1
|
Vuković D, Miletić M, Toljić B, Milojević N, Jovanović O, Kuzmanović Pfićer J, Škoro N, Puač N. Plasma-Activated Water Against Carbapenem-Resistant Klebsiella pneumoniae and Vancomycin-Resistant Enterococcus faecalis. Pathogens 2025; 14:410. [PMID: 40430731 PMCID: PMC12114337 DOI: 10.3390/pathogens14050410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
The scope of the antibacterial effects of plasma-activated water (PAW) is not yet fully comprehended. We investigated the activity of PAW produced by the in-house 3-pin atmospheric pressure plasma jet against carbapenem-resistant Klebsiella pneumoniae and vancomycin-resistant Enterococcus faecalis, with a focus on PAW's potential to promote susceptibility to conventional antibiotics in these bacteria. Bacterial inactivation was determined by the colony count after 15 and 60 min PAW treatments. Minimum inhibitory concentrations (MICs) measured following repeated exposures to PAW across multiple generations of bacteria enabled the assessment of changes in susceptibility to antibiotics. The PAW's efficacy was also analyzed through the detection of intracellular reactive oxygen and nitrogen species in treated bacteria. Time-dependent significant inactivation efficiency against K. pneumoniae was observed (log reduction 6.92 ± 0.24 after 60 min exposure), while effects on E. faecalis were limited. PAW demonstrated potential to decrease the MICs of crucial antibiotics. Namely, a 50 to 62.5% decrease in the MICs of colistin against K. pneumoniae and a 25% reduction in the MICs of vancomycin against enterococci were recorded. We found a significant increase in the superoxide anion concentration in K. pneumoniae and E. faecalis cells after PAW treatments. This study indicates that PAW's inactivating efficacy coupled with the capacity for the potentiation of antibiotic effects is a promising combination against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Dragana Vuković
- Faculty of Medicine, University of Belgrade, Dr Subotića starijeg 8, 11000 Belgrade, Serbia
| | - Maja Miletić
- School of Dental Medicine, University of Belgrade, Dr Subotića starijeg 8, 11000 Belgrade, Serbia; (B.T.); (N.M.); (J.K.P.)
| | - Boško Toljić
- School of Dental Medicine, University of Belgrade, Dr Subotića starijeg 8, 11000 Belgrade, Serbia; (B.T.); (N.M.); (J.K.P.)
| | - Nikola Milojević
- School of Dental Medicine, University of Belgrade, Dr Subotića starijeg 8, 11000 Belgrade, Serbia; (B.T.); (N.M.); (J.K.P.)
| | - Olivera Jovanović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (O.J.); (N.Š.); (N.P.)
| | - Jovana Kuzmanović Pfićer
- School of Dental Medicine, University of Belgrade, Dr Subotića starijeg 8, 11000 Belgrade, Serbia; (B.T.); (N.M.); (J.K.P.)
| | - Nikola Škoro
- Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (O.J.); (N.Š.); (N.P.)
| | - Nevena Puač
- Institute of Physics, University of Belgrade, Pregrevica 118, 11000 Belgrade, Serbia; (O.J.); (N.Š.); (N.P.)
| |
Collapse
|
2
|
Spiegel C, Coraça-Huber DC, Nogler M, Arora R, Putzer D. Cold Plasma Activity Against Biofilm Formation of Prosthetic Joint Infection Pathogens. Pathogens 2024; 14:10. [PMID: 39860971 PMCID: PMC11768226 DOI: 10.3390/pathogens14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces. In this study, we aimed to investigate the ability of CAP to reduce the bacterial load on metal surfaces with varying distances and different plasma compositions below a temperature suitable for in vivo applications. Methods: Biofilm was formed with Staphylococcus aureus ATCC 29213 and Staphylococcus epidermidis ATCC 12228 cultures on TMZF discs. Plasma treatments using air plasma and argon plasma were conducted on discs containing the established biofilm while the temperature was measured. During the experiments, the duration and the distance of plasma application varied. Afterwards, colony-forming units were counted. Results: The results of this study showed that air and argon plasma could be considered for applications during surgeries at a 1 cm distance. While air plasma showed the highest efficiency in CFU reduction, the temperature generation due to the presence of oxygen poses a limitation concerning the duration of application. The use of argon as a plasma generator does not show the temperature limitation in correlation to exposure time. The use of air plasma with a distance of 1 cm to the application site and an exposure time of 5 s showed the most effective bacterial reduction while not exceeding tissue-damaging temperatures.
Collapse
Affiliation(s)
- Christopher Spiegel
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria;
| | - Michael Nogler
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| | - Rohit Arora
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| | - David Putzer
- Department of Orthopaedics and Traumatology, Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria; (M.N.); (R.A.); (D.P.)
| |
Collapse
|
3
|
Murali R, Singh P, Ragunathan D, Damarla R, Kichenaradjou D, Surriyanarayanan KM, Jayaram SK, Chandramoorthy HC, Kumar A, Krishnan MEG, Gandhirajan RK. Antimicrobial Activity of Cold Atmospheric Plasma on Bacterial Strains Derived from Patients with Diabetic Foot Ulcers. J Microbiol Biotechnol 2024; 34:2353-2361. [PMID: 39403720 PMCID: PMC11637820 DOI: 10.4014/jmb.2407.07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 11/29/2024]
Abstract
Bacterial infections or their biofilms in diabetic foot ulcer (DFU) are a key cause of drug-resistant wounds and amputations. Cold atmospheric plasma (CAP) is well documented for its antibacterial effect and promoting wound healing. In the current study, we built an argon-based, custom CAP device and investigated its potential in eliminating laboratory and clinical bacterial strains derived from DFU. The CAP device performed as expected with generation of hydroxyl, reactive nitrogen species, and argon species as determined by optical emission spectroscopy. A dose-dependent increase in oxidation reduction potential (ORP) and nitrites in the liquid phase was observed. The CAP treatment eliminated both gram-positive (Staphylococcus aureus, Entrococcus faecalis) and negative bacteria (Pseudomonas aeruginosa, Proteus mirabilis) laboratory strains. Clinical samples collected from DFU patients exhibited a significant decrease in both types of bacteria, with gram-positive strains showing higher susceptibility to the CAP treatment in an ex vivo setting. Moreover, exposure to CAP of polymicrobial biofilms from DFU led to a notable disruption in biofilm and an increase in free bacterial DNA. The duration of CAP exposure used in the current study did not induce DNA damage in peripheral blood lymphocytes. These results suggest that CAP could serve as an excellent tool in treating patients with DFUs.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Pooja Singh
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Divya Ragunathan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Ramya Damarla
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Dharshini Kichenaradjou
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Kirtanna Malichetty Surriyanarayanan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Satish Kumar Jayaram
- Department of Plastic Surgery, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Harish C. Chandramoorthy
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Ashish Kumar
- Department of Microbiology & Clinical Parasitology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mary Elizabeth Gnanambal Krishnan
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai 600116, India
| |
Collapse
|
4
|
Pogoda A, Pan Y, Röntgen M, Hasse S. Plasma-Functionalized Liquids for Decontamination of Viable Tissues: A Comparative Approach. Int J Mol Sci 2024; 25:10791. [PMID: 39409120 PMCID: PMC11477098 DOI: 10.3390/ijms251910791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Plasma-functionalized liquids (PFLs) are rich in chemical species, such as ozone, hydrogen peroxide, singlet oxygen, hydroxyl radical and nitrogen oxides, commonly referred to as reactive oxygen and nitrogen species (RONS). Therefore, manifold applications are being investigated for their use in medicine, agriculture, and the environment. Depending on the goal, a suitable plasma source concept for the generation of PFLs has to be determined because the plasma generation setup determines the composition of reactive species. This study investigates three PFL-generating plasma sources-two spark discharges and a flow dielectric barrier discharge (DBD) system-for their efficacy in eliminating microbial contaminants from tissue samples aiming to replace antibiotics in the rinsing process. The final goal is to use these tissues as a cell source for cell-based meat production in bioreactors and thereby completely avoid antibiotics. Initially, a physicochemical characterization was conducted to better understand the decontamination capabilities of PFLs and their potential impact on tissue viability. The results indicate that the flow DBD system demonstrated the highest antimicrobial efficacy due to its elevated reactive species output and the possibility of direct treatment of tissues while tissue integrity remained. Achieving a balance between effective large-scale decontamination and the biocompatibility of PFLs remains a critical challenge.
Collapse
Affiliation(s)
- Alexander Pogoda
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| | - Yuanyuan Pan
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| | - Monika Röntgen
- Working Group Cell Biology of Muscle Growth, Research Institute of Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
| | - Sybille Hasse
- Department of Plasma Life Science, Leibniz Institute for Plasma Science and Technology e.V. (INP), 17489 Greifswald, Germany; (A.P.); (Y.P.)
| |
Collapse
|
5
|
Zhang W, Jing H, Niu Q, Wu Z, Sun Y, Duan Y, Wang X. Sprayable, thermosensitive hydrogels for promoting wound healing based on hollow, porous and pH-sensitive ZnO microspheres. J Mater Chem B 2024; 12:7519-7531. [PMID: 38919121 DOI: 10.1039/d4tb00961d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A solvothermal method and the subsequent heat treatment process were developed to fabricate hollow ZnO particles with hierarchical pores on a large scale. The as-obtained hollow, porous ZnO microspheres with tunable sizes, high specific surface areas, pH sensitivity, antibacterial properties, and high adsorption capacities showed significant advantages for drug delivery. Sprayable hydrogels containing hollow, porous ZnO microspheres and curcumin nanoparticles (CNPs) were prepared to accelerate wound healing. The water-dispersed CNPs promoted both the migration of fibroblasts and angiogenesis and an aqueous solution of Pluronic F127 (a temperature-sensitive phase-change hydrogel material) was shown to be an effective choice for medical dressings. The experimental data suggest that hollow, porous ZnO microspheres can be loaded with additional CNPs to achieve continuous long-term therapeutic effects.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, P. R. China
| | - Hongshu Jing
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Qiang Niu
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China.
