1
|
Sanabani SS. Impact of Gut Microbiota on Lymphoma: New Frontiers in Cancer Research. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025; 25:e82-e89. [PMID: 39299827 DOI: 10.1016/j.clml.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
The gut microbiome (GMB), which is made up of various microorganisms, plays a crucial role in maintaining the health of the host. Disruptions in this delicate ecosystem, known as microbial dysbiosis, have been linked to various diseases, including hematologic malignancies such as lymphoma. This review article explores the complex relationship between the GMB and the development of lymphoma and highlights its implications for diagnostic and therapeutic approaches. It discusses how GMB influences lymphoma development directly through the presence of certain microorganisms and indirectly through changes in the immune system. The clinical relevance of GMB is highlighted and its potential utility for diagnosis, predicting treatment outcomes and developing personalized therapeutic strategies for lymphoma patients is demonstrated. The review also looks at microbiome-targeted interventions such as fecal microbiome transplantation and dietary modification, which have shown promise for treating microbial dysbiosis and improving patient outcomes. In addition, it highlights the analytical challenges and the need for further research to fully elucidate the mechanistic functions of the GMB in the context of lymphoma. This review emphasizes the critical role of GMB in lymphomagenesis and its potential for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM 03, Hospital das Clínicas (HCFMU), School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Todor SB, Ichim C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:166. [PMID: 40003268 PMCID: PMC11854176 DOI: 10.3390/children12020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The gut microbiome significantly influences the outcomes of pediatric leukemia, particularly in patients undergoing hematopoietic stem cell transplantation (HSCT). Dysbiosis, caused by chemotherapy, antibiotics, and immune system changes, contributes to complications such as graft-versus-host disease (GVHD), gastrointestinal issues, and infections. Various microbiome-related interventions, including prebiotics, probiotics, postbiotics, and fecal microbiota transplantation (FMT), have shown potential in mitigating these complications. Specific microbial signatures have been linked to GVHD risk, and interventions like inulin, Lactobacillus, and SCFAs (short-chain fatty acids), particularly butyrate, may help modulate the immune system and improve outcomes. FMT, while showing promising results in restoring microbial balance and alleviating GVHD, still requires careful monitoring due to potential risks in immunocompromised patients. Despite positive findings, more research is needed to optimize microbiome-based therapies and ensure their safety and efficacy in pediatric leukemia care.
Collapse
Affiliation(s)
- Samuel Bogdan Todor
- Faculty of Medicine, University Lucian Blaga of Sibiu, 550024 Sibiu, Romania;
| | | |
Collapse
|
3
|
Zhu J, He M, Li S, Lei Y, Xiang X, Guo Z, Wang Q. Shaping oral and intestinal microbiota and the immune system during the first 1,000 days of life. Front Pediatr 2025; 13:1471743. [PMID: 39906673 PMCID: PMC11790674 DOI: 10.3389/fped.2025.1471743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
The first 1, 000 days of life, from the fetal stage of a woman's pregnancy to 2 years of age after the baby is born, is a critical period for microbial colonization of the body and development of the immune system. The immune system and microbiota exhibit great plasticity at this stage and play a crucial role in subsequent development and future health. Two-way communication and interaction between immune system and microbiota is helpful to maintain human microecological balance and immune homeostasis. Currently, there is a growing interest in the important role of the microbiota in the newborn, and it is believed that the absence or dysbiosis of human commensal microbiota early in life can have lasting health consequences. Thus, this paper summarizes research advances in the establishment of the oral and intestinal microbiome and immune system in early life, emphasizing the substantial impact of microbiota diversity in the prenatal and early postnatal periods, and summarizes that maternal microbes, mode of delivery, feeding practices, antibiotics, probiotics, and the environment shape the oral and intestinal microbiota of infants in the first 1, 000 days of life and their association with the immune system.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Mingxin He
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wu W, Xue F, Huang C, Zhou Y, Lan G, Bi W, Liu J, Yu X, Li Z, Zhang L, Feng F, Gu J, Ma R, Qi D. Low Reproductivity of Giant Pandas May Be Associated with Increased Vaginal Escherichia-Shigella. Microorganisms 2024; 12:2500. [PMID: 39770702 PMCID: PMC11727807 DOI: 10.3390/microorganisms12122500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
The poor reproductive capacity of giant pandas significantly hinders the development of captive populations, with 80.88% of adult individuals being unable to successfully become pregnant and deliver offspring. The disturbance of vaginal microbiota has been proven to potentially lead to miscarriage, abortion, and stillbirth in mammals. To elucidate the potential relationship between the vaginal microbiota and the reproductive capacity of giant pandas, we performed high-throughput sequencing of vaginal microbiota at the time of fertilization and conducted comparative analyses based on different pregnancy outcomes. We found that the microbial diversity in the delivery (D) group exceeded that in the non-delivery (ND) group and the vaginal microbial community structure was statistically different between the two groups. The vaginal microbiota in the delivery pandas consisted of unclassified Pseudomonadaceae which was gradually replaced by the Escherichia-Shigella type of vaginal microbiota in the ND group. A function predictions analysis showed that infectious disease, glycan biosynthesis, and metabolism were significantly enriched in the ND group. Additionally, an analysis of the microbial community phenotypic categories indicated that the ND group exhibited a significantly higher abundance of Gram-negative bacteria, facultative anaerobes, potential pathogens, and stress-tolerant species compared to the D group, predominantly driven by the elevated abundance of Escherichia-Shigella. Escherichia-Shigella can be used within LDA and ROC analyses to diagnostically distinguish the vaginal microflora associated with bad pregnancy outcomes during estrus. Our results will help to identify potential pathogens causing reproductive tract diseases, reduce the number of reproductive tract disease infections in pandas, and increase the birth rate of giant pandas in conservation breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (W.W.); (F.X.); (C.H.); (Y.Z.); (G.L.); (W.B.); (J.L.); (X.Y.); (Z.L.); (L.Z.); (F.F.); (J.G.)
| | - Dunwu Qi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (W.W.); (F.X.); (C.H.); (Y.Z.); (G.L.); (W.B.); (J.L.); (X.Y.); (Z.L.); (L.Z.); (F.F.); (J.G.)
| |
Collapse
|
5
|
Fundora MP, Calamaro CJ, Wu Y, Brown AM, St John A, Keiffer R, Xiang Y, Liu K, Gillespie S, Denning PW, Sanders-Lewis K, Seitter B, Bai J. Microbiome and Growth in Infants with Congenital Heart Disease. J Pediatr 2024; 274:114169. [PMID: 38944188 DOI: 10.1016/j.jpeds.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE To profile the gut microbiome (GM) in infants with congenital heart disease (CHD) undergoing cardiac surgery compared with matched infants and to investigate the association with growth (weight, length, and head circumference). STUDY DESIGN A prospective study in the cardiac intensive care unit at Children's Healthcare of Atlanta and newborn nursery within the Emory Healthcare system. Characteristics including weight, length, head circumference, and surgical variables were collected. Fecal samples were collected presurgery (T1), postsurgery (T2), and before discharge (T3), and once for controls. 16 small ribosomal RNA subunit V4 gene was sequenced from fecal samples and classified into taxonomy using Silva v138. RESULTS There were 34 children with CHD (cases) and 34 controls. Cases had higher alpha-diversity, and beta-diversity showed significant dissimilarities compared with controls. GM was associated with lower weight and smaller head circumference (z-score < 2). Lower weight was associated with less Acinetobacter, Clostridioides, Parabacteroides, and Escherichia-Shigella. Smaller head circumference with more Veillonella, less Acinetobacter, and less Parabacteroides. CONCLUSIONS Significant differences in GM diversity and abundance were observed between infants with CHD and control infants. Lower weight and smaller head circumference were associated with distinct GM patterns. Further study is needed to understand the longitudinal effect of microbial dysbiosis on growth in children with CHD.
Collapse
Affiliation(s)
- Michael P Fundora
- Children's Healthcare of Atlanta Cardiology, Emory School of Medicine, Emory University, Atlanta, GA
| | - Christina J Calamaro
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Children's Healthcare of Atlanta, Heart Center, Atlanta, GA
| | - Yuhua Wu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA
| | - Ann-Marie Brown
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA; Children's Healthcare of Atlanta, Heart Center, Atlanta, GA; ECU Health, Greenville, NC
| | - Amelia St John
- Children's Healthcare of Atlanta, Heart Center, Atlanta, GA
| | | | - Yijin Xiang
- Children's Healthcare of Atlanta, Emory University School of Medicine, Biostatistics, Atlanta, GA
| | - Katie Liu
- Children's Healthcare of Atlanta, Emory University School of Medicine, Biostatistics, Atlanta, GA
| | - Scott Gillespie
- Children's Healthcare of Atlanta, Emory University School of Medicine, Biostatistics, Atlanta, GA
| | - Patricia Wei Denning
- Children's Healthcare of Atlanta, Neonatology, Emory University School of Medicine, Atlanta, GA
| | - Kolby Sanders-Lewis
- Children's Healthcare of Atlanta, Research Core, Emory University School of Medicine, Atlanta, GA
| | - Brooke Seitter
- Children's Healthcare of Atlanta, Research Core, Emory University School of Medicine, Atlanta, GA
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA.
| |
Collapse
|
6
|
Paziewska M, Szelest M, Kiełbus M, Masternak M, Zaleska J, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Morawska M, Kalicińska E, Jabłonowska P, Wróbel T, Wolska-Washer A, Błoński JZ, Robak T, Bullinger L, Giannopoulos K. Increased abundance of Firmicutes and depletion of Bacteroidota predicts poor outcome in chronic lymphocytic leukemia. Oncol Lett 2024; 28:552. [PMID: 39328278 PMCID: PMC11425030 DOI: 10.3892/ol.2024.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024] Open
Abstract
Evidence indicates that there are significant alterations in gut microbiota diversity and composition in patients with hematological malignancies. The present study investigated the oral and intestinal microbiome in patients with chronic lymphocytic leukemia (CLL) (n=81) and age-matched healthy volunteers (HVs; n=21) using 16S ribosomal RNA next-generation sequencing. Changes in both oral and gut microbiome structures were identified, with a high abundance of Proteobacteria and depletion of Bacteroidetes in CLL as compared to HVs. Oral and stool samples of patients with CLL revealed a significant change in the abundance of short-chain fatty acid-producing genera in comparison with HVs. Furthermore, the relative abundance of oral and intestine Bacteroidetes was significantly decreased in patients with CLL with negative prognostic features, including unmutated immunoglobulin heavy chain gene (IGHV). Notably, an increased abundance of gut Firmicutes was found to be associated with high expression of CD38. Finally, the present study suggested the log Firmicutes/Bacteroidota ratio as a novel intestinal microbiome signature associated with a shorter time to first treatment in individuals with CLL. The findings indicate that oral and gut microbial diversity in CLL might point to the inflammatory-related modulation of the clinical course of the disease.
