1
|
Dénes L, Albert M, Igriczi B, Balka G. Prevalence estimation of Pestivirus scrofae (atypical porcine pestivirus) among Hungarian pig herds and the effects of different sample types on detection rates. Porcine Health Manag 2025; 11:8. [PMID: 39953601 PMCID: PMC11829520 DOI: 10.1186/s40813-024-00416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Atypical porcine pestivirus (APPeV), also known as Pestivirus scrofae, is a member of the Pestivirus genus within the Flaviviridae family. Experimental infections have directly linked APPeV to congenital tremor (CT) type A-II in congenitally infected piglets born to challenged sows. Here, we report the assessment of the prevalence of APPeV in Hungarian pig herds and the influence of different sample types on detection rates. RESULTS Altogether, 2650 blood serum, 198 oral fluid and 163 processing fluid samples were obtained via a systemic approach from 26 Hungarian farms and one Slovakian farm. The samples originated from different age groups and were analyzed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The estimated prevalence of APPeV was determined to be 66.67% in the sampled farms, indicating the widespread distribution of the virus within Hungary. Within the positive farms, APPeV genetic material was detected in the serum (21%), processing fluid (57%), and oral fluid (72%) samples. Notably, in some farms, the presence of APPeV was confirmed in only specific sample types, and five farms had APPeV in all three sample types. Age group analysis revealed that 10-week-old animals had the highest positivity rate in their blood serum (27%), whereas 20-week-old animals presented the highest rate in their oral fluid samples (59%). Processing fluid and oral fluid samples proved to be valuable for noninvasive diagnostic matrices, allowing for efficient population-level virus detection. We determined the partial NS2-3 coding region of 15 Hungarian strains and a Slovakian strain, and our phylogenetic analysis revealed that very similar strains can be found on different farms. CONCLUSION In conclusion, our study provides insights into APPeV prevalence in Hungarian pig herds, emphasizing the importance of different sample types for accurate diagnostics. These findings contribute to our understanding of the virus's distribution across different age groups.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, István Str. 2., Budapest, 1078, Hungary.
| | - Mihály Albert
- CEVA-Phylaxia (Ceva Sante Animale), Szállás Str. 5., Budapest, 1107, Hungary
| | - Barbara Igriczi
- Department of Pathology, University of Veterinary Medicine, István Str. 2., Budapest, 1078, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István Str. 2., Budapest, 1078, Hungary.
| |
Collapse
|
2
|
Augustyniak A, Dors A, Niemyjski R, Łagowski D, Pomorska-Mól M. First detection of atypical porcine pestivirus in piglets affected by congenital tremor in Poland. Vet Res Commun 2025; 49:97. [PMID: 39913022 DOI: 10.1007/s11259-025-10670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Congenital tremors are neurological disorders of newborn piglets that may lead to serious health consequences, including increased mortality. Many reports have indicated that atypical porcine pestivirus (APPV), first identified in 2015, is a possible cause of this condition. In different countries, APPV was detected in farms affected by piglets' congenital tremors. There is a lack of data regarding the presence of this virus in Poland. However, swine veterinarians report outbreaks of congenital tremor with unestablished aetiology nationwide. Therefore, this study aimed to verify the presence of APPV in piglets with congenital tremors in Poland. Samples of blood (2), faecal swabs (7), brain (7), cerebellum (5), spinal cord, (7) lymph nodes (7), tonsil (7), thymus (6), tongue (7), heart (7), lung (7) and liver (7) were collected from piglets. Form sows' blood (5) and oral fluid (3, pooling samples) were collected. All samples have been derived from a commercial breeding farm reporting a case of congenital tremor and subjected to the qPCR via commercial kit (EXOone Atypical Porcine Pestivirus, Exopol, Spain). Six out of seven piglets tested positive for APPV, with the highest viral loads detected in the cerebellum and tonsils. All samples from sows were negative, emphasising the virus's specificity to piglets. To the authors' knowledge, this is the first report confirming APPV's presence in Poland. Given the potentially significant impact of APPV infections on swine health and production economics, further research evaluating the epidemiology and pathogenicity of APPV, as well as identifying preventive measures, is sorely needed.
Collapse
Affiliation(s)
- Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Arkadiusz Dors
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | | | - Dominik Łagowski
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołyńska 35, Poznań, 60-637, Poland.
| |
Collapse
|
3
|
Aae FH, Stokstad M, Myrmel M, Sørby R, Bergfeldt A, Ranheim B. Tremor tales: A cohort study of general and neurological signs in pigs with atypical porcine pestivirus-induced congenital tremor. Vet J 2025; 309:106288. [PMID: 39645222 DOI: 10.1016/j.tvjl.2024.106288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Congenital tremor (CT) caused by atypical porcine pestivirus (APPV) is a widespread disease in the swine industry. It is characterized by tremors in newborn piglets, but tremor description and association to other clinical signs are not well documented. This study's objectives were to characterize general and neurological clinical signs of APPV-induced CT and describe the progression and associations between the different signs. A cohort study was conducted including 37 pigs from litters with APPV-confirmed CT and 27 control pigs from healthy litters. All pigs were examined five times from birth to slaughter, including general and neurological parameters, and detailed tremor characterization. All levels of tremor, from grave severity to no tremor, were seen within litters. Tremor persisted throughout the suckling period for all, to weaner age for 60 % and to slaughter age for 40 %, unrelated to the initial degree of tremor (P = 0.9). Tremors were consistent with intention tremor and typically went from affecting the whole body to smaller regions as the pig aged, while frequency increased, and amplitude decreased. Tremor was associated with hypermetria (P = 0.0018) and a broad stance (P = 0.0198) during the suckling period. No other neurological signs, or splay leg, were observed. Severe tremor inhibited voluntary movement and was associated with reduced general condition (P = 0.0017), lower body condition score (P = 0.0044), more carpal lesions (P = 0.0163) and arthritis (P = 0.0198). Intention tremor and hypermetria corresponds to cerebellar diseases, although other typical signs of this were absent. Both the tremor observed, and the associated clinical manifestations appear to have severe animal welfare implications.
Collapse
Affiliation(s)
- F H Aae
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Postboks 5003, Ås, Norway.
| | - M Stokstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Postboks 5003, Ås, Norway
| | - M Myrmel
- Virology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Postboks 5003, Ås, 1432, Norway
| | - R Sørby
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Postboks 5003, Ås, 1432, Norway
| | - A Bergfeldt
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Postboks 5003, Ås, 1432, Norway
| | - B Ranheim
- Norwegian Meat and Poultry Research Centre, Animalia AS, Postboks 396 Økern, Oslo 0513, Norway
| |
Collapse
|
4
|
Anoyatbekova A, Yuzhakov A. Isolation and Phylogenetic Analysis of Atypical Porcine Pestivirus Isolates Identified in Russian Swine Herds. Viruses 2024; 17:2. [PMID: 39861791 PMCID: PMC11768848 DOI: 10.3390/v17010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Atypical porcine pestivirus (APPV) was first identified in 2015 in North America by high-throughput sequencing. APPV is associated with congenital tremor A-II and is widely distributed worldwide. In this study, a total of 2630 samples of domestic pigs obtained from 14 regions of Russia from 2020 to 2024 were screened for APPV presence by qRT-PCR. APPV was detected in 12 farms located in eight regions. The overall positive rate was 8.8%. It has been established that APPV has been circulating in Russian swine herds since at least 2020. The phylogenetic analysis demonstrated that the Russian isolates are variable and assigned into three clusters. The isolates from the Krasnoyarsk Krai, Belgorod, Tomsk, and Kursk regions and the Republic of Buryatia share a high nucleotide identity (94.3-98.8%) with the Hungarian strains, while the isolates from the Moscow and Pskov regions share a nucleotide identity (89.2-94.3%) with strains from the USA. The isolate from the Republic of Mordovia has a high nucleotide identity (97.1%) with the South Korean strain. In vitro studies of the Russian isolates revealed the replication of the Belgorod 151 strain in SPEV cells. Thus, this is the first large-scale study that confirms the circulation of APPV in swine herds in Russia and describes its isolation in cell culture.