| | - Xianwen Wang
- College of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
6
|
Alaguthevar R, Packialakshmi JS, Murugesan B, Rhim JW, Thiyagamoorthy U. In-package cold plasma treatment to extend the shelf life of food. Compr Rev Food Sci Food Saf 2024; 23:e13318. [PMID: 38532699 DOI: 10.1111/1541-4337.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Collapse
Affiliation(s)
- Ramalakshmi Alaguthevar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Balakrishnan Murugesan
- Department of Food Process Engineering, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - UmaMaheshwari Thiyagamoorthy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
- Department of Soil Science and Agricultural Chemistry, ADAC & RI, Tamil Nadu Agricultural University, Trichy, Tamil Nadu, India
| |
Collapse
|
7
|
Hovhannisyan A, Janik M, Woszczak L, Khachatryan G, Krystyjan M, Lenart-Boroń A, Stankiewicz K, Czernecka N, Duraczyńska D, Oszczęda Z, Khachatryan K. The Preparation of Silver and Gold Nanoparticles in Hyaluronic Acid and the Influence of Low-Pressure Plasma Treatment on Their Physicochemical and Microbiological Properties. Int J Mol Sci 2023; 24:17285. [PMID: 38139120 PMCID: PMC10743960 DOI: 10.3390/ijms242417285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/19/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nanometals constitute a rapidly growing area of research within nanotechnology. Nanosilver and nanogold exhibit significant antimicrobial, antifungal, antiviral, anti-inflammatory, anti-angiogenic, and anticancer properties. The size and shape of nanoparticles are critical for determining their antimicrobial activity. In this study, silver and gold nanoparticles were synthesized within a hyaluronic acid matrix utilizing distilled water and distilled water treated with low-pressure, low-temperature glow plasma in an environment of air and argon. Electron microscopy, UV-Vis and FTIR spectra, water, and mechanical measurements were conducted to investigate the properties of nanometallic composites. This study also examined their microbiological properties. This study demonstrated that the properties of the composites differed depending on the preparation conditions, encompassing physicochemical and microbiological properties. The application of plasma-treated water under both air and argon had a significant effect on the size and distribution of nanometals. Silver nanoparticles were obtained between the range of 5 to 25 nm, while gold nanoparticles varied between 10 to 35 nm. The results indicate that the conditions under which silver and gold nanoparticles are produced have a significant effect on their mechanical and antibacterial properties.
Collapse
Affiliation(s)
- Armen Hovhannisyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of the National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia;
| | - Magdalena Janik
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (M.J.); (L.W.)
| | - Liliana Woszczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (M.J.); (L.W.)
| | - Gohar Khachatryan
- Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, 30-059 Krakow, Poland; (A.L.-B.); (K.S.)
| | - Klaudia Stankiewicz
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, 30-059 Krakow, Poland; (A.L.-B.); (K.S.)
| | - Natalia Czernecka
- Scientific Circle of Biotechnologists, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada Ave. 54, 31-425 Krakow, Poland;
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Krakow, Poland;
| | - Zdzisław Oszczęda
- Nantes Nanotechnological Systems, Dolnych Młynów Street 24, 59-700 Bolesławiec, Poland;
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (M.J.); (L.W.)
| |
Collapse
|
8
|
Suter A, Schmitt S, Hübschke E, Kowalska M, Hartnack S, Pot S. The bactericidal effect of two photoactivated chromophore for keratitis-corneal crosslinking protocols (standard vs. accelerated) on bacterial isolates associated with infectious keratitis in companion animals. BMC Vet Res 2022; 18:317. [PMID: 35978428 PMCID: PMC9386977 DOI: 10.1186/s12917-022-03397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bacterial corneal infections are common and potentially blinding diseases in all species. As antibiotic resistance is a growing concern, alternative treatment methods are an important focus of research. Photoactivated chromophore for keratitis-corneal crosslinking (PACK-CXL) is a promising oxygen radical-mediated alternative to antibiotic treatment. The main goal of this study was to assess the anti-bactericidal efficacy on clinical bacterial isolates of the current standard and an accelerated PACK-CXL treatment protocol delivering the same energy dose (5.4 J/cm2). Methods Clinical bacterial isolates from 11 dogs, five horses, one cat and one guinea pig were cultured, brought into suspension with 0.1% riboflavin and subsequently irradiated. Irradiation was performed with a 365 nm UVA light source for 30 min at 3mW/cm2 (standard protocol) or for 5 min at 18mW/cm2 (accelerated protocol), respectively. After treatment, the samples were cultured and colony forming units (CFU’s) were counted and the weighted average mean of CFU’s per μl was calculated. Results were statistically compared between treated and control samples using a linear mixed effects model. Results Both PACK-CXL protocols demonstrated a significant bactericidal effect on all tested isolates when compared to untreated controls. No efficacy difference between the two PACK-CXL protocols was observed. Conclusion The accelerated PACK-CXL protocol can be recommended for empirical use in the treatment of bacterial corneal infections in veterinary patients while awaiting culture results. This will facilitate immediate treatment, the delivery of higher fluence PACK-CXL treatment within a reasonable time, and minimize the required anesthetic time or even obviate the need for general anesthesia.
Collapse
Affiliation(s)
- Anja Suter
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | - Sarah Schmitt
- Veterinary Bacteriology Section, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ella Hübschke
- Veterinary Bacteriology Section, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Malwina Kowalska
- Epidemiology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sonja Hartnack
- Epidemiology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon Pot
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Sorg H, Tilkorn DJ, Hauser J, Ring A. Improving Vascularization of Biomaterials for Skin and Bone Regeneration by Surface Modification: A Narrative Review on Experimental Research. Bioengineering (Basel) 2022; 9:bioengineering9070298. [PMID: 35877349 PMCID: PMC9311595 DOI: 10.3390/bioengineering9070298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Artificial tissue substitutes are of great interest for the reconstruction of destroyed and non-functional skin or bone tissue due to its scarcity. Biomaterials used as scaffolds for tissue regeneration are non-vascularized synthetic tissues and often based on polymers, which need ingrowth of new blood vessels to ensure nutrition and metabolism. This review summarizes previous approaches and highlights advances in vascularization strategies after implantation of surface-modified biomaterials for skin and bone tissue regeneration. The efficient integration of biomaterial, bioactive coating with endogenous degradable matrix proteins, physiochemical modifications, or surface geometry changes represents promising approaches. The results show that the induction of angiogenesis in the implant site as well as the vascularization of biomaterials can be influenced by specific surface modifications. The neovascularization of a biomaterial can be supported by the application of pro-angiogenic substances as well as by biomimetic surface coatings and physical or chemical surface activations. Furthermore, it was confirmed that the geometric properties of the three-dimensional biomaterial matrix play a central role, as they guide or even enable the ingrowth of blood vessels into a biomaterial.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic and Reconstructive Surgery, Marien Hospital Witten, Marienplatz 2, 58452 Witten, Germany;
- Department of Health, University of Witten/Herdecke, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
| | - Daniel J. Tilkorn
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Hellweg 100, 45276 Essen, Germany; (D.J.T.); (J.H.)
| | - Jörg Hauser
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Hellweg 100, 45276 Essen, Germany; (D.J.T.); (J.H.)
| | - Andrej Ring
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, St. Rochus Hospital Castrop-Rauxel, Katholische St. Lukas Gesellschaft, Glückaufstraße 10, 44575 Castrop-Rauxel, Germany
- Correspondence: ; Tel.: +49-2305-294-2801
| |
Collapse
|
10
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Hernández-Torres CJ, Reyes-Acosta YK, Chávez-González ML, Dávila-Medina MD, Kumar Verma D, Martínez-Hernández JL, Narro-Céspedes RI, Aguilar CN. Recent trends and technological development in plasma as an emerging and promising technology for food biosystems. Saudi J Biol Sci 2022; 29:1957-1980. [PMID: 35531194 PMCID: PMC9072910 DOI: 10.1016/j.sjbs.2021.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
The rising need for wholesome, fresh, safe and “minimally-processed” foods has led to pioneering research activities in the emerging non-thermal technology of food processing. Cold plasma is such an innovative and promising technology that offers several potential applications in the food industry. It uses the highly reactive, energetic and charged gas molecules and species to decontaminate the food and package surfaces and preserve the foods without causing thermal damage to the nutritional and quality attributes of food. Cold plasma technology showed promising results about the inactivation of pathogens in the food industry without affecting the food quality. It is highly effective for surface decontamination of fruits and vegetables, but extensive research is required before its commercial utilization. Recent patents are focused on the applications of cold plasma in food processing and preservation. However, further studies are strongly needed to scale up this technology for future commercialization and understand plasma physics for getting better results and expand the applications and benefits. This review summarizes the emerging trends of cold plasma along with its recent applications in the food industry to extend shelf life and improve the quality of food. It also gives an overview of plasma generation and principles including mechanism of action. Further, the patents based on cold plasma technology have also been highlighted comprehensively for the first time.
Collapse
Affiliation(s)
- Catalina J. Hernández-Torres
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Yadira K. Reyes-Acosta
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam D. Dávila-Medina
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| | - José L. Martínez-Hernández
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa I. Narro-Céspedes
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
- Corresponding authors at: Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India.
| |
Collapse
|
12
|
Experimental Evaluation of the Effect of Argon Cold Plasma on Oxidative Metabolism of the Blood. Bull Exp Biol Med 2022; 172:570-572. [PMID: 35352246 DOI: 10.1007/s10517-022-05435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 10/18/2022]
Abstract
We studied the effect of course exposure to argon cold plasma (ten 1- and 2-min procedures) on some parameters of the oxidative metabolism of rat blood plasma. The intensity of free radical processes, the total antioxidant activity, and malondialdehyde concentration in rat plasma were evaluated. It was found that 2-min exposure to argon cold plasma and nonionized argon stream produce a prooxidant effect, while 1-min exposure argon plasma led to stimulation of the antioxidant reserves of the blood.
Collapse
|
13
|
Non-Thermal Atmospheric Plasma for Microbial Decontamination and Removal of Hazardous Chemicals: An Overview in the Circular Economy Context with Data for Test Applications of Microwave Plasma Torch. Processes (Basel) 2022. [DOI: 10.3390/pr10030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transformation of our linear “take-make-waste” system to a cyclic flow of materials and energy is a priority task for society, but the circular use of waste streams from one industry/sector as a material input for another must be completely safe. The need for new advanced technologies and methods ensuring both microbiological safety and the removal of potential chemical residues in used materials and products is urgent. Non-thermal atmospheric plasma (cold atmospheric plasma—CAP) has recently attracted great research interest as an alternative for operative solutions of problems related to safety and quality control. CAP is a powerful tool for the inactivation of different hazardous microorganisms and viruses, and the effective decontamination of surfaces and liquids has been demonstrated. Additionally, the plasma’s active components are strong oxidizers and their synergetic effect can lead to the degradation of toxic chemical compounds such as phenols and azo-dyes.
