1
|
Bettridge JM, Snow LC, Tang Y, Petrovska L, Lawes J, Smith RP. Using SNP addresses for Salmonella Typhimurium DT104 in routine veterinary outbreak detection. Epidemiol Infect 2023; 151:e187. [PMID: 37876041 PMCID: PMC10644063 DOI: 10.1017/s0950268823001723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/26/2023] Open
Abstract
SNP addresses are a pathogen typing method based on whole-genome sequences (WGSs), assigning groups at seven different levels of genetic similarity. Public health surveillance uses it for several gastro-intestinal infections; this work trialled its use in veterinary surveillance for salmonella outbreak detection. Comparisons were made between temporal and spatio-temporal cluster detection models that either defined cases by their SNP address or by phage type, using historical data sets. Clusters of SNP incidents were effectively detected by both methods, but spatio-temporal models consistently detected these clusters earlier than the corresponding temporal models. Unlike phage type, SNP addresses appeared spatially and temporally limited, which facilitated the differentiation of novel, stable, or expanding clusters in spatio-temporal models. Furthermore, these models flagged spatio-temporal clusters containing only two to three cases at first detection, compared with a median of seven cases in phage-type models. The large number of SNP addresses will require automated methods to implement these detection models routinely. Further work is required to explore how temporal changes and different host species may impact the sensitivity and specificity of cluster detection. In conclusion, given validation with more sequencing data, SNP addresses are likely to be a valuable addition to early warning systems in veterinary surveillance.
Collapse
Affiliation(s)
- J. M. Bettridge
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, UK
- Natural Resources Institute, University of Greenwich, Chatham, UK
| | - L. C. Snow
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, UK
| | - Y. Tang
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - L. Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, UK
| | - J. Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, UK
| | - R. P. Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, UK
| |
Collapse
|
2
|
Rathnayake IU, Graham RMA, Bayliss J, Staples M, Micalizzi G, Ariotti L, Cover L, Heron B, Graham T, Stafford R, Rubenach S, D'Addona A, Jennison AV. Implementation of routine genomic surveillance provided insights into a locally acquired outbreak caused by a rare clade of Salmonella enterica serovar Enteritidis in Queensland, Australia. Microb Genom 2023; 9:mgen001059. [PMID: 37459172 PMCID: PMC10438802 DOI: 10.1099/mgen.0.001059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023] Open
Abstract
Salmonellosis is a significant public health problem globally. In Australia, Salmonella enterica serovar Enteritidis is one of the main causes of salmonellosis. This study reports how the implementation of routine genetic surveillance of isolates from human S. Enteritidis cases enabled identification of the likely source of an outbreak that occurred in a remote town in Far North Queensland, Australia. This study included patient, food and water samples collected during an outbreak investigation. S. Enteritidis of the novel sequence type 5438 was isolated from all seven patient samples and one bore water sample but not any of the food samples. Both whole-genome single nucleotide polymorphism (SNP) and core-genome multilocus sequence typing analysis revealed that S. Enteritidis isolated from outbreak-related patient samples and the bore water isolates clustered together with fewer than five SNP differences and ten allelic differences. This genetic relatedness informed the outbreak response team around public health interventions and no further cases were identified post-treatment of the bore water. This disease cluster was identified through the routine sequencing of S. Enteritidis performed by the state public health laboratory in an actionable time frame. Additionally, genomic surveillance captured a case with unknown epidemiological links to the affected community, ruled out a simultaneous outbreak in an adjacent state as the source and provided evidence for the likely source preventing further transmission. Therefore, this report provides compelling support for the implementation of whole-genome sequencing based genotyping methods in public health microbiology laboratories for better outbreak detection and management.
Collapse
Affiliation(s)
- Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Rikki M. A. Graham
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Jo Bayliss
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Megan Staples
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Gino Micalizzi
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Lawrence Ariotti
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Leonie Cover
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Brett Heron
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Trudy Graham
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| | - Russell Stafford
- OzFoodNet, Communicable Diseases Branch, Queensland Public Health and Scientific Services, Queensland Department of Health, Butterfield Street, Herston, Brisbane, Queensland, Australia
| | - Sally Rubenach
- Health Surveillance, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital and Health Service, Queensland Department of Health, Cairns, Queensland, Australia
| | - Andrew D'Addona
- Environmental Health, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital and Health Service, Queensland Department of Health, Cairns, Queensland, Australia
| | - Amy V. Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Coopers Plains, Queensland, Australia
| |
Collapse
|
3
|
Bayliss SC, Locke RK, Jenkins C, Chattaway MA, Dallman TJ, Cowley LA. Rapid geographical source attribution of Salmonella enterica serovar Enteritidis genomes using hierarchical machine learning. eLife 2023; 12:e84167. [PMID: 37042517 PMCID: PMC10147375 DOI: 10.7554/elife.84167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/02/2023] [Indexed: 04/13/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonellosis globally and is commonly transmitted from animals to humans by the consumption of contaminated foodstuffs. In the UK and many other countries in the Global North, a significant proportion of cases are caused by the consumption of imported food products or contracted during foreign travel, therefore, making the rapid identification of the geographical source of new infections a requirement for robust public health outbreak investigations. Herein, we detail the development and application of a hierarchical machine learning model to rapidly identify and trace the geographical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis genomes, collected by the UKHSA between 2014-2019, were used to train a 'local classifier per node' hierarchical classifier to attribute isolates to four continents, 11 sub-regions, and 38 countries (53 classes). The highest classification accuracy was achieved at the continental level followed by the sub-regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of countries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and validation with publicly accessible international samples indicated that predictions were robust to prospective external datasets. The hierarchical machine learning framework provided granular geographical source prediction directly from sequencing reads in <4 min per sample, facilitating rapid outbreak resolution and real-time genomic epidemiology. The results suggest additional application to a broader range of pathogens and other geographically structured problems, such as antimicrobial resistance prediction, is warranted.