Collapse
Affiliation(s)
- Afshona Anoyatbekova
- Federal State Budget Scientific Institution “Federal Scientific Center VIEV”, 109428 Moscow, Russia;
| | | |
Collapse
|
5
|
Geranio F, Affeldt S, Cechini A, Barth S, Reuscher CM, Riedel C, Rümenapf T, Lamp B. Exclusion of Superinfection or Enhancement of Superinfection in Pestiviruses-APPV Infection Is Not Dependent on ADAM17. Viruses 2024; 16:1834. [PMID: 39772144 PMCID: PMC11680174 DOI: 10.3390/v16121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Some viruses can suppress superinfections of their host cells by related or different virus species. The phenomenon of superinfection exclusion can be caused by inhibiting virus attachment, receptor binding and entry, by replication interference, or competition for host cell resources. Blocking attachment and entry not only prevents unproductive double infections but also stops newly produced virions from re-entering the cell post-exocytosis. In this study, we investigated the exclusion of superinfections between the different pestivirus species. Bovine and porcine cells pre-infected with non-cytopathogenic pestivirus strains were evaluated for susceptibility to subsequent superinfection using comparative titrations. Our findings revealed significant variation in exclusion potency depending on the pre- and superinfecting virus species, as well as the host cell species. Despite this variability, all tested classical pestivirus species reduced host cell susceptibility to subsequent infections, indicating a conserved entry mechanism. Unexpectedly, pre-infection with atypical porcine pestivirus (APPV) increased host cell susceptibility to classical pestiviruses. Further analysis showed that APPV can infect SK-6 cells independently of ADAM17, a critical attachment factor for the classical pestiviruses. These results indicate that APPV uses different binding and entry mechanisms than the other pestiviruses. The observed increase in the susceptibility of cells post-APPV infection warrants further investigation and could have practical implications, such as aiding challenging pestivirus isolation from diagnostic samples.
Collapse
Affiliation(s)
- Francesco Geranio
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sebastian Affeldt
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Angelika Cechini
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Sandra Barth
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Carina M. Reuscher
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 Allée d’Italie, 69007 Lyon, France;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Schubertstrasse 81, 35392 Giessen, Germany; (F.G.); (S.A.); (A.C.); (S.B.)
| |
Collapse
|
6
|
Schulz D, Aebischer A, Wernike K, Beer M. No evidence of spread of Linda pestivirus in the wild boar population in Southern Germany. Virol J 2024; 21:205. [PMID: 39215313 PMCID: PMC11365151 DOI: 10.1186/s12985-024-02476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Lateral-shaking inducing neuro-degenerative agent virus (LindaV) is a novel member of the highly diverse genus Pestivirus within the family Flaviviridae. LindaV was first detected in Austria in 2015 and was associated with congenital tremor in piglets. Since then, the virus or specific antibodies have been found in a few further pig farms in Austria. However, the actual spatial distribution and the existence of reservoir hosts is largely unknown. Since other pestiviruses of pigs such as classical swine fever virus or atypical porcine pestivirus can also infect wild boar, the question arises whether LindaV is likewise present in the wild boar population. Therefore, we investigated the presence of neutralizing antibodies against LindaV in 200 wild boar samples collected in Southern Germany, which borders Austria. To establish a serological test system, we made use of the interchangeability of the surface glycoproteins and created a chimeric pestivirus using Bungowannah virus (species Pestivirus australiaense) as synthetic backbone. The E1 and E2 glycoproteins were replaced by the heterologous E1 and E2 of LindaV resulting in the chimera BV_E1E2_LV. Viable virus could be rescued and was subsequently applied in a neutralization test. A specific positive control serum generated against the E2 protein of LindaV gave a strong positive result, thereby confirming the functionality of the test system. All wild boar samples, however, tested negative. Hence, there is no evidence that LindaV has become highly prevalent in the wild boar population in Southern Germany.
Collapse
Affiliation(s)
- Doreen Schulz
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Andrea Aebischer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| |
Collapse
|
7
|
Yang Y, Jiang G, He W, Tian X, Zheng H, Xiang B, Sun Y. Network of Interactions between the Mut Domains of the E2 Protein of Atypical Porcine Pestivirus and Host Proteins. Genes (Basel) 2024; 15:991. [PMID: 39202352 PMCID: PMC11354059 DOI: 10.3390/genes15080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Atypical porcine pestivirus (APPV) can cause congenital tremor type A-II in neonatal piglets, posing a significant threat to swine herd health globally. Our previous study demonstrated that the Mut domains, comprising 112 amino acids at the N-terminus, are the primary functional regions of the E2 protein of APPV. This study identified 14 host cellular proteins that exhibit potential interactions with the Mut domains of the E2 protein using yeast two-hybrid screening. Using bioinformatics analysis, we discovered that the Mut domains of the E2 protein might exert regulatory effects on apoptosis by modulating energy metabolism within the mitochondria. We also conducted co-immunoprecipitation, glutathione S-transferase pull-down, and immunofluorescence assays to confirm the interaction between the Mut domains of the E2 protein and cathepsin H and signal sequence receptor subunit 4 (SSR4). Ultimately, SSR4 enhanced APPV replication in vitro. In summary, our study successfully elucidated the interactions between the Mut domains of the E2 protein and host cell protein, predicted the potential pathways implicated in these interactions, and demonstrated SSR4 involvement in APPV infection. These significant findings contribute valuable knowledge toward a deeper understanding of APPV pathogenesis and the role of the Mut domains of the E2 protein in this intricate process.
Collapse
Affiliation(s)
- Yuai Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Guangfei Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Weiqi He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Xin Tian
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Huanli Zheng
- Yunnan Animal Health Supervision Institute, Kunming 650201, China;
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| | - Yongke Sun
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (G.J.); (W.H.); (X.T.); (B.X.)
| |
Collapse
|
8
|
Aitkenhead H, Riedel C, Cowieson N, Rümenapf HT, Stuart DI, El Omari K. Structural comparison of typical and atypical E2 pestivirus glycoproteins. Structure 2024; 32:273-281.e4. [PMID: 38176409 DOI: 10.1016/j.str.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed β-hairpin reported to be involved in host receptor binding. Functional analysis of this β-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.
Collapse
Affiliation(s)
- Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK
| | - Christiane Riedel
- CIRI-Centre International de Recherche en Infectiologie, University Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Nathan Cowieson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Hans Tillmann Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, Oxfordshire OX3 7BN, UK.
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA, UK.
| |
Collapse
|
9
|
Song H, Gao X, Li J, Dong X, Fu Y, Shao L, Zhang J, Qiu HJ, Luo Y. Development and application of an indirect ELISA for detection of antibodies against emerging atypical porcine pestivirus. Virol J 2024; 21:53. [PMID: 38438894 PMCID: PMC10910838 DOI: 10.1186/s12985-024-02330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Atypical porcine pestivirus (APPV) is a newly discovered swine pestivirus, which can cause congenital tremor and high mortality in newborn piglets and subclinical infection in adult pigs, leading to significant impacts on the pig industry. Currently, there is no approved serological method to assess APPV infection status in pig farms. METHODS In this study, the envelope glycoprotein E2 of APPV was highly expressed in suspension HEK293 cells, and further an indirect enzyme-linked immunosorbent assay based on the recombinant E2 protein (E2-iELISA) was developed and evaluated. RESULTS The reaction parameters of the E2-iELISA were optimized, and the cutoff value was determined to be 0.2 by analyzing S/P values of 165 negative sera against APPV that were confirmed by virus neutralization test (VNT). Specificity test showed that the method had no cross-reaction with other common swine viruses. The E2-iELISA was evaluated using a panel of swine sera, and showed high sensitivity (113/120, 94.2%) and specificity (65/70, 92.9%), and the agreement rate with VNT was 93.7% (178/190). Subsequently, the E2-iELISA was utilized to investigate the seroprevalence of APPV in pig herds of China. When detecting 1368 pig serum samples collected from nine provinces in China, the overall seroprevalence of APPV was 73.9% (1011/1368). CONCLUSION Our findings suggest that the E2-iELISA is specific and sensitive, and could be a valuable tool for serological surveillance of APPV infection in pigs.