Collapse
|
14
|
Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: a multicenter, randomized, non-inferiority trial. Sci Rep 2022; 12:3645. [PMID: 35256635 PMCID: PMC8901692 DOI: 10.1038/s41598-022-07333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
The use of phase-adapted wound dressings represents best practice (BP) in chronic wound treatment. However, efficacy is often limited and associated care requirements are high. Cold atmospheric plasmajet (CAP-jet) is a promising new therapeutic tool for these wounds. In the present multicenter, randomized, open-label, prospective, clinical trial, non-inferiority of the CAP-jet versus BP was assessed in 78 patients with infected or non-infected chronic wounds of different etiology. Primary outcome measure was the sum of granulation tissue, furthermore wound area reduction, healing rate, time to complete healing, changes in wound pH value, infection score, exudate level and local tolerability were assessed. In CAP-jet treated wounds compared to control, the sum of granulation tissue was significantly higher (p < 0.0001) and wound area reduced significantly faster (p < 0.001). Furthermore, wound pH value decreased significantly faster (p = 0.0123) and local infection was overcome more rapidly by CAP-jet therapy. In 58.97% CAP-jet- vs. 5.13% BP-treated patients, complete healing of chronic ulcers was documented after 6 weeks. Treatment with CAP-jet appeared not only non-inferior, but even superior to BP in all wound entities analyzed with a favorable tolerability profile. Thus, treatment with the CAP-jet provides beneficial effects in chronic wound treatment regarding promotion of the wound healing process.
Collapse
|
15
|
Peña Eguiluz R, López-Callejas R, González-Arciniega E, Rodríguez-Méndez BG, Mercado-Cabrera A, Guakil-Haber A, Kuri García A, Espinosa Mancilla AE, Valencia-Alvarado R. Non-thermal plasma wound healing after removal of a neck tumor in a patient with HIV: A case report. OTOLARYNGOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.xocr.2021.100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Murugaiyan J, Kumar PA, Rao GS, Iskandar K, Hawser S, Hays JP, Mohsen Y, Adukkadukkam S, Awuah WA, Jose RAM, Sylvia N, Nansubuga EP, Tilocca B, Roncada P, Roson-Calero N, Moreno-Morales J, Amin R, Kumar BK, Kumar A, Toufik AR, Zaw TN, Akinwotu OO, Satyaseela MP, van Dongen MBM. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics (Basel) 2022; 11:200. [PMID: 35203804 PMCID: PMC8868457 DOI: 10.3390/antibiotics11020200] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibiotic resistance, and, in a broader perspective, antimicrobial resistance (AMR), continues to evolve and spread beyond all boundaries. As a result, infectious diseases have become more challenging or even impossible to treat, leading to an increase in morbidity and mortality. Despite the failure of conventional, traditional antimicrobial therapy, in the past two decades, no novel class of antibiotics has been introduced. Consequently, several novel alternative strategies to combat these (multi-) drug-resistant infectious microorganisms have been identified. The purpose of this review is to gather and consider the strategies that are being applied or proposed as potential alternatives to traditional antibiotics. These strategies include combination therapy, techniques that target the enzymes or proteins responsible for antimicrobial resistance, resistant bacteria, drug delivery systems, physicochemical methods, and unconventional techniques, including the CRISPR-Cas system. These alternative strategies may have the potential to change the treatment of multi-drug-resistant pathogens in human clinical settings.
Collapse
Affiliation(s)
- Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - P. Anand Kumar
- Department of Veterinary Microbiology, NTR College of Veterinary Science, Sri Venkateswara Veterinary University, Gannavaram 521102, India;
| | - G. Srinivasa Rao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati 517502, India;
| | - Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France;
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | | | - John P. Hays
- Department of Medical Microbiology, Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Yara Mohsen
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria 21544, Egypt;
- Infectious Disease Clinical Pharmacist, Antimicrobial Stewardship Department, International Medical Center Hospital, Cairo 11511, Egypt
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University-AP, Guntur District, Amaravati 522240, India;
| | - Wireko Andrew Awuah
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Ruiz Alvarez Maria Jose
- Research Coordination and Support Service, National Institute of Health (ISS) Viale Regina -Elena, 299, 00161 Rome, Italy;
| | - Nanono Sylvia
- Infectious Diseases Institute (IDI), College of Health Sciences, Makerere University, Kampala 7072, Uganda;
| | | | - Bruno Tilocca
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Paola Roncada
- Department of Health Science, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (B.T.); (P.R.)
| | - Natalia Roson-Calero
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Javier Moreno-Morales
- ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; (N.R.-C.); (J.M.-M.)
| | - Rohul Amin
- James P Grant School of Public Health, BRAC University, Dhaka 1212, Bangladesh;
| | - Ballamoole Krishna Kumar
- Nitte (Deemed to be University), Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Deralakatte, Mangalore 575018, India;
| | - Abishek Kumar
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Abdul-Rahman Toufik
- Faculty of Medicine, Sumy State University, 40007 Sumy, Ukraine; (W.A.A.); (A.-R.T.)
| | - Thaint Nadi Zaw
- Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Oluwatosin O. Akinwotu
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University of Baroda, Vadodara 390002, India;
- Environmental and Biotechnology Unit, Department of Microbiology, University of Ibadan, 200132 Ibadan, Nigeria
| | | | | |
Collapse
|
17
|
Martusevich AK, Golygina ES, Nazarov VV, Epishkina AA, Malysheva KS. The Effect of Cold Helium Plasma on Microcirculation in the Periwound Zone after Experimental Thermal Injury. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Nima G, Harth-Chu E, Hiers RD, Pecorari VGA, Dyer DW, Khajotia SS, Giannini M, Florez FLE. Antibacterial efficacy of non-thermal atmospheric plasma against Streptococcus mutans biofilm grown on the surfaces of restorative resin composites. Sci Rep 2021; 11:23800. [PMID: 34893687 PMCID: PMC8664839 DOI: 10.1038/s41598-021-03192-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/28/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to evaluate the antimicrobial efficacy of non-thermal atmospheric plasma (NTAP) against Streptococcus mutans biofilms. Resin discs were fabricated, wet-polished, UV sterilized, and immersed in water for monomer extraction (37 °C, 24 h). Biofilms of bioluminescent S. mutans strain JM10 was grown on resin discs in anaerobic conditions for (37 °C, 24 h). Discs were divided into seven groups: control (CON), 2% chlorhexidine (CHX), only argon gas 150 s (ARG) and four NTAP treatments (30 s, 90 s, 120 s, 150 s). NTAP was applied using a plasma jet device. After treatment, biofilms were analyzed through the counting of viable colonies (CFU), bioluminescence assay (BL), scanning electron microscopy (SEM), and polymerase chain reaction (PCR). All NTAP-treated biofilm yielded a significant CFU reduction when compared to ARG and CON. BL values showed that NTAP treatment for 90 s, 120 s or 150 s resulted in statistically significantly lower metabolic activity when compared to the other groups. CHX displayed the lowest means of CFU and BL. SEM showed significant morphological changes in NTAP-treated biofilm. PCR indicated damage to the DNA structure after NTAP treatment. NTAP treatment was effective in lowering the viability and metabolism of S. mutans in a time-dependent manner, suggesting its use as an intraoral surface-decontamination strategy.
Collapse
Affiliation(s)
- Gabriel Nima
- Department of Restorative Dentistry, Dental Materials Division, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil.
| | - Erika Harth-Chu
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Rochelle Denise Hiers
- Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - David W Dyer
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sharukh Soli Khajotia
- Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marcelo Giannini
- Department of Restorative Dentistry, Operative Dentistry Division, Piracicaba Dental School, State University of Campinas, Piracicaba, SP, Brazil
| | - Fernando Luis Esteban Florez
- Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Kim EJ, Hyun JE, Kang YH, Baek SJ, Hwang CY. In vitro antibacterial and antibiofilm effects of cold atmospheric microwave plasma against Pseudomonas aeruginosa causing canine skin and ear infections. Vet Dermatol 2021; 33:29-e10. [PMID: 34747063 DOI: 10.1111/vde.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunist pathogen that causes purulent inflammation in the skin and in the ears of dogs. Among the various virulence factors of P. aeruginosa, biofilms have been reported to result in antibiotic resistance, leading to therapeutic limitations. Cold atmospheric microwave plasma (CAMP) is known to have a high antimicrobial effect, which causes physical cell wall rupture and DNA damage. HYPOTHESIS/OBJECTIVES The objective of this study was to evaluate the antibacterial and antibiofilm effects of CAMP against planktonic bacteria and the biofilm of P. aeruginosa. METHODS AND MATERIALS The antibacterial effect of CAMP against P. aeruginosa ATCC10145 and clinical isolates (n = 30) was evaluated using the colony count method. We also assessed the effect of CAMP on biofilm of P. aeruginosa ATCC strain by the colony count method, water-soluble tetrazolium salt (WST) assay and confocal laser scanning microscopy (CLSM). RESULTS The complete eradication of P. aeruginosa (ATCC strain and clinical isolates) was achieved within 120 s at 50 W, and clinical isolates required 60 s shorter than the ATCC strain for complete eradication at 50 W. We also confirmed the time-dependent bactericidal effect of CAMP at 50 W against ATCC strain biofilm. CONCLUSIONS AND CLINICAL IMPORTANCE CAMP was effective against both planktonic bacteria and biofilm formation of P. aeruginosa. However, further studies on in vivo efficacy and safety in canine skin and ears are necessary to fully validate its clinical application.
Collapse
Affiliation(s)
- Eun-Joo Kim
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Jae-Eun Hyun
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Yeong-Hun Kang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Seung-Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology and the Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
20
|
Scholtz V, Vaňková E, Kašparová P, Premanath R, Karunasagar I, Julák J. Non-thermal Plasma Treatment of ESKAPE Pathogens: A Review. Front Microbiol 2021; 12:737635. [PMID: 34712211 PMCID: PMC8546340 DOI: 10.3389/fmicb.2021.737635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
The acronym ESKAPE refers to a group of bacteria consisting of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. They are important in human medicine as pathogens that show increasing resistance to commonly used antibiotics; thus, the search for new effective bactericidal agents is still topical. One of the possible alternatives is the use of non-thermal plasma (NTP), a partially ionized gas with the energy stored particularly in the free electrons, which has antimicrobial and anti-biofilm effects. Its mechanism of action includes the formation of pores in the bacterial membranes; therefore, resistance toward it is not developed. This paper focuses on the current overview of literature describing the use of NTP as a new promising tool against ESKAPE bacteria, both in planktonic and biofilm forms. Thus, it points to the fact that NTP treatment can be used for the decontamination of different types of liquids, medical materials, and devices or even surfaces used in various industries. In summary, the use of diverse experimental setups leads to very different efficiencies in inactivation. However, Gram-positive bacteria appear less susceptible compared to Gram-negative ones, in general.