Collapse
Affiliation(s)
- Magdalena Paziewska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Hematology and Bone Marrow Transplantation, St John's Cancer Centre, 20-090 Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | | | | | - Marta Morawska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Jerzy Zdzisław Błoński
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin (Corporate Member of Free University of Berlin, Humboldt University of Berlin), D-13353 Berlin, Germany
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Wurm J, Curtis N, Zimmermann P. The effect of antibiotics on the intestinal microbiota in children - a systematic review. FRONTIERS IN ALLERGY 2024; 5:1458688. [PMID: 39435363 PMCID: PMC11491438 DOI: 10.3389/falgy.2024.1458688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/06/2024] [Indexed: 10/23/2024] Open
Abstract
Background Children are the age group with the highest exposure to antibiotics (ABX). ABX treatment changes the composition of the intestinal microbiota. The first few years of life are crucial for the establishment of a healthy microbiota and consequently, disturbance of the microbiota during this critical period may have far-reaching consequences. In this review, we summarise studies that have investigated the effect of ABX on the composition of the intestinal microbiota in children. Methods According to the PRISMA guidelines, a systematic search was done using MEDLINE and Embase to identify original studies that have investigated the effect of systemic ABX on the composition of the intestinal microbiota in children. Results We identified 89 studies investigating a total of 9,712 children (including 4,574 controls) and 14,845 samples. All ABX investigated resulted in a reduction in alpha diversity, either when comparing samples before and after ABX or children with ABX and controls. Following treatment with penicillins, the decrease in alpha diversity persisted for up to 6-12 months and with macrolides, up to the latest follow-up at 12-24 months. After ABX in the neonatal period, a decrease in alpha diversity was still found at 36 months. Treatment with penicillins, penicillins plus gentamicin, cephalosporins, carbapenems, macrolides, and aminoglycosides, but not trimethoprim/sulfamethoxazole, was associated with decreased abundances of beneficial bacteria including Actinobacteria, Bifidobacteriales, Bifidobacteriaceae, and/or Bifidobacterium, and Lactobacillus. The direction of change in the abundance of Enterobacteriaceae varied with ABX classes, but an increase in Enterobacteriaceae other than Escherichia coli was frequently observed. Conclusion ABX have profound effects on the intestinal microbiota of children, with notable differences between ABX classes. Macrolides have the most substantial impact while trimethoprim/sulfamethoxazole has the least pronounced effect.
Collapse
Affiliation(s)
- Juliane Wurm
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Health Science and Medicine, University Lucerne, Lucerne, Switzerland
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Infectious Diseases Unit, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Petra Zimmermann
- Department of Paediatrics, Fribourg Hospital, Fribourg, Switzerland
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Infectious Diseases Research Group, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department for Community Health, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Djulejic V, Ivanovski A, Cirovic A, Cirovic A. Increased Cadmium Load, Vitamin D Deficiency, and Elevated FGF23 Levels as Pathophysiological Factors Potentially Linked to the Onset of Acute Lymphoblastic Leukemia: A Review. J Pers Med 2024; 14:1036. [PMID: 39452542 PMCID: PMC11508935 DOI: 10.3390/jpm14101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The preventability of acute lymphocytic leukemia during childhood is currently receiving great attention, as it is one of the most common cancers in children. Among the known risk factors so far are those affecting the development of gut microbiota, such as a short duration or absence of breastfeeding, cesarean section, a diet lacking in short-chain fatty acids (SCFAs), the use of antibiotics, absence of infection during infancy, and lack of pets, among other factors. Namely, it has been shown that iron deficiency anemia (IDA) and lack of vitamin D may cause intestinal dysbiosis, while at the same time, both increase the risk of hematological malignancies. The presence of IDA and vitamin D deficiency have been shown to lead to a decreased proportion of Firmicutes in stool, which could, as a consequence, lead to a deficit of butyrate. Moreover, children with IDA have increased blood concentrations of cadmium, which induces systemic inflammation and is linked to the onset of an inflammatory microenvironment in the bone marrow. Finally, IDA and Cd exposure increase fibroblast growth factor 23 (FGF23) blood levels, which in turn suppresses vitamin D synthesis. A lack of vitamin D has been associated with a higher risk of ALL onset. In brief, as presented in this review, there are three independent ways in which IDA increases the risk of acute lymphocytic leukemia (ALL) appearance. These are: intestinal dysbiosis, disruption of vitamin D synthesis, and an increased Cd load, which has been linked to systemic inflammation. All of the aforementioned factors could generate the appearance of a second mutation, such as ETV6/RUNX1 (TEL-AML), leading to mutation homozygosity and the onset of disease. ALL has been observed in both IDA and thalassemia. However, as IDA is the most common type of anemia and the majority of published data pertains to it, we will focus on IDA in this review.
Collapse
Affiliation(s)
- Vuk Djulejic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Ana Ivanovski
- Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia;
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| | - Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, University of Belgrade, Dr Subotica 4/2, 11000 Belgrade, Serbia; (V.D.); (A.C.)
| |
Collapse
|
9
|
Xu Y, Gao H, Li H. The gut microbiome: an important factor influencing therapy for pediatric acute lymphoblastic leukemia. Ann Hematol 2024; 103:2621-2635. [PMID: 37775598 DOI: 10.1007/s00277-023-05480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevalent form of pediatric leukemia. The gut microbiome (GM) is crucial for proper nutrition, immunity, and biological conflict. Since the relationship between ALL and GM is bidirectional, ALL occurrence and treatment are closely related to GM destruction and the development of impaired immunity. Studies have discovered significant GM alterations in patients with ALL, including decreased diversity, that are likely directly caused by the development of ALL. Chemotherapy, antibiotic therapy, and hematopoietic stem cell transplantation (HSCT) are the mainstays of treatment for pediatric ALL. These approaches affect the composition, diversity, and abundance of intestinal microorganisms, which in turn affects therapeutic efficiency and can cause a variety of complications. Modulating the GM can aid the recovery of patients with ALL. This article discusses the various treatment modalities for pediatric ALL and their corresponding effects on the GM, as well as the changes in the GM that occur in children with ALL from diagnosis to treatment. Gaining a greater understanding of the link between ALL and the GM is expected to help improve treatment for pediatric ALL in the future.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Hui Gao
- Department of Hematology and Oncology, Dalian Medical Center for Women and Children, Dalian, China
| | - Huajun Li
- Department of Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
10
|
Goswami M, Bose PD. Gut microbial dysbiosis in the pathogenesis of leukemia: an immune-based perspective. Exp Hematol 2024; 133:104211. [PMID: 38527589 DOI: 10.1016/j.exphem.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/27/2024]
Abstract
Leukemias are a set of clonal hematopoietic malignant diseases that develop in the bone marrow. Several factors influence leukemia development and progression. Among these, the gut microbiota is a major factor influencing a wide array of its processes. The gut microbial composition is linked to the risk of tumor development and the host's ability to respond to treatment, mostly due to the immune-modulatory effects of their metabolites. Despite such strong evidence, its role in the development of hematologic malignancies still requires attention of investigators worldwide. In this review, we make an effort to discuss the role of host gut microbiota-immune crosstalk in leukemia development and progression. Additionally, we highlight certain recently developed strategies to modify the gut microbial composition that may help to overcome dysbiosis in leukemia patients in the near future.
Collapse
Affiliation(s)
- Mayuri Goswami
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India
| | - Purabi Deka Bose
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, India.
| |
Collapse
|
11
|
Aronica TS, Carella M, Balistreri CR. Different Levels of Therapeutic Strategies to Recover the Microbiome to Prevent/Delay Acute Lymphoblastic Leukemia (ALL) or Arrest Its Progression in Children. Int J Mol Sci 2024; 25:3928. [PMID: 38612738 PMCID: PMC11012256 DOI: 10.3390/ijms25073928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Changes in the components, variety, metabolism, and products of microbiomes, particularly of the gut microbiome (GM), have been revealed to be closely associated with the onset and progression of numerous human illnesses, including hematological neoplasms. Among the latter pathologies, there is acute lymphoblastic leukemia (ALL), the most widespread malignant neoplasm in pediatric subjects. Accordingly, ALL cases present a typical dysfunctional GM during all its clinical stages and resulting inflammation, which contributes to its progression, altered response to therapy, and possible relapses. Children with ALL have GM with characteristic variations in composition, variety, and functions, and such alterations may influence and predict the complications and prognosis of ALL after chemotherapy treatment or stem cell hematopoietic transplants. In addition, growing evidence also reports the ability of GM to influence the formation, growth, and roles of the newborn's hematopoietic system through the process of developmental programming during fetal life as well as its susceptibility to the onset of onco-hematological pathologies, namely ALL. Here, we suggest some therapeutic strategies that can be applied at two levels of intervention to recover the microbiome and consequently prevent/delay ALL or arrest its progression.
Collapse
Affiliation(s)
- Tommaso Silvano Aronica
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Miriam Carella
- Complex Operative Unit of Clinical Pathology, ARNAS Civico Di Cristina e Benfratelli Hospitals, 90127 Palermo, Italy; (T.S.A.); (M.C.)
| | - Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| |
Collapse
|
12
|
Vázquez X, Lumbreras-Iglesias P, Rodicio MR, Fernández J, Bernal T, Moreno AF, de Ugarriza PL, Fernández-Verdugo A, Margolles A, Sabater C. Study of the intestinal microbiota composition and the effect of treatment with intensive chemotherapy in patients recovered from acute leukemia. Sci Rep 2024; 14:5585. [PMID: 38454103 PMCID: PMC10920697 DOI: 10.1038/s41598-024-56054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
A dataset comprising metagenomes of outpatients (n = 28) with acute leukemia (AL) and healthy controls (n = 14) was analysed to investigate the associations between gut microbiota composition and metabolic activity and AL. According to the results obtained, no significant differences in the microbial diversity between AL outpatients and healthy controls were found. However, significant differences in the abundance of specific microbial clades of healthy controls and AL outpatients were found. We found some differences at taxa level. The relative abundance of Enterobacteriaceae, Prevotellaceae and Rikenellaceae was increased in AL outpatients, while Bacteirodaceae, Bifidobacteriaceae and Lachnospiraceae was decreased. Interestingly, the abundances of several taxa including Bacteroides and Faecalibacterium species showed variations based on recovery time from the last cycle of chemotherapy. Functional annotation of metagenome-assembled genomes (MAGs) revealed the presence of functional domains corresponding to therapeutic enzymes including L-asparaginase in a wide range of genera including Prevotella, Ruminococcus, Faecalibacterium, Alistipes, Akkermansia. Metabolic network modelling revealed potential symbiotic relationships between Veillonella parvula and Levyella massiliensis and several species found in the microbiota of AL outpatients. These results may contribute to develop strategies for the recovery of microbiota composition profiles in the treatment of patients with AL.
