Parkinson’s disease. (2) Methods: The following databases were searched: PUBMED, PEDro, Scielo, CINAHL, Web of Science, Dialnet, Scopus and MEDLINE. These databases were searched for randomized controlled trials published using relevant keywords in various combinations. The methodological quality of the articles was evaluated using the PEDro scale. (3) Results: A total of 10 studies with a total of 537 subjects, 58.7% of which (n = 315) were men, have been included in the review. The age of the participants in these studies ranged between 55 and 80 years. Each session lasted between 30 and 75 min, and the interventions lasted between 5 and 12 weeks. These studies showed that non-immersive virtual reality is effective in reducing the number of falls and improving both static and dynamic balance in patients diagnosed with Parkinson’s disease. Results after non-immersive virtual reality intervention showed an improvement in balance and a decrease in the number and the risk of falls. However, no significant differences were found between the intervention groups and the control groups for all the included studies regarding balance. (4) Conclusions: There is evidence that non-immersive virtual reality can improve balance and reduce the risk and number of falls, being therefore beneficial for people diagnosed with Parkinson’s disease.
Collapse
Affiliation(s)
- Héctor García-López
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Esteban Obrero-Gaitán
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain; (E.O.-G.); (I.C.-P.)
| | - Adelaida María Castro-Sánchez
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Inmaculada Carmen Lara-Palomo
- Department of Nursing, Physical Therapy and Medicine, University of Almeria, Road Sacramento s/n, 04120 Almeria, Spain; (H.G.-L.); (A.M.C.-S.); (I.C.L.-P.)
| | - Francisco Antonio Nieto-Escamez
- Department of Psychology, University of Almeria, Ctra. Sacramento s/n, 04120 Almeria, Spain
- Center for Neuropsychological Assessment and Rehabilitation (CERNEP), Ctra. Sacramento s/n, 04120 Almeria, Spain
- Correspondence: ; Tel.: +34-950-214-628
| | - Irene Cortés-Pérez
- Department of Health Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23071 Jaen, Spain; (E.O.-G.); (I.C.-P.)
- Granada Northeast Health District, Andalusian Health Service, Street San Miguel 2, 18500 Guadix, Spain
| |
Collapse
|
13
|
Zhang WJ, Luo C, Huang C, Liu SC, Luo HL. Microencapsulated Neural Stem Cells Inhibit Sciatic Nerve Injury-Induced Pain by Reducing P2 × 4 Receptor Expression. Front Cell Dev Biol 2021; 9:656780. [PMID: 34621735 PMCID: PMC8491744 DOI: 10.3389/fcell.2021.656780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: The purpose of this study is to investigate the effects of transplantation of microencapsulated neural stem cells (MC-NSCs), which downregulate the P2 × 4 receptor (P2 × 4R) overexpression and relieve neuropathic pain (NPP). Methods: Neural stem cells (NSCs) and MC-NSCs were transplanted to the injured sciatic nerve. Transmission electron microscope and immunofluorescence were used to observe the changes of injured sciatic nerve. Behavioral methods were used to detect mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL) of rats. Expression levels of P2 × 4Rs and p-p65 in the spinal cord segment of rats were measured by using molecular biology methods. The concentrations of IL-1β and TNF-α were detected in serum of rats by ELISA. Results: After sciatic nerve injury, the sciatic nerve fibers had the myelinated lamina separated, and disintegrated fragments could be seen. The fluorescence intensity of myelin MBP was weakened. The MWT and TWL were significantly decreased, the expression of P2 × 4Rs and p-p65 were significantly increased, and the concentrations of IL-1β and TNF-α were increased. After NSC and MC-NSC transplantation, the myelin sheath of the sciatic nerve was relatively intact, some demyelination changes could be seen, and the injured sciatic nerve has been improved. The fluorescence intensity of myelin MBP was increased. The MWT and TWL were increased, expression levels of P2 × 4Rs and p-p65 were decreased, and the concentrations of IL-1β and TNF-α were significantly decreased. Compared with NSC transplantation, transplantation of MC-NSCs could better repair the damaged sciatic nerve, decrease the expression of P2 × 4Rs and p-p65, decrease the level of IL-1β and TNF-α, and relieve pain (all p-values < 0.05). Conclusion: NSCs and MC-NSCs transplantation may alleviate pain by reducing the expression of P2 × 4Rs and inhibiting the activation of NF-KB signaling, while MC-NSCs transplantation has a better effect of suppressing pain. Our experimental results provide new data support for the treatment of NPP.
Collapse
Affiliation(s)
| | | | | | | | - Hong-liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Santos AM, Wong A, Ferreira LM, Soares FL, Fatibello-Filho O, Moraes FC, Vicentini FC. Multivariate optimization of a novel electrode film architecture containing gold nanoparticle-decorated activated charcoal for voltammetric determination of levodopa levels in pre-therapeutic phase of Parkinson`s disease. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Abstract
Babylon 5, like other great sci-fi franchises, touched on important ethical questions. Two ethical conundrums relating to the series' main characters included providing life-saving treatment to a child against their parents' wishes and potential involvement with a highly beneficial but morally dubious medication. I use these cases to discuss some aspects of the COVID-19 vaccines' development and roll-out, demonstrating that people (be it patients or clinicians) might object to some vaccines due to reasonable ethics and safety-based concerns rather than due to an anti-vaxxer mind-set. I highlight that it would be disingenuous to lump these two groups of objections together for not all objections to specific vaccines are objections to vaccination in general. Rather, governments and pharmaceutical companies should seriously engage with the concerns of reasonable objectors to provide citizens with the appropriate products and ensure large vaccination uptake - in the case of COVID-19 this should include giving patients the choice of the product they will be inoculated with.