Collapse
Affiliation(s)
- Hao Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Xiaowei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Jing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Xinying Dong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Yanhui Fu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Lina Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Jiaoer Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin, 150069, China.
| |
Collapse
|
10
|
Gou H, Zhou X, Zhai SL. Editorial: Emerging swine infectious diseases. Front Vet Sci 2023; 10:1349844. [PMID: 38188722 PMCID: PMC10770250 DOI: 10.3389/fvets.2023.1349844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Xia Zhou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Shao-Lun Zhai
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| |
Collapse
|
11
|
Sun X, Zhang Q, Shan H, Cao Z, Huang J. Genome characteristics of atypical porcine pestivirus from abortion cases in Shandong Province, China. Virol J 2023; 20:282. [PMID: 38031135 PMCID: PMC10688472 DOI: 10.1186/s12985-023-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Atypical porcine pestivirus (APPV) is a novel, highly variable porcine pestivirus. Previous reports have suggested that the virus is associated with congenital tremor (CT) type A-II in piglets, and little information is available about the correlation between the virus and sow abortion, or on coinfection with other viruses. In China, reported APPV strains were mainly isolated from South China and Central China, and data about the APPV genome from northern China are relatively scarce. METHODS Eleven umbilical cords, one placenta, and one aborted piglet, were collected from aborted sows of the same farm in Shandong Province of northern China. Nucleic acids were extracted from the above samples, and subsequently pooled for viral metagenomics sequencing and bioinformatics analysis. The viral coexistence status and complete genome characteristics of APPV in Shandong Province were determined. RESULTS In abortion cases, APPV was present with Getah virus, porcine picobirnavirus, porcine kobuvirus, porcine sapovirus, Po-Circo-like virus, porcine serum-associated circular virus, porcine bocavirus 1, porcine parvovirus 1, porcine parvovirus 3 and porcine circovirus 3, etc. The first complete genome sequence(11,556 nt) of APPV in Shandong Province of northern China, was obtained using viral metagenomics and designated APPV-SDHY-2022. Comparison with Chinese reference strains revealed that the polyprotein of APPV-SDHY-2022 shared 82.6-84.2%, 93.2-93.6%, and 80.7-85% nucleotide identity and 91.4-92.4%, 96.4-97.7%, and 90.6-92.2% amino acid identity with those of the Clade I, Clade II and Clade III strains, respectively. Phylogenetic analysis based on the complete polyprotein CDS and NS5A sequences concluded that APPV-SDHY-2022 belongs to Clade II. Analysis of the NS5A nucleotide sequences revealed homology of greater than 94.6% for the same isoform, 84.7-94.5% for different isoforms of the same clade and 76.8-81.1% for different clades. Therefore, Clade II was further divided into three subclades, and APPV-SDHY-2022 belonged to subclade 2.3. Members of Clade II have 20 unique amino acids in individual proteins, distinguishing them from Clade I and Clade III members. The E2 protein showed the greatest diversity of putative N-glycosylation sites with 9 patterns, and APPV-SDHY-2022 along with other Chinese APPV strains shared the conserved B-cell conformational epitope residues 39E, 70R, 173R, 190K and 191N of the E2 protein. CONCLUSIONS We reported viral coexistence and the first complete genome sequence of APPV from abortion cases and from Shandong Province. The new APPV isolate belongs to an independent branch of Clade II. Our results increase the molecular and epidemiological understanding of APPV in China.
Collapse
Affiliation(s)
- Xiaoyu Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China.
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China.
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China.
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China.
| | - Juan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, Qingdao, China.
- Qingdao Research Center for Veterinary Biological Engineering and Technology, Qingdao, China.
| |
Collapse
|
12
|
Shiokawa M, Morita Y, Nagai M, Haritani M, Aoki H. Isolation and artificial production of atypical porcine pestivirus, using the swine-kidney-derived cell line SK-L. Arch Virol 2023; 168:294. [PMID: 37981594 DOI: 10.1007/s00705-023-05919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/30/2023] [Indexed: 11/21/2023]
Abstract
Congenital tremor (CT) in piglets was first reported in 1922, and although the causative pathogen was unknown for many years, atypical porcine pestivirus (APPV) was recently shown to be the cause. APPV is difficult to isolate, and there have been few reports of APPV isolated from field materials. Here, we successfully isolated infectious particles from a tonsillar emulsion from a CT-affected piglet using the established swine-kidney-derived cell line SK-L. In addition, we produced APPV artificially using these cells. Thus, SK-L cells are useful for both isolation and artificial production of APPV.
Collapse
Affiliation(s)
- Mai Shiokawa
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonancho, Musashino, Tokyo, 180-8602, Japan
| | - Yui Morita
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonancho, Musashino, Tokyo, 180-8602, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Makoto Haritani
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonancho, Musashino, Tokyo, 180-8602, Japan
- Environmental Science for Sustainable Development, Graduate school of Agriculture and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroshi Aoki
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonancho, Musashino, Tokyo, 180-8602, Japan.
| |
Collapse
|
13
|
Song H, Gao X, Fu Y, Li J, Fan G, Shao L, Zhang J, Qiu HJ, Luo Y. Isolation and Molecular Characterization of Atypical Porcine Pestivirus Emerging in China. Viruses 2023; 15:2149. [PMID: 38005827 PMCID: PMC10675531 DOI: 10.3390/v15112149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered and very divergent species of the genus Pestivirus within the family Flaviviridae, which causes congenital tremor (CT) in newborn piglets. In this study, an APPV epidemiological investigation was conducted by studying 975 swine samples (562 tissue and 413 serum samples) collected from different parts of China from 2017 to 2021. The results revealed that the overall positive rate of the APPV genome was 7.08% (69/975), among which 50.7% (35/69) of the samples tested positive for one or more other common swine viruses, especially porcine circovirus type 2 (PCV2) with a coinfection rate of 36.2% (25/69). Subsequently, a novel APPV strain, named China/HLJ491/2017, was isolated in porcine kidney (PK)-15 cells for the first time from a weaned piglet that was infected with both APPV and PCV2. The new APPV isolate was confirmed by RT-PCR, sequencing, immunofluorescence assay, and transmission electron microscopy. After clearing PCV2, a pure APPV strain was obtained and further stably propagated in PK-15 cells for more than 30 passages. Full genome sequencing and phylogenetic analysis showed that the China/HLJ491/2017 strain was classified as genotype 2, sharing 80.8 to 97.6% of its nucleotide identity with previously published APPV strains. In conclusion, this study enhanced our knowledge of this new pestivirus and the successful isolation of the APPV strain provides critical material for the investigation of the biological and pathogenic properties of this emerging virus, as well as the development of vaccines and diagnostic reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China; (H.S.); (X.G.); (Y.F.); (J.L.); (G.F.); (L.S.); (J.Z.)
| |
Collapse
|
14
|
Stenberg H, Malmberg M, Hayer J. Screening for atypical porcine pestivirus in Swedish boar semen used for artificial insemination and a characterisation of the seminal RNA microbiome including the virome. BMC Vet Res 2023; 19:219. [PMID: 37864222 PMCID: PMC10588136 DOI: 10.1186/s12917-023-03762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND This study aimed to characterise the RNA microbiome, including the virome of extended semen from Swedish breeding boars, with particular focus on Atypical porcine pestivirus (APPV). This neurotropic virus, associated with congenital tremor type A-II in piglets, was recently demonstrated to induce the disease through insemination with semen from infected boars. RESULTS From 124 Artificial Insemination (AI) doses from Swedish breeding boars, APPV was detected in one dose in addition to a sparse seminal RNA virome, characterised by retroviruses, phages, and some fecal-associated contaminants. The detected seminal microbiome was large and characterized by Gram-negative bacteria from the phylum Proteobacteria, mainly consisting of apathogenic or opportunistic bacteria. The proportion of bacteria with a pathogenic potential was low, and no antimicrobial resistance genes (ARGs) were detected in the datasets. CONCLUSION Overall, the results indicate a good health status among Swedish breeding boars. The detection of APPV in semen raises the question of whether routine screening for APPV in breeding boars should be instigated.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden.
| | - Maja Malmberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, P.O. Box 7028, 750 07, Uppsala, Sweden
| | - Juliette Hayer
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
15
|
Buckley AC, Mora-Díaz JC, Magtoto RL, Hulzen AV, Ferreyra FM, Falkenberg SM, Giménez-Lirola LG, Arruda BL. Dynamics of Infection of Atypical Porcine Pestivirus in Commercial Pigs from Birth to Market: A Longitudinal Study. Viruses 2023; 15:1767. [PMID: 37632109 PMCID: PMC10458225 DOI: 10.3390/v15081767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Atypical porcine pestivirus (APPV) was found to be associated with pigs demonstrating congenital tremors (CT), and clinical signs in pigs have been reproduced after experimental challenge. Subsequently, APPV has been identified in both symptomatic and asymptomatic swine of all ages globally. The objective of this research was to perform a longitudinal study following two cohorts of pigs, those born in litters with pigs exhibiting CT and those born in litters without CT, to analyze the virus and antibody dynamics of APPV infection in serum from birth to market. There was a wide range in the percentage of affected pigs (8-75%) within CT-positive litters. After co-mingling with CT-positive litters at weaning, pigs from CT-negative litters developed viremia that was cleared after approximately 2 months, with the majority seroconverting by the end of the study. In contrast, a greater percentage of pigs exhibiting CT remained PCR positive throughout the growing phase, with less than one-third of these animals seroconverting. APPV RNA was present in multiple tissues from pigs in both groups at the time of marketing. This study improved our understanding of the infection dynamics of APPV in swine and the impact that the immune status and timing of infection have on the persistence of APPV in serum and tissues.