Collapse
Affiliation(s)
- Sion C Bayliss
- Bristol Veterinary School, University of BristolBristolUnited Kingdom
| | - Rebecca K Locke
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
- Genomic Laboratory Hub (GLH), Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation TrustCambridgeUnited Kingdom
| | - Claire Jenkins
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Marie Anne Chattaway
- Gastrointestinal Reference Services, UK Health Security AgencyLondonUnited Kingdom
| | - Timothy J Dallman
- Institute for Risk Assessment Sciences, Utrecht UniversityUtrechtNetherlands
| | - Lauren A Cowley
- Milner Centre for Evolution, Life Sciences Department, University of BathBathUnited Kingdom
| |
Collapse
|
4
|
Cao G, Zhao S, Kuang D, Hsu CH, Yin L, Luo Y, Chen Z, Xu X, Strain E, McDermott P, Allard M, Brown E, Meng J, Zheng J. Geography shapes the genomics and antimicrobial resistance of Salmonella enterica Serovar Enteritidis isolated from humans. Sci Rep 2023; 13:1331. [PMID: 36693882 PMCID: PMC9873609 DOI: 10.1038/s41598-022-24150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/10/2022] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant (MDR) Salmonella has been a long-standing challenge in public health and food safety. The prevalence of MDR S. Enteritidis, especially isolated from humans, in China is significantly higher than those from the U.S. and other countries. A dataset of 197 S. Enteritidis genomes, including 16 sequenced clinical isolates from China and 181 downloaded genomes of human isolates from the U.S., Europe, and Africa, was analyzed for genomic diversity, virulence potential, and antimicrobial resistance (AMR). Phylogenomic analyses identified four major well-supported clades (I-IV). While AMR genotype in the majority of isolates in clades I and IV displayed as pan-susceptible, 81.8% (9/11) and 22.4% (13/58) of isolates in clades III and II were MDR, respectively. It is noted that 77% (10/13) of MDR isolates in clade II were from China. The most common antimicrobial resistance genes (ARGs) carried by the Chinese isolates were aph(3')-IIa, blaCTX-M-55, and blaTEM-1B, whereas blaTEM-1B, sul1, sul2, drfA7, aph(3")-Ib/strA, and aph(6)-Id/strB were most often identified in those from Africa (clade III). Among the 14 plasmid types identified, IncX1 and IncFII(pHN7A8) were found exclusively in the Chinese MDR isolates, while IncQ1 was highly associated with the African MDR isolates. The spvRABCD virulence operon was present in 94.9% (187/197) of isolates tested and was highly associated with both the IncF (IncFII and IncFIB) plasmids. In addition, phylogenetic differences in distribution of Salmonella pathogenicity islands (SPIs), prophages and other accessory genes were also noted. Taken together, these findings provide new insights into the molecular mechanisms underpinning diversification of MDR S. Enteritidis.
Collapse
Affiliation(s)
- Guojie Cao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Dai Kuang
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Lanlan Yin
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Yan Luo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Patrick McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, 20708, USA
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Eric Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety & Security Systems, Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| |
Collapse
|
5
|
Jiang M, Yang C, Kwan PSL, Zhang L, Fan H, Jin Y, Sun L, Chen H, Li B, Chen Q, Wu Y, Guo Y, Shi Y, Liao M, Shi X, Liu J, Jiang L, Cai R, Deng Y, Sun Q, Yang R, Zhang Q, Cui Y, Hu Q. Rapid Multilateral and Integrated Public Health Response to a Cross-City Outbreak of Salmonella Enteritidis Infections Combining Analytical, Molecular, and Genomic Epidemiological Analysis. Front Microbiol 2022; 13:772489. [PMID: 35602015 PMCID: PMC9117964 DOI: 10.3389/fmicb.2022.772489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
On September 21, 2019, the Shenzhen and Dongguan Centers for Disease Control and Prevention received notification of a large cluster of suspected gastroenteritis involving primarily children who sought medical care at hospitals throughout two adjacent cities in China, Shenzhen, and Dongguan. A joint outbreak response was promptly initiated across jurisdictions in a concerted effort between clinical microbiologists, epidemiologists, and public health scientists. Concurrently, multiplex PCRs were used for rapid laboratory diagnosis of suspected cases; epidemiological investigations were conducted to identify the outbreak source, complemented by near real-time multicenter whole-genome analyses completed within 34 h. Epidemiological evidence indicated that all patients had consumed egg sandwiches served on September 20 as snacks to children and staff at a nursery in Dongguan, located near Shenzhen. Salmonella Enteritidis was isolated from case-patients, food handlers, kitchenware, and sandwiches with kitchen-made mayonnaise. Whole-genome single-nucleotide polymorphism (SNP)-based phylogenetic analysis demonstrated a well-supported cluster with pairwise distances of ≤1 SNP between genomes for outbreak-associated isolates, providing the definitive link between all samples. In comparison with historical isolates from the same geographical region, the minimum pairwise distance was >14 SNPs, suggesting a non-local outbreak source. Genomic source tracing revealed the possible transmission dynamics of a S. Enteritidis clone throughout a multi-provincial egg distribution network. The efficiency and scale with which multidisciplinary and integrated approaches were coordinated in this foodborne disease outbreak response was unprecedented in China, leading to the timely intervention of a large cross-jurisdiction Salmonella outbreak.
