1
|
DÜLGER D, EKİCİ S, DEMİRCİ M, YİĞİN A, BABACAN O. Tracking the footsteps of Burkholderia mallei: determination of the molecular differences and potential resistance genes. Turk J Med Sci 2023; 54:16-25. [PMID: 38812620 PMCID: PMC11031151 DOI: 10.55730/1300-0144.5761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 12/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Chemical biological radiological nuclear threats are at an important point in the agenda of world health today, as they can cause mass deaths. B. mallei attracts attention as a potential biological warfare agent due to its features such as multidrug resistance, a rapid transmission mechanism via aerosol, the absence of a complete treatment protocol for the infection it causes, and the absence of an approved vaccine for protection against the bacteria. B. mallei suspect samples must be studied by experienced personnel in biosafety level III laboratories. B mallei is a difficult and troublesome pathogen to diagnose and many unknowns about B. mallei today. Therefore, the aim of the study was to determine the molecular differences and potential resistance genes of B mallei strains. Materials and methods Determination of the molecular differences and potential resistance genes of B mallei strains with new bioinformatics approaches by comparatively examining the data of 29 B mallei strains, 10 of which were isolated from Türkiye, on the genome list of the National Biotechnology Information Center (NCBI). Results According to the genome annotations of the origins, the origin containing the highest number of CDS which is 5172 was found as the 11th strain obtained in Türkiye in 1949. The origin with the highest number of pseudogenes was determined as 23,344 (China 7) origin. Two hundred and eighty-five pseudogenes found in this strain were obtained from a knee effusion in Myanmar. According to chromosome 2 data, B. mallei strain was determined as the most similar strain to ATCC 23344, line 11 with NCTC 10229 strain, and SAVP1 strain was determined as the least similar strain. When the antimicrobial resistance gene markers of the isolates included in the study were examined, amrA and amrB, qacG ade, Burkholderia pseudomallei Omp38 were found to be carrying. Conclusion In terms of public health, it was thought that the data obtained as a result of our study about B mallei, which is defined as a biological weapon, is very valuable for creating treatment protocols to be applied to possible epidemics in the future. In addition, the available genetic epidemiological data of these strains belonging to a category that is dangerous to work with in a laboratory environment were reviewed.
Collapse
Affiliation(s)
- Dilek DÜLGER
- Department of Medical Microbiology, Faculty of Medicine, Karabük University, Karabük,
Turkiye
| | - Seda EKİCİ
- Republic of Türkiye, the Ministry of Agriculture and Forestry, Veterinary Control Central Research Institute, Ankara,
Turkiye
| | - Mehmet DEMİRCİ
- Department of Medical Microbiology, Faculty of Medicine, Kırklareli University, Kırklareli,
Turkiye
| | - Akın YİĞİN
- Department of Genetics, Faculty of Veterinary, Harran University, Şanlıurfa,
Turkiye
| | - Orkun BABACAN
- Department of Veterinary, Kepsut Vocational School, Balıkesir University, Balıkesir,
Turkiye
| |
Collapse
|
2
|
Charron P, Gao R, Chmara J, Hoover E, Nadin-Davis S, Chauvin D, Hazelwood J, Makondo K, Duceppe MO, Kang M. Influence of genomic variations on glanders serodiagnostic antigens using integrative genomic and transcriptomic approaches. Front Vet Sci 2023; 10:1217135. [PMID: 38125681 PMCID: PMC10730941 DOI: 10.3389/fvets.2023.1217135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Glanders is a highly contagious and life-threatening zoonotic disease caused by Burkholderia mallei (B. mallei). Without an effective vaccine or treatment, early diagnosis has been regarded as the most effective method to prevent glanders transmission. Currently, the diagnosis of glanders is heavily reliant on serological tests. However, given that markedly different host immune responses can be elicited by genetically different strains of the same bacterial species, infection by B. mallei, whose genome is unstable and plastic, may result in various immune responses. This variability can make the serodiagnosis of glanders challenging. Therefore, there is a need for a comprehensive understanding and assessment of how B. mallei genomic variations impact the appropriateness of specific target antigens for glanders serodiagnosis. In this study, we investigated how genomic variations in the B. mallei genome affect gene content (gene presence/absence) and expression, with a special focus on antigens used or potentially used in serodiagnosis. In all the genome sequences of B. mallei isolates available in NCBI's RefSeq database (accessed in July 2023) and in-house sequenced samples, extensive small and large variations were observed when compared to the type strain ATCC 23344. Further pan-genome analysis of those assemblies revealed variations of gene content among all available genomes of B. mallei. Specifically, differences in gene content ranging from 31 to 715 genes with an average of 334 gene presence-absence variations were found in strains with complete or chromosome-level genome assemblies, using the ATCC 23344 strain as a reference. The affected genes included some encoded proteins used as serodiagnostic antigens, which were lost due mainly to structural variations. Additionally, a transcriptomic analysis was performed using the type strain ATCC 23344 and strain Zagreb which has been widely utilized to produce glanders antigens. In total, 388 significant differentially expressed genes were identified between these two strains, including genes related to bacterial pathogenesis and virulence, some of which were associated with genomic variations, particularly structural variations. To our knowledge, this is the first comprehensive study to uncover the impacts of genetic variations of B. mallei on its gene content and expression. These differences would have significant impacts on host innate and adaptive immunity, including antibody production, during infection. This study provides novel insights into B. mallei genetic variants, knowledge which will help to improve glanders serodiagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