Collapse
Affiliation(s)
- Alexandra C. Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Juan-Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Ronaldo L. Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Amberly Van Hulzen
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Franco Matias Ferreyra
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Shollie M. Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Agricultural Research Service, Ames, IA 50010, USA;
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (J.-C.M.-D.); (R.L.M.); (A.V.H.); (F.M.F.); (L.G.G.-L.)
| | - Bailey L. Arruda
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
16
|
Liu H, Shi K, Feng S, Yin Y, Long F, Si H. Development of a Crystal Digital RT-PCR for the Detection of Atypical Porcine Pestivirus. Vet Sci 2023; 10:vetsci10050330. [PMID: 37235413 DOI: 10.3390/vetsci10050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5' untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
17
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by N pro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
18
|
Coding-Complete Genome Sequences of Two Atypical Porcine Pestivirus Strains from Anhui Province, China. Microbiol Resour Announc 2023; 12:e0094322. [PMID: 36598252 PMCID: PMC9872582 DOI: 10.1128/mra.00943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In 2021, two atypical porcine pestivirus (APPV) strains, AH06/2021 and AH22/2021, were identified from suckling piglets showing congenital tremor in Anhui Province, China. Genome sequence analysis indicated that the two strains shared 81.19% to 93.98% nucleotide identities with other APPV strains.
Collapse
|
19
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
20
|
Complete Genome Sequence of a Genotype 3 Atypical Porcine Pestivirus Strain (OKN/2021) from Okinawa Prefecture, Japan. Microbiol Resour Announc 2022; 11:e0061422. [DOI: 10.1128/mra.00614-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We report the complete genome sequence of atypical porcine pestivirus (APPV) OKN/2021, which was sampled in the Okinawa Prefecture, Japan. The sequence bears the closest resemblance to another previously detected Japanese genotype 3 APPV sequence. This genome sequencing will help researchers in Japan learn more about the virus epidemiology and evolutionary characteristics.
Collapse
|
21
|
Bauermann FV, Wernike K, Weber MN, Silveira S. Editorial: Pestivirus: Epidemiology, evolution, biology and clinical features. Front Vet Sci 2022; 9:1025314. [PMID: 36330153 PMCID: PMC9623283 DOI: 10.3389/fvets.2022.1025314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Fernando Viçosa Bauermann
- Veterinary Virology Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
- *Correspondence: Fernando Viçosa Bauermann
| | - Kerstin Wernike
- National Reference Laboratory for Bovine Viral Diarrhea/Mucosal Disease and Schmallenberg Virus, Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- Kerstin Wernike
| | - Matheus Nunes Weber
- Laboratório de Microbiologia, Hospital Veterinário, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, Brazil
- Matheus Nunes Weber
| | - Simone Silveira
- Laboratório de Biologia Molecular, Faculdade de Medicina Veterinária, Universidade do Oeste de Santa Catarina (UNOESC), Xanxerê, Brazil
- Simone Silveira
| |
Collapse
|
22
|
Development and Evaluation of Antigen-Specific Dual Matrix Pestivirus K ELISAs Using Longitudinal Known Infectious Status Samples. J Clin Microbiol 2022; 60:e0069722. [PMID: 36222547 PMCID: PMC9667771 DOI: 10.1128/jcm.00697-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pestivirus K, commonly known as atypical porcine pestivirus (APPV), is the most common cause of congenital tremor (CT) in pigs. Currently, there is limited information on the infection dynamics of and immune response against APPV and no robust serologic assay to assess the effectiveness of preventative measures. To that end, known infection status samples were generated using experimental inoculation of cesarean-derived, colostrum-deprived pigs. Pigs (2 per pen) were inoculated with minimum essential medium (n = 6; negative control) or APPV (n = 16). Serum, pen-based oral fluid samples, and nasal swabs were collected through 70 days postinoculation (dpi). The immune response to recombinant APPV Erns, E2, or NS3 antigens was evaluated using both serum and oral fluids via indirect enzyme-linked immunosorbent assays (ELISAs). APPV was detected by real-time reverse transcription-PCR (RT-qPCR) in all oral fluid and serum samples from APPV-inoculated animals by 24 and 35 dpi, respectively. All samples remained genome positive until 70 dpi. Detection of nasal shedding was less consistent, with APPV being detected by RT-qPCR in all inoculated animals at 42, 49, and 56 dpi. Antibodies were first detected in oral fluids at 14 dpi, 10 days before serum detection, and concurrently with the first oral fluids RT-qPCR detection. Across sample types and time points, the Erns ELISA outperformed the other targets. In conclusion, both oral fluid and serum APPV Erns ELISAs can be used to economically evaluate the individual and herd status prior to and following intervention strategies.
Collapse
|
23
|
Houston GE, Jones CK, Woodworth JC, Palinski R, Paulk CB, Petznick T, Gebhardt JT. Detection and investigation of atypical porcine pestivirus in a swine production system. Front Vet Sci 2022; 9:998344. [PMID: 36304415 PMCID: PMC9593052 DOI: 10.3389/fvets.2022.998344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022] Open
Abstract
A commercial farrow-to-finish farm was suspicious of atypical porcine pestivirus (APPV) after observing clinical signs of congenital tremors (CT) and splay leg (SL) of newborn pigs. If introduced onto the farrow-to-finish, the two potential routes of introduction could be through replacement gilts or incoming semen doses. Therefore, this study aimed to determine the prevalence of clinical APPV within the sampled population, identify the route of APPV introduction to this system, and determine prevalence of detectable APPV RNA within a population of gilt multiplication farm offspring through an isolation nursery and finisher barn. Farrowing records were analyzed for the presence of CT or SL and corresponding parity of the dam. Overall, prevalence of clinically affected litters within batch farrowing groups ranged from 0 to 31%. Phylogenetic analysis was conducted on a serum sample from a gilt at the isolation nursery, semen dose for the farrow-to-finish farm, and serum of a CT piglet. Results indicated that the virus circulating in clinically affected piglets was most similar to an incoming semen dose (98.9% nucleotide identity). Blood samples were collected at four time points and revealed APPV clinical prevalence was 37.5–77.5% during the nursery phase and 0–26% during the finisher phase. Oral fluids were also collected during the finisher phase and APPV clinical prevalence was 100% for all sampling time points. In summary, introduction of APPV into naïve herds is associated with increased clinical CT and SL cases and is detectable in asymptomatic pigs during the nursery and finisher production phases. This study found that potential screening tests for APPV could include oral fluids or qRT-PCR analysis of semen doses especially when trying to identify prevalence levels on naïve farm.
Collapse
Affiliation(s)
- Grace E. Houston
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Cassandra K. Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Jason C. Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | - Rachel Palinski
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chad B. Paulk
- Department of Grain Science and Industry, College of Agriculture, Kansas State University, Manhattan, KS, United States
| | | | - Jordan T. Gebhardt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,*Correspondence: Jordan T. Gebhardt
| |
Collapse
|
24
|
Stenberg H, Hellman S, Lindström L, Jacobson M, Fossum C, Hayer J, Malmberg M. Congenital tremor and splay leg in piglets – insights into the virome, local cytokine response, and histology. BMC Vet Res 2022; 18:348. [PMID: 36109741 PMCID: PMC9479355 DOI: 10.1186/s12917-022-03443-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Atypical porcine pestivirus (APPV) is a neurotropic virus associated with congenital tremor type A-II. A few experimental studies also indicate an association between APPV and splay leg. The overarching aim of the present study was to provide insights into the virome, local cytokine response, and histology of the CNS in piglets with signs of congenital tremor or splay leg.
Results
Characterization of the cytokine profile and virome of the brain in piglets with signs of congenital tremor revealed an APPV-associated upregulation of Stimulator of interferon genes (STING). The upregulation of STING was associated with an increased expression of the gene encoding IFN-α but no differential expression was recorded for the genes encoding CXCL8, IFN-β, IFN-γ, IL-1β, IL-6, or IL-10. No viral agents or cytokine upregulation could be detected in the spinal cord of piglets with signs of splay leg or in the brain of piglets without an APPV-infection. The histopathological examination showed no lesions in the CNS that could be attributed to the APPV-infection, as no difference between sick and healthy piglets could be seen.
Conclusion
The results from this study provide evidence of an APPV-induced antiviral cytokine response but found no lesions related to the infection nor any support for a common causative agent.
Collapse
|
25
|
DNAJC14-Independent Replication of the Atypical Porcine Pestivirus. J Virol 2022; 96:e0198021. [PMID: 35852352 PMCID: PMC9364808 DOI: 10.1128/jvi.01980-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called “shaking piglets,” suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.