Collapse
Affiliation(s)
- Michal Pruski
- Cardiff and Vale University Health Board, Cardiff, UK
| |
Collapse
|
16
|
Drobny A, Ngo PA, Neurath MF, Zunke F, López-Posadas R. Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Front Med (Lausanne) 2021; 8:655123. [PMID: 34368179 PMCID: PMC8339315 DOI: 10.3389/fmed.2021.655123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Intestinal symptoms, such as nausea, vomiting, and constipation, are common in Parkinson's disease patients. These clinical signs normally appear years before the diagnosis of the neurodegenerative disease, preceding the occurrence of motor manifestations. Moreover, it is postulated that Parkinson's disease might originate in the gut, due to a response against the intestinal microbiota leading to alterations in alpha-synuclein in the intestinal autonomic nervous system. Transmission of this protein to the central nervous system is mediated potentially via the vagus nerve. Thus, deposition of aggregated alpha-synuclein in the gastrointestinal tract has been suggested as a potential prodromal diagnostic marker for Parkinson's disease. Interestingly, hallmarks of chronic intestinal inflammation in inflammatory bowel disease, such as dysbiosis and increased intestinal permeability, are also observed in Parkinson's disease patients. Additionally, alpha-synuclein accumulations were detected in the gut of Crohn's disease patients. Despite a solid association between neurodegenerative diseases and gut inflammation, it is not clear whether intestinal alterations represent cause or consequence of neuroinflammation in the central nervous system. In this review, we summarize the bidirectional communication between the brain and the gut in the context of Parkinson's disease and intestinal dysfunction/inflammation as present in inflammatory bowel disease. Further, we focus on the contribution of intestinal epithelium, the communication between intestinal epithelial cells, microbiota, immune and neuronal cells, as well as mechanisms causing alterations of epithelial integrity.
Collapse
Affiliation(s)
- Alice Drobny
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Phuong A Ngo
- Medicine 1, University Hospital Erlangen, Erlangen, Germany
| | - Markus F Neurath
- Medicine 1, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
17
|
Manfredsson FP, Polinski NK, Subramanian T, Boulis N, Wakeman DR, Mandel RJ. The Future of GDNF in Parkinson's Disease. Front Aging Neurosci 2020; 12:593572. [PMID: 33364933 PMCID: PMC7750181 DOI: 10.3389/fnagi.2020.593572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Fredric P Manfredsson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Nicole K Polinski
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY, United States
| | - Thyagarajan Subramanian
- Department of Neurology and Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Dustin R Wakeman
- Virscio, Inc., New Haven, CT, United States.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Ronald J Mandel
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
18
|
The BDNF Val66Met polymorphism (rs6265) enhances dopamine neuron graft efficacy and side-effect liability in rs6265 knock-in rats. Neurobiol Dis 2020; 148:105175. [PMID: 33188920 PMCID: PMC7855552 DOI: 10.1016/j.nbd.2020.105175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/10/2023] Open
Abstract
Prevalent in approximately 20% of the worldwide human population, the
rs6265 (also called ‘Val66Met’) single nucleotide polymorphism
(SNP) in the gene for brain-derived neurotrophic factor (BDNF)
is a common genetic variant that can alter therapeutic responses in individuals
with Parkinson’s disease (PD). Possession of the variant Met allele
results in decreased activity-dependent release of BDNF. Given the resurgent
worldwide interest in neural transplantation for PD and the biological relevance
of BDNF, the current studies examined the effects of the rs6265 SNP on
therapeutic efficacy and side-effect development following primary dopamine (DA)
neuron transplantation. Considering the significant reduction in BDNF release
associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF
signaling contributes to the limited clinical benefit observed in a
subpopulation of PD patients despite robust survival of grafted DA neurons, and
further, that this mutation contributes to the development of aberrant
graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat
model of the rs6265 BDNF SNP to examine for the first time the
influence of a common genetic polymorphism on graft survival, functional
efficacy, and side-effect liability, comparing these parameters between
wild-type (Val/Val) rats and those homozygous for the variant Met allele
(Met/Met). Counter to our hypothesis, the current research indicates that
Met/Met rats show enhanced graft-associated therapeutic efficacy and a
paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type
rats. However, consistent with our hypothesis, we demonstrate that the rs6265
genotype in the host rat is strongly linked to development of GID, and that this
behavioral phenotype is significantly correlated with neurochemical signatures
of atypical glutamatergic neurotransmission by grafted DA neurons.
Collapse
|
19
|
Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson's disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci 2020; 81:47-51. [PMID: 33222965 DOI: 10.1016/j.jocn.2020.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Cell-based therapy has been studied as an alternative for Parkinson's Disease (PD), with different routes of administration. The superficial fascia and facial muscles possess a rich blood supply, while venous and lymphatic access via the orbit and the cribriform plate provide a route to cerebral circulation. We here document positive clinical effects in two patients with PD treated with autologous adipose-derived stromal vascular fraction (SVF) cell preparation, implanted into the face and nasal cavity. Two patients with PD were transplanted with 60 million total nucleated cells in processed SVF into the facial muscles and nose. Serial evaluations were carried out up to 5 years (patient 1) and 1 year (patient 2), using the PDQ-39, the UPDRS, and serial videos. Video scoring was reviewed in a blinded fashion. Both patients reported qualitative improvement in motor and nonmotor symptoms following injection. Quantitatively, PDQ-39 scores decreased in all categories for both. On-medication UPDRS motor scores decreased in both (20 to 4 in patient 1, 18 to 3 in patient 2) despite taking the same or less medication (LEDD 350 to 350 in patient 1, LEDD 1175 to 400 in pt2). Both subjects had off-medication UPDRS scores similar to their pretreatment on-medication scores (20 to 14 in patient 1, 18 to 23 in patient 2). These preliminary findings describe local facial and nasal injections of SVF preparation followed by prolonged clinical benefit in two patients. Despite an unknown mechanism of action, this potential therapy warrants careful verification and investigation.
Collapse
Affiliation(s)
- Michael Carstens
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, NC, USA; Department of Plastic Surgery, Hospital Escuela Oscar Danilo Rosales Argüello, Leon, Nicaragua.