3
|
Gaspar EB, dos Santos LR, do Egito AA, dos Santos MG, Mantovani C, Rieger JDSG, Abrantes GADS, Suniga PAP, Favacho JDM, Pinto IB, Nassar AFDC, dos Santos FL, de Araújo FR. Assessment of the Virulence of the Burkholderia mallei Strain BAC 86/19 in BALB/c Mice. Microorganisms 2023; 11:2597. [PMID: 37894255 PMCID: PMC10609534 DOI: 10.3390/microorganisms11102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Burkholderia mallei is an aerobic, Gram-negative, non-motile bacillus. As an obligate mammalian pathogen, it primarily affects solipeds. Although rarely transmitted to humans, the disease it causes, glanders, is classified as a zoonosis. The bacterium was officially eradicated in Brazil in 1969; however, it reemerged after three decades. This study aims to assess the virulence of a specific B. mallei strain, isolated in Brazil, in BALB/c mice through intranasal infection. The strain, B. mallei BAC 86/19, was obtained from the tracheal secretion of a young mare displaying positive serology but no clinical signs of glanders. Post-mortem examinations revealed macroscopic lesions consistent with the disease, however. In mice, the LD50 was determined to be approximately 1.59 × 105 colony-forming units (CFU)/animal. Mice exposed to either 0.1 × LD50 or 1 × LD50 displayed transient weight loss, which resolved after three or five days, respectively. B. mallei persisted within the liver and lung for five days post-infection and in the spleen for seven days. These findings underscore the detectable virulence of the Brazilian B. mallei BAC 86/19 strain in mice, which are relatively resilient hosts. This research points to the importance of the continued investigation of the virulence mechanisms and potential countermeasures associated with B. mallei infections, including their Brazilian isolates.
Collapse
Affiliation(s)
- Emanuelle Baldo Gaspar
- Embrapa South Livestock, BR-153, Km 632, 9 Vila Industrial, Rural Area, Mailbox 242, Bagé 96401-970, RS, Brazil
| | - Lenita Ramires dos Santos
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Andréa Alves do Egito
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Maria Goretti dos Santos
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| | - Cynthia Mantovani
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Juliana da Silva Gomes Rieger
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Guilherme Augusto de Sousa Abrantes
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | - Paula Adas Pereira Suniga
- MAI/DAI Scholarship, Federal University of Mato Grosso do Sul, Cidade Universitária, Costa e Silva Ave., Campo Grande 79070-900, MS, Brazil;
- Postgraduate Program in Animal Science, Faculty of Veterinary Medicine and Animal Science-FAMEZ/UFMS, Federal University of Mato Grosso do Sul, Senador Filinto Muller Ave., 2443, Campo Grande 79074-460, MS, Brazil
| | | | - Ingrid Batista Pinto
- Embrapa Beef Cattle/Ministry of Agriculture, Livestock and Food Supply Scholarship, Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (C.M.); (J.d.S.G.R.); (G.A.d.S.A.); (I.B.P.)
| | | | - Fernando Leandro dos Santos
- UFPE Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil;
| | - Flábio Ribeiro de Araújo
- Embrapa Beef Cattle, Rádio Maia Ave., 830, Campo Grande 79106-550, MS, Brazil; (L.R.d.S.); (A.A.d.E.); (M.G.d.S.); (F.R.d.A.)
| |
Collapse
|
4
|
Saini S, Singha H, Shanmugasundaram K, Tripathi BN. Characterization of immunoglobulin and cytokine responses in Burkholderia mallei infected equids. Microb Pathog 2021; 162:105310. [PMID: 34838612 DOI: 10.1016/j.micpath.2021.105310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023]
Abstract
Burkholderia mallei causes a highly fatal infectious disease in equines known as glanders. It is one of the OIE listed notifiable diseases, which entails strict control policy measures once B. mallei infection is confirmed in the susceptible hosts. Humans, especially equine handlers, veterinary professionals and laboratory workers are at greater risk to acquire the B. mallei infection directly through prolonged contact with glanderous equines, and indirectly through unprotected handling of B. mallei contaminated materials. Further, natural resistance of B. mallei to multiple antibiotics, aerosol transmission, lack of effective vaccine and treatment make this organism a potential agent of biological warfare. Results of experimental B. mallei infection in mouse and non-human primates and immunization with live attenuated B. mallei strains demonstrated that activation of early innate and adaptive immune responses play a critical role in controlling B. mallei infection. However, the immune response elicited by the primary hosts (equids) B. mallei infection is poorly understood. Therefore, we aimed to investigate immune responses in glanders affected horses (n = 23) and mules (n = 1). In this study, chronically infected equids showed strong humoral responses (IgM, IgG and IgA) specific to B. mallei type 6 secretory proteins such as Hcp1, TssA and TssB. The infected equids also elicited robust cellular responses characterized by significantly elevated levels of IFN-γ, TNF-α, IL-12, IL-17 and IL-6 in PBMCs. In addition, stimulation of equine PBMCs by Hcp1 resulted in the further elevation of these cytokines. Thus, the present study indicated that antibody response and T helper cell (Th) type 1-associated cytokines were the salient features of chronic B. mallei infection in horses. The immune responses also suggest further evaluation of these proteins as potential vaccine candidates.