Collapse
|
26
|
Desrosiers R, Carriere E, Broes A. An outbreak of splayleg and congenital tremors in piglets farrowed by a newly populated sow herd. JOURNAL OF SWINE HEALTH AND PRODUCTION 2022; 30:251-255. [DOI: 10.54846/jshap/1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
A newly populated sow herd suffered an outbreak of splayleg and congenital tremors in the offspring. Some piglets were affected by one or the other condition, others by both. The problem lasted for about 9 months and was associated with significant losses, mainly because of the splayleg component. Most piglets with only congenital tremors were able to survive and their condition improved as they got older. Piglets with congenital tremors had histological lesions consistent with this condition, and pestivirus K (formerly atypical porcine pestivirus) was identified from their nervous tissues.
Collapse
|
27
|
Ma H, Li W, Zhang M, Yang Z, Lin L, Ghonaim AH, He Q. The Diversity and Spatiotemporally Evolutionary Dynamic of Atypical Porcine Pestivirus in China. Front Microbiol 2022; 13:937918. [PMID: 35814668 PMCID: PMC9263985 DOI: 10.3389/fmicb.2022.937918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of congenital tremor (CT) type A-II in newborn piglets, caused by atypical porcine pestivirus (APPV), has been a focus since 2016. However, the source, evolutionary history, and transmission pattern of APPV in China remain poorly understood. In this study, we undertook phylogenetic analyses based on available complete E2 gene sequences along with 98 newly sequenced E2 genes between 2016 and 2020 in China within the context of global genetic diversity. The phylogenies revealed four distinct lineages of APPV, and interestingly, all lineages could be detected in China with the greatest diversity. Bayesian phylogenetic analyses showed that the E2 gene evolves at a mean rate of 1.22 × 10−3 (8.54 × 10−4-1.60 × 10−3) substitutions/site/year. The most recent common ancestor for APPVs is dated to 1886 (1837–1924) CE, somewhat earlier than the documented emergence of CT (1922 CE). Our phylogeographic analyses suggested that the APPV population possibly originated in the Netherlands, a country with developed livestock husbandry, and was introduced into China during the period 1837–2010. Guangdong, as a primary seeding population together with Central and Southwest China as epidemic linkers, was responsible for the dispersal of APPVs in China. The transmission pattern of “China lineages” (lineage 3 and lineage 4) presented a “south to north” movement tendency, which was likely associated with the implementation of strict environmental policy in China since 2000. Reconstruction of demographic history showed that APPV population size experienced multiple changes, which correlated well with the dynamic of the number of pigs in the past decades in China. Besides, positively selected pressure and geography-driven adaptation were supposed to be key factors for the diversification of APPV lineages. Our findings provide comprehensive insights into the diversity and spatiotemporal dynamic of APPV in China.
Collapse
Affiliation(s)
- Hailong Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengjia Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhengxin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lili Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ahmed H. Ghonaim
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Desert Research Center, Cairo, Egypt
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Qigai He
| |
Collapse
|
28
|
Deng L, Yang X, Xu Z, Li F, Zhao J, Deng H, Jian Z, Sun X, Zhu L. Development and use of a droplet digital PCR (ddPCR) assay to achieve sensitive and fast atypical porcine pestivirus detection. Braz J Microbiol 2022; 53:625-631. [PMID: 35277851 PMCID: PMC9151951 DOI: 10.1007/s42770-022-00728-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Atypical porcine pestivirus (APPV) is a recently discovered RNA virus, which mainly caused congenital tremor in piglets. Droplet digital PCR (ddPCR) is an absolute quantitative method that does not rely on the standard curve but has high sensitivity and accuracy. The present study aimed to develop a ddPCR detection assay for APPV. Furthermore, we evaluated the limit of detection, sensitivity, specificity and reproducibility of the ddPCR and real-time quantitative PCR (qPCR) and tested 135 clinical samples to calculate the detection rate of the two methods. The results showed that both methods had a strong linear relationship and quantitative correlation. The ddPCR assay had a minimum detection limit of 0.15 copies/μL for APPV, with a sensitivity 100 times that of qPCR. We tested clinical samples and found that the APPV ddPCR had a 27.4% positive detection rate, noticeably higher than that of the qPCR (14.8%). Additionally, the APPV ddPCR method had excellent repeatability and specificity. In brief, our study provided a novel, feasible and sensitive diagnostic technique to identify and monitor APPV.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
29
|
Ren X, Qian P, Hu Z, Chen H, Li X. Genetic characterization of atypical porcine pestivirus from neonatal piglets with congenital tremor in Hubei province, China. Virol J 2022; 19:51. [PMID: 35331281 PMCID: PMC8944037 DOI: 10.1186/s12985-022-01780-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Atypical porcine pestivirus (APPV) is a single-stranded RNA virus with high genetic variation that causes congenital tremor (CT) in newborn piglets, belonging to the genus Pestivirus of the family Flaviviridae. Increasing cases of APPV infection in China in the past few years would pose severe challenges to the development of pig production. In view of the high genetic variability of APPV, the genetic characteristics of APPV in Hubei province was determined. Methods 52 tissue samples from 8 CT-affected newborn piglets were collected at two different periods in the same pig farm in Hubei province. Viral nucleic acid was extracted to detect pathogens that can cause CT in piglets or other common clinical pathogens by RT-PCR. Haematoxylin and eosin (HE) staining, immunohistochemical (IHC) analysis, and qRT-PCR were performed to observe histopathological changes and histological distribution, and detect the viral load of APPV in CT-affected piglets. The full-length genome of APPV was obtained and sequence analysis was conducted to determine the phylogenetic relationship. Results Histopathological observation and histological distribution analysis showed that the histological lesions and distribution of APPV were mainly in central nervous system (CNS) tissues and immune tissues. Viral load analysis revealed that the viral copy number was higher in the cerebellum, submaxillary lymph nodes, tonsil, and serum than in other tissues. Phylogenetic analysis showed that CH-HB2020 and CH-HB2021 belonged to Clade I.3, and is most closely related to APPV_CH-GX2016. Sequence alignment based on APPV encoding sequences (CDS) showed that the nucleotide identities of CH-HB2020 or CH-HB2021 with Clade I, Clade II, and Clade III strains were 83.5–98.6%, 83.1–83.5%, and 81.1–81.4%, respectively, while the amino acid identities were 91.9–99.2%, 91.2–95.3%, and 90.77–91.4%, respectively. No recombination event was observed in CH-HB2020 or CH-HB2021 strains. Conclusions These findings enhance our understanding of the pathogenesis of APPV and may provide potential molecular evidence for its prevalence and transmission. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01780-8.
Collapse
Affiliation(s)
- Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zihui Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
New Emergence of the Novel Pestivirus Linda Virus in a Pig Farm in Carinthia, Austria. Viruses 2022; 14:v14020326. [PMID: 35215920 PMCID: PMC8874435 DOI: 10.3390/v14020326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.
Collapse
|
31
|
de Martin E, Schweizer M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022; 14:v14020265. [PMID: 35215858 PMCID: PMC8880635 DOI: 10.3390/v14020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host’s innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host’s interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.
Collapse
Affiliation(s)
- Elena de Martin
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
32
|
Development of a one-step multiplex qRT–PCR assay for the detection of African swine fever virus, classical swine fever virus and atypical porcine pestivirus. BMC Vet Res 2022; 18:43. [PMID: 35042532 PMCID: PMC8764768 DOI: 10.1186/s12917-022-03144-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background African swine fever virus (ASFV), classical swine fever virus (CSFV) and atypical porcine pestivirus (APPV) have caused great economic losses to the swine industry in China. Since coinfections of ASFV, CSFV and APPV occur in certain pig herds, it is necessary to accurately and differentially detect these pathogens in field-collected samples. In this study, a one-step multiplex real-time quantitative reverse transcription-polymerase chain reaction (multiplex qRT–PCR) was developed for the simultaneous and differential detection of ASFV, CSFV and APPV. Results The one-step multiplex qRT–PCR presented here was able to simultaneously detect ASFV, CSFV and APPV but could not amplify other viruses, including porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease virus (FMDV), porcine parvovirus (PPV), porcine epidemic diarrhoea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus (PRoV), porcine deltacoronavirus (PDCoV), border disease virus (BDV), bovine viral diarrhoea virus type 1 (BVDV-1), BVDV-2, etc. The limit of detection (LOD) of the assay was 2.52 × 101 copies/μL for ASFV, CSFV and APPV. A repeatability test using standard recombinant plasmids showed that the intra- and interassay coefficients of variation (CVs) were less than 2%. An assay of 509 clinical samples collected in Guangxi Province, southern China, from October 2018 to December 2020 showed that the positive rates of ASFV, CSFV and APPV were 45.58, 12.57 and 3.54%, respectively, while the coinfection rates of ASFV and CSFV, ASFV and APPV, CSFV and APPV were 4.91, 1.38, 0.98%, respectively. Phylogenetic analysis based on the nucleotide sequences of the partial ASFV p72 gene showed that all ASFV strains from Guangxi Province belonged to genotypes I and II. Conclusion A one-step multiplex qRT–PCR with high specificity, sensitivity and repeatability was successfully developed for the simultaneous and differential detection of ASFV, CSFV and APPV.