Collapse
Affiliation(s)
- Vladimír Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Department of Biotechnology, University of Chemistry and Technology, Prague, Czechia
| | - Petra Kašparová
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia
| | - Ramya Premanath
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Iddya Karunasagar
- Nitte University, Nitte University Centre for Science Education and Research, Mangalore, India
| | - Jaroslav Julák
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czechia.,Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
21
|
Jin HJ, Hwang CY, Kang JH, Baek SJ, Hyun JE. In vitro antimicrobial activity of cold atmospheric microwave plasma against bacteria causing canine skin and ear infections. Vet Dermatol 2021; 32:462-e126. [PMID: 34374169 DOI: 10.1111/vde.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) is a new generation medical therapeutic option for bacterial infections. CAP causes physical cell wall rupture and DNA damage, therefore making it highly useful in the treatment of various conditions such as skin infections. HYPOTHESIS/OBJECTIVES The antimicrobial activity of cold atmospheric microwave plasma (CAMP) against major strains in canine skin infections was tested and the difference in antimicrobial activity between the antibiotic-resistant and antibiotic-susceptible strains of Staphylococcus pseudintermedius was evaluated. METHODS AND MATERIALS American Type Culture Collection (ATCC) strains (Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli) and clinical isolates identified as methicillin-resistant S. pseudintermedius (n = 27) and methicillin-susceptible S. pseudintermedius (n = 13) were exposed to CAMP for 10 s, 30 s and 60 s. Afterwards, the bacterial survival rate was confirmed. RESULTS Gram-negative bacteria (P. aeruginosa and E. coli) were more susceptible than Gram-positive bacteria (S. aureus and S. pseudintermedius) for the same duration of CAMP exposure. Only the Gram-negative bacteria were completely killed after 60 s exposure. In S. pseudintermedius isolates, CAMP exposure had similar antibacterial effects regardless of antibiotic resistance. CONCLUSIONS AND CLINICAL IMPORTANCE CAMP has sufficient antimicrobial activity against major bacterial strains that cause pyoderma and otitis externa in dogs, and may be an alternative therapeutic option for S. pseudintermedius skin infections, for which antibiotics often are ineffective because of antimicrobial resistance in clinical veterinary medicine.
Collapse
Affiliation(s)
- Hee-Jung Jin
- Laboratory of Veterinary Dermatology and The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology and The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Jung-Hun Kang
- Origin Veterinary Dermatologic Hospital, Busan, 48280, Korea
| | - Seung-Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Jae-Eun Hyun
- Department of Veterinary Internal Medicine, Konkuk Veterinary Medical Teaching Hospital, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
22
|
Inactivation of Staphylococcus aureus and Escherichia coli Biofilms by Air-Based Atmospheric-Pressure DBD Plasma. Appl Biochem Biotechnol 2021; 193:3641-3650. [PMID: 34347251 DOI: 10.1007/s12010-021-03636-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Air-based atmospheric-pressure plasma is an effective non-thermal method in deactivating various kinds of microbial biofilms with several advantages, including high bactericidal efficiency and low treatment costs. Bacterial biofilm formation is a major determinant in establishment of bacterial infection and also resistance to antibacterial chemotherapy. This study aims to assess the anti-biofilm potential of air-based atmospheric-pressure DBD plasma against Staphylococcus aureus and Escherichia coli biofilms. The biofilms of Staphylococcus aureus and Escherichia coli were exposed to air-based atmospheric-pressure DBD plasma for up to 4 min (control, 30 s, 90 s, 3 min, and 4 min) and their biofilm formation level, viability, and membrane integrity were determined. Based on the results, plasma exposure caused disruption up to 70% and 85% for S. aureus and E. coli biofilms, respectively. The biofilm disruption potential of air-based atmospheric-pressure DBD plasma was confirmed using the scanning electron microscopy (SEM). Besides, based on confocal laser scanning microscopy (CLSM), plasma exposure caused a significant bacterial inactivation and E. coli was found as more susceptible strain than S. aureus. In conclusion, atmospheric-pressure DBD plasma could be considered an efficient non-thermal approach against bacterial pathogenicity by biofilm disruption and thus prevention of infection establishment.
Collapse
|
23
|
Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
25
|
Duchesne C, Frescaline N, Blaise O, Lataillade JJ, Banzet S, Dussurget O, Rousseau A. Cold Atmospheric Plasma Promotes Killing of Staphylococcus aureus by Macrophages. mSphere 2021; 6:e0021721. [PMID: 34133202 PMCID: PMC8265637 DOI: 10.1128/msphere.00217-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 01/16/2023] Open
Abstract
Macrophages are important immune cells that are involved in the elimination of microbial pathogens. Following host invasion, macrophages are recruited to the site of infection, where they launch antimicrobial defense mechanisms. Effective microbial clearance by macrophages depends on phagocytosis and phagolysosomal killing mediated by oxidative burst, acidification, and degradative enzymes. However, some pathogenic microorganisms, including some drug-resistant bacteria, have evolved sophisticated mechanisms to prevent phagocytosis or escape intracellular degradation. Cold atmospheric plasma (CAP) is an emerging technology with promising bactericidal effects. Here, we investigated the effect of CAP on Staphylococcus aureus phagocytosis by RAW 264.7 macrophage-like cells. We demonstrate that CAP treatment increases intracellular concentrations of reactive oxygen species (ROS) and nitric oxide and promotes the elimination of both antibiotic-sensitive and antibiotic-resistant S. aureus by RAW 264.7 cells. This effect was inhibited by antioxidants indicating that the bactericidal effect of CAP was mediated by oxidative killing of intracellular bacteria. Furthermore, we show that CAP promotes the association of S. aureus to lysosomal-associated membrane protein 1 (LAMP-1)-positive phagosomes, in which bacteria are exposed to low pH and cathepsin D hydrolase. Taken together, our results provide the first evidence that CAP activates defense mechanisms of macrophages, ultimately leading to bacterial elimination. IMPORTANCE Staphylococcus aureus is the most frequent cause of skin and soft tissue infections. Treatment failures are increasingly common due to antibiotic resistance and the emergence of resistant strains. Macrophages participate in the first line of immune defense and are critical for coordinated defense against pathogenic bacteria. However, S. aureus has evolved sophisticated mechanisms to escape macrophage killing. In the quest to identify novel antimicrobial therapeutic approaches, we investigated the activity of cold atmospheric plasma (CAP) on macrophages infected with S. aureus. Here, we show that CAP treatment promotes macrophage ability to eliminate internalized bacteria. Importantly, CAP could trigger killing of both antibiotic-sensitive and antibiotic-resistant strains of S. aureus. While CAP did not affect the internalization capacity of macrophages, it increased oxidative-dependent bactericidal activity and promoted the formation of degradative phagosomes. Our study shows that CAP has beneficial effects on macrophage defense mechanisms and may potentially be useful in adjuvant antimicrobial therapies.
Collapse
Affiliation(s)
- Constance Duchesne
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Nadira Frescaline
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Océane Blaise
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Centre de Transfusion Sanguine des Armées, Clamart, France
| | - Olivier Dussurget
- Institut Pasteur, Unité de Recherche Yersinia, Département de Microbiologie, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Antoine Rousseau
- Laboratoire de physique des plasmas, École Polytechnique, Sorbonne Université, CNRS, Palaiseau, France
| |
Collapse
|
26
|
Olatunde OO, Shiekh KA, Benjakul S. Pros and cons of cold plasma technology as an alternative non-thermal processing technology in seafood industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Pekbağrıyanık T, Dadas FK, Enhoş Ş. Effects of non-thermal atmospheric pressure plasma on palatal wound healing of free gingival grafts: a randomized controlled clinical trial. Clin Oral Investig 2021; 25:6269-6278. [PMID: 33877440 DOI: 10.1007/s00784-021-03925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this trial was to evaluate the effects of non-thermal atmospheric pressure plasma (NAPP) on wound healing, epithelization, local pain, bleeding, and alteration of sensation in palatal donor site. MATERIALS AND METHODS Forty patients with inadequate attached gingiva were included in the study. Patients were divided into two groups: (i) NAPP group (Free gingival graft [FGG] + NAPP) and (ii) control group (FGG alone). NAPP was performed immediately after the operation and on days 3 and 7. Pain, bleeding, and the amount of medication were recorded by patients every day. Epithelization in donor site, alteration of sensation and color match were assessed weekly for 2 months. Inter-group comparisons of continuous variables by time were performed with two-way repeated measures ANOVA test and a general linear model. Categorical variables were compared using Chi-square exact test. A p value of < 0.05 was considered significant. RESULTS At week 2, the number of patients with complete epithelization was greater in the NAPP group compared to the control group (p < 0.05). Additionally, color match in donor site was better in the NAPP group than in the control group (p < 0.05) during the first five follow-up assessments. No significant difference was found between the two groups with regard to bleeding, pain level, drug use, and alteration of sensation. CONCLUSION The NAPP application increased the epithelization and accelerated the wound healing process although it did not decrease the level of pain and sensation. CLINICAL RELEVANCE Our data suggested that the NAPP application may help epithelization and thus may shorten the recovery time after oral surgeries.