Collapse
Affiliation(s)
- Sheetal Saini
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Harisankar Singha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India.
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Bhupendra Nath Tripathi
- Division of Animal Sciences, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India.
| |
Collapse
|
5
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
6
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
7
|
Cote CK, Blanco II, Hunter M, Shoe JL, Klimko CP, Panchal RG, Welkos SL. Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microb Pathog 2020; 142:104050. [PMID: 32050093 DOI: 10.1016/j.micpath.2020.104050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| | - Irma I Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | | | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
8
|
Soucy AM, Hurteau GJ, Metzger DW. Live Vaccination Generates Both Disease Tolerance and Host Resistance During Chronic Pulmonary Infection With Highly Virulent Francisella tularensis SchuS4. J Infect Dis 2019; 218:1802-1812. [PMID: 29931113 DOI: 10.1093/infdis/jiy379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Disease tolerance can preserve host homeostasis and limit the negative impact of infections. We report that vaccinated mice survived pulmonary challenge with the extremely virulent SchuS4 strain of Francisella tularensis for at least 100 days, despite the persistence of large numbers (~104) of organisms. Transfer of 100 of these resident bacteria to naive animals caused 100% lethality, demonstrating that virulence was maintained. Tissue damage in the lung was limited over the course of infection and was associated with increased levels of amphiregulin. Mice depleted of CD4+ cells had reduced amphiregulin and succumbed to infection. In addition, neutralization of interferon-γ or depletion of CD8+ cells resulted in increased pathogen loads, bacteremia, and death of the host. Conversely, depletion of Ly6G+ neutrophils had no effect on survival and actually resulted in reduced bacterial levels. Understanding the interplay between host resistance and disease tolerance will provide new insights into the understanding of chronic infectious diseases.
Collapse
Affiliation(s)
- Alicia M Soucy
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| | - Gregory J Hurteau
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, New York
| |
Collapse
|
9
|
Aschenbroich SA, Lafontaine ER, Lopez MC, Baker HV, Hogan RJ. Transcriptome analysis of human monocytic cells infected with Burkholderia species and exploration of pentraxin-3 as part of the innate immune response against the organisms. BMC Med Genomics 2019; 12:127. [PMID: 31492148 PMCID: PMC6729079 DOI: 10.1186/s12920-019-0575-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/29/2019] [Indexed: 01/13/2023] Open
Abstract
Background Burkholderia mallei (Bm) is a facultative intracellular bacterial pathogen causing highly-fatal glanders in solipeds and humans. The ability of Bm to thrive intracellularly is thought to be related to exploitation of host immune response-related genes and pathways. Relatively little is known of the molecular strategies employed by this pathogen to modulate these pathways and evade intracellular killing. This manuscript seeks to fill gaps in the understanding of the interface between Bm and innate immunity by examining gene expression changes during infection of host monocytes. Methods The transcriptome of Bm-infected human Mono Mac-6 (MM6) monocytes was profiled on Affymetrix Human Transcriptome GeneChips 2.0. Gene expression changes in Bm-infected monocytes were compared to those of Burkholderia thailandensis (Bt)-infected monocytes and to uninfected monocytes. The resulting dataset was normalized using Robust Multichip Average and subjected to statistical analyses employing a univariate F test with a random variance model. Differentially expressed genes significant at p < 0.001 were subjected to leave-one-out cross-validation studies and 1st and 3rd nearest neighbor prediction model. Significant probe sets were used to populate human pathways in Ingenuity Pathway Analysis, with statistical significance determined by Fisher’s exact test or z-score. Results The Pattern Recognition Receptor (PRR) pathway was represented among significantly enriched immune response-related human canonical pathways, with evidence of upregulation across both infections. Among members of this pathway, pentraxin-3 was significantly upregulated by Bm- or Bt-infected monocytes. Pentraxin-3 (PTX3) was demonstrated to bind to both Bt and Burkholderia pseudomallei (Bp), but not Bm. Subsequent assays did not identify a role for PTX3 in potentiating complement-mediated lysis of Bt or in enhancing phagocytosis or replication of Bt in human monocytes. Conclusion We report on the novel binding of PTX3 to Bt and Bp, with lack of interaction with Bm, suggesting that a possible evasive mechanism by Bm warrants further exploration. We determined that (1) PTX3 may not play a role in activating the lytic pathway of complement in different bacterial species and that (2) the opsonophagocytic properties of PTX3 should be investigated in different primary or immortalized cell lines representing host phagocytes, given lack of binding of PTX3 to MM6 monocytes.