Collapse
|
33
|
Koethe S, König P, Wernike K, Schulz J, Reimann I, Beer M. Bungowannah Pestivirus Chimeras as Novel Double Marker Vaccine Strategy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2022; 10:vaccines10010088. [PMID: 35062749 PMCID: PMC8778585 DOI: 10.3390/vaccines10010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Schulz
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
34
|
Ren X, Qian P, Liu S, Chen H, Li X. Fc-Mediated E2-Dimer Subunit Vaccines of Atypical Porcine Pestivirus Induce Efficient Humoral and Cellular Immune Responses in Piglets. Viruses 2021; 13:v13122443. [PMID: 34960713 PMCID: PMC8703287 DOI: 10.3390/v13122443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Congenital tremor (CT) type A-II in piglets is caused by an emerging atypical porcine pestivirus (APPV), which is prevalent in swine herds and a serious threat to the pig production industry. This study aimed to construct APPV E2 subunit vaccines fused with Fc fragments and evaluate their immunogenicity in piglets. Here, APPV E2Fc and E2ΔFc fusion proteins expressed in Drosophila Schneider 2 (S2) cells were demonstrated to form stable dimers in SDS-PAGE and western blotting assays. Functional analysis revealed that aE2Fc and aE2ΔFc fusion proteins could bind to FcγRI on antigen-presenting cells (APCs), with the affinity of aE2Fc to FcγRI being higher than that of aE2ΔFc. Moreover, subunit vaccines based on aE2, aE2Fc, and aE2ΔFc fusion proteins were prepared, and their immunogenicity was evaluated in piglets. The results showed that the Fc fusion proteins emulsified with the ISA 201VG adjuvant elicited stronger humoral and cellular immune responses than the IMS 1313VG adjuvant. These findings suggest that APPV E2 subunit vaccines fused with Fc fragments may be a promising vaccine candidate against APPV.
Collapse
Affiliation(s)
- Xujiao Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shudan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.R.); (P.Q.); (S.L.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: ; Tel.: +86-27-87282608
| |
Collapse
|
35
|
Sutton KM, Eaton CW, Borza T, Burkey TE, Mote BE, Loy JD, Ciobanu DC. Genetic Diversity and Detection of Atypical Porcine Pestivirus Infections1. J Anim Sci 2021; 100:6449490. [PMID: 34865057 DOI: 10.1093/jas/skab360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Atypical porcine pestivirus (APPV), an RNA virus member of the Flaviviridae family, has been associated with congenital tremor in newborn piglets. Previously reported qPCR-based assays were unable to detect APPV in novel cases of congenital tremor originated from multiple farms from U.S. Midwest (MW). These assays targeted the viral polyprotein coding genes, which were shown to display substantial variation, with sequence identity ranging from 58.2 to 70.7% among 15 global APPV strains. In contrast, the 5' UTR was found to have a much higher degree of sequence conservation. In order to obtain the complete 5' UTR of the APPV strains originated from MW, the 5' end of the viral cDNA was obtained by using template switching approach followed by amplification and dideoxy sequencing. Eighty one percent of the 5'UTR was identical across 14 global and 5 MW strains with complete, or relatively complete 5' UTR. Notably, some of the most highly conserved 5'UTR segments overlapped with potentially important regions of an internal ribosome entry site (IRES), suggesting their functional role in viral protein translation. A newly designed single qPCR assay, targeting 100% conserved 5'UTR regions across 19 strains, was able to detect APPV in samples of well documented cases of congenital tremor which originated from five MW farm sites (1-18 samples/site). As these fully conserved 5' UTR sequences may have functional importance, we expect that assays targeting this region would broadly detect APPV strains that are diverse in space and time.
Collapse
Affiliation(s)
- Kylee M Sutton
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68502, USA
| | - Christian W Eaton
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, B2N 5E3, Canada
| | - Thomas E Burkey
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Benny E Mote
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - J Dustin Loy
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Daniel C Ciobanu
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
36
|
Zhang Q, Yu Y, Song C, Cao Z. Genetic characterization of atypical porcine pestivirus (APPV) in China and the successful isolation of a novel APPV strain within genotype 2. Microb Pathog 2021; 161:105282. [PMID: 34758359 DOI: 10.1016/j.micpath.2021.105282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/15/2022]
Abstract
Atypical porcine pestivirus (APPV) is one major causative agent of congenital tremor (CT) type A-II. In this study, the geographical distribution and genetic characteristics of APPV strains in China were established. To date, APPV has been detected in at least ten provinces/regions of China. Genetic variability analysis showed that NS3 genes were highly conserved among Chinese APPV strains, while NS5A-, Npro-, and Erns-encoding genes were highly variable. Phylogenetic analysis revealed that all of the reference strains could be classified into 3 genotypes (1-3) and 7 subgenotypes (1.1-1.7). The Chinese APPV strains were assigned to all 3 genotypes and to 5 subgenotypes (1.2 and 1.4-1.7) of genotype 1. Amino acid insertions/deletions in nonstructural proteins, including NS3, NS5A, and NS5B, could only be found in Chinese APPV strains. Among the three envelope glycosylation proteins (Erns, E1, and E2), Erns was the most heavily glycosylated protein, and the N-glycosylation sites of E2 in different APPV strains showed apparent correlations with genetic types. Furthermore, a novel APPV strain named China/HeN01/2018 belonging to genotype 2 was identified in Henan Province. It was then isolated and successfully propagated in embryonic porcine kidney epithelial cells (SPEV cells). This study provides updated information to better understand the divergence of APPV strains in China. This first successful isolation of a Chinese APPV strain provides a research foundation for future studies.
Collapse
Affiliation(s)
- Qiaoya Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, China; Qingdao Research Center for Veterinary Biological Engineering and Technology, China
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, China; Qingdao Research Center for Veterinary Biological Engineering and Technology, China
| | - Chunhui Song
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, China; Qingdao Research Center for Veterinary Biological Engineering and Technology, China
| | - Zhi Cao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China; Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, China; Qingdao Research Center for Veterinary Biological Engineering and Technology, China.
