1
|
Sene N, Gonçalves Dos Santos KC, Merindol N, Gélinas SE, Custeau A, Awwad F, Fantino E, Meddeb-Mouelhi F, Germain H, Desgagné-Penix I. Impact of heterologous expression of Cannabis sativa tetraketide synthase on Phaeodactylum tricornutum metabolic profile. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:42. [PMID: 40186218 PMCID: PMC11969993 DOI: 10.1186/s13068-025-02638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Pharmaceutical safety is an increasing global priority, particularly as the demand for therapeutic compounds rises alongside population growth. Phytocannabinoids, a class of bioactive polyketide molecules derived from plants, have garnered significant attention due to their interaction with the human endocannabinoid system, offering potential benefits for managing a range of symptoms and conditions. Traditional extraction from cannabis plants poses regulatory, environmental, and yield-related challenges. Consequently, microbial biosynthesis has emerged as a promising biotechnological alternative to produce cannabinoids in a controlled, scalable, and sustainable manner. Developing diatom-based biofactories represent a crucial step in advancing this biotechnology, enabling the efficient production of high-valued compounds such as cannabinoids. RESULTS We engineered the diatom Phaeodactylum tricornutum, a unicellular photosynthetic model organism prized for its naturally high lipid content, to produce olivetolic acid (OA), a key metabolic precursor to most cannabinoids. The genes encoding tetraketide synthase and olivetolic acid cyclase from cannabis were cloned onto episomal vectors and introduced using bacterial conjugation in two separate P. tricornutum transconjugant lines to evaluate enzyme activity and OA production in vivo. Both genes were successfully expressed, and the corresponding enzymes accumulated within the transconjugant lines. However, despite testing the cell extracts individually and in combination, OA accumulation was not detected suggesting potential conversion or utilization of OA by endogenous metabolic pathways within the diatoms. To investigate this further, we analyzed the impact of CsTKS expression on the diatom's metabolome, revealing significant alterations that may indicate metabolic flux redirection or novel pathway interactions. CONCLUSIONS Our study demonstrates the successful expression of cannabinoid biosynthetic genes in P. tricornutum but highlights challenges in OA accumulation, likely due to endogenous metabolic interactions. These findings underscore the complexity of metabolic engineering in diatoms and suggest the need for further pathway optimization and metabolic flux analysis to achieve efficient cannabinoid biosynthesis. This research contributes to advancing sustainable biotechnological approaches for cannabinoid production.
Collapse
Affiliation(s)
- Nicolas Sene
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Karen Cristine Gonçalves Dos Santos
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Natacha Merindol
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Sarah-Eve Gélinas
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Alexandre Custeau
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Fatima Awwad
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Elisa Fantino
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Fatma Meddeb-Mouelhi
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugo Germain
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Isabel Desgagné-Penix
- Department of Biochemistry, Chemistry, Physics, and Forensic Science, Université du Québec à Trois-Rivières, 3351 Boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
2
|
Elshobary ME, Abo-Shanab WA, Ende SSW, Alquraishi M, El-Shenody RA. Optimizing Phaeodactylum tricornutum cultivation: integrated strategies for enhancing biomass, lipid, and fucoxanthin production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:7. [PMID: 39827342 PMCID: PMC11742496 DOI: 10.1186/s13068-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes. RESULTS Optimized medium (- 50%N%, + 50% P, Zero-Si, 2 g glycerol) under low-intensity blue light (100 μmol m⁻2 s⁻1) improved biomass to 1.6 g L⁻1, with lipid productivity reaching 539.25 mg g⁻1, while fucoxanthin increased to 20.44 mg g-1. Total saturated fatty acid (ΣSFA) content in the optimized culture increased approximately 2.4-fold compared to the control F/2 medium. This change in fatty acid composition led to improved biodiesel properties, including a higher cetane number (59.18 vs. 56.04) and lower iodine value (53.96 vs 88.99 g I2/100 g oil). The optimized conditions also altered the biodiesel characteristics, such as kinematic viscosity, cloud point, and higher heating value. CONCLUSION Our optimization approach reveals the significant potential of P. tricornutum as a versatile microbial platform for biomass, lipid, and fucoxanthin production. The tailored cultivation strategy successfully enhanced biomass and lipid accumulation, with notable improvements in biodiesel properties through strategic nutrient and light regime manipulation. These findings demonstrate the critical role of precise cultivation conditions in optimizing microalgal metabolic performance for biotechnological applications.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany.
| | - Walaa A Abo-Shanab
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Stephan S W Ende
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Rania A El-Shenody
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Serôdio J, Bastos A, Frankenbach S, Frommlet JC, Esteves AC, Queiroga H. The 'Erlenmeter': a low-cost, open-source turbidimeter for no-sampling phenotyping of microorganism growth. PeerJ 2024; 12:e17659. [PMID: 39006034 PMCID: PMC11243968 DOI: 10.7717/peerj.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/08/2024] [Indexed: 07/16/2024] Open
Abstract
This work presents a low-cost, open-source turbidimeter, the 'Erlenmeter', designed to monitor the growth of microorganisms in batch cultures. It is easy to build, based exclusively on inexpensive off-the-shelf electronic components and 3D-printed parts. The Erlenmeter allows measuring the optical density of cultures on standard Erlenmeyer flasks without the need to open the flasks to collect aliquots, ensuring speed, minimal use of consumables, and elimination of the risk of contamination. These features make it particularly well-suited not just for routine research assays but also for experimental teaching. Here we illustrate the use of the Erlenmeter turbidimeter to record the growth of the microalga Phaeodactylum tricornutum, of the bacterium Escherichia coli, and of the yeast Saccharomyces cerevisiae, model organisms that are widely used in research and teaching. The Erlenmeter allows a detailed characterization of the growth curves of all organisms, confirming its usefulness for studying microbial populations dynamics both for research purposes and in classroom settings.