Collapse
Affiliation(s)
- Sophie A Aschenbroich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Maria Cecilia Lopez
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 2015 SW 16th Ave, Gainesville, FL, 32608, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA. .,Department of Veterinary Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
| |
Collapse
|
10
|
Outbreak Caused by Escherichia coli O18: K1: H7 Sequence Type 95 in a Neonatal Intensive Care Unit in Barcelona, Spain. Pediatr Infect Dis J 2017. [PMID: 28650938 DOI: 10.1097/inf.0000000000001652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Escherichia coli is one of the most frequent causes of late-onset neonatal sepsis. The aim of this study was to characterize an outbreak of neonatal sepsis occurring in the neonatal intensive care unit of the Hospital Clinic of Barcelona from April to August 2013. METHODS After presentation of the index case, all E. coli isolates from previously hospitalized neonates, health-care workers and neonates admitted to the neonatal intensive care unit from April to October 2013 were tested for K1 antigen positivity and epidemiologically compared by pulse-field gel electrophoresis. Furthermore, the E. coli K1 strains collected from neonates during this period were analyzed by different methods (serotyping, phylotyping, polymerase chain reaction of virulence factors, antimicrobial resistance and "in vitro" assays in Human Brain Microvascular Endothelial Cells (HBMEC)). RESULTS An E. coli O18:K1:H7 sequence type 95 and phylogenetic group B2 strain was the cause of the outbreak involving 6 preterm neonates: 1 with late septicemia because of a urinary focus and 5 with late-onset septicemia and meningitis, 3 of whom died. All showed the same pulsotype, full resistance to ampicillin and intermediate resistance to gentamicin. The outbreak strain carried the pathogenicity island (PAI) IIJ96-like domain that could explain the high-grade bacteremia necessary to develop meningitis. CONCLUSIONS All the E. coli isolates responsible for this outbreak belonged to a single clone suggesting a common source of infection, and it was categorized as O18:K1:H7. Despite the bacteria's pathogenicity has an important role in the severity of infection, the host-associated factors were crucial for the fatal outcomes.
Collapse
|
11
|
Vander Broek CW, Stevens JM. Type III Secretion in the Melioidosis Pathogen Burkholderia pseudomallei. Front Cell Infect Microbiol 2017; 7:255. [PMID: 28664152 PMCID: PMC5471309 DOI: 10.3389/fcimb.2017.00255] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 02/03/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative intracellular pathogen and the causative agent of melioidosis, a severe disease of both humans and animals. Melioidosis is an emerging disease which is predicted to be vastly under-reported. Type III Secretion Systems (T3SSs) are critical virulence factors in Gram negative pathogens of plants and animals. The genome of B. pseudomallei encodes three T3SSs. T3SS-1 and -2, of which little is known, are homologous to Hrp2 secretion systems of the plant pathogens Ralstonia and Xanthomonas. T3SS-3 is better characterized and is homologous to the Inv/Mxi-Spa secretion systems of Salmonella spp. and Shigella flexneri, respectively. Upon entry into the host cell, B. pseudomallei requires T3SS-3 for efficient escape from the endosome. T3SS-3 is also required for full virulence in both hamster and murine models of infection. The regulatory cascade which controls T3SS-3 expression and the secretome of T3SS-3 have been described, as well as the effect of mutations of some of the structural proteins. Yet only a few effector proteins have been functionally characterized to date and very little work has been carried out to understand the hierarchy of assembly, secretion and temporal regulation of T3SS-3. This review aims to frame current knowledge of B. pseudomallei T3SSs in the context of other well characterized model T3SSs, particularly those of Salmonella and Shigella.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| |
Collapse
|
12
|
Lewis ERG, Kilgore PB, Mott TM, Pradenas GA, Torres AG. Comparing in vitro and in vivo virulence phenotypes of Burkholderia pseudomallei type G strains. PLoS One 2017; 12:e0175983. [PMID: 28414823 PMCID: PMC5393900 DOI: 10.1371/journal.pone.0175983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/03/2017] [Indexed: 01/18/2023] Open
Abstract
Burkholderia pseudomallei (Bpm) is a saprophytic rod-shaped gram-negative bacterium and the causative agent of melioidosis. This disease has previously been described as endemic in areas such as northern Australia and Southeast Asia, but, more recently, a better understanding of the epidemiology of melioidosis indicated that the disease is distributed worldwide, including regions of the Americas and Africa. A 16S-23S rDNA internal transcribed spacer (ITS) typing system has been developed for Bpm and has revealed that ITS types C, E, and hybrid CE are mainly associated with Australia and Southeast Asia while type G strains are more associated with cases of melioidosis in the Western Hemisphere. The purpose of the current study was to determine the in vitro and in vivo virulence profiles of the understudied Bpm type G strains Ca2009, Ca2013a, Mx2013, and 724644 and compared such phenotypes to the commonly studied Bpm type C strain K96243. We evaluated virulence by measuring invasion/uptake and survival of these Bpm strains in murine respiratory epithelial LA-4 cells and alveolar macrophage MH-S cells using different multiplicity of infections (MOIs of 1 and 10). We also calculated the lethal dose 50 values (LD50) in BALB/c mice that were inoculated intranasally with either Ca2009, Ca2013a, or Mx2013. Overall, the virulence and lethality phenotypes of Bpm type G strains were similar to the Bpm type C strain K96243. Additional comparative analyses between the Bpm ITS types may lead to a better understanding of the contribution of the ITS type to the epidemiology and ecology of Bpm strains.