Collapse
Grants
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- FIS PI21/01590 Fondo de Investigación Sanitaria, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Spain
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
- GRUPIN IDI/2022/000033 Regional Ministry of Science of Asturias
Collapse
Affiliation(s)
- Xenia Vázquez
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain
| | - Pilar Lumbreras-Iglesias
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - M Rosario Rodicio
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Functional Biology, Microbiology Area, University of Oviedo, Oviedo, Spain
| | - Javier Fernández
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Respiratorias, Madrid, Spain
| | - Teresa Bernal
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ainhoa Fernández Moreno
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Paula López de Ugarriza
- Department of Hematology Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Ana Fernández-Verdugo
- Traslational Microbiology Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Clinical Microbiology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA), Spanish National Research Council, (CSIC), Villaviciosa, Asturias, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), MicroHealth Group, Oviedo, Spain.
| |
Collapse
|
13
|
Huang X, Cai H, Zhao Y, Kang Y. The Gut Microbiome and Acute Leukemia: Implications for Early Diagnostic and New Therapies. Mol Nutr Food Res 2024; 68:e2300551. [PMID: 38059888 DOI: 10.1002/mnfr.202300551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Acute leukemia (AL), one of the hematological malignancies, shows high heterogeneity. Tremendous progresses are achieved in treating AL with novel targeted drugs and allogeneic hematopoietic stem cell transplantation, there are numerous issues including pathogenesis, early diagnosis, and therapeutic efficacy of AL to be solved. In recent years, an increasing number of studies regarding microbiome have shed more lights on the role of gut microbiota in promoting AL progression. Mechanisms related to the role of gut microbiota in enhancing AL genesis are summarized in the present work, especially on critical pathways like leaky gut, bacterial dysbiosis, microorganism-related molecular patterns, and bacterial metabolites, resulting in AL development. Additionally, the potential of gut microbiota as the biomarker for early AL diagnosis is discussed. It also outlooks therapies targeting gut microbiota for preventing AL development.
Collapse
Affiliation(s)
- Xinwei Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Haibo Cai
- Department of Oncology, Yunfeng Hospital, Xuanwei City, Yunnan Province, 655400, China
| | - Yanqin Zhao
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
14
|
Hussein N, Rajasuriar R, Khan AM, Lim YAL, Gan GG. The Role of the Gut Microbiome in Hematological Cancers. Mol Cancer Res 2024; 22:7-20. [PMID: 37906201 DOI: 10.1158/1541-7786.mcr-23-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Humans are in a complex symbiotic relationship with a wide range of microbial organisms, including bacteria, viruses, and fungi. The evolution and composition of the human microbiome can be an indicator of how it may affect human health and susceptibility to diseases. Microbiome alteration, termed as dysbiosis, has been linked to the pathogenesis and progression of hematological cancers. A variety of mechanisms, including epithelial barrier disruption, local chronic inflammation response trigger, antigen dis-sequestration, and molecular mimicry, have been proposed to be associated with gut microbiota. Dysbiosis may be induced or worsened by cancer therapies (such as chemotherapy and/or hematopoietic stem cell transplantation) or infection. The use of antibiotics during treatment may also promote dysbiosis, with possible long-term consequences. The aim of this review is to provide a succinct summary of the current knowledge describing the role of the microbiome in hematological cancers, as well as its influence on their therapies. Modulation of the gut microbiome, involving modifying the composition of the beneficial microorganisms in the management and treatment of hematological cancers is also discussed. Additionally discussed are the latest developments in modeling approaches and tools used for computational analyses, interpretation and better understanding of the gut microbiome data.
Collapse
Affiliation(s)
- Najihah Hussein
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkiye
- College of Computing and Information Technology, University of Doha for Science and Technology, Doha, Qatar
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gin Gin Gan
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Lai C, Chen L, Zhong X, Tang Z, Zhang B, Luo Y, Li C, Jin M, Chen X, Li J, Shi Y, Sun Y, Guo L. Long-term effects on liver metabolism induced by ceftriaxone sodium pretreatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122238. [PMID: 37506808 DOI: 10.1016/j.envpol.2023.122238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Ceftriaxone is an emerging contaminant due to its potential harm, while its effects on liver are still need to be clarified. In this study, we first pretreated the 8-week-old C57BL/6J mice with high dose ceftriaxone sodium (Cef, 400 mg/mL, 0.2 mL per dose) for 8 days to prepare a gut dysbiosis model, then treated with normal feed for a two-month recovery period, and applied non-targeted metabolomics (including lipidomics) to investigate the variations of fecal and liver metabolome, and coupled with targeted determination of fecal short-chain fatty acids (SCFAs) and bile acids (BAs). Lastly, the correlations and mediation analysis between the liver metabolism and gut metabolism/microbes were carried, and the potential mechanisms of the mal-effects on gut-liver axis induced by Cef pretreatment were accordingly discussed. Compared to the control group, Cef pretreatment reduced the rate of weight gain and hepatosomatic index, induced bile duct epithelial cells proliferated around the central vein and appearance of binucleated hepatocytes, decreased the ratio of total branching chains amino acids (BCAAs) to total aromatic amino acids (AAAs) in liver metabolome. In fecal metabolome, the total fecal SCFAs and BAs did not change significantly while butyric acid decreased and the primary BAs increased after Cef pretreatment. Correlation and mediation analysis revealed one potential mechanism that Cef may first change the intestinal microbiota (such as destroying its normal structure, reducing its abundance and the stability of the microbial network or certain microbe abundance like Alistipes), and then change the intestinal metabolism (such as acetate, caproate, propionate), leading to liver metabolic disorder (such as spermidine, inosine, cinnamaldehyde). This study proved the possibility of Cef-induced liver damage, displayed the overall metabolic profile of the liver following Cef pretreatment and provided a theoretical framework for further research into the mechanism of Cef-induced liver damage.
Collapse
Affiliation(s)
- Chengze Lai
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linkang Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoting Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zeli Tang
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Bin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guang Dong Province, China
| | - Mengcheng Jin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xu Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinglin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yinying Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Lianxian Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
16
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Tamayo-Trujillo R, Ruiz-Pozo VA, Zambrano AK. Role of the gut microbiota in hematologic cancer. Front Microbiol 2023; 14:1185787. [PMID: 37692399 PMCID: PMC10485363 DOI: 10.3389/fmicb.2023.1185787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Hematologic neoplasms represent 6.5% of all cancers worldwide. They are characterized by the uncontrolled growth of hematopoietic and lymphoid cells and a decreased immune system efficacy. Pathological conditions in hematologic cancer could disrupt the balance of the gut microbiota, potentially promoting the proliferation of opportunistic pathogens. In this review, we highlight studies that analyzed and described the role of gut microbiota in different types of hematologic diseases. For instance, myeloma is often associated with Pseudomonas aeruginosa and Clostridium leptum, while in leukemias, Streptococcus is the most common genus, and Lachnospiraceae and Ruminococcaceae are less prevalent. Lymphoma exhibits a moderate reduction in microbiota diversity. Moreover, certain factors such as delivery mode, diet, and other environmental factors can alter the diversity of the microbiota, leading to dysbiosis. This dysbiosis may inhibit the immune response and increase susceptibility to cancer. A comprehensive analysis of microbiota-cancer interactions may be useful for disease management and provide valuable information on host-microbiota dynamics, as well as the possible use of microbiota as a distinguishable marker for cancer progression.
Collapse
|
17
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
18
|
Luchen CC, Chibuye M, Spijker R, Simuyandi M, Chisenga C, Bosomprah S, Chilengi R, Schultsz C, Mende DR, Harris VC. Impact of antibiotics on gut microbiome composition and resistome in the first years of life in low- to middle-income countries: A systematic review. PLoS Med 2023; 20:e1004235. [PMID: 37368871 PMCID: PMC10298773 DOI: 10.1371/journal.pmed.1004235] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inappropriate antimicrobial usage is a key driver of antimicrobial resistance (AMR). Low- and middle-income countries (LMICs) are disproportionately burdened by AMR and young children are especially vulnerable to infections with AMR-bearing pathogens. The impact of antibiotics on the microbiome, selection, persistence, and horizontal spread of AMR genes is insufficiently characterized and understood in children in LMICs. This systematic review aims to collate and evaluate the available literature describing the impact of antibiotics on the infant gut microbiome and resistome in LMICs. METHODS AND FINDINGS In this systematic review, we searched the online databases MEDLINE (1946 to 28 January 2023), EMBASE (1947 to 28 January 2023), SCOPUS (1945 to 29 January 2023), WHO Global Index Medicus (searched up to 29 January 2023), and SciELO (searched up to 29 January 2023). A total of 4,369 articles were retrieved across the databases. Duplicates were removed resulting in 2,748 unique articles. Screening by title and abstract excluded 2,666 articles, 92 articles were assessed based on the full text, and 10 studies met the eligibility criteria that included human studies conducted in LMICs among children below the age of 2 that reported gut microbiome composition and/or resistome composition (AMR genes) following antibiotic usage. The included studies were all randomized control trials (RCTs) and were assessed for risk of bias using the Cochrane risk-of-bias for randomized studies tool. Overall, antibiotics reduced gut microbiome diversity and increased antibiotic-specific resistance gene abundance in antibiotic treatment groups as compared to the placebo. The most widely tested antibiotic was azithromycin that decreased the diversity of the gut microbiome and significantly increased macrolide resistance as early as 5 days posttreatment. A major limitation of this study was paucity of available studies that cover this subject area. Specifically, the range of antibiotics assessed did not include the most commonly used antibiotics in LMIC populations. CONCLUSION In this study, we observed that antibiotics significantly reduce the diversity and alter the composition of the infant gut microbiome in LMICs, while concomitantly selecting for resistance genes whose persistence can last for months following treatment. Considerable heterogeneity in study methodology, timing and duration of sampling, and sequencing methodology in currently available research limit insights into antibiotic impacts on the microbiome and resistome in children in LMICs. More research is urgently needed to fill this gap in order to better understand whether antibiotic-driven reductions in microbiome diversity and selection of AMR genes place LMIC children at risk for adverse health outcomes, including infections with AMR-bearing pathogens.