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ken Bertram
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
20
|
Kawasaki H, Yamada T, Wada T, Kosugi S. Current status and legal/ethical problems in the research use of the tissues of aborted human fetuses in Japan. Congenit Anom (Kyoto) 2020; 60:166-174. [PMID: 32572995 DOI: 10.1111/cga.12381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
To date, there is no law regulating the research use of human aborted fetuses in Japan. The aim was to review the current status with historical background and legal/ethical problems limiting the research use of the tissues of aborted human fetuses. We reviewed literature via PubMed, Web of Science, Scopus, Japana Centra Revuo Medicina and CiNii, reports from various committees and research groups from Ministry of Health, Labour and Welfare (MHLW), and domestic books. Aborted human fetal tissues used for research purposes were first documented in the 1920s. The first guideline, the Peel Code was released in 1972. Since then, in Western countries, the research use of aborted fetuses has been less restricted compared with that of embryos, due to the following guidelines outlined by expert groups. Currently, aborted fetal tissues are commercially available for research purposes in the United States. In Japan, only four indications are presented in "a public statement permitting research use of deceased fetuses' and 'neonates' organs, etc." (1987). In the 2000s, expert committees of the MHLW concluded that research use of human aborted fetuses should be discontinued, and that comprehensive rules and independent regulations should be implemented. This issue has not been discussed in the Japanese legislature since 2003. Establishment of laws and guidelines for this issue is insufficient not only in Japan but also in other countries. It is important to secure transparency for making laws and guidelines and in obtaining public understanding.
Collapse
Affiliation(s)
- Hidenori Kawasaki
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Takahiro Yamada
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Takahito Wada
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Shinji Kosugi
- Department of Medical Ethics and Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| |
Collapse
|
21
|
Transplantation of microencapsulated neural stem cells inhibits neuropathic pain mediated by P2X7 receptor overexpression. Biochem Biophys Res Commun 2020; 533:1219-1225. [PMID: 33070968 DOI: 10.1016/j.bbrc.2020.09.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Neuropathic pain (NPP) is a common clinical symptom, its pathological mechanism is complex, and there is currently no good treatment method. Therefore, exploring the treatment method of NPP is a critical issue that needs to be urgently solved. METHODS Neural stem cells (NSC) and microencapsulated neural stem cells (MC-NSC) were transplanted into the site of sciatic nerve injury, and behavioral methods were used to detect changes in pain. Expression levels of P2X7R were detected in the dorsal root ganglion (DRG) by molecular biological methods. RESULTS After sciatic nerve injury, mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL) of rats were significantly reduced, the expression levels of P2X7R in the DRG were significantly increased. After transplantation of NSC and MC-NSC, it was found that expression levels of P2X7R were significantly reduced and pain was significantly suppressed. Importantly, compared with NSC transplantation, MC-NSC could better reduce the expression levels of P2X7R and inhibit pain. CONCLUSION MC-NSC can better decrease the expression levels of P2X7R and relieve NPP. Our results provide a novel method and data support for the treatment of NPP.
Collapse
|
22
|
Abstract
Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatumvianigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.
Collapse
|
23
|
Lee JY, Tuazon JP, Corey S, Bonsack B, Acosta S, Ehrhart J, Sanberg PR, Borlongan CV. A Gutsy Move for Cell-Based Regenerative Medicine in Parkinson's Disease: Targeting the Gut Microbiome to Sequester Inflammation and Neurotoxicity. Stem Cell Rev Rep 2020; 15:690-702. [PMID: 31317505 PMCID: PMC6731204 DOI: 10.1007/s12015-019-09906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmaceuticals and cell-based regenerative medicine for Parkinson’s disease (PD) offer palliative relief but do not arrest the disease progression. Cell therapy has emerged as an experimental treatment, but current cell sources such as human umbilical cord blood (hUCB) stem cells display only partial recapitulation of mature dopaminergic neuron phenotype and function. Nonetheless, stem cell grafts ameliorate PD-associated histological and behavioral deficits likely through stem cell graft-secreted therapeutic substances. We recently demonstrated the potential of hUCB-derived plasma in enhancing motor capabilities and gastrointestinal function, as well as preventing dopaminergic neuronal cell loss, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP) rodent model of PD. Recognizing the translational need to test in another PD model, we now examined here the effects of an intravenously transplanted combination of hUCB and plasma into the 6-hydroxydopamine (6-OHDA) lesioned adult rats. Animals received three separate doses of 4 × 106 hUCB cells with plasma beginning at 7 days after stereotaxic 6-OHDA lesion, then behaviorally and immunohistochemically evaluated over 56 days post-lesion. Whereas vehicle-treated lesioned animals exhibited the typical 6-OHDA neurobehavioral symptoms, hUCB and plasma-treated lesioned animals showed significant attenuation of motor function, gut motility, and nigral dopaminergic neuronal survival, combined with diminished pro-inflammatory microbiomes not only in the nigra, but also in the gut. Altogether these data support a regenerative medicine approach for PD by sequestering inflammation and neurotoxicity through correction of gut dysbiosis.