Collapse
Affiliation(s)
- João Serôdio
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Alexandra Bastos
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Silja Frankenbach
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Jörg C Frommlet
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ana Cristina Esteves
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Henrique Queiroga
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Tang CH, Lin CY, Li HH, Kuo FW. Microplastics elicit an immune-agitative state in coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168406. [PMID: 37939952 DOI: 10.1016/j.scitotenv.2023.168406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Microplastic pollution in the ocean is a major problem, as its pervasiveness elicits concerns the health impacts microplastics may have on marine life (such as reef-building corals). As a primary endpoint, the organismal lipidome can define the weakening of fitness and reveal the physiological context of adverse health effects in organisms. To gain insight into the effects of microplastics on coral health, lipid profiling was performed via an untargeted lipidomic approach on the coral Turbinaria mesenterina exposed to ~10 μm polystyrene microparticles for 10 days. Considerable microplastic accumulation and obvious effects relating with immune activation were observed in the coral treated with a near environmentally relevant concentration of microplastics (10 μg/L); however, these effects were not evident in the high level (100 μg/L) treatment group. In particular, increased levels of membrane lipids with 20:4 and 22:6 fatty acid chains reallocated from the triacylglycerol pool were observed in coral host cells and symbiotic algae, respectively, which could upregulate immune activity and realign symbiotic communication in coral. High levels of polyunsaturation can sensitize the coral cell membrane to lipid peroxidation and increase cell death, which is of greater concern; additionally, the photoprotective capacity of symbiotic algae was compromised. As a result, coral physiological functions were altered. These results show that, realistic levels of microplastic pollution can affect coral health and should be a concern.
Collapse
Affiliation(s)
- Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hsing-Hui Li
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Fu-Wen Kuo
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| |
Collapse
|
5
|
Barton S, Padfield D, Masterson A, Buckling A, Smirnoff N, Yvon-Durocher G. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. GLOBAL CHANGE BIOLOGY 2023; 29:5261-5275. [PMID: 37395481 DOI: 10.1111/gcb.16827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023]
Abstract
A number of experimental studies have demonstrated that phytoplankton can display rapid thermal adaptation in response to warmed environments. While these studies provide insight into the evolutionary responses of single species, they tend to employ different experimental techniques. Consequently, our ability to compare the potential for thermal adaptation across different, ecologically relevant, species remains limited. Here, we address this limitation by conducting simultaneous long-term warming experiments with the same experimental design on clonal isolates of three phylogenetically diverse species of marine phytoplankton; the cyanobacterium Synechococcus sp., the prasinophyte Ostreococcus tauri and the diatom Phaeodoactylum tricornutum. Over the same experimental time period, we observed differing levels of thermal adaptation in response to stressful supra-optimal temperatures. Synechococcus sp. displayed the greatest improvement in fitness (i.e., growth rate) and thermal tolerance (i.e., temperature limits of growth). Ostreococcus tauri was able to improve fitness and thermal tolerance, but to a lesser extent. Finally, Phaeodoactylum tricornutum showed no signs of adaptation. These findings could help us understand how the structure of phytoplankton communities may change in response to warming, and possible biogeochemical implications, as some species show relatively more rapid adaptive shifts in their thermal tolerance.
Collapse
Affiliation(s)
- Samuel Barton
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Daniel Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Abigail Masterson
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gabriel Yvon-Durocher
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, UK
| |
Collapse
|
6
|
Ding W, Ye Y, Yu L, Liu M, Liu J. Physiochemical and molecular responses of the diatom Phaeodactylum tricornutum to illumination transitions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:103. [PMID: 37328885 DOI: 10.1186/s13068-023-02352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Light is a key regulatory factor for photosynthesis and metabolism of microalgae. The diatom Phaeodactylum tricornutum is capable of exhibiting metabolic flexibility in response to light fluctuations. However, the metabolic switching and underlying molecular mechanisms upon illumination transitions remain poorly understood for this industrially relevant marine alga. To address these, the physiochemical and molecular responses of P. tricornutum upon high light (HL) and recovery (HLR) were probed. RESULTS Upon HL, P. tricornutum exhibited quick responses, including decreases in cell division, major light harvesting pigments (e.g., chlorophyll a, β-carotene, and fucoxanthin), chloroplastidic membrane lipids (e.g., monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), and long-chain polyunsaturated fatty acids (e.g., C20:5), as well as increases in carbohydrates and neutral lipids particularly triacylglycerol. During HLR stage when the stress was removed, these physiochemical phenotypes were generally recovered, indicative of a rapid and reversible changes of P. tricornutum to cope with illumination transitions for survival and growth. Through the integrated analysis with time-resolved transcriptomics, we revealed the transcriptional control of photosynthesis and carbon metabolism in P. tricornutum responding to HL, which could be reversed more or less during the HLR stage. Furthermore, we highlighted key enzymes involved in carotenoid biosynthesis and lipid metabolism of P. tricornutum and identified monooxygenases putatively responsible for catalyzing the ketolation step towards fucoxanthin synthesis from neoxanthin. CONCLUSIONS The detailed profiling of physiochemical and transcriptional responses of P. tricornutum to HL-HLR treatments advances our understanding on the adaption of the alga to illumination transitions and provides new insights into engineering of the alga for improved production of value-added carotenoids and lipids.