Collapse
Affiliation(s)
- Tuğba Pekbağrıyanık
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey. .,Public Oral Health Care Center, 35560, Karsıyaka, Izmir, Turkey.
| | - Fadime Kaya Dadas
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey.,Private Practice, Izmir, Turkey
| | - Şükrü Enhoş
- Department of Periodontology, Izmir Katip Celebi University, 35640, Cigli, Izmir, Turkey
| |
Collapse
|
28
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
29
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
30
|
Jungbauer G, Moser D, Müller S, Pfister W, Sculean A, Eick S. The Antimicrobial Effect of Cold Atmospheric Plasma against Dental Pathogens-A Systematic Review of In-Vitro Studies. Antibiotics (Basel) 2021; 10:211. [PMID: 33672690 PMCID: PMC7924351 DOI: 10.3390/antibiotics10020211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Interest in the application of cold atmospheric plasma (CAP) in the medical field has been increasing. Indications in dentistry are surface modifications and antimicrobial interventions. The antimicrobial effect of CAP is mainly attributed to the generation of reactive oxygen and reactive nitrogen species. The aim of this article is to systematically review the available evidence from in-vitro studies on the antimicrobial effect of CAP on dental pathogens. A database search was performed (PubMed, Embase, Scopus). Data concerning the device parameters, experimental set-ups and microbial cultivation were extracted. The quality of the studies was evaluated using a newly designed assessment tool. 55 studies were included (quality score 31-92%). The reduction factors varied strongly among the publications although clusters could be identified between groups of set pathogen, working gases, and treatment time intervals. A time-dependent increase of the antimicrobial effect was observed throughout the studies. CAP may be a promising alternative for antimicrobial treatment in a clinically feasible application time. The introduced standardized protocol is able to compare the outcome and quality of in-vitro studies. Further studies, including multi-species biofilm models, are needed to specify the application parameters of CAP before CAP should be tested in randomized clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Dominick Moser
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Steffen Müller
- Department of Cranio-Maxillofacial Surgery, Hospital of the University of Regensburg, 93053 Regensburg, Germany;
| | - Wolfgang Pfister
- Department of Hospital Hygiene, Sophien- und Hufeland-Klinikum Weimar, 99425 Weimar, Germany;
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (D.M.); (A.S.); (S.E.)
| |
Collapse
|
31
|
Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of multidrug-resistant bacteria poses a significant threat to human health. Plasma activated liquids (PAL) could be a promising alternative for microbial decontamination, where different PAL can possess diverse antimicrobial efficacies and cytotoxic profiles, depending on the range and concentration of their reactive chemical species. In this research, the biological activity of plasma activated water (PAW) on different biological targets including both microbiological and mammalian cells was investigated in vitro. The aim was to further an understanding of the specific role of distinct plasma reactive species, which is required to tailor plasma activated liquids for use in applications where high antimicrobial activity is required without adversely affecting the biology of eukaryotic cells. PAW was generated by glow and spark discharges, which provide selective generation of hydrogen peroxide, nitrite and nitrate in the liquid. The PAW made by either spark or glow discharges showed similar antimicrobial efficacy and stability of activity, despite the very different reactive oxygen species (ROS) and reactive nitrogen species profiles (RNS). However, different trends were observed for cytotoxic activities and effects on enzyme function, which were translated through the selective chemical species generation. These findings indicate very distinct mechanisms of action which may be exploited when tailoring plasma activated liquids to various applications. A remarkable stability to heat and pressure was noted for PAW generated with this set up, which broadens the application potential. These features also suggest that post plasma modifications and post generation stability can be harnessed as a further means of modulating the chemistry, activity and mode of delivery of plasma functionalised liquids. Overall, these results further understanding on how PAL generation may be tuned to provide candidate disinfectant agents for biomedical application or for bio-decontamination in diverse areas.
Collapse
|
32
|
Avellar HK, Williams MR, Brandão J, Narayanan S, Ramachandran A, Holbrook TC, Schoonover MJ, Bailey KL, Payton ME, Pai KK, Timmons CT. Safety and efficacy of cold atmospheric plasma for the sterilization of a Pasteurella multocida-contaminated subcutaneously implanted foreign body in rabbits. Am J Vet Res 2021; 82:118-124. [PMID: 33480278 DOI: 10.2460/ajvr.82.2.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether a stainless steel implant sterilized with a novel cold atmospheric plasma sterilization (CAPS) device adversely affects local tissues in rabbits and whether CAPS was as effective as steam sterilization with an autoclave to inactivate Pasteurella multocida. ANIMALS 31 healthy New Zealand White rabbits. PROCEDURES Steam-autoclaved stainless steel implants inoculated with P multocida underwent a second steam autoclave sterilization (AIA) or CAPS (AICAPS). One AIA implant and 3 AICAPS implants were randomly placed subcutaneously at 4 sites in 21 rabbits (84 implants). These rabbits were monitored daily for 5 days for evidence of systemic illness and local tissue reactions at the implantation sites and then euthanized. Samples were taken from each implant site for bacterial culture and histologic examination. RESULTS Cultures of samples obtained from all sites were negative for bacterial growth. No significant difference was observed in mean skin thickness or erythema between AIA and AICAPS implant sites on any observed day. Also, individual histologic grades for the epidermis, dermis, subcutis, and muscle and total histologic grade were not significantly different between AIA and AICAPS implant sites. CONCLUSIONS AND CLINICAL RELEVANCE Cold atmospheric plasma sterilization was noninferior to steam sterilization of P multocida-contaminated stainless steel implants in the rabbits in the present study. However, studies of the efficacy of CAPS for inactivation of other important bacteria are needed.
Collapse
|
33
|
Akbiyik A, Sari D, Ercan UK, Uyanikgil Y, Taşli H, Tomruk C, Usta YH. The antimicrobial and tissue healing efficacy of the atmospheric pressure cold plasma on grade III infected pressure ulcer: randomized controlled in vivo experiment. J Appl Microbiol 2021; 131:973-987. [PMID: 33354899 DOI: 10.1111/jam.14980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
AIM To evaluate the antimicrobial efficacy and wound healing effect of atmospheric pressure cold plasma (APCP) on an infected pressure ulcer (IPUs) model that was created on rats. METHODS A total of 18 rats was divided into APCP, silver sulfadiazine (AgS) and control groups to have six rats in each group. A third-grade pressure ulcer model was developed on the back of each of the rats, and pressure ulcers were infected by inoculation of multidrug resistance (MDR) Pseudomonas aeruginosa. A portable dielectric barrier discharge device was used to generate cold air plasma. APCP, AgS and saline treatments were carried out once a day for 14 days. The effectiveness of the treatment was evaluated on days 5, 10 and 15. Surface area, depth, pressure ulcer healing scale (PUSH) and microbiological examination were used for evaluation. RESULTS The results of this study showed that APCP was superior over AgS application and irrigation with saline by means of the reduction in surface area and depth of ulcers. Furthermore, PUSH score in plasma group was lower than other groups and histopathological examination showed a higher epithelization in APCP group. The average reductions of MDR P. aeruginosa for APCP, AgS and control groups were determined as 5·64 ± 1·87, 1·91 ± 0·90 and 1·22 ± 0·88 log10 CFU per gram tissue, respectively. CONCLUSION Atmospheric pressure cold plasma healed IPUs better than AgS. SIGNIFICANCE AND IMPACT OF THE STUDY Portable cold plasma devices could be a potential novel treatment modality for the patients who have IPUs.
Collapse
Affiliation(s)
- A Akbiyik
- Faculty of Health Sciences, Izmir Katip Celebi University, Çiğli İzmir, Turkey
| | - D Sari
- Department of Fundamentals of Nursing, Faculty of Nursing, Ege University, Izmir, Turkey
| | - U K Ercan
- Department of Biomedical Engineering, Faculty of Engineering, İzmir Katip Çelebi University, Çiğli/İzmir, Turkey
| | - Y Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - H Taşli
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - C Tomruk
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Y H Usta
- Department of Biomedical Engineering, Faculty of Engineering, İzmir Katip Çelebi University, Çiğli/İzmir, Turkey
| |
Collapse
|
34
|
Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Crit Rev Food Sci Nutr 2021; 62:3453-3470. [PMID: 33393810 DOI: 10.1080/10408398.2020.1865872] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix, which contribute to hygiene problems in the food and medical fields. Both spoilage and pathogenic bacteria that grow in the complex structure of biofilm are more resistant to harsh environmental conditions and conventional antimicrobial agents. Therefore, it is important to develop eco-friendly preventive methodologies to eliminate biofilms from foods and food contact equipment. The present paper gives an overview of the current physical methods for biofilm control and removal. Current physical strategies adopted for the anti-biofilm treatment mainly focused on use of ultrasound power, electric or magnetic field, plasma, and irradiation. Furthermore, the mechanisms of anti-biofilm action and application of different physical methods are discussed. Physical strategies make it possible to combat biofilm without the use of biocidal agents. The remarkable microbiocidal properties of physical strategies are promising tools for antimicrobial applications.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Quanfeng Huang
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Weiming Gu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, PR China
| | - Xin-An Zeng
- School of Food Science & Engineering, South China University of Technology, Guangzhou, Guangdong, PR China
| |
Collapse
|
35
|
Lee JY, Park SY, Kim KH, Yoon SY, Kim GH, Lee YM, Seol YJ. Safety evaluation of atmospheric pressure plasma jets in in vitro and in vivo experiments. J Periodontal Implant Sci 2021; 51:213-223. [PMID: 34114384 PMCID: PMC8200385 DOI: 10.5051/jpis.2007300365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/20/2021] [Accepted: 03/05/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose The atmospheric pressure plasma jet (APPJ) has been introduced as an effective disinfection method for titanium surfaces due to their massive radical generation at low temperatures. Helium (He) has been widely applied as a discharge gas in APPJ due to its bactericidal effects and was proven to be effective in our previous study. This study aimed to evaluate the safety and effects of He-APPJ application at both the cell and tissue levels. Methods Cellular-level responses were examined using human gingival fibroblasts and osteoblasts (MC3T3-E1 cells). He-APPJ was administered to the cells in the experimental group, while the control group received only He-gas treatment. Immediate cell responses and recovery after He-APPJ treatment were examined in both cell groups. The effect of He-APPJ on osteogenic differentiation was evaluated via an alkaline phosphatase activity assay. In vivo, He-APPJ treatment was administered to rat calvarial bone and the adjacent periosteum, and samples were harvested for histological examination. Results He-APPJ treatment for 5 minutes induced irreversible effects in both human gingival fibroblasts and osteoblasts in vitro. Immediate cell detachment of human gingival fibroblasts and osteoblasts was shown regardless of treatment time. However, the detached areas in the groups treated for 1 or 3 minutes were completely repopulated within 7 days. Alkaline phosphatase activity was not influenced by 1 or 3 minutes of plasma treatment, but was significantly lower in the 5 minute-treated group (P=0.002). In vivo, He-APPJ treatment was administered to rat calvaria and periosteum for 1 or 3 minutes. No pathogenic changes occurred at 7 days after He-APPJ treatment in the He-APPJ-treated group compared to the control group (He gas only). Conclusions Direct He-APPJ treatment for up to 3 minutes showed no harmful effects at either the cell or tissue level.