Collapse
Affiliation(s)
- Charlie C. Luchen
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mwelwa Chibuye
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rene Spijker
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | - Michelo Simuyandi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Caroline Chisenga
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
| | - Samuel Bosomprah
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Roma Chilengi
- Research Division, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia
- Zambia National Public Health Institute, Ministry of Health, Lusaka, Zambia
- Republic of Zambia State House, Lusaka, Zambia
| | - Constance Schultsz
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Daniel R. Mende
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology, Amsterdam, the Netherlands
| | - Vanessa C. Harris
- Amsterdam UMC, location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
- Amsterdam Institute of Infection and Immunity, Infectious Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Division of Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
19
|
Park H, Uhlemann AC, Jacobs SS, Mowbray C, Jubelirer T, Kelly KM, Walters M, Ladas EJ. Title: Obesogenic microbial signatures and the development of obesity in childhood acute lymphoblastic leukemia. Leuk Res 2023; 126:107017. [PMID: 36641874 DOI: 10.1016/j.leukres.2023.107017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/28/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Childhood acute lymphoblastic leukemia (ALL) is the most common childhood cancer with survival exceeding 90% for standard-risk groups. A debilitating side-effect of treatment is the development of overweight/obesity (OW/OB), which develops in approximately 40% of children by the end of treatment. The microbiome has been associated with the development of OW/OB. We examined fluctuations in the microbiome with the development of OW/OB during the first six months of treatment at diagnosis, and two subsequent timepoints (N = 62). Shotgun metagenomic sequencing was performed on Illumina Nextseq system, and taxa and functional pathways were extracted from sequences using kraken2 and humann2, respectively. An association of increased presence of several species (e.g., Klebsiella pneumoniae, Escherichia coli) was observed in children with OW/OB, while lean-promoting species (Veillonella, Haemophilus, and Akkermansia) were increased in children who maintained a normal weight. Pathway analysis revealed purine nucleotide biosynthesis, sugar nucleotide biosynthesis, and enzyme cofactor biosynthesis were positively correlated with Bacteroides spp. among children with OW/OB. We identified several taxa and functional pathways that may confer increased risk for the development of OW/OB. The associations observed in this pilot are preliminary and warrant further research in the microbiome and the development of OW/OB in childhood ALL.
Collapse
Affiliation(s)
- Heekuk Park
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA; Microbiome and Pathogen Genomics Collaborative Center, Columbia University, New York, NY, USA
| | - A C Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, USA; Microbiome and Pathogen Genomics Collaborative Center, Columbia University, New York, NY, USA
| | - S S Jacobs
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - C Mowbray
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - T Jubelirer
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Department of Pediatrics, Philadelphia, PA, USA
| | - K M Kelly
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center and University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - M Walters
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA
| | - E J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Columbia University Irving Medical Center, New York, NY, USA; Institute of Human Nutrition, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Zhou Z, Shen D, Wang K, Liu J, Li M, Win-Shwe TT, Nagaoka K, Li C. Pulmonary microbiota intervention alleviates fine particulate matter-induced lung inflammation in broilers. J Anim Sci 2023; 101:skad207. [PMID: 37341706 PMCID: PMC10390102 DOI: 10.1093/jas/skad207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023] Open
Abstract
Fine particulate matter (PM2.5) released during the livestock industry endangers the respiratory health of animals. Our previous findings suggested that broilers exposed to PM2.5 exhibited lung inflammation and changes in the pulmonary microbiome. Therefore, this study was to investigate whether the pulmonary microbiota plays a causal role in the pathogenesis of PM2.5-induced lung inflammation. We first used antibiotics to establish a pulmonary microbiota intervention broiler model, which showed a significantly reduced total bacterial load in the lungs without affecting the microbiota composition or structure. Based on it, 45 AA broilers of similar body weight were randomly assigned to three groups: control (CON), PM2.5 (PM), and pulmonary microbiota intervention (ABX-PM). From 21 d of age, broilers in the ABX-PM group were intratracheally instilled with antibiotics once a day for 3 d. Meanwhile, broilers in the other two groups were simultaneously instilled with sterile saline. On 24 and 26 d of age, broilers in the PM and ABX-PM groups were intratracheally instilled with PM2.5 suspension to induce lung inflammation, and broilers in the CON group were simultaneously instilled with sterile saline. The lung histomorphology, inflammatory cytokines' expression levels, lung microbiome, and microbial growth conditions were analyzed to determine the effect of the pulmonary microbiota on PM2.5-induced lung inflammation. Broilers in the PM group showed lung histological injury, while broilers in the ABX-PM group had normal lung histomorphology. Furthermore, microbiota intervention significantly reduced mRNA expression levels of interleukin-1β, tumor necrosis factor-α, interleukin-6, interleukin-8, toll-like receptor 4 and nuclear factor kappa-B. PM2.5 induced significant changes in the β diversity and structure of the pulmonary microbiota in the PM group. However, no significant changes in microbiota structure were observed in the ABX-PM group. Moreover, the relative abundance of Enterococcus cecorum in the PM group was significantly higher than that in the CON and ABX-PM groups. And sterile bronchoalveolar lavage fluid from the PM group significantly promoted the growth of E. cecorum, indicating that PM2.5 altered the microbiota's growth condition. In conclusion, pulmonary microbiota can affect PM2.5-induced lung inflammation in broilers. PM2.5 can alter the bacterial growth environment and promote dysbiosis, potentially exacerbating inflammation.
Collapse
Affiliation(s)
- Zilin Zhou
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dan Shen
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Kai Wang
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junze Liu
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyang Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tin-Tin Win-Shwe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Chunmei Li
- Jiangsu Joint International Research Laboratory of Animal Gastrointestinal Genomes, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
22
|
MacDonald T, Dunn KA, MacDonald J, Langille MG, Van Limbergen JE, Bielawski JP, Kulkarni K. The gastrointestinal antibiotic resistome in pediatric leukemia and lymphoma patients. Front Cell Infect Microbiol 2023; 13:1102501. [PMID: 36909730 PMCID: PMC9998685 DOI: 10.3389/fcimb.2023.1102501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
Introduction Most children with leukemia and lymphoma experience febrile neutropenia. These are treated with empiric antibiotics that include β-lactams and/or vancomycin. These are often administered for extended periods, and the effect on the resistome is unknown. Methods We examined the impact of repeated courses and duration of antibiotic use on the resistome of 39 pediatric leukemia and lymphoma patients. Shotgun metagenome sequences from 127 stool samples of pediatric oncology patients were examined for abundance of antibiotic resistance genes (ARGs) in each sample. Abundances were grouped by repeated courses (no antibiotics, 1-2 courses, 3+ courses) and duration (no use, short duration, long and/or mixed durationg) of β-lactams, vancomycin and "any antibiotic" use. We assessed changes in both taxonomic composition and prevalence of ARGs among these groups. Results We found that Bacteroidetes taxa and β-lactam resistance genes decreased, while opportunistic Firmicutes and Proteobacteria taxa, along with multidrug resistance genes, increased with repeated courses and/or duration of antibiotics. Efflux pump related genes predominated (92%) among the increased multidrug genes. While we found β-lactam ARGs present in the resistome, the taxa that appear to contain them were kept in check by antibiotic treatment. Multidrug ARGs, mostly efflux pumps or regulators of efflux pump genes, were associated with opportunistic pathogens, and both increased in the resistome with repeated antibiotic use and/or increased duration. Conclusions Given the strong association between opportunistic pathogens and multidrug-related efflux pumps, we suggest that drug efflux capacity might allow the opportunistic pathogens to persist or increase despite repeated courses and/or duration of antibiotics. While drug efflux is the most direct explanation, other mechanisms that enhance the ability of opportunistic pathogens to handle environmental stress, or other aspects of the treatment environment, could also contribute to their ability to flourish within the gut during treatment. Persistence of opportunistic pathogens in an already dysbiotic and weakened gastrointestinal tract could increase the likelihood of life-threatening blood borne infections. Of the 39 patients, 59% experienced at least one gastrointestinal or blood infection and 60% of bacteremia's were bacteria found in stool samples. Antimicrobial stewardship and appropriate use and duration of antibiotics could help reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Tamara MacDonald
- Department of Pharmacy, IWK Health, Halifax, NS, Canada
- Faculty of Health Professions, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Katherine A. Dunn
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| | - Jane MacDonald
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- Department of Science, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G.I. Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Johan E. Van Limbergen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Joseph P. Bielawski
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Department of Mathematics & Statistics, Dalhousie University, Halifax, NS, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Division of Hematology Oncology, Izaak Walton Killam (IWK) Health, Halifax, NS, Canada
- *Correspondence: Ketan Kulkarni, ; Katherine A. Dunn, ; Tamara MacDonald,
| |
Collapse
|
23
|
Zhou Y, Zhou C, Zhang A. Gut microbiota in acute leukemia: Current evidence and future directions. Front Microbiol 2022; 13:1045497. [PMID: 36532458 PMCID: PMC9751036 DOI: 10.3389/fmicb.2022.1045497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 08/18/2023] Open
Abstract
Gut microbiota includes a large number of microorganisms inhabiting the human gastrointestinal tract, which show a wide range of physiological functions, including digestion, metabolism, immunity, neural development, etc., and are considered to play an increasingly important role in health and disease. A large number of studies have shown that gut microbiota are closely associated with the onset and development of several diseases. In particular, the interaction between gut microbiota and cancer has recently attracted scholars' attention. Acute leukemia (AL) is a common hematologic malignancy, especially in children. Microbiota can affect hematopoietic function, and the effects of chemotherapy and immunotherapy on AL are noteworthy. The composition and diversity of gut microbiota are important factors that influence and predict the complications and prognosis of AL after chemotherapy or hematopoietic stem cell transplantation. Probiotics, prebiotics, fecal microbiota transplantation, and dietary regulation may reduce side effects of leukemia therapy, improve response to treatment, and improve prognosis. This review concentrated on the role of the gut microbiota in the onset and development of AL, the response and side effects of chemotherapy drugs, infection during treatment, and therapeutic efficacy. According to the characteristics of gut microbes, the applications and prospects of microbial preparations were discussed.