Collapse
Affiliation(s)
- Wei Ding
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Zarekarizi A, Hoffmann L, Burritt DJ. The potential of manipulating light in the commercial production of carotenoids from algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
8
|
Marchand J, Hu H, Manoylov K, Schoefs B. Editorial: Metabolic Regulation of Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2022; 13:897639. [PMID: 35592565 PMCID: PMC9111530 DOI: 10.3389/fpls.2022.897639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Justine Marchand
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratory Biologie des Organismes, Stress, Santé Environnement, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kalina Manoylov
- Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA, United States
| | - Benoît Schoefs
- Metabolism, Molecular Engineering of Microalgae and Applications, Laboratory Biologie des Organismes, Stress, Santé Environnement, IUML – FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
9
|
Scarsini M, Thiriet-Rupert S, Veidl B, Mondeguer F, Hu H, Marchand J, Schoefs B. The Transition Toward Nitrogen Deprivation in Diatoms Requires Chloroplast Stand-By and Deep Metabolic Reshuffling. FRONTIERS IN PLANT SCIENCE 2022; 12:760516. [PMID: 35126407 PMCID: PMC8811913 DOI: 10.3389/fpls.2021.760516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Microalgae have adapted to face abiotic stresses by accumulating energy storage molecules such as lipids, which are also of interest to industries. Unfortunately, the impairment in cell division during the accumulation of these molecules constitutes a major bottleneck for the development of efficient microalgae-based biotechnology processes. To address the bottleneck, a multidisciplinary approach was used to study the mechanisms involved in the transition from nitrogen repletion to nitrogen starvation conditions in the marine diatom Phaeodactylum tricornutum that was cultured in a turbidostat. Combining data demonstrate that the different steps of nitrogen deficiency clustered together in a single state in which cells are in equilibrium with their environment. The switch between the nitrogen-replete and the nitrogen-deficient equilibrium is driven by intracellular nitrogen availability. The switch induces a major gene expression change, which is reflected in the reorientation of the carbon metabolism toward an energy storage mode while still operating as a metabolic flywheel. Although the photosynthetic activity is reduced, the chloroplast is kept in a stand-by mode allowing a fast resuming upon nitrogen repletion. Altogether, these results contribute to the understanding of the intricate response of diatoms under stress.
Collapse
Affiliation(s)
- Matteo Scarsini
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Stanislas Thiriet-Rupert
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
- Institut Pasteur, Genetics of Biofilms Laboratory, Paris, France
| | - Brigitte Veidl
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Florence Mondeguer
- Phycotoxins Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer, Nantes, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Chinese Academy of Sciences, Wuhan, China
| | - Justine Marchand
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bio-Engineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML—FR 3473 CNRS, Le Mans University, Le Mans, France
| |
Collapse
|
10
|
Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae-derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol 2021; 62:1044-1063. [PMID: 34766645 DOI: 10.1002/jobm.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are regarded as a rich trove of diverse secondary metabolites that exert remarkable biological activities. In particular, microalgae-derived bioactive phenolic compounds (MBPCs) are a boon to biopharmaceutical and nutraceutical industries due to their diverse bioactivities, including antimicrobial, anticancer, antiviral, and immunomodulatory activities. The state-of-the-art green technologies for extraction and purification of MBPCs, along with the modern progress in the identification and characterization of MBPCs, have accelerated the discovery of novel active pharmaceutical compounds. However, several factors regulate the production of these bioactive phenolic compounds in microalgae. Furthermore, some microalgae species produce toxic phenolic compounds that negatively impact the aquatic ecosystem, animal, and human life. Therefore, the focus of this review paper is to bring into light the current innovations in bioprospection, extraction, purification, and characterization of MBPCs. This review is also aimed at a better understanding of the physicochemical factors regulating the production of MBPCs at an industrial scale. Finally, the present review covers the recent advances in toxicological evaluation, diverse applications, and future prospects of MBPCs in biopharmaceutical industries.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Botany, Goswami Ganesh Dutta S.D. College, Chandigarh, India
| | - Meenakshi Singh
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Ecology & Biodiversity, Terracon Ecotech Pvt. Ltd., Mumbai, Maharashtra, India
| | - Atul Srivastava
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Science & Technology, Alliance University (Central Campus), Bengaluru, Karnataka, India.,NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur, Andhra Pradesh, India
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
11
|
Scarsini M, Thurotte A, Veidl B, Amiard F, Niepceron F, Badawi M, Lagarde F, Schoefs B, Marchand J. Metabolite Quantification by Fourier Transform Infrared Spectroscopy in Diatoms: Proof of Concept on Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2021; 12:756421. [PMID: 34858459 PMCID: PMC8631545 DOI: 10.3389/fpls.2021.756421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Diatoms are feedstock for the production of sustainable biocommodities, including biofuel. The biochemical characterization of newly isolated or genetically modified strains is seminal to identify the strains that display interesting features for both research and industrial applications. Biochemical quantification of organic macromolecules cellular quotas are time-consuming methodologies which often require large amount of biological sample. Vibrational spectroscopy is an essential tool applied in several fields of research. A Fourier transform infrared (FTIR) microscopy-based imaging protocol was developed for the simultaneous cellular quota quantification of lipids, carbohydrates, and proteins of the diatom Phaeodactylum tricornutum. The low amount of sample required for the quantification allows the high throughput quantification on small volume cultures. A proof of concept was performed (1) on nitrogen-starved experimental cultures and (2) on three different P. tricornutum wild-type strains. The results are supported by the observation in situ of lipid droplets by confocal and brightfield microscopy. The results show that major differences exist in the regulation of lipid metabolism between ecotypes of P. tricornutum.