| |
Collapse
|
37
|
Dénes L, Ruedas-Torres I, Szilasi A, Balka G. Detection and localization of atypical porcine pestivirus in the testicles of naturally infected, congenital tremor affected piglets. Transbound Emerg Dis 2021; 69:e621-e629. [PMID: 34705340 PMCID: PMC9541069 DOI: 10.1111/tbed.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Atypical porcine pestivirus (APPV) belongs to the genus Pestivirus within the family Flaviviridae. Recently, APPV has been identified as the causative agent of congenital tremor (CT) type AII. The disease is a neurological disorder that affects newborn piglets and is characterized by generalized trembling of the animals and often splay legs. CT is well known worldwide, and the virus seems to be highly prevalent in major swine producing areas. However, little is known about the epidemiology of the infection, transmission and spread of the virus between herds. Here, we show the high prevalence of APPV in processing fluid samples collected from Hungarian pig herds which led us to investigate the cellular targets of the virus in the testicles of newborn piglets affected by CT. By the development of an RNA in situ hybridization assay and the use of immunohistochemistry on consecutive slides, we identified the target cells of APPV in the testicle: interstitial Leydig cells, peritubular myoid cells and smooth muscle cells of medium-sized arteries. Previous studies have shown that APPV can be found in the semen of sexually mature boars suggesting the role of infected boars and their semen in the transmission of the virus similar to many other members of the Flaviviridae family. As in our case, the virus has not been identified in cells beyond the Sertoli cell barrier, further studies on infected adult boars' testicles and other reproductive glands are needed to analyze the possible changes in the cell tropism of APPV that might contribute to its prolonged extraction by the semen beyond the period of viraemia.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Anna Szilasi
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
38
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
39
|
Lussi C, de Martin E, Schweizer M. Positively Charged Amino Acids in the Pestiviral E rns Control Cell Entry, Endoribonuclease Activity and Innate Immune Evasion. Viruses 2021; 13:v13081581. [PMID: 34452446 PMCID: PMC8402660 DOI: 10.3390/v13081581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four economically important viruses of livestock, i.e., bovine viral diarrhea virus-1 (BVDV-1) and -2 (BVDV-2), border disease virus (BDV) and classical swine fever virus (CSFV). Erns and Npro, both expressed uniquely by pestiviruses, counteract the host's innate immune defense by interfering with the induction of interferon (IFN) synthesis. The structural envelope protein Erns also exists in a soluble form and, by its endoribonuclease activity, degrades immunostimulatory RNA prior to their activation of pattern recognition receptors. Here, we show that at least three out of four positively-charged residues in the C-terminal glycosaminoglycan (GAG)-binding site of BVDV-Erns are required for efficient cell entry, and that a positively charged region more upstream is not involved in cell entry but rather in RNA-binding. Moreover, the C-terminal domain on its own determines intracellular targeting, as GFP fused to the C-terminal amino acids of Erns was found at the same compartments as wt Erns. In summary, RNase activity and uptake into cells are both required for Erns to act as an IFN antagonist, and the C-terminal amphipathic helix containing the GAG-binding site determines the efficiency of cell entry and its intracellular localization.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Elena de Martin
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology (IVI), CH-3001 Bern, Switzerland; (C.L.); (E.d.M.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
- Correspondence:
| |
Collapse
|
40
|
Postel A, Smith DB, Becher P. Proposed Update to the Taxonomy of Pestiviruses: Eight Additional Species within the Genus Pestivirus, Family Flaviviridae. Viruses 2021; 13:v13081542. [PMID: 34452407 PMCID: PMC8402895 DOI: 10.3390/v13081542] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Pestiviruses are plus-stranded RNA viruses belonging to the family Flaviviridae. They comprise several important pathogens like classical swine fever virus and bovine viral diarrhea virus that induce economically important animal diseases. In 2017, the last update of pestivirus taxonomy resulted in demarcation of 11 species designated Pestivirus A through Pestivirus K. Since then, multiple new pestiviruses have been reported including pathogens associated with disease in pigs or small ruminants. In addition, pestivirus sequences have been found during metagenomics analysis of different non-ungulate hosts (bats, rodents, whale, and pangolin), but the consequences of this pestivirus diversity for animal health still need to be established. To provide a systematic classification of the newly discovered viruses, we analyzed the genetic relationship based on complete coding sequences (cds) and deduced polyprotein sequences and calculated pairwise distances that allow species demarcation. In addition, phylogenetic analysis was performed based on a highly conserved region within the non-structural protein NS5B. Taking into account the genetic relationships observed together with available information about antigenic properties, host origin, and characteristics of disease, we propose to expand the number of pestivirus species to 19 by adding eight additional species designated Pestivirus L through Pestivirus S.
Collapse
Affiliation(s)
- Alexander Postel
- Institute of Virology, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Donald B. Smith
- Nuffield Department of Experimental Medicine, University of Oxford, Peter Medawar Building, South Parks Road, Oxford OX1 3SY, UK;
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, 30559 Hannover, Germany;
- Correspondence: ; Tel.: +49-511-953-8840
| |
Collapse
|
41
|
Yuan F, Wang L. Genotyping atypical porcine pestivirus using NS5a. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 92:104866. [PMID: 33872785 DOI: 10.1016/j.meegid.2021.104866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Atypical porcine pestivirus (APPV) is an emerging virus discovered in 2014 and it can cause congenital tremors in pigs. Molecular epidemiology serves as an essential tool in monitoring and controlling the disease. Virus epidemiology mainly relies on genome sequencing and phylogenetic characterization. Previous molecular epidemiology studies have been using different genes/regions for phylogeny, namely whole genome, Npro, and E2 coding sequences. However, with increasing number of APPV sequences available in GenBank, no systemic studies have been performed for detailed classification of APPV strains around the globe. The goal of this study is to propose a classification strategy or taxonomy of APPV strains at genotype, subgenotype, and isolate levels. A total of 76 whole genomes and 16 partial polyprotein coding sequences were analyzed for genetic variability and suitability of all individual genes for viral phylogenies. Our results revealed that, among all the viral genes, NS5a coding sequences were proved to be the most suitable alternative for tracing APPV strains supported by its capability of reproducing the same phylogenetic and evolutionary information as the whole viral genome did. Also, a reliable cutoff to accurately classify APPV at different levels is established. We propose a genotyping scheme with three well-defined genotypes (1-3) and 7 subgenotypes for genotype 1 (1.1-1.7). For whole genome analysis, a threshold value of 84%-91% pairwise identity allows separation of all APPV subgenotypes, whereas 80% identity clearly segregate the three major APPV genotypes. For NS5a gene analysis, 82%-91% identity allows subgenotype separation and 76% identity segregate APPV genotypes. Additionally, genetic distance of whole genome exhibits ≤8% in isolate level, 9%-14% in subgenotype level, and 17%-22% in genotype level, while for NS5a encoding sequences the genetic distance displays ≤9% in isolate level, 9.9%-19.1% in subgenotype level, and 21.6%-29.7% in genotype level. These allow a clear segregation among APPV genotypes, subgenotypes, and isolates. Therefore, the proposed strategy in this study provides a solid and improved basis for molecular phylogenetics to understand APPV genetic diversity, trace the origins and control the spread of new disease outbreaks.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
42
|
Stenberg H, Leveringhaus E, Malmsten A, Dalin AM, Postel A, Malmberg M. Atypical porcine pestivirus-A widespread virus in the Swedish wild boar population. Transbound Emerg Dis 2021; 69:2349-2360. [PMID: 34331830 DOI: 10.1111/tbed.14251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 01/23/2023]
Abstract
The recently identified causative agent of congenital tremor in domestic piglets, atypical porcine pestivirus (APPV), was detected in serum from Swedish wild boar. A previous study from Sweden described APPV in domestic piglets suffering from congenital tremor, but the APPV situation in the wild boar population was unknown. In this study, 595 serum samples from wild boar originating from 13 counties in the south and central parts of Sweden, collected between 2000 and 2018, were analysed for the presence of the APPV-genome and for antibodies against the APPV-glycoprotein Erns . The results revealed that APPV is highly abundant in the Swedish wild boar population; 12% (73/595) were APPV-genome positive in serum and 72% (433/595) of the tested wild boars displayed APPV-specific antibodies. The present study also shows that APPV has been present in the Swedish wild boar population since at least the year 2000. The viral sequences obtained from the wild boars were highly similar to those obtained from Swedish domestic pigs positive for APPV and suffering from congenital tremor, suggesting a viral exchange between wild boars and domestic pigs. The high proportion of viraemic and seropositive wild boar is indicative of wild boar being an important reservoir for APPV.
Collapse
Affiliation(s)
- Hedvig Stenberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Elena Leveringhaus
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Anne-Marie Dalin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alexander Postel
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden.,SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
43
|
Liu J, Zhang P, Chen Y, Zhong W, Li B, Pi M, Ning Z. Vaccination with virus-like particles of atypical porcine pestivirus inhibits virus replication in tissues of BALB/c mice. Arch Virol 2021; 166:2733-2741. [PMID: 34322722 PMCID: PMC8317679 DOI: 10.1007/s00705-021-05185-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/05/2021] [Indexed: 11/24/2022]
Abstract
Congenital tremor (CT) type A-II in piglets is a worldwide disease caused by an emerging atypical porcine pestivirus (APPV). Preparation and evaluation of vaccines in laboratory animals is an important preliminary step toward prevention and control of the disease. Here, virus-like particles (VLPs) of APPV were prepared and VLPs vaccine was evaluated in BALB/c mice. Purified Erns and E2 proteins expressed in E. coli were allowed to self-assemble into VLPs, which had the appearance of hollow spherical particles with a diameter of about 100 nm by transmission electron microscopy (TEM). The VLPs induced strong antibody responses and reduced the viral load in tissues of BALB/c mice. The data from animal challenge experiments, RT-PCR, and immunohistochemical analysis demonstrated that BALB/c mice are an appropriate laboratory model for APPV. These results suggest the feasibility of using VLPs as a vaccine for the prevention and control of APPV and provide useful information for further study of APPV in laboratory animals.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Pengtao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yongjie Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxia Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Baojian Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Molin Pi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
44
|
Abstract
Atypical porcine pestivirus (APPV) has been identified as the main causative agent for congenital tremor (CT) type A-II in piglets, which is threatening the health of the global swine herd. However, the evolution of APPV remains largely unknown. In this study, phylogenetic analysis showed that APPV could be divided into three phylogroups (I, II, and III). Phylogroups I and II included viral strains from China, while phylogroup III contained strains from Europe, North America, and Asia. Phylogroups I and II are tentatively thought to be of Chinese origin. Next, compositional property analysis revealed that a high frequency of nucleotide A and A-end codons was used in the APPV genome. Intriguingly, the analysis of preferred codons revealed that the AGA[Arg] and AGG[Arg] were overrepresented. Dinucleotide CC was found to be overrepresented, and dinucleotide CG was underrepresented. Furthermore, it was found that the weak codon usage bias of APPV was mainly dominated by selection pressures versus mutational forces. The codon adaptation index (CAI), relative codon deoptimization index (RCDI), and similarity index (SiD) analyses showed that the codon usage patterns of phylogroup II and III were more similar to the one of a pig than phylogroup I, suggesting that phylogroup II and III may be more adaptive to pigs. Overall, this study provides insights into APPV evolution through phylogeny and codon usage pattern analysis.