Collapse
Affiliation(s)
| | | | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Microbial and host factors contribute to bloodstream infection in a pediatric acute lymphocytic leukemia mouse model. Heliyon 2022; 8:e11340. [PMID: 36345525 PMCID: PMC9636473 DOI: 10.1016/j.heliyon.2022.e11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/15/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Hematological malignancies are the most common cancers in the pediatric population, and T-cell acute lymphocytic leukemia (T-ALL) is the most common hematological malignancy in children. Bloodstream infection (BSI) is a commonly occurring complication in leukemia due to underlying conditions and therapy-induced neutropenia. Several studies identified the gut microbiome as a major source of BSI due to bacterial translocation. This study aimed to investigate changes in the intestinal and fecal microbiome, and their roles in the pathophysiology of BSI in a pediatric T-ALL mouse model using high-throughput shotgun metagenomics sequencing, and metabolomics. Results Our results show that BSI in ALL is characterized by an increase of a mucin degrading bacterium (Akkermansia muciniphila) and a decrease of butyrate producer Clostridia spp., along with a decrease in short-chain fatty acid (SCFA) concentrations and differential expression of tight junction proteins in the small intestine. Functional analysis of the small intestinal microbiome indicated a reduced capability of SCFA synthesis, while SCFA supplementation ameliorated the development of BSI in ALL. Conclusions Our data indicates that changes in the microbiome, and the resulting changes in levels of SCFAs contribute significantly to the pathogenesis of bloodstream infection in ALL. Our study provides tailored preventive or therapeutic approaches to reduce BSI-associated mortality in ALL.
Collapse
|
25
|
[Changes of intestinal flora in children with acute lymphoblastic leukemia before and after chemotherapy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:550-560. [PMID: 35644196 PMCID: PMC9154360 DOI: 10.7499/j.issn.1008-8830.2110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To examine the changes of intestinal flora in children newly diagnosed with acute lymphoblastic leukemia (ALL) and the influence of chemotherapy on intestinal flora. METHODS Fecal samples were collected from 40 children newly diagnosed with ALL before chemotherapy and at 2 weeks, 1 month, and 2 months after chemotherapy. Ten healthy children served as the control group. 16S rDNA sequencing and analysis were performed to compare the differences in intestinal flora between the ALL and control groups and children with ALL before and after chemotherapy. RESULTS The ALL group had a significant reduction in the abundance of intestinal flora at 1 and 2 months after chemotherapy, with a significant reduction compared with the control group (P<0.05). Compared with the control group, the ALL group had a significant reduction in the diversity of intestinal flora before and after chemotherapy (P<0.05). At the phylum level, compared with the control group, the ALL group had a significant reduction in the relative abundance of Actinobacteria at 2 weeks, 1 month, and 2 months after chemotherapy (P<0.05) and a significant increase in the relative abundance of Proteobacteria at 1 and 2 months after chemotherapy (P<0.05). At the genus level, compared with the control group, the ALL group had a significant reduction in the relative abundance of Bifidobacterium at 2 weeks, 1 month, and 2 months after chemotherapy (P<0.05); the relative abundance of Klebsiella in the ALL group was significantly higher than that in the control group at 1 and 2 months after chemotherapy and showed a significant increase at 1 month after chemotherapy (P<0.05); the relative abundance of Faecalibacterium in the ALL group was significantly lower than that in the control group before and after chemotherapy and showed a significant reduction at 2 weeks and 1 month after chemotherapy (P<0.05). The relative abundance of Enterococcus increased significantly at 1 and 2 months after chemotherapy in the ALL group (P<0.05), and was significantly higher than that in the control group (P<0.05). CONCLUSIONS The diversity of intestinal flora in children with ALL is significantly lower than that in healthy children. Chemotherapy significantly reduces the abundance of intestinal flora and can reduce the abundance of some probiotic bacteria (Bifidobacterium and Faecalibacterium) and increase the abundance of pathogenic bacteria (Klebsiella and Enterococcus) in children with ALL.
Collapse
|
26
|
Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate. Nat Commun 2022; 13:2522. [PMID: 35534496 PMCID: PMC9085760 DOI: 10.1038/s41467-022-30240-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
The gut microbiota has been linked to many cancers, yet its role in acute myeloid leukaemia (AML) progression remains unclear. Here, we show decreased diversity in the gut microbiota of AML patients or murine models. Gut microbiota dysbiosis induced by antibiotic treatment accelerates murine AML progression while faecal microbiota transplantation reverses this process. Butyrate produced by the gut microbiota (especially Faecalibacterium) significantly decreases in faeces of AML patients, while gavage with butyrate or Faecalibacterium postpones murine AML progression. Furthermore, we find the intestinal barrier is damaged in mice with AML, which accelerates lipopolysaccharide (LPS) leakage into the blood. The increased LPS exacerbates leukaemia progression in vitro and in vivo. Butyrate can repair intestinal barrier damage and inhibit LPS absorption in AML mice. Collectively, we demonstrate that the gut microbiota promotes AML progression in a metabolite-dependent manner and that targeting the gut microbiota might provide a therapeutic option for AML. The role of gut microbiota in acute myeloid leukaemia (AML) remains unclear. Here, the authors show disordered gut microbiota and reduced butyrate cause intestinal barrier damage in AML mice, with increased plasma LPS that accelerates AML progression.
Collapse
|
27
|
The interplay between anticancer challenges and the microbial communities from the gut. Eur J Clin Microbiol Infect Dis 2022; 41:691-711. [PMID: 35353280 DOI: 10.1007/s10096-022-04435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/15/2022] [Indexed: 11/03/2022]
Abstract
Cancer being an increasing burden on human health, the use of anticancer drugs has risen over the last decades. The physiological effects of these drugs are not only perceived by the host's cells but also by the microbial cells it harbors as commensals, notably the gut microbiota. Since the early '50 s, the cytotoxicity of anticancer chemotherapy was evaluated on bacteria revealing some antimicrobial activities that result in an established perturbation of the gut microbiota. This perturbation can affect the host's health through dysbiosis, which can lead to multiple complications, but has also been shown to have a direct effect on the treatment efficiency.We, therefore, conducted a review of literature focusing on this triangular relationship involving the microbial communities from the gut, the host's disease, and the anticancer treatment. We focused specifically on the antimicrobial effects of anticancer chemotherapy, their impact on mutagenesis in bacteria, and the perspectives of using bacteria-based tools to help in the diagnostic and treatment of cancer.
Collapse
|
28
|
Hooper MJ, LeWitt TM, Pang Y, Veon FL, Chlipala GE, Feferman L, Green SJ, Sweeney D, Bagnowski KT, Burns MB, Seed PC, Choi J, Guitart J, Zhou XA. Gut dysbiosis in cutaneous T-cell lymphoma is characterized by shifts in relative abundances of specific bacterial taxa and decreased diversity in more advanced disease. J Eur Acad Dermatol Venereol 2022; 36:1552-1563. [PMID: 35366365 PMCID: PMC9391260 DOI: 10.1111/jdv.18125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cutaneous T-cell lymphoma (CTCL) patients often suffer from recurrent skin infections and profound immune dysregulation in advanced disease. The gut microbiome has been recognized to influence cancers and cutaneous conditions; however, it has not yet been studied in CTCL. OBJECTIVES To investigate the gut microbiome in patients with CTCL and in healthy controls. METHODS Case-control study conducted between January 2019 and November 2020 at Northwestern's busy multidisciplinary CTCL clinic (Chicago, Illinois, USA) utilizing 16S ribosomal RNA gene amplicon sequencing and bioinformatics analyses to characterize the microbiota present in fecal samples of CTCL patients (n=38) and age-matched healthy controls (n=13) from the same geographical region. RESULTS Gut microbial α-diversity trended lower in patients with CTCL and was significantly lower in patients with advanced CTCL relative to controls (p=0.015). No differences in β-diversity were identified. Specific taxa were significantly reduced in patient samples; significance was determined using adjusted p-values (q-values) that accounted for a false discovery rate threshold of 0.05. Significantly reduced taxa in patient samples included the phylum Actinobacteria (q=0.0002), classes Coriobacteriia (q=0.002) and Actinobacteria (q=0.03), order Coriobacteriales (q=0.003), and genus Anaerotruncus (q=0.01). The families of Eggerthellaceae (q=0.0007) and Lactobacillaceae (q=0.02) were significantly reduced in patients with high skin disease burden. CONCLUSIONS Gut dysbiosis can be seen in patients with CTCL compared to healthy controls and is pronounced in more advanced CTCL. The taxonomic shifts associated with CTCL are similar to those previously reported in atopic dermatitis and opposite those of psoriasis, suggesting microbial parallels to the immune profile and skin barrier differences between these conditions. These findings may suggest new microbial disease biomarkers and reveal a new angle for intervention.
Collapse
Affiliation(s)
- M J Hooper
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T M LeWitt
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Y Pang
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - F L Veon
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - G E Chlipala
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - L Feferman
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - D Sweeney
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - K T Bagnowski
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - M B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - P C Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - J Choi
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - J Guitart
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - X A Zhou
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Akhremchuk KV, Skapavets KY, Akhremchuk AE, Kirsanava NP, Sidarenka AV, Valentovich LN. Gut microbiome of healthy people and patients with hematological malignancies in Belarus. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-18-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gut microbiota plays an important role in human health and the development of various diseases. We describe the intestinal microbiome of 31 healthy individuals and 29 patients who have hematological malignancies from Belarus. Bacteria that belong to Faecalibacterium, Blautia, Bacteroides, Ruminococcus, Bifidobacterium, Prevotella, Lactobacillus, and Alistipes genera were predominant in the gut of healthy people. Based on the dominant microbiota species, two enterotype-like clusters that are driven by Bacteroides and Blautia, respectively, were identified. A significant decrease in alpha diversity and alterations in the taxonomic composition of the intestinal microbiota were observed in patients with hematological malignancies compared to healthy people. The microbiome of these patients contained a high proportion of Bacteroides, Blautia, Faecalibacterium, Lactobacillus, Prevotella, Alistipes, Enterococcus, Escherichia-Shigella, Ruminococcus gnavus group, Streptococcus, and Roseburia. An increased relative abundance of Bacteroides vulgatus, Ruminococcus torques, Veillonella, Tuzzerella, Sellimonas, and a decreased number of Akkermansia, Coprococcus, Roseburia, Agathobacter, Lachnoclostridium, and Dorea were observed in individuals with hematological malignancies. Generally, the composition of the gut microbiome in patients was more variable than that of healthy individuals, and alterations in the abundance of certain microbial taxa were individually specific.