Collapse
Affiliation(s)
- Matteo Scarsini
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Adrien Thurotte
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
- Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Brigitte Veidl
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Frederic Amiard
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Frederick Niepceron
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Myriam Badawi
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Fabienne Lagarde
- UMR CNRS 6283 Institut des Molécules et des Matériaux du Mans, Le Mans University, Le Mans, France
| | - Benoît Schoefs
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| | - Justine Marchand
- Mer Molécules Santé, Le Mans University, IUML-FR 3473 CNRS, Le Mans, France
| |
Collapse
|
12
|
Regulatory role of death specific protein in response to nutrient limitation in a marine diatom. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Acclimation and adaptation to elevated pCO 2 increase arsenic resilience in marine diatoms. THE ISME JOURNAL 2021; 15:1599-1613. [PMID: 33452476 PMCID: PMC8163839 DOI: 10.1038/s41396-020-00873-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Arsenic pollution is a widespread threat to marine life, but the ongoing rise pCO2 levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO2 are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutum, Thalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO2. We found that elevated pCO2 alleviated arsenic toxicity even after short acclimation times but the magnitude of the response decreased after mid and long-term adaptation. When fed with these elevated pCO2 selected diatoms, the scallop Patinopecten yessoensis had significantly lower arsenic content (3.26-52.83%). Transcriptomic and biochemical analysis indicated that the diatoms rapidly developed arsenic detoxification strategies, which included upregulation of transporters associated with shuttling harmful compounds out of the cell to reduce arsenic accumulation, and upregulation of proteins involved in synthesizing glutathione (GSH) to chelate intracellular arsenic to reduce arsenic toxicity. Thus, our results will expand our knowledge to fully understand the ecological risk of trace metal pollution under increasing human activity induced ocean acidification.
Collapse
|
14
|
Penta WB, Fox J, Halsey KH. Rapid photoacclimation during episodic deep mixing augments the biological carbon pump. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:1850-1866. [PMID: 34248203 PMCID: PMC8252461 DOI: 10.1002/lno.11728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Episodic deep mixing events are one component of the biological carbon pump that physically transports organic carbon into the mesopelagic. Episodic deep mixing also disrupts summertime thermal stratification thereby changing the light field and nutrient concentrations available for phytoplankton growth. Phytoplankton survival and growth below the mixed layer following restratification depends on how rapidly cells can employ a variety of photoacclimation processes in response to the environmental changes. To compare the relative timescales of summertime episodic deep mixing events with the timescales of phytoplankton photoacclimation processes, we first analyzed autonomous float data to survey the frequency and magnitude of deep mixing events in the western North Atlantic Ocean. Next, we simulated a sustained deep mixing event in the laboratory and measured rates of acclimation processes ranging from light harvesting to growth in a model diatom and green alga. In both algae increases in chlorophyll (Chl) were coupled to growth, but growth of the green alga lagged the diatom by about a day. In float profiles, significant increases in Chl and phytoplankton carbon (C phyto) were detected below the mixed layer following episodic deep mixing events. These events pose a previously unrecognized source of new production below the mixed layer that can significantly boost the amount of carbon available for export to the deep ocean.
Collapse
Affiliation(s)
- W Bryce Penta
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - James Fox
- Department of Microbiology Oregon State University Corvallis Oregon USA
| | - Kimberly H Halsey
- Department of Microbiology Oregon State University Corvallis Oregon USA
| |
Collapse
|
15
|
Huang B, Mimouni V, Lukomska E, Morant-Manceau A, Bougaran G. Carbon Partitioning and Lipid Remodeling During Phosphorus and Nitrogen Starvation in the Marine Microalga Diacronema lutheri (Haptophyta). JOURNAL OF PHYCOLOGY 2020; 56:908-922. [PMID: 32215912 DOI: 10.1111/jpy.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The domesticated marine microalga Diacronema lutheri is of great interest for producing various highly valuable molecules like lipids, particularly long-chain polyunsaturated fatty acids (LC-PUFA). In this study, we investigated the impact of phosphorus (P) and nitrogen (N) starvation on growth, carbon fixation (photosynthetic activity) and partitioning, and membrane lipid remodeling in this alga during batch culture. Our results show that the photosynthetic machinery was similarly affected by P and N stress. Under N starvation, we observed a much lower photosynthetic rate and biomass productivity. The degradation and re-use of cellular N-containing compounds contributed to triacylglycerol (TAG) accumulation. On the other hand, P-starved cells maintained pigment content and a carbon partitioning pattern more similar to the control, ensuring a high biomass. Betaine lipids constitute the major compounds of non-plastidial membranes, which are rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Under P and N starvations, EPA was transferred from the recycling of membrane polar lipids, most likely contributing to TAG accumulation.