Collapse
Affiliation(s)
- Min Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Chao Yang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Patrick S L Kwan
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liping Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujuan Jin
- Microbiology Laboratory, Longgang District Center for Disease Control and Prevention, Shenzhen, China
| | - Lifang Sun
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Baisheng Li
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Qiuxia Chen
- Microbiology Laboratory, Guangdong Center for Disease Control and Prevention, Guangdong, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanguo Shi
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Min Liao
- Division of Biohazard Inspection and Testing, Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianping Liu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lijuan Jiang
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinhua Deng
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qiaoli Zhang
- Microbiology Laboratory, Dongguan Center for Disease Control and Prevention, Guangdong, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qinghua Hu
- Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
6
|
Li S, He Y, Mann DA, Deng X. Global spread of Salmonella Enteritidis via centralized sourcing and international trade of poultry breeding stocks. Nat Commun 2021; 12:5109. [PMID: 34433807 PMCID: PMC8387372 DOI: 10.1038/s41467-021-25319-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/03/2021] [Indexed: 11/22/2022] Open
Abstract
A pandemic of Salmonella enterica serotype Enteritidis emerged in the 1980s due to contaminated poultry products. How Salmonella Enteritidis rapidly swept through continents remains a historical puzzle as the pathogen continues to cause outbreaks and poultry supply becomes globalized. We hypothesize that international trade of infected breeding stocks causes global spread of the pathogen. By integrating over 30,000 Salmonella Enteritidis genomes from 98 countries during 1949-2020 and international trade of live poultry from the 1980s to the late 2010s, we present multifaceted evidence that converges on a high likelihood, global scale, and extended protraction of Salmonella Enteritidis dissemination via centralized sourcing and international trade of breeding stocks. We discovered recent, genetically near-identical isolates from domestically raised poultry in North and South America. We obtained phylodynamic characteristics of global Salmonella Enteritidis populations that lend spatiotemporal support for its dispersal from centralized origins during the pandemic. We identified concordant patterns of international trade of breeding stocks and quantitatively established a driving role of the trade in the geographic dispersal of Salmonella Enteritidis, suggesting that the centralized origins were infected breeding stocks. Here we demonstrate the value of integrative and hypothesis-driven data mining in unravelling otherwise difficult-to-probe pathogen dissemination from hidden origins.
Collapse
Affiliation(s)
- Shaoting Li
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Yingshu He
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - David Ames Mann
- Center for Food Safety, University of Georgia, Griffin, GA, USA
| | - Xiangyu Deng
- Center for Food Safety, University of Georgia, Griffin, GA, USA.
| |
Collapse
|
7
|
Springer S, Theuß T, Toth I, Szogyenyi Z. Invasion inhibition effects and immunogenicity after vaccination of SPF chicks with a Salmonella Enteritidis live vaccine. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:249-255. [PMID: 34425613 PMCID: PMC8382381 DOI: 10.1055/a-1520-1369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective
Meat and eggs from chickens infected with
Salmonella
Enteritidis,
Salmonella
Typhimurium and
Salmonella
Infantis are considered to be an important source of
Salmonella
infections for humans. In order to control
Salmonella
infections in chickens, basic biosecurity measures are taken in combination with inactivated or attenuated live vaccines. Apart from an adaptive immune response, some live vaccines also induce innate immune mechanisms that prevent or inhibit systemic invasion with homologous
Salmonella
serovars. It is unknown whether these invasion inhibition effects are also directed against heterologous
Salmonella
serovars. Furthermore, it is unclear whether the adaptive immune response after vaccination with a
Salmonella
Enteritidis phage type 4 live vaccine is also directed against other phage types of
Salmonella
Enteritidis and Typhimurium.
Material and methods
Specific pathogen-free day-old chicks were vaccinated orally with a commercially available
Salmonella
Enteritidis live vaccine. To test the invasion inhibition effect, the animals were challenged orally with a labelled
Salmonella
Typhimurium or
Salmonella
Infantis strain 1 day after vaccination. To demonstrate the adaptive immune response against non-phage type 4
Salmonella
Enteritidis strains and a monophasic
Salmonella
Typhimurium strain, the chickens were challenged with
Salmonella
Enteritidis strains of phage types 1, 8 and 21 and a monophasic
Salmonella
Typhimurium strain (Definitive Type 193). After challenge, the abundance of the challenge strain in liver and cecal tissue was enumerated and compared with a corresponding control group.
Results
Findings showed that the live
Salmonella
Enteritidis vaccine inhibits systemic invasion after early infection with
Salmonella
Typhimurium and
Salmonella
Infantis. Furthermore, adaptive immunity against the tested non-phage type 4
Salmonella
Enteritidis strains and the monophasic
Salmonella
Typhimurium strain was demonstrated.
Conclusion and clinical relevance
The results of this study demonstrate that vaccination with the
Salmonella
Enteritidis phage type 4 live vaccine significantly inhibits the invasion of
Salmonella
Typhimurium and Infantis. Furthermore, an adaptive immune response was also detected against non-phage type 4
Salmonella
Enteritidis strains and a monophasic
Salmonella
Typhimurium strain.