Collapse
Affiliation(s)
- K. V. Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - K. Y. Skapavets
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology
| | - A. E. Akhremchuk
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - N. P. Kirsanava
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology
| | - A. V. Sidarenka
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| | - L. N. Valentovich
- The Institute of Microbiology of the National Academy of Sciences of Belarus
| |
Collapse
|
30
|
Pagani IS, Poudel G, Wardill HR. A Gut Instinct on Leukaemia: A New Mechanistic Hypothesis for Microbiota-Immune Crosstalk in Disease Progression and Relapse. Microorganisms 2022; 10:microorganisms10040713. [PMID: 35456764 PMCID: PMC9029211 DOI: 10.3390/microorganisms10040713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Despite significant advances in the treatment of Chronic Myeloid and Acute Lymphoblastic Leukaemia (CML and ALL, respectively), disease progression and relapse remain a major problem. Growing evidence indicates the loss of immune surveillance of residual leukaemic cells as one of the main contributors to disease recurrence and relapse. More recently, there was an appreciation for how the host’s gut microbiota predisposes to relapse given its potent immunomodulatory capacity. This is especially compelling in haematological malignancies where changes in the gut microbiota have been identified after treatment, persisting in some patients for years after the completion of treatment. In this hypothesis-generating review, we discuss the interaction between the gut microbiota and treatment responses, and its capacity to influence the risk of relapse in both CML and ALL We hypothesize that the gut microbiota contributes to the creation of an immunosuppressive microenvironment, which promotes tumour progression and relapse.
Collapse
Affiliation(s)
- Ilaria S. Pagani
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
- Correspondence:
| | - Govinda Poudel
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Medicine, University of Adelaide, Adelaide 5000, Australia
| | - Hannah R. Wardill
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide 5000, Australia; (G.P.); (H.R.W.)
- Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide 5000, Australia
| |
Collapse
|
31
|
McDonnell L, Gilkes A, Ashworth M, Rowland V, Harries TH, Armstrong D, White P. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 2022; 13:1-18. [PMID: 33651651 PMCID: PMC7928022 DOI: 10.1080/19490976.2020.1870402] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Antibiotics in childhood have been linked with diseases including asthma, juvenile arthritis, type 1 diabetes, Crohn's disease and mental illness. The underlying mechanisms are thought related to dysbiosis of the gut microbiome. We conducted a systematic review of the association between antibiotics and disruption of the pediatric gut microbiome. Searches used MEDLINE, EMBASE and Web of Science. Eligible studies: association between antibiotics and gut microbiome dysbiosis; children 0-18 years; molecular techniques of assessment; outcomes of microbiome richness, diversity or composition. Quality assessed by Newcastle-Ottawa Scale or Cochrane Risk of Bias Tool. Meta-analysis where possible. A total of 4,668 publications identified: 12 in final analysis (5 randomized controlled trials (RCTs), 5 cohort studies, 2 cross-sectional studies). Microbiome richness was measured in 3 studies, species diversity in 6, and species composition in 10. Quality of evidence was good or fair. 5 studies found a significant reduction in diversity and 3 a significant reduction in richness. Macrolide exposure was associated with reduced richness for twice as long as penicillin. Significant reductions were seen in Bifidobacteria (5 studies) and Lactobacillus (2 studies), and significant increases in Proteobacteria such as E. coli (4 studies). A meta-analysis of RCTs of the effect of macrolide (azithromycin) exposure on the gut microbiome found a significant reduction in alpha-diversity (Shannon index: mean difference -0.86 (95% CI -1.59, -0.13). Antibiotic exposure was associated with reduced microbiome diversity and richness, and with changes in bacterial abundance. The potential for dysbiosis in the microbiome should be taken into account when prescribing antibiotics for children.Systematic review registration number: CRD42018094188.
Collapse
Affiliation(s)
- Lucy McDonnell
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - Alexander Gilkes
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - Mark Ashworth
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - Victoria Rowland
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - Timothy Hugh Harries
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - David Armstrong
- School of Population Health and Environmental Sciences, King’s College London, London, UK
| | - Patrick White
- School of Population Health and Environmental Sciences, King’s College London, London, UK,CONTACT Patrick White School of Population Health and Environmental Science, King’s College London, 3rd Floor, Addison House, Great Maze Pond, LondonSE1 1UL, UK
| |
Collapse
|
32
|
Masetti R, Muratore E, Leardini D, Zama D, Turroni S, Brigidi P, Esposito S, Pession A. Gut microbiome in pediatric acute leukemia: from predisposition to cure. Blood Adv 2021; 5:4619-4629. [PMID: 34610115 PMCID: PMC8759140 DOI: 10.1182/bloodadvances.2021005129] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
The gut microbiome (GM) has emerged as a key factor in the genesis and progression of many diseases. The intestinal bacterial composition also influences treatment-related side effects and even the efficacy of oncological therapies. Acute leukemia (AL) is the most common cancer among children and the most frequent cause of cancer-related death during childhood. Outcomes have improved considerably over the past 4 decades, with the current long-term survival for acute lymphoblastic leukemia being ∼90%. However, several acute toxicities and long-term sequelae are associated with the multimodal therapy protocols applied in these patients. Specific GM configurations could contribute to the multistep developmental hypothesis for leukemogenesis. Moreover, GM alterations occur during the AL therapeutic course and are associated with treatment-related complications, especially during hematopoietic stem cell transplantation. The GM perturbation could last even after the removal of microbiome-modifying factors, like antibiotics, chemotherapeutic drugs, or alloimmune reactions, contributing to several health-related issues in AL survivors. The purpose of this article is to provide a comprehensive review of the chronological changes of GM in children with AL, from predisposition to cure. The underpinning biological processes and the potential interventions to modulate the GM toward a potentially health-promoting configuration are also highlighted.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniele Zama
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, and
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; and
| | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Andrea Pession
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
33
|
Oldenburg M, Rüchel N, Janssen S, Borkhardt A, Gössling KL. The Microbiome in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13194947. [PMID: 34638430 PMCID: PMC8507905 DOI: 10.3390/cancers13194947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
For almost 30 years, the term "holobiont" has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.
Collapse
Affiliation(s)
- Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Stefan Janssen
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, 35390 Gießen, Germany;
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Katharina L. Gössling
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
- Correspondence:
| |
Collapse
|
34
|
Yu D, Yu X, Ye A, Xu C, Li X, Geng W, Zhu L. Profiling of gut microbial dysbiosis in adults with myeloid leukemia. FEBS Open Bio 2021; 11:2050-2059. [PMID: 33993646 PMCID: PMC8406483 DOI: 10.1002/2211-5463.13193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
Dysregulation of gut microbiota is implicated in the pathogenesis of various diseases, including metabolic diseases, inflammatory diseases, and cancer. To date, the link between gut microbiota and myeloid leukemia (ML) remains largely unelucidated. Herein, a total of 29 patients with acute myeloid leukemia (AML), 17 patients with chronic myeloid leukemia (CML), and 33 healthy subjects were enrolled, and gut microbiota were profiled via Illumina sequencing of the 16S rRNA. We evaluated the correlation between ML and gut microbiota. The microbial α‐diversity and β‐diversity exhibited significant differences between ML patients and healthy controls (HCs). Compared to healthy subjects, we found that at the phylum level, the relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi was increased, while that of Tenericutes was decreased. Correspondingly, at the genus level in ML, Streptococcus were increased, especially in AML patients, while Megamonas (P = 0.02), Lachnospiraceae NC2004 group, and Prevotella 9 (P = 0.007) were decreased. Moreover, ML‐enriched species, including Sphingomonas, Lysobacyer, Helicobacter, Lactobacillus, Enterococcus, and Clostridium sensu stricto 1, were identified. Our results indicate that the gut microbiota was altered in ML patients compared to that of healthy subjects, which could contribute to the elucidation of microbiota‐related pathogenesis of ML, and the development of novel therapeutic strategies in the treatment of ML.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaomin Yu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Aifang Ye
- Department of Translational Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Chunquan Xu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaolong Li
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Zhu
- Department of Clinical Laboratory Sciences, The First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
35
|
Shi Z, Zhang M. Emerging Roles for the Gut Microbiome in Lymphoid Neoplasms. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2021; 15:11795549211024197. [PMID: 34211309 PMCID: PMC8216388 DOI: 10.1177/11795549211024197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Lymphoid neoplasms encompass a heterogeneous group of malignancies with a predilection for immunocompromised individuals, and the disease burden of lymphoid neoplasms has been rising globally over the last decade. At the same time, mounting studies delineated a crucial role of the gut microbiome in the aetiopathogenesis of various diseases. Orchestrated interactions between myriad microorganisms and the gastrointestinal mucosa establish a defensive barrier for a range of physiological processes, especially immunity and metabolism. These findings provide new perspectives to harness our knowledge of the gut microbiota for preclinical and clinical studies of lymphoma. Here, we review recent findings that support a role for the gut microbiota in the development of lymphoid neoplasms and pinpoint relevant molecular mechanisms. Accordingly, we propose the microbiota-gut-lymphoma axis as a promising target for clinical translation, including auxiliary diagnosis, novel prevention and treatment strategies, and predicting clinical outcomes and treatment-related adverse effects of the disease in the future. This review will reveal a fascinating avenue of research in the microbiota-mediated lymphoma field.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| |
Collapse
|
36
|
Ni J, Fu C, Huang R, Li Z, Li S, Cao P, Zhong K, Ge M, Gao Y. Metabolic syndrome cannot mask the changes of faecal microbiota compositions caused by primary hepatocellular carcinoma. Lett Appl Microbiol 2021; 73:73-80. [PMID: 33768575 DOI: 10.1111/lam.13477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Both hepatocellular carcinoma (HCC) and metabolic syndrome are closely associated with the composition of the gut microbiota (GM). Although it has been proposed that elements of the GM can be used as biomarkers for the early diagnosis of HCC, whether metabolic syndrome results in a misrepresentation of the results of the early diagnosis of HCC using GM remains unclear. We compared the differences in the faecal microbiota of 10 patients with primary HCC, six patients with type 2 diabetes mellitus (T2DM), seven patients with arterial hypertension, six patients with both HCC and T2DM, and 10 patients with both HCC and arterial hypertension, as well as 10 healthy subjects, using high-throughput sequencing of 16S rRNA gene amplicons. Our results revealed a significant difference in the GM between subjects with and without HCC. The 49 bacterial genera out of the 494 detected genera were significantly different between the groups. These results show that changes in the GM can be used to distinguish between subjects with and without HCC, and can resist interference of T2DM and arterial hypertension with the GM. The results of the present study provide an important basis for the clinical auxiliary diagnosis of HCC by detecting the GM.