Collapse
Affiliation(s)
- Ji Yoon Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.,Deartment of Dentistry, Catholic Kwandong University, International St. Mary's hospital, Incheon, Korea
| | - Shin Young Park
- Department of Dental Science and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Kyoung Hwa Kim
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Sung Young Yoon
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan, Korea
| | - Gon Ho Kim
- Department of Energy Systems (Nuclear) Engineering, Seoul National University School of Engineering, Seoul, Korea
| | - Yong Moo Lee
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Yang Jo Seol
- Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea.
| |
Collapse
|
36
|
K. Martusevich A, G. Galka A, A. Karuzin K, N. Tuzhilkin A, L. Malinovskaya S. Cold helium plasma as a modifier of free radical processes in the blood: in vitro study. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
37
|
Busco G, Robert E, Chettouh-Hammas N, Pouvesle JM, Grillon C. The emerging potential of cold atmospheric plasma in skin biology. Free Radic Biol Med 2020; 161:290-304. [PMID: 33039651 DOI: 10.1016/j.freeradbiomed.2020.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The maintenance of skin integrity is crucial to ensure the physiological barrier against exogenous compounds, microorganisms and dehydration but also to fulfill social and aesthetic purposes. Besides the development of new actives intended to enter a formulation, innovative technologies based on physical principles have been proposed in the last years. Among them, Cold Atmospheric Plasma (CAP) technology, which already showed interesting results in dermatology, is currently being studied for its potential in skin treatments and cares. CAP bio-medical studies gather several different expertise ranging from physics to biology through chemistry and biochemistry, making this topic hard to pin. In this review we provide a broad survey of the interactions between CAP and skin. In the first section, we tried to give some fundamentals on skin structure and physiology, related to its essential functions, together with the main bases on cold plasma and its physicochemical properties. In the following parts we dissected and analyzed each CAP parameter to highlight the already known and the possible effects they can play on skin. This overview aims to get an idea of the potential of cold atmospheric plasma technology in skin biology for the future developments of dermo-cosmetic treatments, for example in aging prevention.
Collapse
Affiliation(s)
- Giovanni Busco
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France; Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France.
| | - Eric Robert
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | | | - Jean-Michel Pouvesle
- Groupe de Recherches sur l'Énergétique des Milieux Ionisés, UMR 7344, Université d'Orléans/CNRS, 45067, Orléans, France
| | - Catherine Grillon
- Centre de Biophysique Moléculaire, UPR4301, CNRS, 45071, Orléans, France.
| |
Collapse
|
38
|
Liu D, Szili EJ, Ostrikov K(K. Plasma medicine: Opportunities for nanotechnology in a digital age. PLASMA PROCESSES AND POLYMERS (PRINT) 2020; 17:2000097. [PMID: 32837492 PMCID: PMC7361249 DOI: 10.1002/ppap.202000097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
Advances in digital technologies have opened new opportunities for creating more reliable, time- and cost-effective, safer and mobile methods of diagnosing, managing and treating diseases. A few examples of advanced nano- and digital technologies are already FDA-approved for diagnosing and treating diseases. Plasma treatment is still emerging as a new healthcare technology, but it is showing a strong potential for treatment of many diseases including cancers and antimicrobial-resistant infections, with little or no adverse side effects. Here, we argue that with the ever-increasing complex healthcare challenges facing communities, including the ongoing COVID-19 pandemic, it is critical to consider combining unique properties of emerging healthcare technologies into a single multimodal treatment modality that could lead to unprecedented healthcare benefits. In this article, we focus on the healthcare opportunities created by establishing a nexus between plasma, nano- and digital technologies. We argue that the combination of plasma, nano- and digital technologies into a single multimodal healthcare package may significantly improve patient outcomes and comfort, and reduce the economic burden on community healthcare, as well as alleviate many problems related to overcrowded healthcare systems.
Collapse
Affiliation(s)
- Dawei Liu
- State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electronic and Electrical EngineeringHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Endre J. Szili
- Future Industries InstituteUniversity of South AustraliaMawson LakesSouth AustraliaAustralia
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- CSIRO‐QUT Joint Sustainable Processes and Devices LaboratoryLindfieldNew South WalesAustralia
| |
Collapse
|
39
|
Domnin P, Arkhipova A, Petrov S, Sysolyatina E, Parfenov V, Karalkin P, Mukhachev A, Gusarov A, Moisenovich M, Khesuani Y, Ermolaeva S. An In Vitro Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Appl Environ Microbiol 2020; 86:e01074-20. [PMID: 32680859 PMCID: PMC7480373 DOI: 10.1128/aem.01074-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/10/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic infections are associated with the formation of nonattached biofilm-like aggregates. In vitro models of surface-attached biofilms do not always accurately mimic these processes. Here, we tested a new approach to create in vitro nonattached bacterial aggregates using the principle of magnetic levitation of biological objects placed into a magnetic field gradient. Bacteria grown under magnetic levitation conditions formed nonattached aggregates that were studied with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) and characterized quantitatively. Nonattached aggregates consisted of bacteria submerged into an extracellular matrix and demonstrated features characteristic of biofilms, such as a polymeric matrix that binds Ruby Red and Congo red dyes, a prerequisite of bacterial growth, and increased resistance to gentamicin. Three quantitative parameters were explored to characterize strain-specific potential to form nonattached aggregates: geometric sizes, relative quantities of aggregated and free-swimming bacteria, and Congo red binding. Among three tested Escherichia coli strains, one strain formed nonattached aggregates poorly, and for this strain, all three of the considered parameters were different from those of the other two strains (P < 0.05). Further, we characterized biofilm formation on plastic and agar surfaces by these strains and found that good biofilm formation ability does not necessarily indicate good nonattached aggregate formation ability, and vice versa. The model and quantitative methods can be applied for in vitro studies of nonattached aggregates and modeling bacterial behavior in chronic infections, as it is important to increase our understanding of the role that nonattached bacterial aggregates play in the pathogenesis of chronic diseases.IMPORTANCE An increasing amount of evidence indicates that chronic infections are associated with nonattached biofilm-like aggregates formed by pathogenic bacteria. These aggregates differ from biofilms because they form under low-shear conditions within the volume of biological fluids and they do not attach to surfaces. Here, we describe an in vitro model that provides nonattached aggregate formation within the liquid volume due to magnetic levitation. Using this model, we demonstrated that despite morphological and functional similarities of nonattached aggregates and biofilms, strains that exhibit good biofilm formation might exhibit poor nonattached aggregate formation, suggesting that mechanisms underlying the formation of biofilms and nonattached aggregates are not identical. The magnetic levitation approach can be useful for in vitro studies of nonattached aggregate formation and simulation of bacterial behavior in chronic infections.
Collapse
Affiliation(s)
- Pavel Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Elena Sysolyatina
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Andrey Mukhachev
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | - Alexey Gusarov
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| | | | | | - Svetlana Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, Moscow, Russia
| |
Collapse
|
40
|
Dijksteel GS, Ulrich MMW, Vlig M, Sobota A, Middelkoop E, Boekema BKHL. Safety and bactericidal efficacy of cold atmospheric plasma generated by a flexible surface Dielectric Barrier Discharge device against Pseudomonas aeruginosa in vitro and in vivo. Ann Clin Microbiol Antimicrob 2020; 19:37. [PMID: 32814573 PMCID: PMC7439657 DOI: 10.1186/s12941-020-00381-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cold atmospheric plasma (CAP), which is ionized gas produced at atmospheric pressure, could be a novel and potent antimicrobial therapy for the treatment of infected wounds. Previously we have shown that CAP generated with a flexible surface Dielectric Barrier Discharge (sDBD) is highly effective against bacteria in vitro and in ex vivo burn wound models. In the current paper, we determined the in vitro and in vivo safety and efficacy of CAP generated by this sDBD device. Methods The effect of CAP on DNA mutations of V79 fibroblasts was measured using a hypoxanthine–guanine-phosphoribosyltransferase (HPRT) assay. Furthermore, effects on cell proliferation, apoptosis and DNA damage in ex vivo burn wound models (BWMs) were assessed using immunohistochemistry. Next, 105 colony forming units (CFU) P. aeruginosa strain PAO1 were exposed to CAP in a 3D collagen-elastin matrix environment to determine the number of surviving bacteria in vitro. Finally, rat excision wounds were inoculated with 107 CFU PAO1 for 24 h. The wounds received a single CAP treatment, repeated treatments on 4 consecutive days with CAP, 100 µL of 1% (wt/wt) silver sulfadiazine or no treatment. Wound swabs and punch biopsies were taken to determine the number of surviving bacteria. Results Exposure of V79 fibroblasts to CAP did not increase the numbers of mutated colonies. Additionally, the number of proliferative, apoptotic and DNA damaged cells in the BWMs was comparable to that of the unexposed control. Exposure of PAO1 to CAP for 2 min resulted in the complete elimination of bacteria in vitro. Contrarily, CAP treatment for 6 min of rat wounds colonized with PAO1 did not effectively reduce the in vivo bacterial count. Conclusions CAP treatment was safe but showed limited efficacy against PAO1 in our rat wound infection model.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands. .,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Dept. of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands
| | - Ana Sobota
- Dept. of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands
| |
Collapse
|
41
|
Xu Z, Zhou X, Yang W, Zhang Y, Ye Z, Hu S, Ye C, Li Y, Lan Y, Shen J, Ye X, Yang F, Cheng C. In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilm. PLASMA PROCESSES AND POLYMERS 2020; 17. [DOI: 10.1002/ppap.201900270] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/16/2020] [Indexed: 01/05/2025]
Abstract
AbstractThe deactivation effects and mechanism of plasma‐activated water (PAW) against Staphylococcus aureus biofilm and the inhibitory effect on the biofilm regrowth capacity for the surviving S. aureus post PAW treatment were investigated in vitro. Systematic measurements on bacterial cultivability, metabolic capacity, membrane integrity and intracellular reactive oxygen species (ROS) concentration under two different experimental categories were carried out after PAW treatment. Considerable deactivation effects were discovered on biofilm S. aureus on both prolonging the PAW inducement or treatment time. The rising concentration of intracellular ROS and the PAW‐contained RS might exert synergistic effects in deactivating the biofilm S. aureus. Moreover, the biomass, bacterial cultivability and metabolic capacity of the regrown S. aureus biofilm all significantly declined along with the increasing PAW inducement or treatment time. Therefore, except for the short‐term rapid inactivation effects on the biofilm, the PAW treatment could also exert long‐term inhibitory effects on the regeneration of S. aureus biofilm.