Collapse
Affiliation(s)
- Bing Huang
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), UFR Sciences et Techniques, Le Man Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 09, France
| | - Virginie Mimouni
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), IUT de Laval, Département Génie Biologique, Le Mans Université, 52 rue des Docteurs Calmette et Guérin, 53020, Laval Cedex 9, France
| | - Ewa Lukomska
- Laboratoire Physiologie et Biotechnologie des Algues, IFREMER, rue de l'Ile d'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Annick Morant-Manceau
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), UFR Sciences et Techniques, Le Man Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 09, France
| | - Gaël Bougaran
- Laboratoire Physiologie et Biotechnologie des Algues, IFREMER, rue de l'Ile d'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| |
Collapse
|
16
|
Xu F, Pan J. Potassium channel KCN11 is required for maintaining cellular osmolarity during nitrogen starvation to control proper cell physiology and TAG accumulation in Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:129. [PMID: 32699552 PMCID: PMC7372795 DOI: 10.1186/s13068-020-01769-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nitrogen (N) starvation in algae induces a variety of structural and metabolic changes including accumulation of triacylglycerol (TAG). Given the promising prospect of using algae as feedstock for biofuel production, accumulation of TAG upon N starvation becomes an ideal system to study TAG biosynthesis. Under nitrogen-depleted conditions, algae also accumulate compatible solutes such as sugar and certain amino acids, which is expected to elevate osmolarity in the cytoplasm. However, how osmoregulation is maintained and how it impacts on carbon metabolism, especially TAG accumulation under N starvation, are not well understood. RESULTS We show here that potassium channel KCN11 localized in the contractile vacuole (CV) mediates osmoregulation during N starvation and loss of KCN11 profoundly affects cell physiology and TAG biosynthesis. KCN11 level is increased and the CV pulsation is accelerated. Loss of KCN11 induces aberrant CV cycle, inhibition of cell growth, increase of cell size, inhibition of chlorophyll loss and TAG accumulation. These effects are rescued by addition of sucrose to raise osmolarity in the culture medium, indicating that osmoregulation is required for cell adaptation to N starvation. Metabolomic analysis shows reduction of acetyl-CoA and accumulation of glyceraldehyde-3-phosphate in kcn11 mutant relative to the control under N starvation, indicating that defects in acetyl-CoA biosynthesis and some metabolic steps from glyceraldehyde-3-phosphate to TAG contribute to the decreased TAG accumulation due to loss of osmoregulation. CONCLUSIONS This work provides novel insight of osmoregulation during N starvation in the control of cell physiology and metabolism especially TAG accumulation. According to these findings, we propose that osmolarity should be carefully monitored during the industrial production of biodiesel.
Collapse
Affiliation(s)
- Feifei Xu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong China
| |
Collapse
|
17
|
Isoprostanoid Profiling of Marine Microalgae. Biomolecules 2020; 10:biom10071073. [PMID: 32708411 PMCID: PMC7407139 DOI: 10.3390/biom10071073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Algae result from a complex evolutionary history that shapes their metabolic network. For example, these organisms can synthesize different polyunsaturated fatty acids, such as those found in land plants and oily fish. Due to the presence of numerous double-bonds, such molecules can be oxidized nonenzymatically, and this results in the biosynthesis of high-value bioactive metabolites named isoprostanoids. So far, there have been only a few studies reporting isoprostanoid productions in algae. To fill this gap, the current investigation aimed at profiling isoprostanoids by liquid chromatography -mass spectrometry/mass spectrometry (LC-MS/MS) in four marine microalgae. A good correlation was observed between the most abundant polyunsaturated fatty acids (PUFAs) produced by the investigated microalgal species and their isoprostanoid profiles. No significant variations in the content of oxidized derivatives were observed for Rhodomonas salina and Chaetoceros gracilis under copper stress, whereas increases in the production of C18-, C20- and C22-derived isoprostanoids were monitored in Tisochrysis lutea and Phaeodactylum tricornutum. In the presence of hydrogen peroxide, no significant changes were observed for C. gracilis and for T. lutea, while variations were monitored for the other two algae. This study paves the way to further studying the physiological roles of isoprostanoids in marine microalgae and exploring these organisms as bioresources for isoprostanoid production.
Collapse
|
18
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
19
|
Seo S, Kim J, Lee JW, Nam O, Chang KS, Jin E. Enhanced pyruvate metabolism in plastids by overexpression of putative plastidial pyruvate transporter in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:120. [PMID: 32670407 PMCID: PMC7350735 DOI: 10.1186/s13068-020-01760-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/02/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The development of microalgal strains for enhanced biomass and biofuel production has received increased attention. Moreover, strain development via metabolic engineering for commercial production is being considered as the most efficient strategy. Pyruvate is an essential metabolite in the cells and plays an essential role in amino acid biosynthesis and de novo fatty acid biosynthesis in plastids. Although pyruvate can be a valuable target for metabolic engineering, its transporters have rarely been studied in microalgae. In this study, we aimed to identify the plastidial pyruvate transporter of Phaeodactylum tricornutum and utilize it for strain development. RESULTS We identified putative pyruvate transporter localized in the plastid membrane of Phaeodactylum tricornutum. Transformants overexpressing the pyruvate transporter were generated to increase the influx of pyruvate into plastids. Overexpression of a plastidial pyruvate transporter in P. tricornutum resulted in enhanced biomass (13.6% to 21.9%), lipid contents (11% to 30%), and growth (3.3% to 8.0%) compared to those of wild type during one-stage cultivation. CONCLUSION To regulate the pyruvate influx and its metabolism in plastids, we generated transformants overexpressing the putative plastidial pyruvate transporter in P. tricornutum. They showed that its overexpression for compartmentalizing pyruvate in plastids could be an attractive strategy for the effective production of biomass and lipids with better growth, via enhanced pyruvate metabolism in plastids.
Collapse
Affiliation(s)
- Seungbeom Seo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Joon Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Jun-Woo Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
20
|
The Biotechnological Potential of the Marine Diatom Skeletonema dohrnii to the Elevated Temperature and pCO 2 Concentration. Mar Drugs 2020; 18:md18050259. [PMID: 32429035 PMCID: PMC7281586 DOI: 10.3390/md18050259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Marine diatoms are promising candidates for biotechnological applications, since they contain high-value compounds, naturally. To facilitate the production of these compounds, stress conditions are often preferable; however, challenges remain with respect to maximizing a metabolic potential for the large-scale cultivation. Here, we sequenced the transcriptome of diatom Skeletonema dohrnii under the actual (21 °C, 400 ppm) and elevated (25 °C, 1000 ppm) temperature and pCO2 condition. Results indicated that cells grown at higher temperature and pCO2 showed increasing growth rate, pigment composition, and biochemical productivity as did the expression of chlorophyll, carotenoid and bioactive compound related genes or transcripts. Furthermore, performing de novo transcriptome, we identified 32,884 transcript clusters and found 10,974 of them were differentially expressed between these two conditions. Analyzing the functions of differentially expressed transcripts, we found many of them involved in core metabolic and biosynthesis pathways, including chlorophyll metabolism, carotenoid, phenylpropanoid, phenylalanine and tyrosine, and flavonoid biosynthesis was upregulated. Moreover, we here demonstrated that utilizing a unique bio-fixation ability, S. dohrnii is capable of suppressing central carbon metabolism to promote lipid productivity, fatty acid contents and other bioactive compounds under high temperature and pCO2 treatment. Our study suggests that this S. dohrnii species could be a potential candidate for wide-scale biotechnological applications under elevated temperature and CO2 conditions.