Collapse
Affiliation(s)
- Eric R. G. Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany M. Mott
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gonzalo A. Pradenas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Bernhards RC, Cote CK, Amemiya K, Waag DM, Klimko CP, Worsham PL, Welkos SL. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice. Arch Microbiol 2016; 199:277-301. [PMID: 27738703 PMCID: PMC5306356 DOI: 10.1007/s00203-016-1303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3–180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Collapse
Affiliation(s)
- R C Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
- Present Address: Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, 21010-5424, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - K Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - D M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - C P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - P L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
14
|
David J, Bell RE, Clark GC. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells. Front Cell Infect Microbiol 2015; 5:80. [PMID: 26636042 PMCID: PMC4649042 DOI: 10.3389/fcimb.2015.00080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 11/17/2022] Open
Abstract
Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan David
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| | - Rachel E Bell
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK ; Division of Immunology, Infection and Inflammatory Disease, Centre for Molecular and Cellular Biology of Inflammation, King's College London London, UK
| | - Graeme C Clark
- Microbiology, Biomedical Sciences, Defence Science and Technology Laboratory Salisbury, UK
| |
Collapse
|
15
|
Memišević V, Zavaljevski N, Rajagopala SV, Kwon K, Pieper R, DeShazer D, Reifman J, Wallqvist A. Mining host-pathogen protein interactions to characterize Burkholderia mallei infectivity mechanisms. PLoS Comput Biol 2015; 11:e1004088. [PMID: 25738731 PMCID: PMC4349708 DOI: 10.1371/journal.pcbi.1004088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pathogenicity relies on protein virulence factors to control and promote bacterial internalization, survival, and replication within eukaryotic host cells. We recently used yeast two-hybrid (Y2H) screening to identify a small set of novel Burkholderia proteins that were shown to attenuate disease progression in an aerosol infection animal model using the virulent Burkholderia mallei ATCC 23344 strain. Here, we performed an extended analysis of primarily nine B. mallei virulence factors and their interactions with human proteins to map out how the bacteria can influence and alter host processes and pathways. Specifically, we employed topological analyses to assess the connectivity patterns of targeted host proteins, identify modules of pathogen-interacting host proteins linked to processes promoting infectivity, and evaluate the effect of crosstalk among the identified host protein modules. Overall, our analysis showed that the targeted host proteins generally had a large number of interacting partners and interacted with other host proteins that were also targeted by B. mallei proteins. We also introduced a novel Host-Pathogen Interaction Alignment (HPIA) algorithm and used it to explore similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica. We inferred putative roles of B. mallei proteins based on the roles of their aligned Y. pestis and S. enterica partners and showed that up to 73% of the predicted roles matched existing annotations. A key insight into Burkholderia pathogenicity derived from these analyses of Y2H host-pathogen interactions is the identification of eukaryotic-specific targeted cellular mechanisms, including the ubiquitination degradation system and the use of the focal adhesion pathway as a fulcrum for transmitting mechanical forces and regulatory signals. This provides the mechanisms to modulate and adapt the host-cell environment for the successful establishment of host infections and intracellular spread. Burkholderia species need to manipulate many host processes and pathways in order to establish a successful intracellular infection in eukaryotic host organisms. Burkholderia mallei uses secreted virulence factor proteins as a means to execute host-pathogen interactions and promote pathogenesis. While validated virulence factor proteins have been shown to attenuate infection in animal models, their actual roles in modifying and influencing host processes are not well understood. Here, we used host-pathogen protein-protein interactions derived from yeast two-hybrid screens to study nine known B. mallei virulence factors and map out potential virulence mechanisms. From the data, we derived both general and specific insights into Burkholderia host-pathogen infectivity pathways. We showed that B. mallei virulence factors tended to target multifunctional host proteins, proteins that interacted with each other, and host proteins with a large number of interacting partners. We also identified similarities between host-pathogen interactions of B. mallei, Yersinia pestis, and Salmonella enterica using a novel host-pathogen interactions alignment algorithm. Importantly, our data are compatible with a framework in which multiple B. mallei virulence factors broadly influence key host processes related to ubiquitin-mediated proteolysis and focal adhesion. This provides B. mallei the means to modulate and adapt the host-cell environment to advance infection.