Collapse
Affiliation(s)
- Zimu Xu
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Xiaoxia Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Weishu Yang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yudi Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Zhengxin Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Chaobin Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yunxia Li
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Yan Lan
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Jie Shen
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| | - Xiaodong Ye
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei Anhui P. R. China
| | - Fan Yang
- School of Forestry & Landscape Architecture, Anhui Agricultural University Hefei P. R. China
| | - Cheng Cheng
- Institute of Plasma Physics Chinese Academy of Sciences Hefei P. R. China
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science Chinese Academy of Sciences Hefei P. R. China
| |
Collapse
|
42
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
43
|
Indirect, Non-Thermal Atmospheric Plasma Promotes Bacterial Killing in vitro and Wound Disinfection in vivo Using Monogenic and Polygenic Models of Type 2 Diabetes (Without Adverse Metabolic Complications). Shock 2020; 54:681-687. [PMID: 32496417 DOI: 10.1097/shk.0000000000001583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A novel atmospheric plasma device that uses indirect, non-thermal plasma generated from room air is being studied for its effects on wound disinfection in animal wounds of monogenic and polygenic murine models of type 2 diabetes. As a proof-of-concept report, the goal of this study was to demonstrate the efficacy and safety of the indirect non-thermal plasma (INTP) device in disinfecting polycarbonate filters established with Pseudomonas aeruginosa (PAO1) biofilms as well as wound disinfection in diabetic murine wounds. Dorsal excisional wounds in BALB/c, polygenic TALLYHO, and monogenic db/db mice established with PAO1 infection all demonstrated a 3-log colony-forming unit (CFU) reduction when subjected to a course of 20-min INTP treatments. Importantly, blood glucose and body weights in these animals were not significantly impacted by plasma treatment over the study period. Plasma safety was also analyzed via complete blood count and comprehensive metabolic panels, showing no deleterious systemic effects after 3 consecutive days of 20-min plasma applications. Therefore, the results obtained demonstrated the Pseudomonas aeruginosa isolates were highly sensitive to INTP in vitro, CFU reduction of infectious Pseudomonas in wounds of diabetic mice after INTP treatment is far superior to that of non-treated infected wounds, and the application of INTP shows no indication of toxic effects. Our results are consistent with indirect non-thermal atmospheric plasma as a promising adjunct to disinfecting wounds.
Collapse
|
44
|
Ambrico PF, Šimek M, Rotolo C, Morano M, Minafra A, Ambrico M, Pollastro S, Gerin D, Faretra F, De Miccolis Angelini RM. Surface Dielectric Barrier Discharge plasma: a suitable measure against fungal plant pathogens. Sci Rep 2020; 10:3673. [PMID: 32111863 PMCID: PMC7048822 DOI: 10.1038/s41598-020-60461-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/03/2020] [Indexed: 01/08/2023] Open
Abstract
Fungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure. We report on the effect of plasma treatment on phytopathogenic fungi causing quantitative and qualitative losses of products both in the field and postharvest. We focus our attention on the in vitro direct inhibitory effect of non-contact Surface Dielectric Barrier Discharge on conidia germination of Botrytis cinerea, Monilinia fructicola, Aspergillus carbonarius and Alternaria alternata. A few minutes of treatment was required to completely inactivate the fungi on an artificial medium. Morphological analysis of spores by Scanning Electron Microscopy suggests that the main mechanism is plasma etching due to Reactive Oxygen Species or UV radiation. Spectroscopic analysis of plasma generated in humid air gives the hint that the rotational temperature of gas should not play a relevant role being very close to room temperature. In vivo experiments on artificially inoculated cherry fruits demonstrated that inactivation of fungal spores by the direct inhibitory effect of plasma extend their shelf life. Pre-treatment of fruits before inoculation improve the resistance to infections maybe by activating defense responses in plant tissues.
Collapse
Affiliation(s)
- Paolo F Ambrico
- Consiglio Nazionale delle Ricerche, Istituto per la Scienza e la Tecnologia dei Plasmi, via Amendola 122/D, 70126, Bari, Italy.
| | - Milan Šimek
- Academy of Sciences of the Czech Republic, Institute of Plasma Physics v.v.i., Department of Pulse Plasma Systems, Za Slovankou 1782/3, 18200, Prague, Czech Republic
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Massimo Morano
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Angelantonio Minafra
- Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, via Amendola 122/D, 70126, Bari, Italy
| | - Marianna Ambrico
- Consiglio Nazionale delle Ricerche, Istituto per la Scienza e la Tecnologia dei Plasmi, via Amendola 122/D, 70126, Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy.
| | - Rita M De Miccolis Angelini
- Department of Soil, Plant and Food Sciences, University of Bari ALDO MORO, via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
45
|
Nicol MJ, Brubaker TR, Honish BJ, Simmons AN, Kazemi A, Geissel MA, Whalen CT, Siedlecki CA, Bilén SG, Knecht SD, Kirimanjeswara GS. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci Rep 2020; 10:3066. [PMID: 32080228 PMCID: PMC7033188 DOI: 10.1038/s41598-020-59652-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/13/2019] [Indexed: 12/05/2022] Open
Abstract
Emergence and spread of antibiotic resistance calls for development of non-chemical treatment options for bacterial infections. Plasma medicine applies low-temperature plasma (LTP) physics to address biomedical problems such as wound healing and tumor suppression. LTP has also been used for surface disinfection. However, there is still much to be learned regarding the effectiveness of LTP on bacteria in suspension in liquids, and especially on porous surfaces. We investigated the efficacy of LTP treatments against bacteria using an atmospheric-pressure plasma jet and show that LTP treatments have the ability to inhibit both gram-positive (S. aureus) and gram-negative (E. coli) bacteria on solid and porous surfaces. Additionally, both direct LTP treatment and plasma-activated media were effective against the bacteria suspended in liquid culture. Our data indicate that reactive oxygen species are the key mediators of the bactericidal effects of LTP and hydrogen peroxide is necessary but not sufficient for antibacterial effects. In addition, our data suggests that bacteria exposed to LTP do not develop resistance to further treatment with LTP. These findings suggest that this novel atmospheric-pressure plasma jet could be used as a potential alternative to antibiotic treatments in vivo.
Collapse
Affiliation(s)
- McKayla J Nicol
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Pathobiology Graduate Program, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Timothy R Brubaker
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Brian J Honish
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alyssa N Simmons
- Department of Mechanical Engineering and Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ali Kazemi
- Department of Mechanical Engineering and Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Madison A Geissel
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Connor T Whalen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Sven G Bilén
- School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sean D Knecht
- School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Girish S Kirimanjeswara
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
46
|
Küçük D, Savran L, Ercan UK, Yarali ZB, Karaman O, Kantarci A, Sağlam M, Köseoğlu S. Evaluation of efficacy of non-thermal atmospheric pressure plasma in treatment of periodontitis: a randomized controlled clinical trial. Clin Oral Investig 2020; 24:3133-3145. [PMID: 31897708 DOI: 10.1007/s00784-019-03187-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVES In this clinical study, we aim to evaluate the effectiveness of non-thermal atmospheric pressure plasma (NAPP), which is a novel procedure used in periodontal pocket decontamination adjunctive to non-surgical periodontal treatment (NSPT). METHODS The study included 25 systemically healthy periodontitis patients. In the split-mouth design, NAPP application into the pockets, in addition to NSPT, was performed. Clinical periodontal data, gingival crevicular fluid, and subgingival plaque samples of patients were taken before and during the first and third months of treatment. Biochemical assays were conducted using enzyme-linked immunosorbent assay. Analysis of bacteria was performed with polymerase chain reaction method. RESULTS There was more clinical attachment level (CAL) gain in the 3rd month in the test group (deep pockets: 3.90 mm, pockets ≥ 5 mm: 2.72 mm) compared to the control group (deep pockets: 3.40 mm, pockets ≥ 5 mm: 2.58 mm) (p < 0.05), but no significant difference between groups in CAL. Clinical periodontal parameters improved in both study groups (p < 0.05). However, the gingival index (GI) and the bleeding on probing (BOP) rate decreased more in the test group (GI: 0.55, BOP: 9.48%, and GI: 0.38, BOP: 8.46% in the 1st and 3rd months, respectively) compared to the control group (GI: 0.68, BOP: 13.43%, and GI: 0.52, BOP: 14.58%) (p < 0.05). In addition, there was no significant difference in probing depth and biochemical markers between groups (p > 0.05). It was observed that NAPP reduced the number of bacteria more than the control group in the 1st and 3rd months. CONCLUSIONS It was seen that the single-time NAPP application concurrent with NSPT provided additional CAL gain, elimination of putative periodontopathogens and reduced their recolonization. Longitudinal studies with larger population and longer time are required. CLINICAL RELEVANCE NSPT is an effective method for the treatment of periodontitis but bacteria recolonization that causes recurrence of the periodontal disease occurs within a short period. NAPP can reduce the recurrence of periodontal disease by providing better bacterial elimination and should, therefore, be used in maintenance of periodontitis.