Collapse
Affiliation(s)
- Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Jared Ehrhart
- Saneron CCEL Therapeutics, Inc., Tampa, FL, 33618, USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA.
| |
Collapse
|
24
|
Ebrahimi V, Eskandarian Boroujeni M, Aliaghaei A, Abdollahifar MA, Piryaei A, Haghir H, Sadeghi Y. Functional dopaminergic neurons derived from human chorionic mesenchymal stem cells ameliorate striatal atrophy and improve behavioral deficits in Parkinsonian rat model. Anat Rec (Hoboken) 2020; 303:2274-2289. [PMID: 31642188 DOI: 10.1002/ar.24301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/17/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022]
Abstract
Human chorionic mesenchymal stem cells (HCMSCs) have been recognized as a desirable choice for cell therapy in neurological disorders such as Parkinson's disease (PD). Due to invaluable features of HCMSCs including their immunomodulatory and immunosuppressive properties, easily accessible and less differentiated compared to other types of MSCs, HCMSCs provide a great hope for regenerative medicine. Thus, the purpose of this study was to determine the in vitro and in vivo efficacy of HCMSCs-derived dopaminergic (DA) neuron-like cells with regard to PD. Initially, HCMSCs were isolated and underwent a 2-week DA differentiation, followed by in vitro assessments, using quantitative real-time polymerase chain reaction, immunocytochemistry, patch clamp recording, and high-performance liquid chromatography. In addition, the effects of implanted HCMSCs-derived DA neuron-like cells on the motor coordination along with stereological alterations in the striatum of rat models of PD were investigated. Our results showed that under neuronal induction, HCMSCs revealed neuron-like morphology, and expressed neuronal and DA-specific genes, together with DA release. Furthermore, transplantation of HCMSCs-derived DA neurons into the striatum of rat models of PD, augmented performance. Besides, it prevented reduction of striatal volume, dendritic length, and the total number of neurons, coupled with a diminished level of cleaved caspase-3. Altogether, these findings suggest that HCMSCs could be considered as an attractive strategy for cell-based therapies in PD.
Collapse
Affiliation(s)
- Vahid Ebrahimi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Eskandarian Boroujeni
- Department of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Haghir
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Sadeghi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Grønning Hansen M, Laterza C, Palma-Tortosa S, Kvist G, Monni E, Tsupykov O, Tornero D, Uoshima N, Soriano J, Bengzon J, Martino G, Skibo G, Lindvall O, Kokaia Z. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry. Stem Cells Transl Med 2020; 9:1365-1377. [PMID: 32602201 PMCID: PMC7581452 DOI: 10.1002/sctm.20-0134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases cause loss of cortical neurons, leading to sensory, motor, and cognitive impairments. Studies in different animal models have raised the possibility that transplantation of human cortical neuronal progenitors, generated from pluripotent stem cells, might be developed into a novel therapeutic strategy for disorders affecting cerebral cortex. For example, we have shown that human long‐term neuroepithelial‐like stem (lt‐NES) cell‐derived cortical neurons, produced from induced pluripotent stem cells and transplanted into stroke‐injured adult rat cortex, improve neurological deficits and establish both afferent and efferent morphological and functional connections with host cortical neurons. So far, all studies with human pluripotent stem cell‐derived neurons have been carried out using xenotransplantation in animal models. Whether these neurons can integrate also into adult human brain circuitry is unknown. Here, we show that cortically fated lt‐NES cells, which are able to form functional synaptic networks in cell culture, differentiate to mature, layer‐specific cortical neurons when transplanted ex vivo onto organotypic cultures of adult human cortex. The grafted neurons are functional and establish both afferent and efferent synapses with adult human cortical neurons in the slices as evidenced by immuno‐electron microscopy, rabies virus retrograde monosynaptic tracing, and whole‐cell patch‐clamp recordings. Our findings provide the first evidence that pluripotent stem cell‐derived neurons can integrate into adult host neural networks also in a human‐to‐human grafting situation, thereby supporting their potential future clinical use to promote recovery by neuronal replacement in the patient's diseased brain.
Collapse
Affiliation(s)
| | - Cecilia Laterza
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giedre Kvist
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Emanuela Monni
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Oleg Tsupykov
- Bogomoletz Institute of Physiology and State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Daniel Tornero
- Laboratory of Stem Cells and Regenerative Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Naomi Uoshima
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Johan Bengzon
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Division of Neurosurgery, Department of Clinical Sciences Lund, University Hospital, Lund, Sweden
| | - Gianvito Martino
- Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Galyna Skibo
- Bogomoletz Institute of Physiology and State Institute of Genetic and Regenerative Medicine, Kyiv, Ukraine
| | - Olle Lindvall
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Lund University, Lund, Sweden.,Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Björklund A, Parmar M. Neuronal Replacement as a Tool for Basal Ganglia Circuitry Repair: 40 Years in Perspective. Front Cell Neurosci 2020; 14:146. [PMID: 32547369 PMCID: PMC7272540 DOI: 10.3389/fncel.2020.00146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The ability of new neurons to promote repair of brain circuitry depends on their capacity to re-establish afferent and efferent connections with the host. In this review article, we give an overview of past and current efforts to restore damaged connectivity in the adult mammalian brain using implants of fetal neuroblasts or stem cell-derived neuronal precursors, with a focus on strategies aimed to repair damaged basal ganglia circuitry induced by lesions that mimic the pathology seen in humans affected by Parkinson’s or Huntington’s disease. Early work performed in rodents showed that neuroblasts obtained from striatal primordia or fetal ventral mesencephalon can become anatomically and functionally integrated into lesioned striatal and nigral circuitry, establish afferent and efferent connections with the lesioned host, and reverse the lesion-induced behavioral impairments. Recent progress in the generation of striatal and nigral progenitors from pluripotent stem cells have provided compelling evidence that they can survive and mature in the lesioned brain and re-establish afferent and efferent axonal connectivity with a remarkable degree of specificity. The studies of cell-based circuitry repair are now entering a new phase. The introduction of genetic and virus-based techniques for brain connectomics has opened entirely new possibilities for studies of graft-host integration and connectivity, and the access to more refined experimental techniques, such as chemo- and optogenetics, has provided new powerful tools to study the capacity of grafted neurons to impact the function of the host brain. Progress in this field will help to guide the efforts to develop therapeutic strategies for cell-based repair in Huntington’s and Parkinson’s disease and other neurodegenerative conditions involving damage to basal ganglia circuitry.