Collapse
Affiliation(s)
| | | | - Imre Toth
- Ceva Phylaxia Veterinary Biologicals co. Ltd
| | | |
Collapse
|
8
|
Luo L, Payne M, Kaur S, Hu D, Cheney L, Octavia S, Wang Q, Tanaka MM, Sintchenko V, Lan R. Elucidation of global and national genomic epidemiology of Salmonella enterica serovar Enteritidis through multilevel genome typing. Microb Genom 2021; 7. [PMID: 34292145 PMCID: PMC8477392 DOI: 10.1099/mgen.0.000605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is a major cause of foodborne Salmonella infections and outbreaks in humans. Effective surveillance and timely outbreak detection are essential for public health control. Multilevel genome typing (MGT) with multiple levels of resolution has been previously demonstrated as a promising tool for this purpose. In this study, we developed MGT with nine levels for S. Enteritidis and characterised the genomic epidemiology of S. Enteritidis in detail. We examined 26 670 publicly available S. Enteritidis genome sequences from isolates spanning 101 years from 86 countries to reveal their spatial and temporal distributions. Using the lower resolution MGT levels, globally prevalent and regionally restricted sequence types (STs) were identified; avian associated MGT4-STs were found that were common in human cases in the USA; temporal trends were observed in the UK with MGT5-STs from 2014 to 2018 revealing both long lived endemic STs and the rapid expansion of new STs. Using MGT3 to MGT6, we identified multidrug resistance (MDR) associated STs at various MGT levels, which improves precision of detection and global tracking of MDR clones. We also found that the majority of the global S. Enteritidis population fell within two predominant lineages, which had significantly different propensity of causing large scale outbreaks. An online open MGT database has been established for unified international surveillance of S. Enteritidis. We demonstrated that MGT provides a flexible and high-resolution genome typing tool for S. Enteritidis surveillance and outbreak detection.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Liam Cheney
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research - NSW Health Pathology, Westmead Hospital, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Savelli CJ, Garcia Acevedo RF, Simpson J, Mateus C. The utilisation of tools to facilitate cross-border communication during international food safety events, 1995-2020: a realist synthesis. Global Health 2021; 17:65. [PMID: 34167571 PMCID: PMC8222958 DOI: 10.1186/s12992-021-00715-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
Efficient communication and coordination are needed between countries to prevent, detect and respond to international food safety events. While communication tools, networks and systems exist, current evidence suggests that they are only useful within particular contexts and several only target specific geographic areas. There is a need to unpack and explore the mechanisms of how and in what context such communication tools and their components are effective at facilitating international communication and coordination to keep food safe and mitigate the burden of foodborne disease around the world. A realist synthesis was undertaken to understand how and why certain processes and structures of communication tools, used during international food safety events, influence their utility and effectiveness according to different contextual factors. The focus of this review was explanatory and aimed to develop and refine theory regarding how contextual factors trigger specific processes and mechanisms to produce outcomes. Using the realist context–mechanism–outcome configuration of theory development, a range of sources was used to develop an initial programme theory, including the authors’ experience, a scoping review of published papers and grey literature and input from an expert reference committee. Literature was then systematically located and synthesised from several databases with input from the expert reference committee to refine the programme theory. The programme theory developed indicates that when a country has interests in food import or export, has the technical infrastructure to detect and respond to food safety events, and is governed in accordance with regional and/or global laws and regulations relating to food control and global health security, then specific mechanisms will facilitate various outcomes. Mechanisms include trust, experience, support, awareness, understanding, a sense of community, standardisation and intersectoral collaboration. The outcomes include using communication tools to relay information abroad and the prevention of foodborne diseases, among others. Components of such communication tools may be adapted according to different contextual factors to promote, support and improve their use. Improving international coordination and communication during international food safety events is in the interest of global health security and can mitigate the global burden of foodborne disease.
Collapse
Affiliation(s)
- Carmen Joseph Savelli
- World Health Organization, Nutrition and Food Safety, Avenue Appia 20, 1211, Geneva, Switzerland. .,Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK.
| | | | - Jane Simpson
- Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK
| | - Céu Mateus
- Lancaster University, Faculty of Health and Medicine, Division of Health Research, Bailrigg, Lancaster, LA1 4YW, UK
| |
Collapse
|
10
|
Campylobacter and Salmonella in Scavenging Indigenous Chickens in Rural Central Tanzania: Prevalence, Antimicrobial Resistance, and Genomic Features. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Salmonella and Campylobacter spp. are commonly reported bacterial foodborne pathogens causing morbidity and mortality worldwide. In rural areas, where there is a high occurrence rate of human–animal interactions and poor hygiene practices, shedding animals present a high risk to humans in acquiring animal-associated infections. Materials and methods: Seasonal prevalence of Campylobacter jejuni, Campylobacter coli, and Salmonella spp. in scavenging indigenous chicken faeces was determined by polymerase chain reaction (PCR). Antimicrobial resistance was studied in Salmonella isolates by disc diffusion method, and whole-genome sequenced isolates were used to determine Salmonella serovars, antimicrobial resistance genes, virulence genes, and plasmid profile. Results: The overall prevalence of Campylobacter in chickens was 7.2% in the dry season and 8.0% in the rainy season (p = 0.39), and that of Salmonella was 11.1% in the dry season and 16.2% in the rainy season (p = 0.29). Salmonella serovars detected were II 35:g,m,s,t:-, Ball, Typhimurium, Haardt/Blockley, Braenderup, and Enteritidis/Gallinarum. One S. II 35:g,m,s,t:- isolate was resistant to ampicillin and the rest were either intermediate resistant or pansusceptible to the tested antimicrobials. The resistance genes observed were CatA, tetJ, and fosA7, most common in Ball than in other serovars. Seven plasmids were identified, more common in serovar Ball and less common in II 35:g,m,s,t:-. Serovar II 35:g,m,s,t:- isolates were missing some of the virulence genes important for Salmonella pathogenicity found in other serovars isolated. Conclusion: PCR detection of Campylobacter spp. and Salmonella spp. in chickens necessitate the improvement of hygiene at the household level and reducing human–chicken interaction as a strategy of preventing humans from acquiring chicken-associated bacteria, which would enter the human food chain. Infrequent use of antimicrobials in this type of poultry is most likely the reason for the low rates of antimicrobial resistance observed in this study.