Collapse
Affiliation(s)
- Diğdem Küçük
- Faculty of Dentistry, Department of Periodontology, Katip Celebi University, Izmir, Turkey.,Private Practice, Izmir, Turkey
| | - Levent Savran
- Faculty of Dentistry, Department of Periodontology, Katip Celebi University, Izmir, Turkey
| | - Utku Kürşat Ercan
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Katip Celebi University, Izmir, Turkey
| | - Ziyşan Buse Yarali
- Department of Biomedical Engineering, Tissue Engineering and Regenerative Medicine Laboratory, Katip Celebi University, Izmir, Turkey
| | - Ozan Karaman
- Faculty of Engineering and Architecture, Department of Biomedical Engineering, Katip Celebi University, Izmir, Turkey
| | - Alpdoğan Kantarci
- The Forsyth Institute, Department of Applied Oral Sciences, Center for Periodontology, Cambridge, USA
| | - Mehmet Sağlam
- Faculty of Dentistry, Department of Periodontology, Katip Celebi University, Izmir, Turkey
| | - Serhat Köseoğlu
- Faculty of Dentistry, Department of Periodontology, Katip Celebi University, Izmir, Turkey. .,Hamidiye Faculty of Dentistry, Department of Periodontology, Health Sciences University, 34668, Istanbul, Turkey.
| |
Collapse
|
47
|
Dijksteel GS, Ulrich MMW, Vlig M, Nibbering PH, Cordfunke RA, Drijfhout JW, Middelkoop E, Boekema BKHL. Potential factors contributing to the poor antimicrobial efficacy of SAAP-148 in a rat wound infection model. Ann Clin Microbiol Antimicrob 2019; 18:38. [PMID: 31796055 PMCID: PMC6891976 DOI: 10.1186/s12941-019-0336-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We investigated the efficacy of a synthetic antimicrobial peptide SAAP-148, which was shown to be effective against Methicillin-resistant Staphylococcus aureus (MRSA) on tape-stripped mice skin. Unexpectedly, SAAP-148 was not effective against MRSA in our pilot study using rats with excision wounds. Therefore, we investigated factors that might have contributed to the poor efficacy of SAAP-148. Subsequently, we optimised the protocol and assessed the efficacy of SAAP-148 in an adapted rat study. METHODS We incubated 100 µL of SAAP-148 with 1 cm2 of a wound dressing for 1 h and determined the unabsorbed volume of peptide solution. Furthermore, 105 colony forming units (CFU)/mL MRSA were exposed to increasing dosages of SAAP-148 in 50% (v/v) human plasma, eschar- or skin extract or PBS. After 30 min incubation, the number of viable bacteria was determined. Next, ex vivo skin models were inoculated with MRSA for 1 h and exposed to SAAP-148. Finally, excision wounds on the back of rats were inoculated with 107 CFU MRSA overnight and treated with SAAP-148 for 4 h or 24 h. Subsequently, the number of viable bacteria was determined. RESULTS Contrary to Cuticell, Parafilm and Tegaderm film, < 20% of peptide solution was recovered after incubation with gauze, Mepilex border and Opsite Post-op. Furthermore, in plasma, eschar- or skin extract > 20-fold higher dosages of SAAP-148 were required to achieve a 2-log reduction (LR) of MRSA versus SAAP-148 in PBS. Exposure of ex vivo models to SAAP-148 for 24 h resulted in a 4-fold lower LR than a 1 h or 4 h exposure period. Additionally, SAAP-148 caused a 1.3-fold lower mean LR at a load of 107 CFU compared to 105 CFU MRSA. Moreover, exposure of ex vivo excision wound models to SAAP-148 resulted in a 1.5-fold lower LR than for tape-stripped skin. Finally, SAAP-148 failed to reduce the bacterial counts in an adapted rat study. CONCLUSIONS Several factors, such as absorption of SAAP-148 by wound dressings, components within wound exudates, re-colonisation during the exposure of SAAP-148, and a high bacterial load may contribute to the poor antimicrobial effect of SAAP-148 against MRSA in the rat model.
Collapse
Affiliation(s)
- Gabrielle S. Dijksteel
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Magda M. W. Ulrich
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
| | - Peter H. Nibbering
- Dept. of Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Robert A. Cordfunke
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jan W. Drijfhout
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ Beverwijk, The Netherlands
- Dept. of Plastic Reconstructive & Hand Surgery, Amsterdam University Medical Centres, Free University of Amsterdam, Amsterdam Movement Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Saleem W, Benton AH, Marquart ME, Wang S, Saleem W, Vigil R, Huang B, Sharma AC. Innovative Cold Atmospheric Plasma (iCAP) Decreases Mucopurulent Corneal Ulcer Formation and Edema and Reduces Bacterial Load in Pseudomonas Keratitis. CLINICAL PLASMA MEDICINE 2019; 16. [PMID: 34926141 DOI: 10.1016/j.cpme.2019.100093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Purpose To evaluate the effect of application of 3% air in helium cold atmospheric plasma jet, using an inexpensive device termed iCAP, in corneal scratch wound closure in vitro and the treatment of Pseudomonas aeruginosa (P. aeruginosa) keratitis in vivo. Methods Thermal imaging to measure temperature of surfaces to which iCAP was applied and UV energy density delivered by iCAP were measured. Scratch wounds inflicted on in vitro cultures of a human corneal epithelial cell line were treated with iCAP and wound widths at various times post-application were measured. Rabbit eyes infected with P. aeruginosa were treated with iCAP and slit lamp biomicroscope examination conducted to determine corneal health outcomes 25h post infection. Corneal homogenates were plated on agar and viable bacterial colonies enumerated to determine the effect of iCAP on bacterial load in vivo in P. aeruginosa keratitis. Results iCAP was shown to operate in the non-thermal regime and also shown to deliver much lower UV energy density than that necessary to cause harmful effects on ocular tissue. iCAP treatment significantly improved the rate of scratch wound gap closure in vitro in a human corneal epithelial cell line compared to controls. In vivo, iCAP treatment of P. aeruginosa keratitis infection in the rabbit eyes (N = 20) significantly reduced the incidence of corneal ulcer (P = 0.003) and corneal edema (P = 0.011) and significantly improved total cornea health (P = 0.034) compared to untreated (N = 10). Finally, in vivo iCAP treatment of P. aeruginosa keratitis infection in the rabbit eyes (N = 19) significantly reduced bacterial loads (P = 0.012) compared to untreated (N = 9). Conclusion Our results strongly suggest that iCAP treatment was effective in improving corneal epithelial defect closure in vitro, reducing ulcer formation and decreasing inflammation in P. aeruginosa infected corneas in vivo and decreasing bacterial loads in P. aeruginosa infected corneas in vivo which led to improved overall cornea health outcomes in vivo. Further studies to investigate iCAP's safety and efficacy against other infectious microbes responsible for causing ulcerative keratitis, with and without co-treatment with antimicrobial therapies are warranted.
Collapse
Affiliation(s)
- Wahaj Saleem
- Experimental Therapeutics and Diagnostics Group, Lynntech, Inc., 2501 Earl Rudder Fwy S., College Station, TX 77845, USA
| | - Angela H Benton
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shuli Wang
- Experimental Therapeutics and Diagnostics Group, Lynntech, Inc., 2501 Earl Rudder Fwy S., College Station, TX 77845, USA
| | - Waqas Saleem
- Experimental Therapeutics and Diagnostics Group, Lynntech, Inc., 2501 Earl Rudder Fwy S., College Station, TX 77845, USA
| | - Randy Vigil
- Experimental Therapeutics and Diagnostics Group, Lynntech, Inc., 2501 Earl Rudder Fwy S., College Station, TX 77845, USA
| | - Bo Huang
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Anjal C Sharma
- Experimental Therapeutics and Diagnostics Group, Lynntech, Inc., 2501 Earl Rudder Fwy S., College Station, TX 77845, USA
| |
Collapse
|
49
|
In vitro evaluation of the decontamination effect of cold atmospheric argon plasma on selected bacteria frequently encountered in small animal bite injuries. J Microbiol Methods 2019; 169:105728. [PMID: 31629909 DOI: 10.1016/j.mimet.2019.105728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/19/2023]
Abstract
Beneficial effects of cold atmospheric argon plasma (CAAP) on wound healing and its capacity for bacterial decontamination has recently been documented. First, in vivo studies in small animals did not prove any decontamination effect in canine bite wounds. The present study evaluated the overall decontamination effect of CAAP for different bacteria frequently encountered in canine bite wounds with respect to growth phase, initial bacteria concentration and treatment duration. Standard strains of Escherichia (E.) coli, Staphylococcus (S.) pseudintermedius, S. aureus, Streptococcus (S.) canis, Pseudomonas (P.) aeruginosa and Pasteurella multocida were investigated. To evaluate the influence of the bacterial growth phase, each bacterium was incubated for three and eight hours, before CAAP treatment. Three different bacterial concentrations were created per bacterium and growth phase, and were exposed to CAAP for 30 s, 1 min and 2 min. CAAP treatment resulted in acceptable decontamination rates (range 98.9-99.9%) in all bacteria species in vitro; however, differences in susceptibility were detected. Decontamination rate was mainly influenced by initial bacterial concentration and treatment time. Growth phase only influenced decontamination in S. pseudintermedius. Treatment time significantly (P < .05) correlated with the decontamination rate in E. coli, S. canis and S. aureus, with an exposure time of 2 min being most effective. Initial bacterial concentration significantly (P < .05) influenced decontamination in Pasteurella multocida and P. aeruginosa, in which treatment time was not as important. CAAP exerts effective antibacterial activity against the tested bacteria strains in vitro, with species specific effects of treatment time, growth phase and concentration.
Collapse
|
50
|
Hirano Y, Hayashi M, Tamura M, Yoshino F, Yoshida A, Masubuchi M, Imai K, Ogiso B. Singlet oxygen generated by a new nonthermal atmospheric pressure air plasma device exerts a bactericidal effect on oral pathogens. J Oral Sci 2019; 61:521-525. [PMID: 31588099 DOI: 10.2334/josnusd.18-0455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Oral diseases generally have certain bacteria associated with them. Non-thermal atmospheric pressure plasma (NTAP), generated at atmospheric pressure and room temperature, incorporates several molecules, including reactive oxygen species, that can inactivate various bacteria including oral pathogens. For this reason, several NTAP devices have been developed to treat oral diseases. Use of noble gases can enhance the bactericidal efficacy of NTAP, but this requires additional gas supply equipment. Therefore, a new NTAP device that employs ambient air as the working gas was developed. The device generates non-thermal atmospheric pressure air plasma. Here, the singlet oxygen (1O2) levels generated, their bactericidal effects on oral pathogens (Streptococcus mutans, Porphyromonas gingivalis, and Enterococcus faecalis), and the bacterial oxidative stress they imposed were measured. 1O2 generation in phosphatebuffered saline was assessed qualitatively using electron spin resonance (ESR) spectroscopy, and bactericidal efficacy was evaluated by counting of colony-forming units/mL. Bacterial oxidative stress was determined by measurement of hydrogen peroxide (H2O2) and superoxide dismutase (SOD) activity. ESR indicated that the level of 1O2 increased significantly and time-dependently, and was inversely correlated with distance, but the bactericidal effects were correlated only with treatment time (not distance) as H2O2 increased and SOD levels decreased, suggesting that the new device has potential applicability for treatment of oral disease.
Collapse
Affiliation(s)
- Yoriyuki Hirano
- Department of Endodontics, Nihon University School of Dentistry
| | - Makoto Hayashi
- Department of Endodontics, Nihon University School of Dentistry
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry
| | - Fumihiko Yoshino
- Division of Photomedical Dentistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | - Ayaka Yoshida
- Division of Photomedical Dentistry, Department of Oral Science, Graduate School of Dentistry, Kanagawa Dental University
| | | | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry
| |
Collapse
|