Collapse
Affiliation(s)
- Anders Björklund
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Elsworth JD. Parkinson's disease treatment: past, present, and future. J Neural Transm (Vienna) 2020; 127:785-791. [PMID: 32172471 PMCID: PMC8330829 DOI: 10.1007/s00702-020-02167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
The substantial contributions of Dr. Gerald Stern to past and current treatments for Parkinson's disease patients are reviewed, which form the foundation for an evaluation of future options to control symptoms and halt progression of the disease. These opportunities will depend on a greater understanding of the relative contributions of the environment, genetic and epigenetic influences to disease onset, and promise to emerge as strategies for improving mitochondrial function, halting accumulation of synuclein and neuromelanin, in addition to refinement of stem cell and gene therapies. Such advances will be achieved through deployment of improved models for the disease.
Collapse
Affiliation(s)
- John D Elsworth
- Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
28
|
Effect of olfactory ensheathing cells combined with chitosan on inhibition of P2×4 receptor over-expression-mediated neuropathic pain. Neurosci Lett 2020; 722:134859. [DOI: 10.1016/j.neulet.2020.134859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
|
29
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
30
|
Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:21-38. [PMID: 33105493 DOI: 10.1007/978-981-15-4370-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Cendelin J, Buffo A, Hirai H, Magrassi L, Mitoma H, Sherrard R, Vozeh F, Manto M. Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy? THE CEREBELLUM 2019; 18:575-592. [PMID: 30607797 DOI: 10.1007/s12311-018-0999-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Restoration of damaged central nervous system structures, functional recovery, and prevention of neuronal loss during neurodegenerative diseases are major objectives in cerebellar research. The highly organized anatomical structure of the cerebellum with numerous inputs/outputs, the complexity of cerebellar functions, and the large spectrum of cerebellar ataxias render therapies of cerebellar disorders highly challenging. There are currently several therapeutic approaches including motor rehabilitation, neuroprotective drugs, non-invasive cerebellar stimulation, molecularly based therapy targeting pathogenesis of the disease, and neurotransplantation. We discuss the goals and possible beneficial mechanisms of transplantation therapy for cerebellar damage and its limitations and factors determining outcome.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043, Turin, Italy
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Maebashi, Gunma, 371-8511, Japan
| | - Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche Diagnostiche e Pediatriche, Fondazione IRCCS Policlinico S. Matteo, Università degli Studi di Pavia, 27100, Pavia, Italy
- Istituto di Genetica Molecolare - CNR, 27100, Pavia, Italy
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Rachel Sherrard
- IBPS, UMR8256 Biological Adaptation and Ageing, Sorbonne Université and CNRS, Paris, France
| | - Frantisek Vozeh
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium.
| |
Collapse
|
32
|
Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto GE, Hayat SMG, Sahebkar A. Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives. Mol Neurobiol 2019; 56:4799-4811. [PMID: 30397850 DOI: 10.1007/s12035-018-1419-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder accompanied by depletion of dopamine and loss of dopaminergic neurons in the brain that is believed to be responsible for the motor and non-motor symptoms in this disease. The main drug prescribed for Parkinsonian patients is L-dopa, which can be converted to dopamine by passing through the blood-brain barrier. Although L-dopa is able to improve motor function and improve the quality of life in the patients, there is inter-individual variability and some patients do not achieve the therapeutic effect. Variations in treatment response and side effects of current drugs have convinced scientists to think of treating Parkinson's disease at the cellular and molecular level. Molecular and cellular therapy for Parkinson's disease include (i) cell transplantation therapy with human embryonic stem (ES) cells, human induced pluripotent stem (iPS) cells and human fetal mesencephalic tissue, (ii) immunological and inflammatory therapy which is done using antibodies, and (iii) gene therapy with AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA interference-based therapy, CRISPR-Cas9 gene editing system, and alternative methods such as optogenetics and chemogenetics. Although these methods currently have a series of challenges, they seem to be promising techniques for Parkinson's treatment in future. In this study, these prospective therapeutic approaches are reviewed.
Collapse
Affiliation(s)
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Departments of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Hosein Pormasoumi
- Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
33
|
Relaño-Ginés A, Lehmann S, Deville de Périère D, Hirtz C. Dental stem cells as a promising source for cell therapies in neurological diseases. Crit Rev Clin Lab Sci 2019; 56:170-181. [DOI: 10.1080/10408363.2019.1571478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Aroa Relaño-Ginés
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Dominique Deville de Périère
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Christophe Hirtz
- DERBS, Faculty of Odontology, CHU de Montpellier, University of Montpellier, Montpellier, France
- LBPC-PPC - IRMB, CHU de Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
34
|
Lee J, Bayarsaikhan D, Arivazhagan R, Park H, Lim B, Gwak P, Jeong GB, Lee J, Byun K, Lee B. CRISPR/Cas9 Edited sRAGE-MSCs Protect Neuronal Death in Parkinsons Disease Model. Int J Stem Cells 2019; 12:114-124. [PMID: 30836725 PMCID: PMC6457706 DOI: 10.15283/ijsc18110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objectives Parkinsons disease (PD) is a fatal and progressive degenerative disease of the nervous system. Until recently, its promising treatment and underlying mechanisms for neuronal death are poorly understood. This study was investigated to identify the molecular mechanism of neuronal death in the substantia nigra and corpus striatum of PD. Methods The soluble RAGE (sRAGE) secreting Umbilical Cord Blood-derived Mesenchymal Stem Cell (UCB-MSC) was generated by gene editing method using clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9). These cells were transplanted into Corpus Striatum of rotenone-induced PD animal models then behavioral test, morphological analysis, and immunohistochemical experiments were performed to determine the neuronal cell death and recovery of movement. Results The neuronal cell death in Corpus Striatum and Substantia Nigra was dramatically reduced and the movement was improved after sRAGE secreting UCB-MSC treatment in PD mice by inhibition of RAGE in neuronal cells. Conclusions We suggest that sRAGE secreting UCB-MSC based therapeutic approach could be a potential treatment strategy for neurodegenerative disease including PD.