Collapse
|
11
|
Labská K, Špačková M, Daniel O, Včelák J, Vlasáková V, Černý T, Gelbíčová T, Florianová M, Karpíšková R, Gavačová D, Štefkovičová M, Orlíková H. A cross-border outbreak of Salmonella Bareilly cases confirmed by whole genome sequencing, Czech Republic and Slovakia, 2017 to 2018. Euro Surveill 2021; 26:2000131. [PMID: 33834963 PMCID: PMC8034059 DOI: 10.2807/1560-7917.es.2021.26.14.2000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In August 2017, an increased incidence of Salmonella Bareilly was detected in the Czech Republic. An investigation was conducted with Slovakia to confirm the outbreak and identify the source. Probable outbreak cases were defined as cases with laboratory-confirmed S. Bareilly reported in either of the national surveillance systems, and/or the Czech and Slovak National Reference Laboratory databases from July 2017. Confirmed cases had the pulsed-field gel electrophoresis (PFGE) outbreak pulsotype or up to 5 alleles difference from outbreak cluster members by core genome multilocus sequence typing (cgMLST). PFGE and whole genome sequencing were used for isolate comparison. The same trawling questionnaire was used in both countries. By the end of October 2018, 325 cases were identified. Among 88 human S. Bareilly isolates analysed by PFGE, 82 (93%) shared an identical pulsotype; cgMLST of 17 S. Bareilly human isolates showed 1-2 allele difference. The trawling questionnaire excluded consumption of unusual or imported foods. In September 2018, an isolate closely related to the outbreak isolates was identified in a powdered egg product. A spray dryer was recognised as the contamination source and the production plant was closed. Using molecular typing methods, we detected a diffuse cross-border outbreak caused by S. Bareilly.
Collapse
Affiliation(s)
- Klára Labská
- National Institute of Public Health, Prague, Czech Republic,ECDC Fellowship Programme, public health microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Ondřej Daniel
- National Institute of Public Health, Prague, Czech Republic
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Veronika Vlasáková
- Food Safety Division, State Veterinary Administration, Prague, Czech Republic
| | - Tomáš Černý
- National Reference Laboratory for salmonella, State Veterinary Institute Prague, Prague, Czech Republic
| | | | | | | | - Dagmar Gavačová
- National Reference Centre for Salmonellosis, Public Health Authority of the Slovak Republic, Bratislava, Slovakia
| | - Mária Štefkovičová
- Public Health Authority of the Slovak Republic, Regional Public Health Authority, Trenčín, Slovakia
| | - Hana Orlíková
- National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
12
|
Dallman TJ, Greig DR, Gharbia SE, Jenkins C. Phylogenetic structure of Shiga toxin-producing Escherichia coli O157:H7 from sub-lineage to SNPs. Microb Genom 2021; 7. [PMID: 33720818 PMCID: PMC8190602 DOI: 10.1099/mgen.0.000544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Sequence similarity of pathogen genomes can infer the relatedness between isolates as the fewer genetic differences identified between pairs of isolates, the less time since divergence from a common ancestor. Clustering based on hierarchical single linkage clustering of pairwise SNP distances has been employed to detect and investigate outbreaks. Here, we evaluated the evidence-base for the interpretation of phylogenetic clusters of Shiga toxin-producing Escherichia coli (STEC) O157:H7. Whole genome sequences of 1193 isolates of STEC O157:H7 submitted to Public Health England between July 2015 and December 2016 were mapped to the Sakai reference strain. Hierarchical single linkage clustering was performed on the pairwise SNP difference between all isolates at descending distance thresholds. Cases with known epidemiological links fell within 5-SNP single linkage clusters. Five-SNP single linkage community clusters where an epidemiological link was not identified were more likely to be temporally and/or geographically related than sporadic cases. Ten-SNP single linkage clusters occurred infrequently and were challenging to investigate as cases were few, and temporally and/or geographically dispersed. A single linkage cluster threshold of 5-SNPs has utility for the detection of outbreaks linked to both persistent and point sources. Deeper phylogenetic analysis revealed that the distinction between domestic UK and imported isolates could be inferred at the sub-lineage level. Cases associated with domestically acquired infection that fall within clusters that are predominantly travel associated are likely to be caused by contaminated imported food.