Collapse
Affiliation(s)
- Vesna Memišević
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Nela Zavaljevski
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | | | - Keehwan Kwon
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rembert Pieper
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| |
Collapse
|
16
|
Memišević V, Kumar K, Cheng L, Zavaljevski N, DeShazer D, Wallqvist A, Reifman J. DBSecSys: a database of Burkholderia mallei secretion systems. BMC Bioinformatics 2014; 15:244. [PMID: 25030112 PMCID: PMC4112206 DOI: 10.1186/1471-2105-15-244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 01/08/2023] Open
Abstract
Background Bacterial pathogenicity represents a major public health concern worldwide. Secretion systems are a key component of bacterial pathogenicity, as they provide the means for bacterial proteins to penetrate host-cell membranes and insert themselves directly into the host cells’ cytosol. Burkholderia mallei is a Gram-negative bacterium that uses multiple secretion systems during its host infection life cycle. To date, the identities of secretion system proteins for B. mallei are not well known, and their pathogenic mechanisms of action and host factors are largely uncharacterized. Description We present the Database of Burkholderia malleiSecretion Systems (DBSecSys), a compilation of manually curated and computationally predicted bacterial secretion system proteins and their host factors. Currently, DBSecSys contains comprehensive experimentally and computationally derived information about B. mallei strain ATCC 23344. The database includes 143 B. mallei proteins associated with five secretion systems, their 1,635 human and murine interacting targets, and the corresponding 2,400 host-B. mallei interactions. The database also includes information about 10 pathogenic mechanisms of action for B. mallei secretion system proteins inferred from the available literature. Additionally, DBSecSys provides details about 42 virulence attenuation experiments for 27 B. mallei secretion system proteins. Users interact with DBSecSys through a Web interface that allows for data browsing, querying, visualizing, and downloading. Conclusions DBSecSys provides a comprehensive, systematically organized resource of experimental and computational data associated with B. mallei secretion systems. It provides the unique ability to study secretion systems not only through characterization of their corresponding pathogen proteins, but also through characterization of their host-interacting partners. The database is available at https://applications.bhsai.org/dbsecsys.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U,S, Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
17
|
Comparative Burkholderia pseudomallei natural history virulence studies using an aerosol murine model of infection. Sci Rep 2014; 4:4305. [PMID: 24603493 PMCID: PMC3945929 DOI: 10.1038/srep04305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/13/2014] [Indexed: 12/24/2022] Open
Abstract
Melioidosis is an endemic disease caused by the bacterium Burkholderia pseudomallei. Concerns exist regarding B. pseudomallei use as a potential bio-threat agent causing persistent infections and typically manifesting as severe pneumonia capable of causing fatal bacteremia. Development of suitable therapeutics against melioidosis is complicated due to high degree of genetic and phenotypic variability among B. pseudomallei isolates and lack of data establishing commonly accepted strains for comparative studies. Further, the impact of strain variation on virulence, disease presentation, and mortality is not well understood. Therefore, this study evaluate and compare the virulence and disease progression of B. pseudomallei strains K96243 and HBPUB10303a, following aerosol challenge in a standardized BALB/c mouse model of infection. The natural history analysis of disease progression monitored conditions such as weight, body temperature, appearance, activity, bacteremia, organ and tissue colonization (pathological and histological analysis) and immunological responses. This study provides a detailed, direct comparison of infection with different B. pseudomallei strains and set up the basis for a standardized model useful to test different medical countermeasures against Burkholderia species. Further, this protocol serves as a guideline to standardize other bacterial aerosol models of infection or to define biomarkers of infectious processes caused by other intracellular pathogens.
Collapse
|
18
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
19
|
Lafontaine ER, Zimmerman SM, Shaffer TL, Michel F, Gao X, Hogan RJ. Use of a safe, reproducible, and rapid aerosol delivery method to study infection by Burkholderia pseudomallei and Burkholderia mallei in mice. PLoS One 2013; 8:e76804. [PMID: 24098563 PMCID: PMC3788738 DOI: 10.1371/journal.pone.0076804] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a saprophytic bacterium readily isolated from wet soils of countries bordering the equator. Burkholderia mallei is a host-adapted clone of B. pseudomallei that does not persist outside of its equine reservoir and causes the zoonosis glanders, which is endemic in Asia, Africa, the Middle East and South America. Infection by these organisms typically occurs via percutaneous inoculation or inhalation of aerosols, and the most common manifestation is severe pneumonia leading to fatal bacteremia. Glanders and melioidosis are difficult to diagnose and require prolonged antibiotic therapy with low success rates. There are no vaccines available to protect against either Burkholderia species, and there is concern regarding their use as biological warfare agents given that B. mallei has previously been utilized in this manner. Hence, experiments were performed to establish a mouse model of aerosol infection to study the organisms and develop countermeasures. Using a hand-held aerosolizer, BALB/c mice were inoculated intratracheally with strains B. pseudomallei 1026b and B. mallei ATCC23344 and growth of the agents in the lungs, as well as dissemination to the spleen, were examined. Mice infected with 102, 103 and 104 organisms were unable to control growth of B. mallei in the lungs and bacteria rapidly disseminated to the spleen. Though similar results were observed in mice inoculated with 103 and 104B. pseudomallei cells, animals infected with 102 organisms controlled bacterial replication in the lungs, dissemination to the spleen, and the extent of bacteremia. Analysis of sera from mice surviving acute infection revealed that animals produced antibodies against antigens known to be targets of the immune response in humans. Taken together, these data show that small volume aerosol inoculation of mice results in acute disease, dose-dependent chronic infection, and immune responses that correlate with those seen in human infections.