Collapse
Affiliation(s)
- Jaesuk Lee
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Delger Bayarsaikhan
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Roshini Arivazhagan
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Hyejung Park
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Byungyoon Lim
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Peter Gwak
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Goo-Bo Jeong
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Department of Anatomy & Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Jaewon Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Department of Anatomy & Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Bonghee Lee
- Center for Genomics and Proteomics & Stem Cell Core Facility, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea.,Department of Anatomy & Cell Biology, Graduate School of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
35
|
Crane AT, Voth JP, Shen FX, Low WC. Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 2019; 37:444-452. [PMID: 30629789 DOI: 10.1002/stem.2971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Blastocyst complementation is an emerging methodology in which human stem cells are transferred into genetically engineered preimplantation animal embryos eventually giving rise to fully developed human tissues and organs within the animal host for use in regenerative medicine. The ethical issues surrounding this method have caused the National Institutes of Health to issue a moratorium on funding for blastocyst complementation citing the potential for human cells to substantially contribute to the brain of the chimeric animal. To address this concern, we performed an in-depth review of the neural transplantation literature to determine how the integration of human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread integration of human cell transplants, our review of 150 transplantation studies found no evidence suggestive of humanization of the animal host, and we thus conclude that, at present, concerns over humanization should not prevent research on blastocyst complementation to continue. We suggest proceeding in a controlled and transparent manner, however, and include recommendations for future research with careful consideration for how human cells may contribute to the animal host nervous system. Stem Cells 2019;37:444-452.
Collapse
Affiliation(s)
- Andrew T Crane
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph P Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francis X Shen
- University of Minnesota Law School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walter C Low
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
Khan AR, Yang X, Fu M, Zhai G. Recent progress of drug nanoformulations targeting to brain. J Control Release 2018; 291:37-64. [PMID: 30308256 DOI: 10.1016/j.jconrel.2018.10.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
|
37
|
Zhu H, Chen J, Guan L, Xiong S, Jiang H. The transplantation of induced pluripotent stem cells into the cochleae of mature mice. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:4423-4430. [PMID: 31949839 PMCID: PMC6962958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/17/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Stem cell transplantation is an effective method for treating sensorineural hearing loss (SNHL), but its safety needs further study. This study aimed to reveal the differentiation outcome of induced pluripotent stem cells (iPSCs) after they were transplanted into cochleae. METHODS iPSCs were labelled with CM-Dil and identified by flow cytometry. Twenty 6-8-week-old ICR mice were divided into experimental (A) and control (B) groups. Ten mice were microinjected with CM-Dil-labelled iPSC suspension (group A) or an equal volume DMEM (group B) into the left ear cochlea. The tthresholds of all mice were tested by auditory brainstem response (ABR) at 1 week pre-surgery and 4 weeks post-surgery. Differentiated cells were identified by immunohistochemical staining for neuronal cell markers (nestin, neurofilament-M), and teratoma formation was determined by HE staining. RESULTS The ABR thresholds in groups A and B at one week pre-surgery (24.50±5.50 vs. 26.00±6.15 dB SPL) and at 4 weeks post-surgery (70.50±4.97 vs. 68.00±5.37 dB SPL) were not significantly different; however, in both groups, the thresholds were lower at pre-surgery than at 4 weeks post-surgery. In group A, CM-Dil-labelled iPSCs were observed in the cochlear perilymph, endolymph, and modiolus, and some red fluorescence-labelled cells expressed neural cell markers. In group B, no fluorescence was observed in the cochleae, but teratomas were observed in some cochleae. A teratoma was observed in each of two cochleae after iPSCs transplantation by HE staining. CONCLUSION Mouse iPSCs can differentiate into cells with neuronal cell markers 4 weeks post-cochlear transplantation, and transplanted undifferentiated iPSCs may form teratomas. However, in the short-term, hearing loss in mice caused by cell transplantation through round window pathways cannot be improved by cochlear iPSC transplantation.
Collapse
Affiliation(s)
- Hengtao Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University Nanchang, China
| | - Jing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University Nanchang, China
| | - Lina Guan
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University Nanchang, China
| | - Shan Xiong
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University Nanchang, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University Nanchang, China
| |
Collapse
|
38
|
Song Y, Lee S, Jho EH. Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling. Biochem Biophys Res Commun 2018; 503:352-358. [PMID: 29890137 DOI: 10.1016/j.bbrc.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 01/19/2023]
Abstract
Pluripotent embryonic stem cells are one of the best modalities for the disease treatment due to their potential for self-renewal and differentiation into various cell types. Induction of stem cell differentiation into specific cell lineages has been investigated for decades, especially in vitro neuronal differentiation of embryonic stem cells. However, in vitro differentiation methods do not yield sufficient amounts of neurons for use in the therapeutic treatment of neurological disorders. Here, we provide an improved neuronal differentiation method based on a combination of small regulatory molecules for specific signaling pathways (FGF4 for FGF signaling, SB431542 for Nodal/Smad signaling, and XAV939 and BIO for Wnt signaling) in N2B27 media. We found that FGF4 was required for neural induction, SB431542 accelerated neural precursor differentiation, and treatment with XAV939 and BIO at different periods enhanced neuronal differentiation. These optimized neuronal differentiation conditions may allow a greater neuron cell yield within a shorter time than current methods and be the basis for treatment of neurological dysfunction using stem cells.