Collapse
|
21
|
Transcriptional reprogramming of intermediate metabolism gene induced by Phosphatidylinositol 3-Kinase in Phaeodactylum tricornutum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Abstract
The need to reduce costs associated with the production of microalgae biomass has encouraged the coupling of process with wastewater treatment. Emerging pollutants in municipal, industrial, and agricultural wastewaters, ranging from pharmaceuticals to metals, endanger public health and natural resources. The use of microalgae has, in fact, been shown to be an efficient method in water-treatment processes and presents several advantages, such as carbon sequestration, and an opportunity to develop innovative bioproducts with applications to several industries. Using a bibliometric analysis software, SciMAT, a mapping of the research field was performed, analyzing the articles produced between 1981 and 2018, aiming to identifying the hot topics and trends studied until now. The application of microalgae on water bioremediation is an evolving research field that currently focuses on developing efficient and cost-effective treatments methods that also enable the production of add-value products, leading to a blue and circular economy.
Collapse
|
23
|
Butler T, Kapoore RV, Vaidyanathan S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol 2020; 38:606-622. [PMID: 31980300 DOI: 10.1016/j.tibtech.2019.12.023] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
A switch from a petroleum-based to a biobased economy requires the capacity to produce both high-value low-volume and low-value high-volume products. Recent evidence supports the development of microalgae-based microbial cell factories with the objective of establishing environmentally sustainable manufacturing solutions. Diatoms display rich diversity and potential in this regard. We focus on Phaeodactylum tricornutum, a pennate diatom that is commonly found in marine ecosystems, and discuss recent trends in developing the diatom chassis for the production of a suite of natural and genetically engineered products. Both upstream and downstream developments are reviewed for the commercial development of P. tricornutum as a cell factory for a spectrum of marketable products.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK; Present address: Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
24
|
Schoefs B, Van de Vijver B, Wetzel CE, Ector L. Introduction : From diatom species identification to ecological and biotechnological applications. BOTANY LETTERS 2020. [PMID: 0 DOI: 10.1080/23818107.2020.1719883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Benoît Schoefs
- Metabolism, bIoengineering of Molecules from Microalgae and Applications, Mer Molécules Santé, Le Mans University, Le Mans, France
| | - Bart Van de Vijver
- Research Department, Meise Botanic Garden, Meise, Belgium
- Department of Biology - ECOBE, University of Antwerp, Antwerp, Belgium
| | - Carlos E. Wetzel
- Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - Luc Ector
- Department Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| |
Collapse
|
25
|
Le Goff M, Delbrut A, Quinton M, Pradelles R, Bescher M, Burel A, Schoefs B, Sergent O, Lagadic-Gossmann D, Le Ferrec E, Ulmann L. Protective Action of Ostreococcus tauri and Phaeodactylum tricornutum Extracts towards Benzo[a]Pyrene-Induced Cytotoxicity in Endothelial Cells. Mar Drugs 2019; 18:E3. [PMID: 31861403 PMCID: PMC7024323 DOI: 10.3390/md18010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
Marine microalgae are known to be a source of bioactive molecules of interest to human health, such as n-3 polyunsaturated fatty acids (n-3 PUFAs) and carotenoids. The fact that some of these natural compounds are known to exhibit anti-inflammatory, antioxidant, anti-proliferative, and apoptosis-inducing effects, demonstrates their potential use in preventing cancers and cardiovascular diseases (CVDs). Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon (PAH), is an ubiquitous environmental pollutant known to contribute to the development or aggravation of human diseases, such as cancer, CVDs, and immune dysfunction. Most of these deleterious effects are related to the activation of the polycyclic aromatic hydrocarbon receptor (AhR). In this context, two ethanolic microalgal extracts with concentrations of 0.1 to 5 µg/mL are tested, Ostreoccoccus tauri (OT) and Phaeodactylum tricornutum (PT), in order to evaluate and compare their potential effects towards B[a]P-induced toxicity in endothelial HMEC-1 cells. Our results indicate that the OT extract can influence the toxicity of B[a]P. Indeed, apoptosis and the production of extracellular vesicles were decreased, likely through the reduction of the expression of CYP1A1, a B[a]P bioactivation enzyme. Furthermore, the B[a]P-induced expression of the inflammatory cytokines IL-8 and IL1-β was reduced. The PT extract only inhibited the expression of the B[a]P-induced cytokine IL-8 expression. The OT extract therefore seems to be a good candidate for counteracting the B[a]P toxicity.
Collapse
Affiliation(s)
- Manon Le Goff
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-53020 Laval, France; (M.L.G.)