Collapse
Affiliation(s)
- Timothy J Dallman
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - David R Greig
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Saheer E Gharbia
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| | - Claire Jenkins
- National Infection Services, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, UK
| |
Collapse
|
13
|
Uelze L, Becker N, Borowiak M, Busch U, Dangel A, Deneke C, Fischer J, Flieger A, Hepner S, Huber I, Methner U, Linde J, Pietsch M, Simon S, Sing A, Tausch SH, Szabo I, Malorny B. Toward an Integrated Genome-Based Surveillance of Salmonella enterica in Germany. Front Microbiol 2021; 12:626941. [PMID: 33643254 PMCID: PMC7902525 DOI: 10.3389/fmicb.2021.626941] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 02/03/2023] Open
Abstract
Despite extensive monitoring programs and preventative measures, Salmonella spp. continue to cause tens of thousands human infections per year, as well as many regional and international food-borne outbreaks, that are of great importance for public health and cause significant socio-economic costs. In Germany, salmonellosis is the second most common cause of bacterial diarrhea in humans and is associated with high hospitalization rates. Whole-genome sequencing (WGS) combined with data analysis is a high throughput technology with an unprecedented discriminatory power, which is particularly well suited for targeted pathogen monitoring, rapid cluster detection and assignment of possible infection sources. However, an effective implementation of WGS methods for large-scale microbial pathogen detection and surveillance has been hampered by the lack of standardized methods, uniform quality criteria and strategies for data sharing, all of which are essential for a successful interpretation of sequencing data from different sources. To overcome these challenges, the national GenoSalmSurv project aims to establish a working model for an integrated genome-based surveillance system of Salmonella spp. in Germany, based on a decentralized data analysis. Backbone of the model is the harmonization of laboratory procedures and sequencing protocols, the implementation of open-source bioinformatics tools for data analysis at each institution and the establishment of routine practices for cross-sectoral data sharing for a uniform result interpretation. With this model, we present a working solution for cross-sector interpretation of sequencing data from different sources (such as human, veterinarian, food, feed and environmental) and outline how a decentralized data analysis can contribute to a uniform cluster detection and facilitate outbreak investigations.
Collapse
Affiliation(s)
- Laura Uelze
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Natalie Becker
- Department of Food, Feed and Commodities, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Maria Borowiak
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jennie Fischer
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Antje Flieger
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Hepner
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Michael Pietsch
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Sandra Simon
- Unit of Enteropathogenic Bacteria and Legionella (FG11) – National Reference Centre for Salmonella and Other Bacterial Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Simon H. Tausch
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
14
|
Quino W, Caro-Castro J, Mestanza O, Hurtado CV, Zamudio ML, Gavilan RG. Phylogenetic structure of Salmonella Enteritidis provides context for a foodborne outbreak in Peru. Sci Rep 2020; 10:22080. [PMID: 33328486 PMCID: PMC7745040 DOI: 10.1038/s41598-020-78808-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 11/27/2020] [Indexed: 11/09/2022] Open
Abstract
Salmonella Enteritidis, an important foodborne zoonosis, has a dramatically increased number of cases around the world. To explore the phylogenetic structure of Peruvian Salmonella Enteritidis strains and their relationship with an outbreak occurred in 2018, we analyzed a comprehensive strains of S. Enteritidis received by the National Institute of Health during the period 2000-2018. A total of 180 strains were characterized by microbiological procedures, serotyping and whole genome sequencing. Based on genome sequences annotated, virulence factors and accessory genes were identified. Phylogenetic and population structure analysis were also analyzed based on SNPs. The phylogenetic analysis grouped the genomes into two well-supported clades that were consistent with population structure analysis. The clinical and food strains corresponding to the outbreak were included in the same cluster, which presented the sdhA gene, related to the increase of the virulence of this pathogen. The phylogenetic relationship of Peruvian S. Enteritidis suggests the presence of four S. enteritidis population with high epidemiological importance.
Collapse
Affiliation(s)
- Willi Quino
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Junior Caro-Castro
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Orson Mestanza
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Carmen V Hurtado
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Maria L Zamudio
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Ronnie G Gavilan
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru. .,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru.
| |
Collapse
|
15
|
Smith AM, Tau NP, Ngomane HM, Sekwadi P, Ramalwa N, Moodley K, Govind C, Khan S, Archary M, Thomas J. Whole-genome sequencing to investigate two concurrent outbreaks of Salmonella Enteritidis in South Africa, 2018. J Med Microbiol 2020; 69:1303-1307. [PMID: 33048044 DOI: 10.1099/jmm.0.001255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is a major cause of foodborne disease outbreaks worldwide. In 2018, two concurrent outbreaks of Salmonella Enteritidis gastroenteritis in one district of South Africa were investigated. We describe the use of whole-genome sequencing (WGS) analysis of bacterial isolates to assist with the investigation of these outbreaks. Outbreak A affected children (n=27) attending a day-care centre, while outbreak B affected adults (n=16) who ate breakfast at the same restaurant. Salmonella Enteritidis was isolated from stool samples in both outbreaks (four children in outbreak A; 12 restaurant customers and three restaurant food-handlers in outbreak B). In outbreak B, Salmonella Enteritidis was isolated from three food retention samples (raw chicken egg, hollandaise sauce and rocket-herb). Available isolates from both outbreaks (n=13) were investigated using WGS analysis. Sequencing data for isolates were analysed at the EnteroBase web-based platform and included core-genome multi-locus sequence typing (cgMLST). Isolates with epidemiological links to the restaurant (n=10) and day-care centre (n=3), were shown by cgMLST to be highly genetically related, with no more than five allele differences when comparing one isolate against another. On food history, eggs and hollandaise sauce were the common food items consumed by ill restaurant customers. Unfortunately, Salmonella Enteritidis isolated from the egg and hollandaise sauce were not available for WGS analysis. Our investigation concluded that the two concurrent outbreaks were caused by a highly related strain of Salmonella Enteritidis, suggesting the possibility of a common contaminated food source, of which contaminated eggs are strongly implicated.