Collapse
Affiliation(s)
- Yonghee Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Somyung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
39
|
Kordower JH, Burke RE. Disease Modification for Parkinson's Disease: Axonal Regeneration and Trophic Factors. Mov Disord 2018; 33:678-683. [PMID: 29603370 DOI: 10.1002/mds.27383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023] Open
Abstract
Disease modification and structural neuroprotection have been the holy grail for Parkinson's disease (PD) experimental therapeutics. Theoretically, there are a number of ways to implement such therapeutics, but to date all have failed. This review examines the potential of axonal regeneration and trophic factor delivery for the nigrostriatal system as 2 such approaches that historically have initiated much excitement. However, we conclude this discussion with the following question: has science passed these approaches by? © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA.,Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
40
|
Zenchak JR, Palmateer B, Dorka N, Brown TM, Wagner LM, Medendorp WE, Petersen ED, Prakash M, Hochgeschwender U. Bioluminescence-driven optogenetic activation of transplanted neural precursor cells improves motor deficits in a Parkinson's disease mouse model. J Neurosci Res 2018; 98:458-468. [PMID: 29577367 DOI: 10.1002/jnr.24237] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/21/2018] [Accepted: 03/08/2018] [Indexed: 12/21/2022]
Abstract
The need to develop efficient therapies for neurodegenerative diseases is urgent, especially given the increasing percentages of the population living longer, with increasing chances of being afflicted with conditions like Parkinson's disease (PD). A promising curative approach toward PD and other neurodegenerative diseases is the transplantation of stem cells to halt and potentially reverse neuronal degeneration. However, stem cell therapy does not consistently lead to improvement for patients. Using remote stimulation to optogenetically activate transplanted cells, we attempted to improve behavioral outcomes of stem cell transplantation. We generated a neuronal precursor cell line expressing luminopsin 3 (LMO3), a luciferase-channelrhodopsin fusion protein, which responds to the luciferase substrate coelenterazine (CTZ) with emission of blue light that in turn activates the opsin. Neuronal precursor cells were injected bilaterally into the striatum of homozygous aphakia mice, which carry a spontaneous mutation leading to lack of dopaminergic neurons and symptoms of PD. Following transplantation, the cells were stimulated over a period of 10 days by intraventricular injections of CTZ. Mice receiving CTZ demonstrated significantly improved motor skills in a rotarod test compared to mice receiving vehicle. Thus, bioluminescent optogenetic stimulation of transplanted neuronal precursor cells shows promising effects in improving locomotor behavior in the aphakia PD mouse model and encourages further studies to elucidate the mechanisms and long-term outcomes of these beneficial effects.
Collapse
Affiliation(s)
- Jessica R Zenchak
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Brandon Palmateer
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Nicolai Dorka
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Tariq M Brown
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Lina-Marie Wagner
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | | | - Eric D Petersen
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan
| | - Mansi Prakash
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| | - Ute Hochgeschwender
- Neuroscience Program, Central Michigan University, Mt. Pleasant, Michigan.,College of Medicine, Central Michigan University, Mt. Pleasant, Michigan
| |
Collapse
|
41
|
Effect of prolonged differentiation on functional maturation of human pluripotent stem cell-derived neuronal cultures. Stem Cell Res 2018; 27:151-161. [PMID: 29414606 DOI: 10.1016/j.scr.2018.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 01/15/2023] Open
Abstract
Long-term neural differentiation of human pluripotent stem cells (hPSCs) is associated with enhanced neuronal maturation, which is a necessity for creation of representative in vitro models. It also induces neurogenic-to-gliogenic fate switch, increasing proportion of endogenous astrocytes formed from the common neural progenitors. However, the significance of prolonged differentiation on the neural cell type composition and functional development of hPSC-derived neuronal cells has not been well characterized. Here, we studied two hPSC lines, both of which initially showed good neuronal differentiation capacity. However, the propensity for endogenous astrogenesis and maturation state after extended differentiation varied. Live cell calcium imaging revealed that prolonged differentiation facilitated maturation of GABAergic signaling. According to extracellular recordings with microelectrode array (MEA), neuronal activity was limited to fewer areas of the culture, which expressed more frequent burst activity. Efficient maturation after prolonged differentiation also promoted organization of spontaneous activity by burst compaction. These results suggest that although prolonged neural differentiation can be challenging, it has beneficial effect on functional maturation, which can also improve transition to different neural in vitro models and applications.
Collapse
|
42
|
Kalaani J, Roche J, Hamade E, Badran B, Jaber M, Gaillard A, Prestoz L. Axon guidance molecule expression after cell therapy in a mouse model of Parkinson's disease. Restor Neurol Neurosci 2018; 34:877-895. [PMID: 27858721 DOI: 10.3233/rnn-150587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cell therapy is a promising approach for Parkinson's disease (PD). Others and we have previously shown that transplantation of ventral mesencephalic fetal cells into substantia nigra (SN) in an animal model of PD enables anatomical and functional repair of the degenerated pathway. However, the molecular basis of this repair is still largely unknown. OBJECTIVE In this work, we studied the expression of several axon guidance molecules that may be implicated in the repair of the degenerated nigrostriatal pathway. METHODS The expression of axon guidance molecules was analyzed using qRT-PCR on five specific regions surrounding the nigrostriatal pathway (ventral mesencephalon (VM), thalamus (Thal), medial forebrain bundle (MFB), nucleus accumbens (NAcc) and caudate putamen (CPu)), one and seven days after lesion and transplantation. RESULTS We showed that mRNA expression of specific axon guidance molecules and their receptors is modified in structures surrounding the nigrostriatal pathway, suggesting their involvement in the axon guidance of grafted neurons. Moreover, we highlight a possible new role for semaphorin 7A in this repair. CONCLUSION Overall, our data provide a reliable basis to understand how axons of grafted neurons are able to navigate towards their targets and interact with the molecular environment in the adult brain. This should help to improve the efficiency of cell replacement approaches in PD.