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Antoine Delbrut
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Marie Quinton
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Rémi Pradelles
- Microphyt, 713 Route de Mudaison, 34630 Baillargues, France; (A.D.); (M.Q.); (R.P.)
| | - Maelle Bescher
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Agnès Burel
- Univ Rennes, Biosit–UMS 3480, US_S 018, F-35000 Rennes, France; (A.B.)
| | - Benoît Schoefs
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-72000 Le Mans, France; (B.S.)
| | - Odile Sergent
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, F-35000 Rennes, France; (M.B.); (O.S.); (D.L.-G.)
| | - Lionel Ulmann
- EA 2160 Mer Molécules Santé—MIMMA, IUML FR-3473 CNRS, Le Mans Université, F-53020 Laval, France; (M.L.G.)
| |
Collapse
|
26
|
Le Goff M, Le Ferrec E, Mayer C, Mimouni V, Lagadic-Gossmann D, Schoefs B, Ulmann L. Microalgal carotenoids and phytosterols regulate biochemical mechanisms involved in human health and disease prevention. Biochimie 2019; 167:106-118. [DOI: 10.1016/j.biochi.2019.09.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/18/2019] [Indexed: 01/19/2023]
|
27
|
Cui Y, Thomas-Hall SR, Schenk PM. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: Progress in lipid induction techniques towards industry adoption. Food Chem 2019; 297:124937. [DOI: 10.1016/j.foodchem.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
28
|
Provision of carbon skeleton for lipid synthesis from the breakdown of intracellular protein and soluble sugar in Phaeodactylum tricornutum under high CO 2. BMC Biotechnol 2019; 19:53. [PMID: 31349823 PMCID: PMC6659225 DOI: 10.1186/s12896-019-0544-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing CO2 emissions have resulted in ocean acidification, affecting marine plant photosynthesis and changing the nutrient composition of marine ecosystems. The physiological and biochemical processes of marine phytoplankton in response to ocean acidification have been reported, but have been mainly focused on growth and photosynthetic physiology. To acquire a thorough knowledge of the molecular regulation mechanisms, model species with clear genetic background should be selected for systematic study. Phaeodactylum tricornutum is a pennate diatom with the characteristics of small genome size, short generation cycle, and easy to transform. Furthermore, the genome of P. tricornutum has been completely sequenced. RESULTS AND DISCUSSION In this study, P. tricornutum was cultured at high and normal CO2 concentrations. Cell composition changes during culture time were investigated. The 13C isotope tracing technique was used to determine fractional labeling enrichments for the main cellular components. The results suggested that when lipid content increased significantly under high CO2 conditions, total protein and soluble sugar contents decreased. The 13C labeling experiment indicated that the C skeleton needed for fatty acid C chain elongation in lipid synthesis under high CO2 conditions is not mainly derived from NaHCO3 (carbon fixed by photosynthesis). CONCLUSION This study indicated that breakdown of intracellular protein and soluble sugar provide C skeleton for lipid synthesis under high CO2 concentration.
Collapse
|
29
|
Di Dato V, Di Costanzo F, Barbarinaldi R, Perna A, Ianora A, Romano G. Unveiling the presence of biosynthetic pathways for bioactive compounds in the Thalassiosira rotula transcriptome. Sci Rep 2019; 9:9893. [PMID: 31289324 PMCID: PMC6616357 DOI: 10.1038/s41598-019-46276-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 06/26/2019] [Indexed: 12/02/2022] Open
Abstract
Diatoms are phytoplankton eukaryotic microalgae that are widely distributed in the world’s oceans and are responsible for 20–25% of total carbon fixation on the planet. Using transcriptome sequencing here we show for the first time that the ubiquitous diatom Thalassiosira rotula expresses biosynthetic pathways that potentially lead to the synthesis of interesting secondary metabolites with pharmaceutical applications such as polyketides, prostaglandins and secologanin. We also show that these pathways are differentially expressed in conditions of silica depletion in comparison with standard growth conditions.
Collapse
Affiliation(s)
- Valeria Di Dato
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy.
| | - Federica Di Costanzo
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Roberta Barbarinaldi
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Anna Perna
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn Napoli, Department of Marine Biotechnology, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
30
|
Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, Moreau B, Morant-Manceau A, Bougaran G, Mimouni V. Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101506] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
32
|
Heydarizadeh P, Veidl B, Huang B, Lukomska E, Wielgosz-Collin G, Couzinet-Mossion A, Bougaran G, Marchand J, Schoefs B. Carbon Orientation in the Diatom Phaeodactylum tricornutum: The Effects of Carbon Limitation and Photon Flux Density. FRONTIERS IN PLANT SCIENCE 2019; 10:471. [PMID: 31057578 PMCID: PMC6477932 DOI: 10.3389/fpls.2019.00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/28/2019] [Indexed: 05/03/2023]
Abstract
Diatoms adapt to changing environmental conditions in very efficient ways. Among the mechanisms that can be activated, the reorientation of carbon metabolism is crucial because it allows the storage of energy into energy-dense molecules, typically lipids. Beside their roles in physiology, lipids are commercially interesting compounds. Therefore studies dealing with this topic are relevant for both basic and applied science. Although the molecular mechanisms involved in the reorientation of carbon metabolism as a response to a deficiency in nutrients such as nitrogen or phosphorus has been partially elucidated, the impacts of carbon availability on the implementation of the reorientation mechanisms remain unclear. Indeed, it has not been determined if the same types of mechanisms are activated under carbon and other nutrient deficiencies or limitations. The first aim of this work was to get insights into the physiological, biological and molecular processes triggered by progressive carbon starvation in the model diatom Phaeodactylum tricornutum. The second aim was to investigate the effects of the growth light intensity on these processes. For such a purpose three different photon flux densities 30, 300, and 1000 μmol photons m-2 s-1 were used. The results presented here demonstrate that under carbon limitation, diatom cells still reorient carbon metabolism toward either phosphoenolpyruvate or pyruvate, which serves as a hub for the production of more complex molecules. The distribution of carbon atoms between the different pathways was partially affected by the growth photon flux density because low light (LL) provides conditions for the accumulation of chrysolaminarin, while medium light mostly stimulated lipid synthesis. A significant increase in the amount of proteins was observed under high light (HL).