Collapse
Affiliation(s)
- Anthony M Smith
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| | - Nomsa P Tau
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| | - Hlengiwe M Ngomane
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| | - Phuti Sekwadi
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| | - Ntsieni Ramalwa
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| | | | | | | | | | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, South Africa
| |
Collapse
|
16
|
Park CJ, Li J, Zhang X, Gao F, Benton CS, Andam CP. Diverse lineages of multidrug resistant clinical Salmonella enterica and a cryptic outbreak in New Hampshire, USA revealed from a year-long genomic surveillance. INFECTION GENETICS AND EVOLUTION 2020; 87:104645. [PMID: 33246085 DOI: 10.1016/j.meegid.2020.104645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023]
Abstract
Salmonella enterica, the causative agent of gastrointestinal diseases and typhoid fever, is a human and animal pathogen that causes significant mortality and morbidity worldwide. In this study, we examine the genomic diversity and phylogenetic relationships of 63 S. enterica isolates from human-derived clinical specimens submitted to the Department of Health and Human Services (DHHS) in the state of New Hampshire, USA in 2017. We found a remarkably large genomic, phylogenetic and serotype variation among the S. enterica isolates, dominated by serotypes Enteritidis (sequence type [ST] 11), Heidelberg (ST 15) and Typhimurium (ST 19). Analysis of the distribution of single nucleotide polymorphisms in the core genome suggests that the ST 15 cluster is likely a previously undetected or cryptic outbreak event that occurred in the south/southeastern part of New Hampshire in August-September. We found that nearly all of the clinical S. enterica isolates carried horizontally acquired genes that confer resistance to multiple classes of antimicrobials, most notably aminoglycosides, fluoroquinolones and macrolides. Majority of the isolates (76.2%) carry at least four resistance determinants per genome. We also detected the genes mdtK and mdsABC that encode multidrug efflux pumps and the gene sdiA that encodes a regulator for a third multidrug resistance pump. Our results indicate rapid microevolution and geographical dissemination of multidrug resistant lineages over a short time span. These findings are critical to aid the DHHS and similar public health laboratories in the development of effective disease control measures, epidemiological studies and treatment options for serious Salmonella infections.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jinfeng Li
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Xinglu Zhang
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Fengxiang Gao
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA
| | - Christopher S Benton
- New Hampshire Department of Health and Human Services, 29 Hazen Drive, Concord, NH, USA.
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
17
|
Dangel A, Berger A, Messelhäußer U, Konrad R, Hörmansdorfer S, Ackermann N, Sing A. Genetic diversity and delineation of Salmonella Agona outbreak strains by next generation sequencing, Bavaria, Germany, 1993 to 2018. ACTA ACUST UNITED AC 2020; 24. [PMID: 31064635 PMCID: PMC6505185 DOI: 10.2807/1560-7917.es.2019.24.18.1800303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background In 2017, a food-borne Salmonella Agona outbreak caused by infant milk products from a French supplier occurred in Europe. Simultaneously, S. Agona was detected in animal feed samples in Bavaria. Aim Using next generation sequencing (NGS) and three data analysis methods, this study’s objectives were to verify clonality of the Bavarian feed strains, rule out their connection to the outbreak, explore the genetic diversity of Bavarian S. Agona isolates from 1993 to 2018 and compare the analysis approaches employed, for practicality and ability to delineate outbreaks caused by the genetically monomorphic Agona serovar. Methods In this observational retrospective study, three 2017 Bavarian feed isolates were compared to a French outbreak isolate and 48 S. Agona isolates from our strain collections. The later included human, food, feed, veterinary and environmental isolates, of which 28 were epidemiologically outbreak related. All isolates were subjected to NGS and analysed by: (i) a publicly available species-specific core genome multilocus sequence typing (cgMLST) scheme, (ii) single nucleotide polymorphism phylogeny and (iii) an in-house serovar-specific cgMLST scheme. Using additional international S. Agona outbreak NGS data, the cluster resolution capacity of the two cgMLST schemes was assessed. Results We could prove clonality of the feed isolates and exclude their relation to the French outbreak. All approaches confirmed former Bavarian epidemiological clusters. Conclusion Even for S. Agona, species-level cgMLST can produce reasonable resolution, being standardisable by public health laboratories. For single samples or homogeneous sample sets, higher resolution by serovar-specific cgMLST or SNP genotyping can facilitate outbreak investigations.
Collapse
Affiliation(s)
- Alexandra Dangel
- These authors contributed equally to this article.,Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Anja Berger
- These authors contributed equally to this article.,Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Ute Messelhäußer
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Regina Konrad
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | | | - Nikolaus Ackermann
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| |
Collapse
|
18
|
Combining Whole-Genome Sequencing and Multimodel Phenotyping To Identify Genetic Predictors of Salmonella Virulence. mSphere 2020; 5:5/3/e00293-20. [PMID: 32522778 PMCID: PMC7289705 DOI: 10.1128/msphere.00293-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella comprises more than 2,600 serovars. Very few environmental and uncommon serovars have been characterized for their potential role in virulence and human infections. A complementary in vitro and in vivo systematic high-throughput analysis of virulence was used to elucidate the association between genetic and phenotypic variations across Salmonella isolates. The goal was to develop a strategy for the classification of isolates as a benchmark and predict virulence levels of isolates. Thirty-five phylogenetically distant strains of unknown virulence were selected from the Salmonella Foodborne Syst-OMICS (SalFoS) collection, representing 34 different serovars isolated from various sources. Isolates were evaluated for virulence in 4 complementary models of infection to compare virulence traits with the genomics data, including interactions with human intestinal epithelial cells, human macrophages, and amoeba. In vivo testing was conducted using the mouse model of Salmonella systemic infection. Significant correlations were identified between the different models. We identified a collection of novel hypothetical and conserved proteins associated with isolates that generate a high burden. We also showed that blind prediction of virulence of 33 additional strains based on the pan-genome was high in the mouse model of systemic infection (82% agreement) and in the human epithelial cell model (74% agreement). These complementary approaches enabled us to define virulence potential in different isolates and present a novel strategy for risk assessment of specific strains and for better monitoring and source tracking during outbreaks.IMPORTANCE Salmonella species are bacteria that are a major source of foodborne disease through contamination of a diversity of foods, including meat, eggs, fruits, nuts, and vegetables. More than 2,600 different Salmonella enterica serovars have been identified, and only a few of them are associated with illness in humans. Despite the fact that they are genetically closely related, there is enormous variation in the virulence of different isolates of Salmonella enterica Identification of foodborne pathogens is a lengthy process based on microbiological, biochemical, and immunological methods. Here, we worked toward new ways of integrating whole-genome sequencing (WGS) approaches into food safety practices. We used WGS to build associations between virulence and genetic diversity within 83 Salmonella isolates representing 77 different Salmonella serovars. Our work demonstrates the potential of combining a genomics approach and virulence tests to improve the diagnostics and assess risk of human illness associated with specific Salmonella isolates.