Collapse
Affiliation(s)
- Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Shawn M. Zimmerman
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Teresa L. Shaffer
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Xiudan Gao
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Hogan
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Chaves SJ, Schegg K, Kozel TR, Aucoin DP. In Vivo Microbial Antigen Discovery (InMAD) to identify diagnostic proteins and polysaccharides that are circulating during microbial infections. Methods Mol Biol 2013; 1061:155-65. [PMID: 23963936 DOI: 10.1007/978-1-62703-589-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Immunoassays employed at the point-of-care (POC) are often useful for diagnosing acute infections. Many of these assays rely on identification of microbial antigens that are secreted or shed during infection. However, determining which microbial antigens are best to target by immunoassay can be the most difficult aspect of developing a new diagnostic product. Here we describe a novel technique termed "In vivo Microbial Antigen Discovery" or "InMAD" for identification of microbial antigens that may be targeted for the diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Sindy J Chaves
- Department of Microbiology and Immunology, University of Nevada, Reno, NV, USA
| | | | | | | |
Collapse
|
21
|
Stundick MV, Albrecht MT, Houchens CR, Smith AP, Dreier TM, Larsen JC. Animal models for Francisella tularensis and Burkholderia species: scientific and regulatory gaps toward approval of antibiotics under the FDA Animal Rule. Vet Pathol 2013; 50:877-92. [PMID: 23628693 DOI: 10.1177/0300985813486812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development and regulatory approval of medical countermeasures (MCMs) for the treatment and prevention of bacterial threat agent infections will require the evaluation of products in animal models. To obtain regulatory approval, these models must accurately recapitulate aspects of human disease, including, but not necessarily limited to, route of exposure, time to disease onset, pathology, immune response, and mortality. This article focuses on the state of animal model development for 3 agents for which models are largely immature: Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. An overview of available models and a description of scientific and regulatory gaps are provided.
Collapse
Affiliation(s)
- M V Stundick
- US Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority, 375 E. St, SW- 12th Floor, Washington, DC 20024, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Lu R, Popov V, Patel J, Eaves-Pyles T. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages. Front Cell Infect Microbiol 2012; 2:165. [PMID: 23293773 PMCID: PMC3531596 DOI: 10.3389/fcimb.2012.00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 01/11/2023] Open
Abstract
Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.
Collapse
Affiliation(s)
- Richard Lu
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | | | | | | |
Collapse
|
23
|
Saqib M, Muhammad G, Naureen A, Hussain MH, Asi MN, Mansoor MK, Toufeer M, Khan I, Neubauer H, Sprague LD. Effectiveness of an antimicrobial treatment scheme in a confined glanders outbreak. BMC Vet Res 2012; 8:214. [PMID: 23134717 PMCID: PMC3526512 DOI: 10.1186/1746-6148-8-214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glanders is a contagious and fatal zoonotic disease of solipeds caused by the Gram-negative bacterium Burkholderia (B.) mallei. Although regulations call for culling of diseased animals, certain situations e.g. wild life conservation, highly valuable breeding stock, could benefit from effective treatment schemes and post-exposure prophylaxis. RESULTS Twenty three culture positive glanderous horses were successfully treated during a confined outbreak by applying a treatment protocol of 12 weeks duration based on the parenteral administration of enrofloxacin and trimethoprim plus sulfadiazine, followed by the oral administration of doxycycline. Induction of immunosupression in six randomly chosen horses after completion of treatment did not lead to recrudescence of disease. CONCLUSION This study demonstrates that long term treatment of glanderous horses with a combination of various antibiotics seems to eliminate the agent from the organism. However, more studies are needed to test the effectiveness of this treatment regime on B. mallei strains from different endemic regions. Due to its cost and duration, this treatment can only be an option in certain situations and should not replace the current "testing and culling" policy, in conjunction with adequate compensation to prevent spreading of disease.
Collapse
Affiliation(s)
- Muhammad Saqib
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad 38040 Pakistan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei. PLoS One 2012; 7:e35386. [PMID: 22530013 PMCID: PMC3328442 DOI: 10.1371/journal.pone.0035386] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/16/2012] [Indexed: 01/22/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacillus that is the causative agent of melioidosis. The bacterium is inherently resistant to many antibiotics and mortality rates remain high in endemic areas. The lipopolysaccharide (LPS) and capsular polysaccharide (CPS) are two surface-associated antigens that contribute to pathogenesis. We previously developed two monoclonal antibodies (mAbs) specific to the CPS and LPS; the CPS mAb was shown to identify antigen in serum and urine from melioidosis patients. The goal of this study was to determine if passive immunization with CPS and LPS mAbs alone and in combination would protect mice from a lethal challenge with B. pseudomallei. Intranasal (i.n.) challenge experiments were performed with B. pseudomallei strains 1026b and K96423. Both mAbs provided significant protection when administered alone. A combination of mAbs was protective when low doses were administered. In addition, combination therapy provided a significant reduction in spleen colony forming units (cfu) compared to results when either the CPS or LPS mAbs were administered alone.