Collapse
Affiliation(s)
- Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Brigitte Veidl
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Bing Huang
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Ewa Lukomska
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, France
| | | | | | - Gaël Bougaran
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécule Santé, Le Mans University, IUML FR 3473 CNRS, Le Mans, France
- *Correspondence: Benoît Schoefs,
| |
Collapse
|
33
|
Li X, Pan Y, Hu H. Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Goessling JW, Su Y, Cartaxana P, Maibohm C, Rickelt LF, Trampe ECL, Walby SL, Wangpraseurt D, Wu X, Ellegaard M, Kühl M. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis. THE NEW PHYTOLOGIST 2018; 219:122-134. [PMID: 29672846 DOI: 10.1111/nph.15149] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/06/2018] [Indexed: 05/08/2023]
Abstract
The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology.
Collapse
Affiliation(s)
- Johannes W Goessling
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Yanyan Su
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Paulo Cartaxana
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Christian Maibohm
- International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Lars F Rickelt
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Oxyguard International A/S, Farum Gydevej 64, 3520, Farum, Denmark
- Zenzor, Krondrevet 31, 3140, Ålsgårde, Denmark
| | - Erik C L Trampe
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Sandra L Walby
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Daniel Wangpraseurt
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Xia Wu
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| | - Marianne Ellegaard
- Section for Plant Glycobiology, Department for Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
35
|
Schoefs B, Hu H, Kroth PG. The peculiar carbon metabolism in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0405. [PMID: 28717015 DOI: 10.1098/rstb.2016.0405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Benoît Schoefs
- Metabolism, bioengineering of microalgal molecules and applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, People's Republic of China
| | - Peter G Kroth
- University of Konstanz, Fachbereich Biologie, 78457 Konstanz, Germany
| |
Collapse
|
36
|
Hwangbo K, Lim JM, Jeong SW, Vikramathithan J, Park YI, Jeong WJ. Elevated Inorganic Carbon Concentrating Mechanism Confers Tolerance to High Light in an Arctic Chlorella sp. ArM0029B. FRONTIERS IN PLANT SCIENCE 2018; 9:590. [PMID: 29868055 PMCID: PMC5949578 DOI: 10.3389/fpls.2018.00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 05/29/2023]
Abstract
Microalgae and higher plants employ an inorganic carbon (Ci) concentrating mechanism (CCM) to increase CO2 availability to Rubisco. Operation of the CCM should enhance the activity of the Calvin cycle, which could act as an electron sink for electrons generated by photosynthesis, and lower the redox status of photosynthetic electron transport chains. In this study, a hypothesis that microalgal cells with fully operating CCM are less likely to be photodamaged was tested by comparing a Chlorella mutant with its wild type (WT). The mutant acquired by screening gamma-ray-induced mutant libraries of Chlorella sp. ArM0029B exhibited constitutively active CCM (CAC) even in the presence of additional Ci sources under mixotrophic growth conditions. In comparison to the WT alga, the mutant named to constitutively active CCM1 (CAC1) showed more transcript levels for genes coding proteins related to CCM such as Ci transporters and carbonic anhydrases (CA), and greater levels of intracellular Ci content and CA activity regardless of whether growth is limited by light or not. Under photoinhibitory conditions, CAC1 mutant showed faster growth than WT cells with more PSII reaction center core component D1 protein (encoded by psbA), higher photochemical efficiency as estimated by the chlorophyll fluorescence parameter (Fv/Fm), and fewer reactive oxygen species (ROS). Interestingly, high light (HL)-induced increase in ROS contents in WT cells was significantly inhibited by bicarbonate supplementation. It is concluded that constitutive operation of CCM endows Chlorella cells with resistance to HL partly by reducing the endogenous generation of ROS. These results will provide useful information on the interaction between CCM expression, ROS production, and photodamage in Chlorella and related microalgae.
Collapse
Affiliation(s)
- Kwon Hwangbo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jong-Min Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Seok-Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Jayaraman Vikramathithan
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Won-Joong Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| |
Collapse
|
37
|
McClure DD, Luiz A, Gerber B, Barton GW, Kavanagh JM. An investigation into the effect of culture conditions on fucoxanthin production using the marine microalgae Phaeodactylum tricornutum. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.11.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, Napier JA. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160407. [PMID: 28717017 PMCID: PMC5516116 DOI: 10.1098/rstb.2016.0407] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Diatoms are responsible for up to 40% of the carbon fixation in our oceans. The fixed carbon is moved through carbon metabolism towards the synthesis of organic molecules that are consumed through interlocking foodwebs, and this process is strongly impacted by the abiotic environment. However, it has become evident that diatoms can be used as 'platform' organisms for the production of high valuable bio-products such as lipids, pigments and carbohydrates where stress conditions can be used to direct carbon metabolism towards the commercial production of these compounds. In the first section of this review, some aspects of carbon metabolism in diatoms and how it is impacted by environmental factors are briefly described. The second section is focused on the biosynthesis of lipids and in particular omega-3 long-chain polyunsaturated fatty acids and how low temperature stress impacts on the production of these compounds. In a third section, we review the recent advances in bioengineering for lipid production. Finally, we discuss new perspectives for designing strains for the sustainable production of high-value lipids.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Olga Sayanova
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Virginie Mimouni
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Lionel Ulmann
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Annick Morant-Manceau
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Virginie Pasquet
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications, Mer Molécules Santé, UBL, IUML-FR 3473 CNRS, University of Le Mans, Le Mans-Laval, France
| | - Johnathan A Napier
- Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|