Collapse
Affiliation(s)
- Joanna Kalaani
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Joëlle Roche
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Eva Hamade
- Doctoral School of Sciences and Technology (DSST-PRASE), Lebanese University, Hadath, Lebanon
| | - Bassam Badran
- Doctoral School of Sciences and Technology (DSST-PRASE), Lebanese University, Hadath, Lebanon
| | - Mohamed Jaber
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| | - Laetitia Prestoz
- Université de Poitiers, INSERM U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Poitiers, France
| |
Collapse
|
43
|
Abstract
Neurotransplantation may be a promising approach for therapy of cerebellar diseases characterized by a substantial loss of neurons. Neurotransplantation could rescue neurons from degeneration and maintain cerebellar reserve, facilitate cerebellar compensation, or help reconstruct damaged neural circuits by cell substitution. These mechanisms of action can be of varying importance according to the type of cerebellar disease. Neurotransplantation therapy in cerebellar ataxias is still at the stage of experimental studies. There is currently little knowledge regarding cerebellar patients. Nevertheless, data provided by experiments in animal models of cerebellar degeneration and both clinical studies and experiences in patients with other neurologic diseases enable us to suggest basic principles, expectations, limitations, and future directions of neurotransplantation therapy for cerebellar diseases.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathological Physiology and Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
44
|
Padmanabhan S, Burke RE. Induction of axon growth in the adult brain: A new approach to restoration in Parkinson's disease. Mov Disord 2017; 33:62-70. [PMID: 29205486 DOI: 10.1002/mds.27209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Robert E Burke
- Department of Neurology, Columbia University, New York, New York, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
45
|
Tang BL. The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms. Rev Neurosci 2017; 28:725-738. [DOI: 10.1515/revneuro-2017-0018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
AbstractRecent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
46
|
Marsh SE, Blurton-Jones M. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 2017; 106:94-100. [PMID: 28219641 PMCID: PMC5446923 DOI: 10.1016/j.neuint.2017.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/19/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease currently affect tens of millions of people worldwide. Unfortunately, as the world's population ages, the incidence of many of these diseases will continue to rise and is expected to more than double by 2050. Despite significant research and a growing understanding of disease pathogenesis, only a handful of therapies are currently available and all of them provide only transient benefits. Thus, there is an urgent need to develop novel disease-modifying therapies to prevent the development or slow the progression of these debilitating disorders. A growing number of pre-clinical studies have suggested that transplantation of neural stem cells (NSCs) could offer a promising new therapeutic approach for neurodegeneration. While much of the initial excitement about this strategy focused on the use of NSCs to replace degenerating neurons, more recent studies have implicated NSC-mediated changes in neurotrophins as a major mechanism of therapeutic efficacy. In this mini-review we will discuss recent work that examines the ability of NSCs to provide trophic support to disease-effected neuronal populations and synapses in models of neurodegeneration. We will then also discuss some of key challenges that remain before NSC-based therapies for neurodegenerative diseases can be translated toward potential clinical testing.
Collapse
Affiliation(s)
- Samuel E Marsh
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
47
|
Yang FC, Riordan SM, Winter M, Gan L, Smith PG, Vivian JL, Shapiro SM, Stanford JA. Fate of Neural Progenitor Cells Transplanted Into Jaundiced and Nonjaundiced Rat Brains. Cell Transplant 2017; 26:605-611. [PMID: 28155818 PMCID: PMC5661222 DOI: 10.3727/096368917x694840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 12/29/2022] Open
Abstract
High levels of bilirubin in infants can cause kernicterus, which includes basal ganglia damage and dystonia. Stem cell transplantation may be an effective treatment for this disease. In this study, we transplanted human neural progenitor cells differentiated toward propriospinal interneurons into the striatum of 20-day-old spontaneously jaundiced (jj) Gunn rats and nonjaundiced (Nj) littermates. Using immunohistochemical methods, we found that grafted cells survived and grew fibers in jj and Nj brains 3 weeks after transplantation. Grafted cells had a higher survival rate in jj than in Nj brains, suggesting that slightly elevated bilirubin may protect graft survival due to its antioxidative and immunosuppressive effects. Despite their survival, only a small portion of grafted neurons expressed GAD-6 or ChAT, which mark GABAergic and cholinergic neurons, respectively, and are the cells that we are attempting to replace in kernicterus. Thus, NPCs containing large populations of GABAergic and cholinergic neurons should be used for further study in this field.
Collapse
Affiliation(s)
- Fu-Chen Yang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sean M. Riordan
- Division of Child Neurology, Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO, USA
| | - Michelle Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Li Gan
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Peter G. Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jay L. Vivian
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Steven M. Shapiro
- Division of Child Neurology, Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO, USA
| | - John A. Stanford
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Kokaia Z, Tornero D, Lindvall O. Transplantation of reprogrammed neurons for improved recovery after stroke. PROGRESS IN BRAIN RESEARCH 2017; 231:245-263. [PMID: 28554399 DOI: 10.1016/bs.pbr.2016.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Somatic cells such as fibroblasts, reprogrammed to induced pluripotent stem cells, can be used to generate neural stem/progenitor cells or neuroblasts for transplantation. In this review, we summarize recent studies demonstrating that when grafted intracerebrally in animal models of stroke, reprogrammed neurons improve function, probably by several different mechanisms, e.g., trophic actions, modulation of inflammation, promotion of angiogenesis, cellular and synaptic plasticity, and neuroprotection. In our own work, we have shown that human skin-derived reprogrammed neurons, fated to cortical progeny, integrate in stroke-injured neuronal network and form functional afferent synapses with host neurons, responding to peripheral sensory stimulation. However, whether neuronal replacement plays a role for the improvement of sensory, motor, and cognitive deficits after transplantation of reprogrammed neurons is still unclear. We conclude that further preclinical studies are needed to understand the therapeutic potential of grafted reprogrammed neurons and to define a road map for their clinical translation in stroke.
Collapse
Affiliation(s)
- Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund, Sweden.
| | - Daniel Tornero
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund, Sweden
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund, Sweden
| |
Collapse
|
49
|
From open to large-scale randomized cell transplantation trials in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2017; 230:227-261. [DOI: 10.1016/bs.pbr.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Tang BL. Rabs, Membrane Dynamics, and Parkinson's Disease. J Cell Physiol 2016; 232:1626-1633. [DOI: 10.1002/jcp.25713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore 117597
- NUS Graduate School for Integrative Sciences and Engineering; National University of Singapore; Singapore 117456
| |
Collapse
|