Collapse
Affiliation(s)
- David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, Nevada, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Massey S, Johnston K, Mott TM, Judy BM, Kvitko BH, Schweizer HP, Estes DM, Torres AG. In vivo Bioluminescence Imaging of Burkholderia mallei Respiratory Infection and Treatment in the Mouse Model. Front Microbiol 2011; 2:174. [PMID: 21904535 PMCID: PMC3162308 DOI: 10.3389/fmicb.2011.00174] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 08/08/2011] [Indexed: 02/06/2023] Open
Abstract
Bioluminescent imaging (BLI) technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real-time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5 × 103 bacteria and monitored by BLI at 24, 48, and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria.
Collapse
Affiliation(s)
- Shane Massey
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Allwood EM, Devenish RJ, Prescott M, Adler B, Boyce JD. Strategies for Intracellular Survival of Burkholderia pseudomallei. Front Microbiol 2011; 2:170. [PMID: 22007185 PMCID: PMC3159172 DOI: 10.3389/fmicb.2011.00170] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/26/2011] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high mortality that is prevalent in tropical regions of the world. A key component of the pathogenesis of melioidosis is the ability of B. pseudomallei to enter, survive, and replicate within mammalian host cells. For non-phagocytic cells, bacterial adhesins have been identified both on the bacterial surface and associated with Type 4 pili. Cell invasion involves components of one or more of the three Type 3 Secretion System clusters, which also mediate, at least in part, the escape of bacteria from the endosome into the cytoplasm, where bacteria move by actin-based motility. The mechanism of actin-based motility is not clearly understood, but appears to differ from characterized mechanisms in other bacterial species. A small proportion of intracellular bacteria is targeted by host cell autophagy, involving direct recruitment of LC3 to endosomes rather than through uptake by canonical autophagosomes. However, the majority of bacterial cells are able to circumvent autophagy and other intracellular defense mechanisms such as the induction of inducible nitric oxide synthase, and then replicate in the cytoplasm and spread to adjacent cells via membrane fusion, resulting in the formation of multi-nucleated giant cells. A potential role for host cell ubiquitin in the autophagic response to bacterial infection has recently been proposed.
Collapse
|
27
|
Galyov EE, Brett PJ, DeShazer D. Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol 2010; 64:495-517. [PMID: 20528691 DOI: 10.1146/annurev.micro.112408.134030] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are closely related gram-negative bacteria that can cause serious diseases in humans and animals. This review summarizes the current and rapidly expanding knowledge on the specific virulence factors employed by these pathogens and their roles in the pathogenesis of melioidosis and glanders. In particular, the contributions of recently identified virulence factors are described in the context of the intracellular lifestyle of these pathogens. Throughout this review, unique and shared virulence features of B. pseudomallei and B. mallei are discussed.
Collapse
Affiliation(s)
- Edouard E Galyov
- Department of Infection, Immunity and Inflammation, MSB, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | |
Collapse
|
28
|
Burtnick MN, DeShazer D, Nair V, Gherardini FC, Brett PJ. Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 2010; 78:88-99. [PMID: 19884331 PMCID: PMC2798217 DOI: 10.1128/iai.00985-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/06/2009] [Accepted: 10/26/2009] [Indexed: 01/09/2023] Open
Abstract
Burkholderia mallei is a facultative intracellular pathogen that causes severe disease in animals and humans. Recent studies have shown that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for survival in a hamster model of glanders. To better understand the role of T6SS-1 in the pathogenesis of disease, studies were initiated to examine the interactions of B. mallei tssE mutants with RAW 264.7 murine macrophages. Results obtained by utilizing modified gentamicin protection assays indicated that although the tssE mutants were able to survive within RAW 264.7 cells, significant growth defects were observed in comparison to controls. In addition, analysis of infected monolayers by differential interference contrast and fluorescence microscopy demonstrated that the tssE mutants lacked the ability to induce multinucleated giant cell formation. Via the use of fluorescence microscopy, tssE mutants were shown to undergo escape from lysosome-associated membrane protein 1-positive vacuoles. Curiously, however, following entry into the cytosol, the mutants exhibited actin polymerization defects resulting in inefficient intra- and intercellular spread characteristics. Importantly, all mutant phenotypes observed in this study could be restored by complementation. Based upon these findings, it appears that T6SS-1 plays a critical role in growth and actin-based motility following uptake of B. mallei by RAW 264.7 cells.
Collapse
Affiliation(s)
- Mary N. Burtnick
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - David DeShazer
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Vinod Nair
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Frank C. Gherardini
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama 36688, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, Research Technologies Section, RTB, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840
| |
Collapse
|