Collapse
Affiliation(s)
- J Ni
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China.,Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, China
| | - C Fu
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - R Huang
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Z Li
- Research and Development Center, Guangdong Meilikang Bio-Sciences Ltd., Dongguan, China
| | - S Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - P Cao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - K Zhong
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - M Ge
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Y Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Fattizzo B, Cavallaro F, Folino F, Barcellini W. Recent insights into the role of the microbiome in malignant and benign hematologic diseases. Crit Rev Oncol Hematol 2021; 160:103289. [PMID: 33667659 DOI: 10.1016/j.critrevonc.2021.103289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/17/2020] [Accepted: 02/27/2021] [Indexed: 02/07/2023] Open
Abstract
Growing evidence suggests the impact of microbiome alteration, named dysbiosis, on the development of neoplasms, infections, inflammatory diseases, and immuno-mediated disorders. Regarding hematologic diseases, most data regard hematopoietic stem cell transplant (HSCT). In this review, we systematically evaluate the studies concerning microbiome in malignant and benign hematologic disorders beyond HSCT. A permissive microbiota is associated to the development of hematologic malignancies (including acute leukemia, lymphoma, and multiple myeloma), as well as of iron deficiency anemia, autoimmune cytopenias, and aplastic anemia. This happens through various mechanisms; chronic inflammatory triggering, epithelial barrier alteration, antigen dissequestration, and molecular mimicry. Hematologic therapies (chemo and immunosuppression) may induce/worsen dysbiosis and favour disease progression and infectious complications. Antibiotics may also induce dysbiosis with possible long-term consequences. Finally, novel target therapies are likely to alter microbiome, inducing gut inflammation (i.e. small molecules such as tyrosine-kinase-inhibitors) or enhancing host's immune system (as observed with CAR-T cells and checkpoint inhibitors).
Collapse
Affiliation(s)
- Bruno Fattizzo
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Francesca Cavallaro
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Folino
- Department of Oncology and Oncohematology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
38
|
Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int J Mol Sci 2021; 22:ijms22031026. [PMID: 33498529 PMCID: PMC7864170 DOI: 10.3390/ijms22031026] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
Hematological malignancies, including multiple myeloma, lymphoma, and leukemia, are a heterogeneous group of neoplasms that affect the blood, bone marrow, and lymph nodes. They originate from uncontrolled growth of hematopoietic and lymphoid cells from different stages in their maturation/differentiation and account for 6.5% of all cancers around the world. During the last decade, it has been proven that the gut microbiota, more specifically the gastrointestinal commensal bacteria, is implicated in the genesis and progression of many diseases. The immune-modulating effects of the human microbiota extend well beyond the gut, mostly through the small molecules they produce. This review aims to summarize the current knowledge of the role of the microbiota in modulating the immune system, its role in hematological malignancies, and its influence on different therapies for these diseases, including autologous and allogeneic stem cell transplantation, chemotherapy, and chimeric antigen receptor T cells.
Collapse
|
39
|
Gut microbiota profiles of treatment-naïve adult acute myeloid leukemia patients with neutropenic fever during intensive chemotherapy. PLoS One 2020; 15:e0236460. [PMID: 33112882 PMCID: PMC7592783 DOI: 10.1371/journal.pone.0236460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
The intestinal bacterial flora of febrile neutropenic patients has been found to be significantly diverse. However, there are few reports of alterations of in adult acute myeloid leukemia (AML) patients. Stool samples of each treatment-naïve AML patient were collected the day before initiation of induction chemotherapy (pretreatment), on the first date of neutropenic fever and first date of bone marrow recovery. Bacterial DNA was extracted from stool samples and bacterial 16s ribosomal RNA genes were sequenced by next-generation sequencing. Relative abundance, overall richness, Shannon's diversity index and Simpson's diversity index were calculated. No antimicrobial prophylaxis was in placed in all participants. Ten cases of AML patients (4 male and 6 female) were included with a median age of 39 years (range: 19–49) and all of patients developed febrile neutropenia. Firmicutes dominated during the period of neutropenic fever, subsequently declining after bone marrow recovery a pattern in contrast to that shown by Bacteroidetes and Proteobacteria. Enterococcus was more abundant in the febrile neutropenia period compared to pretreatment (mean difference +20.2; p < 0.0001) while Escherichia notably declined during the same period (mean difference -11.2; p = 0.0064). At the operational taxonomic unit (OTU) level, there was a significantly higher level of overall richness in the pretreatment period than in the febrile neutropenic episode (mean OTU of 203.1 vs. 131.7; p = 0.012). Both of the diversity indexes of Shannon and Simpson showed a significant decrease during the febrile neutropenic period. Adult AML patients with a first episode of febrile neutropenia after initial intensive chemotherapy demonstrated a significant decrease in gut microbiota diversity and the level of diversity remained constant despite recovery of bone marrow.
Collapse
|
40
|
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer and has a 5 year survival rate of greater than 90%. Despite this extraordinary success, survivors face lifelong chronic health problems including a predisposition to obesity, metabolic syndrome, and resulting complications like cardiovascular disease. In this issue, Thomas et al. (Yang laboratory) investigated the gut microbiome in pediatric ALL survivors and healthy sibling controls. They identified key changes in operational taxonomic units (OTUs), which have been linked previously to obesity and metabolic syndrome. This study suggests that dysbiosis, which can predispose to life-long secondary complications of ALL, begins in childhood immediately after treatment and opens an ample window for interventions aimed at reducing obesity and metabolic syndrome in ALL survivors.
Collapse
Affiliation(s)
- Laura M Sly
- A5-142 TRB, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
41
|
Thomas R, Wong WSW, Saadon R, Vilboux T, Deeken J, Niederhuber J, Hourigan SK, Yang E. Gut microbial composition difference between pediatric ALL survivors and siblings. Pediatr Hematol Oncol 2020; 37:475-488. [PMID: 32427521 PMCID: PMC7701956 DOI: 10.1080/08880018.2020.1759740] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer with high cure rates leading to rising numbers of long-term survivors. Adult survivors of childhood ALL are at increased risk of obesity, cardiovascular disease, and other chronic illnesses. We hypothesize that ALL therapy is associated with long-term gut microbiome alterations that contribute to predisposition to chronic medical conditions. We conducted a pilot study to test whether differences can be detected between stool microbiota of pediatric ALL survivors and their siblings. Stool samples were collected from 38 individuals under age 19 who were at least 1 year after completion of therapy for ALL. Stool samples collected from 16 healthy siblings served as controls. 16S ribosomal RNA gene sequencing was performed on the stool samples. Comparing microbiota of survivors to sibling controls, no statistically significant differences were found in alpha or beta diversity. However, among the top 10 operational taxonomic units (OTUs) from component 1 in sparse partial least squares discriminant analysis (sPLS-DA) with different relative abundance in survivors versus siblings, OTUs mapping to the genus Faecalibacterium were depleted in survivors. Differences in gut microbial composition were found between pediatric survivors of childhood ALL and their siblings. Specifically, the protective Faecalibacterium is depleted in survivors, which is reminiscent of gut microbiota alteration found in adult survivors of childhood ALL and reported in obesity, suggesting that microbiota alterations in pediatric ALL survivors start in childhood and may play a role in predisposition to chronic illness in later years of survivorship.
Collapse
Affiliation(s)
- Ronay Thomas
- Pediatric Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia, USA
| | - Wendy S. W. Wong
- Inova Translational Medicine Institute, Inova Health Systems, Falls Church, Virginia, USA
| | - Reem Saadon
- Pediatric Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia, USA
| | - Thierry Vilboux
- Inova Translational Medicine Institute, Inova Health Systems, Falls Church, Virginia, USA
| | - John Deeken
- Inova Schar Cancer Institute, Falls Church, Virginia, USA
| | - John Niederhuber
- Inova Translational Medicine Institute, Inova Health Systems, Falls Church, Virginia, USA;,Surgery and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suchitra K. Hourigan
- Inova Translational Medicine Institute, Inova Health Systems, Falls Church, Virginia, USA;,Pediatric Gastroenterology, Pediatric Specialists of Virginia, Falls Church, Virginia, USA;,Pediatrics, Inova Children’s Hospital, Falls Church, Virginia, USA
| | - Elizabeth Yang
- Pediatric Hematology-Oncology, Pediatric Specialists of Virginia, Falls Church, Virginia, USA;,Pediatrics, George Washington University School of Medicine, Washington, DC, USA;,Pediatrics, Virginia Commonwealth University School of Medicine Inova Campus, Falls Church, Virginia, USA
| |
Collapse
|
42
|
Bidirectional interaction between intestinal microbiome and cancer: opportunities for therapeutic interventions. Biomark Res 2020; 8:31. [PMID: 32817793 PMCID: PMC7424681 DOI: 10.1186/s40364-020-00211-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota composition influences the balance between human health and disease. Increasing evidence suggests the involvement of microbial factors in regulating cancer development, progression, and therapeutic response. Distinct microbial species have been implicated in modulating gut environment and architecture that affects cancer therapy outcomes. While some microbial species offer enhanced cancer therapy response, others diminish cancer treatment efficacy. In addition, use of antibiotics, often to minimize infection risks in cancer, causes intestinal dysbiosis and proves detrimental. In this review we discuss the role of gut microbiota in cancer development and therapy. We also provide insights into future strategies to manipulate the microbiome and gut epithelial barrier to augment therapeutic responses while minimizing toxicity or infection risks.
Collapse
|
43
|
Siegmund M, Pagel J, Scholz T, Rupp J, Härtel C, Lauten M. Pro-inflammatory cytokine ratios determine the clinical course of febrile neutropenia in children receiving chemotherapy. Mol Cell Pediatr 2020; 7:5. [PMID: 32519027 PMCID: PMC7283414 DOI: 10.1186/s40348-020-00097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022] Open
Abstract
Background Febrile neutropenia is a common and serious complication during treatment of childhood cancer. Empirical broad-spectrum antibiotics are usually administered until neutrophil cell count recovery. It was the aim of this study to investigate cytokine profiles as potential biomarkers using in-vitro sepsis models to differentiate between distinct clinical courses of febrile neutropenia (FN). Methods We conducted an observational study in FN episodes of pediatric oncology patients. Courses of neutropenia were defined as severe in case of proven blood stream infection or clinical evidence of complicated infection. We collected blood samples at various time points from the onset of FN and stimulated ex vivo with lipopolysaccharide (LPS) and Staphylococcus epidermidis (SE) for 24 h. Twenty-seven cytokine levels were measured in the whole blood culture supernatants by a multiplex immunoassay system. Results Forty-seven FN episodes from 33 children were investigated. IL-8, IL-1β, and MCP-1 expression increased significantly over time. IL-8, MIP-1α, MIP-1β, MCP-1, and TNF-α showed significantly lower concentration in patients with a clinically severe course of the FN. Conclusions Distinct patterns of cytokine profiles seem to be able to determine infectious FN and to predict the severity of its clinical course. If these data can be verified in a multi-centre setting, this may finally lead to an individualized treatment strategy facilitating antibiotic stewardship in these patients.