Collapse
Affiliation(s)
- Shuonan Pan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Institute of Comparative Medicine, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University , Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
45
|
Development of a quantitative real time RT-PCR assay for sensitive and rapid detection of emerging Atypical Porcine Pestivirus associated with congenital tremor in pigs. J Virol Methods 2021; 296:114220. [PMID: 34182037 DOI: 10.1016/j.jviromet.2021.114220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Atypical Porcine Pestivirus (APPV) is reported as the etiologic agent for type AII congenital tremors in newborn piglets. Initial PCR-based diagnostic tests to detect APPV were designed based on the limited sequence information and are not capable of detecting the majority of APPV strains. A sensitive and reliable PCR-based diagnostic test is critical for accurate detection of APPV. In this study, a quantitative reverse transcription PCR (RT-qPCR) assay was developed for reliable detection of all currently known APPV strains. The assay design also included swine 18S rRNA gene as an internal control to monitor RNA extraction efficiency. Two APPV gene fragments, one each from NS5b and NS3, were cloned and used to determine the dynamic range of detection, linearity and analytical sensitivity/limit of detection (LOD). Both individual and multiplex assays (duplex and triplex) had correlation coefficients of >0.99 and PCR amplification efficiencies of >90 %. Comparison of detection limit and analytical sensitivity between individual, and multiplex assays indicated no inhibition of PCR sensitivity upon multiplexing. The detection limit for APPV target, based on analytical sensitivity, is 7.75 copies (NS5b) and 5.2 copies (NS3) per reaction. Assay specificity was verified by testing nucleic acids of other closely related pestiviruses and clinical samples that are positive for other common swine pathogens. Assay sensitivity was also assessed on synthesized gene fragments of the most divergent China strains. Testing 339 known APPV-positive and 202 negative clinical samples demonstrated a good diagnostic sensitivity and specificity. Data from six independent runs, including 5 replicates of three clinical samples with three Ct ranges, were utilized to assess inter-assay repeatability and intra-assay reproducibility. This analysis demonstrated intra-assay/inter-assay coefficients of variation of 0.71 % and 0.01 %, respectively, with a PCR efficiency of 92.71 % for the triplex assay. Testing of 1785 clinical samples revealed ∼19 % prevalence of APPV in the US swine herds and oral fluids demonstrates to be a reliable specimen for viral detection. This multiplex RT-qPCR assay offers a rapid and reliable detection of APPV in swine herds and serves as useful tool in APPV surveillance and epidemiological investigations.
Collapse
|
46
|
Buckley AC, Falkenberg SM, Palmer MV, Arruda PH, Magstadt DR, Schwartz KJ, Gatto IR, Neill JD, Arruda BL. Distribution and persistence of atypical porcine pestivirus in experimentally inoculated pigs. J Vet Diagn Invest 2021; 33:952-955. [PMID: 34078182 DOI: 10.1177/10406387211022683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atypical porcine pestivirus (APPV) is a cause of congenital tremors (CTs) in piglets and has been found in swine populations around the globe. Although systemic distribution of the virus has been reported, there is limited information regarding viral localization at the cellular level and distribution at the tissue level. We collected multiple tissues from 2-d-old piglets (n = 36) born to sows inoculated at 45 or 62 d of gestation with APPV via 3 simultaneous routes: intravenous, intranasal, and directly in amniotic vesicles. In addition, 2 boars from APPV-inoculated sows with CT were raised and euthanized when 11 mo old. In situ hybridization performed on tissue samples from piglets demonstrated a broad and systemic distribution of viral RNA including endothelial cells, fibroblasts, and smooth muscle. Labeling in tissues was more pronounced in piglet tissues compared to boars, with the notable exception of diffuse labeling of the cerebellum in boars. Presence of APPV in boar tissues well after resolution of clinical signs suggests persistence of APPV similar to other pestiviruses.
Collapse
Affiliation(s)
- Alexandra C Buckley
- Virus and Prion Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Shollie M Falkenberg
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Paulo H Arruda
- VRI/AMVC Audubon Manning Veterinary Clinic, Ames, IA, USA
| | - Drew R Magstadt
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Kent J Schwartz
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Igor R Gatto
- Ourofino Animal Health, Cravinhos, São Paulo, Brazil
| | - John D Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA, USA
| | - Bailey L Arruda
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
47
|
Prevalence of Linda Virus Neutralizing Antibodies in the Austrian Pig Population. Viruses 2021; 13:v13061001. [PMID: 34071946 PMCID: PMC8229103 DOI: 10.3390/v13061001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies.
Collapse
|
48
|
Kasahara-Kamiie M, Kagawa M, Shiokawa M, Sunaga F, Fukase Y, Aihara N, Shiga T, Kamiie J, Aoki H, Nagai M. Detection and genetic analysis of a novel atypical porcine pestivirus from piglets with congenital tremor in Japan. Transbound Emerg Dis 2021; 69:1761-1769. [PMID: 33978312 DOI: 10.1111/tbed.14149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/23/2023]
Abstract
Atypical porcine pestivirus (APPV), which has been confirmed to be associated with congenital tremor (CT) in pigs, is a newly discovered porcine virus that has been found in the Americas, Europe and Asia; however, no report of APPV in Japan has been published. We identified an APPV in the central nervous system of Japanese piglets with CT and firstly determined and analysed the complete genome sequence. Phylogenetic analysis using the complete genome nucleotide sequence of the Japanese APPV, named Anna/2020, and those of APPVs from the NCBI database showed that APPVs were divided into three genotypes (genotypes 1 to 3), and that Anna/2020 clustered with the genotype 3 APPV strains, but distantly branched from these strains. Pairwise complete coding region nucleotide sequence comparisons revealed that there was 94.0%- 99.7% sequence identity among the genotype 3 strains, while Anna/2020 showed 87.0%-89.3% identity to those genotype 3 strains, suggesting that Anna/2020 represents a novel APPV lineage within genotype 3. Retrospective examinations using RT-PCR revealed one genotype 1 and two novel genotype 3 APPVs from pigs without CT, and that novel genotype 3 APPVs have been prevalent in Japan since at least 2007.
Collapse
Affiliation(s)
| | | | - Mai Shiokawa
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuka Fukase
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Naoyuki Aihara
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Takanori Shiga
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Junichi Kamiie
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Makoto Nagai
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| |
Collapse
|
49
|
Riedel C, Aitkenhead H, El Omari K, Rümenapf T. Atypical Porcine Pestiviruses: Relationships and Conserved Structural Features. Viruses 2021; 13:v13050760. [PMID: 33926056 PMCID: PMC8146772 DOI: 10.3390/v13050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
For two decades, the genus pestivirus has been expanding and the host range now extends to rodents, bats and marine mammals. In this review, we focus on one of the most diverse pestiviruses, atypical porcine pestivirus or pestivirus K, comparing its special traits to what is already known at the structural and functional level from other pestiviruses.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Correspondence:
| | - Hazel Aitkenhead
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (H.A.); (K.E.O.)
- Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, UK
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| |
Collapse
|
50
|
Detection of Atypical Porcine Pestivirus in Piglets from Danish Sow Herds. Viruses 2021; 13:v13050717. [PMID: 33919031 PMCID: PMC8142981 DOI: 10.3390/v13050717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Atypical porcine pestivirus (APPV) was first discovered in North America in 2015 and was later shown to be associated with congenital tremor (CT) in piglets. CT is an occasional challenge in some Danish sow herds. Therefore, we initiated an observational case control study to clarify a possible relationship between CT and APPV in Danish pig production. Blood samples were collected from piglets affected by CT (n = 55) in ten different sow herds and from healthy piglets in five sow herds without a history of CT piglets (n = 25), as well as one sow herd with a sporadic occurrence of CT (n = 5). APPV was detected by RT-qPCR in all samples from piglets affected by CT and in three out of five samples from piglets in the herd with a sporadic occurrence of CT. In the herds without a history of CT, only one out of 25 piglets were positive for APPV. In addition, farmers or veterinarians in CT-affected herds were asked about their experience of the issue. CT is most often seen in gilt litters, and a substantial increase in pre-weaning mortality is only observed in severe cases. According to our investigations, APPV is a common finding in piglets suffering from CT in Denmark.
Collapse
|