Collapse
Affiliation(s)
- Mira Siegmund
- Department of Pediatrics, Pediatric Hematology and Oncology, University of Lübeck, 23538, Lübeck, Germany
| | - Julia Pagel
- Department of Pediatrics, Pediatric Hematology and Oncology, University of Lübeck, 23538, Lübeck, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Tasja Scholz
- Department of Pediatrics, Pediatric Hematology and Oncology, University of Lübeck, 23538, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- Department of Pediatrics, Pediatric Hematology and Oncology, University of Lübeck, 23538, Lübeck, Germany
| | - Melchior Lauten
- Department of Pediatrics, Pediatric Hematology and Oncology, University of Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
44
|
De Pietri S, Ingham AC, Frandsen TL, Rathe M, Krych L, Castro-Mejía JL, Nielsen DS, Nersting J, Wehner PS, Schmiegelow K, Hasle H, Pamp SJ, Müller K. Gastrointestinal toxicity during induction treatment for childhood acute lymphoblastic leukemia: The impact of the gut microbiota. Int J Cancer 2020; 147:1953-1962. [PMID: 32115690 DOI: 10.1002/ijc.32942] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022]
Abstract
Intestinal mucositis is a common side effect of chemotherapy leading to diarrhea, abdominal pain and increased risk of infections. The intestinal microbiota has been recognized as a key regulator of mucosal immune responses. Therefore, we hypothesized that intestinal microbial changes would be associated with enterocyte loss and systemic inflammation during induction treatment for childhood acute lymphoblastic leukemia (ALL). We prospectively included 51 children newly-diagnosed with ALL treated in Denmark in 2015-2018. Plasma C-reactive protein (CRP), plasma citrulline (marker of functional enterocytes mass) measurements and fecal samplings were performed on treatment Days 1, 8, 15, 22 and 29. Moreover, intestinal mucositis was scored by a trained nurse/physician. Fecal samples in patients and 19 healthy siblings were analyzed by 16S rRNA gene sequencing (V3-V4 region). Bacterial alpha diversity was lower in patients compared to siblings. It decreased from Day 1 to Days 8-22 and increased on Day 29. Shannon alpha diversity index was correlated with CRP on Days 15-29 (rho = -0.33-0.49; p < 0.05) and with citrulline on Days 15 and 29 (although with p values <0.06, rho = 0.32-0.34). The abundance of unclassified Enterococcus species (spp.) was correlated with CRP on Days 22-29 (rho = 0.42-0.49; p < 0.009), while the abundance of unclassified Lachnospiraceae spp. was correlated with citrulline on days 8-15 (rho = 0.48-0.62, p < 0.001). Systemic inflammation, enterocyte loss and relative abundance of unclassified Enterococcus spp. reached a peak around Day 15. In conclusion, specific changes in the microbiota were associated with the severity of enterocyte loss and systemic inflammation during chemotherapy.
Collapse
Affiliation(s)
- Silvia De Pietri
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anna C Ingham
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas L Frandsen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mathias Rathe
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Nersting
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peder S Wehner
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Sünje J Pamp
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
45
|
Lucafò M, Franzin M, Lagatolla C, Franca R, Bramuzzo M, Stocco G, Decorti G. Emerging Insights on the Interaction Between Anticancer and Immunosuppressant Drugs and Intestinal Microbiota in Pediatric Patients. Clin Transl Sci 2020; 13:238-259. [PMID: 31675176 PMCID: PMC7070880 DOI: 10.1111/cts.12722] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
Diseases affecting the immune system, such as inflammatory bowel disease (IBD), juvenile idiopathic arthritis (JIA), and acute lymphoblastic leukemia (ALL), are pathological conditions affecting the pediatric population and are often associated with alterations in the intestinal microbiota, such as a decrease in bacterial diversity. Growing evidence suggests that gut microbiota can interfere with chemotherapeutic and immunosuppressant drugs, used in the treatment of these diseases, reducing or facilitating drug efficacy. In particular, the effect of intestinal microflora through translocation, immunomodulation, metabolism, enzymatic degradation, and reduction of bacterial diversity seems to be one of the reasons of interindividual variability in the therapeutic response. Although the extent of the role of intestinal microflora in chemotherapy and immunosuppression remains still unresolved, current evidence on bacterial compositional shifts will be taken in consideration together with clinical response to drugs for a better and personalized therapy. This review is focused on the effect of the intestinal microbiota on the efficacy of pharmacological therapy of agents used to treat IBD, JIA, and ALL.
Collapse
Affiliation(s)
- Marianna Lucafò
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”TriesteItaly
| | - Martina Franzin
- PhD Course in Reproductive and Developmental SciencesUniversity of TriesteTriesteItaly
| | | | - Raffaella Franca
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”TriesteItaly
| | - Gabriele Stocco
- Department of Life SciencesUniversity of TriesteTriesteItaly
| | - Giuliana Decorti
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| |
Collapse
|
46
|
Chua LL, Rajasuriar R, Lim YAL, Woo YL, Loke P, Ariffin H. Temporal changes in gut microbiota profile in children with acute lymphoblastic leukemia prior to commencement-, during-, and post-cessation of chemotherapy. BMC Cancer 2020; 20:151. [PMID: 32093640 PMCID: PMC7041273 DOI: 10.1186/s12885-020-6654-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alteration in gut microbiota has been recently linked with childhood leukemia and the use of chemotherapy. Whether the perturbed microbiota community is restored after disease remission and cessation of cancer treatment has not been evaluated. This study examines the chronological changes of gut microbiota in children with acute lymphoblastic leukemia (ALL) prior to the start-, during-, and following cessation of chemotherapy. METHODOLOGY We conducted a longitudinal observational study in gut microbiota profile in a group of paediatric patients diagnosed with ALL using 16 s ribosomal RNA sequencing and compared these patients' microbiota pattern with age and ethnicity-matched healthy children. Temporal changes of gut microbiota in these patients with ALL were also examined at different time-points in relation to chemotherapy. RESULTS Prior to commencement of chemotherapy, gut microbiota in children with ALL had larger inter-individual variability compared to healthy controls and was enriched with bacteria belonging to Bacteroidetes phylum and Bacteroides genus. The relative abundance of Bacteroides decreased upon commencement of chemotherapy. Restitution of gut microbiota composition to resemble that of healthy controls occurred after cessation of chemotherapy. However, the microbiota composition (beta diversity) remained distinctive and a few bacteria were different in abundance among the patients with ALL compared to controls despite completion of chemotherapy and presumed restoration of normal health. CONCLUSION Our findings in this pilot study is the first to suggest that gut microbiota profile in children with ALL remains marginally different from healthy controls even after cessation of chemotherapy. These persistent microbiota changes may have a role in the long-term wellbeing in childhood cancer survivors but the impact of these changes in subsequent health perturbations in these survivors remain unexplored.
Collapse
Affiliation(s)
- Ling Ling Chua
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne Ai Lian Lim
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yin Ling Woo
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Hany Ariffin
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
- Department of Paediatrics, University of Malaya Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Abstract
OPINION STATEMENT There are approximately 1.2 million new hematologic malignancy cases resulting in ~ 690,000 deaths each year worldwide, and hematologic malignancies remain the most commonly occurring cancer in children. Even though advances in anticancer treatment regimens in recent decades have considerably improved survival rates, their cytotoxic effects and the resulting long-term complications pose a significant burden on the patients and the health care system. Therefore, non-toxic treatment modalities are needed to decrease side effects. The human body is the host to approximately 40 trillion microbes, known as the human microbiota. The large majority of the microbiota is located in the gastrointestinal tract, and is primarily composed of bacteria. The microbiota plays several important physiological roles, ranging from digestive functions to immunological and neural development. Investigating the microbiota in patients with hematologic malignancies has several important implications. The microbiota affects hematopoiesis, and influences the efficacies of chemotherapy and antimicrobial treatments. Determination of the microbiota composition and diversity could be an important part of risk stratification in the future, and may also take part to personalize antimicrobial treatments. Modulation of the microbiota via probiotics or fecal transplant can potentially be involved in reducing side effects of chemotherapy, and eliminating multiple drug resistant strains in patients with hematologic malignancies.
Collapse
|
48
|
Nearing JT, Connors J, Whitehouse S, Van Limbergen J, Macdonald T, Kulkarni K, Langille MGI. Infectious Complications Are Associated With Alterations in the Gut Microbiome in Pediatric Patients With Acute Lymphoblastic Leukemia. Front Cell Infect Microbiol 2019; 9:28. [PMID: 30838178 PMCID: PMC6389711 DOI: 10.3389/fcimb.2019.00028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia is the most common pediatric cancer. Fortunately, survival rates exceed 90%, however, infectious complications remain a significant issue that can cause reductions in the quality of life and prognosis of patients. Recently, numerous studies have linked shifts in the gut microbiome composition to infection events in various hematological malignances including acute lymphoblastic leukemia (ALL). These studies have been limited to observing broad taxonomic changes using 16S rRNA gene profiling, while missing possible differences within microbial functions encoded by individual species. In this study we present the first combined 16S rRNA gene and metagenomic shotgun sequencing study on the gut microbiome of an independent pediatric ALL cohort during treatment. In this study we found distinctive differences in alpha diversity and beta diversity in samples from patients with infectious complications in the first 6 months of therapy. We were also able to find specific species and functional pathways that were significantly different in relative abundance between samples that came from patients with infectious complications. Finally, machine learning models based on patient metadata and bacterial species were able to classify samples with high accuracy (84.09%), with bacterial species being the most important classifying features. This study strengthens our understanding of the association between infection and pediatric acute lymphoblastic leukemia treatment and warrants further investigation in the future.
Collapse
Affiliation(s)
- Jacob T. Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jessica Connors
- Division of Gastroenterology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | - Scott Whitehouse
- Division of Gastroenterology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | - Johan Van Limbergen
- Division of Gastroenterology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
- Pediatric Gastroenterology and Nutrition, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tamara Macdonald
- Division of Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | - Ketan Kulkarni
- Division of Hematology/Oncology, Department of Pediatrics, IWK Health Centre, Halifax, NS, Canada
| | - Morgan G. I. Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|