Collapse
|
19
|
Alegbeleye OO, Sant’Ana AS. Pathogen subtyping tools for risk assessment and management of produce-borne outbreaks. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138-152. [PMID: 31809257 PMCID: PMC6961584 DOI: 10.1101/gr.251678.119] [Citation(s) in RCA: 596] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.
Collapse
|
21
|
Tang Y, Davies R, Petrovska L. Identification of Genetic Features for Attenuation of Two Salmonella Enteritidis Vaccine Strains and Differentiation of These From Wildtype Isolates Using Whole Genome Sequencing. Front Vet Sci 2019; 6:447. [PMID: 31921908 PMCID: PMC6930191 DOI: 10.3389/fvets.2019.00447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/26/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Enteritidis is a major cause of salmonellosis worldwide and more than 80% of outbreaks investigated in Europe have been associated with the consumption of poorly cooked eggs or foods containing raw eggs. Vaccination has been proven to be one of the most important measures to control Salmonella Enteritidis infections in poultry farms as it can decrease colonization of the reproductive organs and intestinal tract of laying hens, thereby reducing egg contamination. Differentiation of live vaccine from field or wild type S. Enteritidis isolates in poultry is essential for monitoring of veterinary isolates and targetting control actions. Due to decreasing costs, whole genome sequencing (WGS) is becoming a key tool for characterization of Salmonella isolates, including vaccine strains. Using WGS we described the genetic changes in the live attenuated Salmovac 440 and AviPro SALMONELLA VAC E vaccine strains and developed a method for differentiation from the wildtype S. Enteritidis strains. SNP analysis confirmed that streptomycin resistance was associated with a Lys43Arg missense mutation in the rpsL gene whilst 3 missense mutations in acrB and 1 missense mutation in acrA confer erythromycin sensitivity in AviPro SALMONELLA VAC E. Further mutations Arg242His in purK and Gly236Arg in the hisB gene were related to adenine and histidine dependencies in Salmovac 440. Unique SNPs were used to construct a database of variants for differentiation of vaccine from the wildtype isolates. Two fragments from each vaccine were represented in the database to ensure high accuracy. Each of the two selected Salmovac 440 fragments differed by 6 SNPs from the wildtype and the AviPro SALMONELLA VAC E fragments differed by 4 and 6 SNPs, respectively. CD-hit software was applied to cluster similar fragments that produced the best fit output when searched with SRST2. The developed vaccine differentiation method was tested with 1,253 genome samples including field isolates of Salmovac 440 (n = 51), field isolates of AviPro SALMONELLA VAC E (n = 13), S. Gallinarum (n = 19), S. Pullorum (n = 116), S. Enteritidis (n = 244), S. Typhimurium (n = 810) and achieved 100% sensitivity and specificity.
Collapse
Affiliation(s)
- Yue Tang
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | | - Liljana Petrovska
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
22
|
Chattaway MA, Dallman TJ, Larkin L, Nair S, McCormick J, Mikhail A, Hartman H, Godbole G, Powell D, Day M, Smith R, Grant K. The Transformation of Reference Microbiology Methods and Surveillance for Salmonella With the Use of Whole Genome Sequencing in England and Wales. Front Public Health 2019; 7:317. [PMID: 31824904 PMCID: PMC6881236 DOI: 10.3389/fpubh.2019.00317] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/15/2019] [Indexed: 01/26/2023] Open
Abstract
The use of whole genome sequencing (WGS) as a method for supporting outbreak investigations, studying Salmonella microbial populations and improving understanding of pathogenicity has been well-described (1–3). However, performing WGS on a discrete dataset does not pose the same challenges as implementing WGS as a routine, reference microbiology service for public health surveillance. Challenges include translating WGS data into a useable format for laboratory reporting, clinical case management, Salmonella surveillance, and outbreak investigation as well as meeting the requirement to communicate that information in an understandable and universal language for clinical and public health action. Public Health England have been routinely sequencing all referred presumptive Salmonella isolates since 2014 which has transformed our approach to reference microbiology and surveillance. Here we describe an overview of the integrated methods for cross-disciplinary working, describe the challenges and provide a perspective on how WGS has impacted the laboratory and surveillance processes in England and Wales.
Collapse
Affiliation(s)
- Marie Anne Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Lesley Larkin
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging/Zoonotic Infections, and Travel Health and IHR Division (T.A.R.G.E.T.), Public Health England, London, United Kingdom
| | - Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Jacquelyn McCormick
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging/Zoonotic Infections, and Travel Health and IHR Division (T.A.R.G.E.T.), Public Health England, London, United Kingdom
| | - Amy Mikhail
- Tuberculosis, Acute Respiratory, Gastrointestinal, Emerging/Zoonotic Infections, and Travel Health and IHR Division (T.A.R.G.E.T.), Public Health England, London, United Kingdom
| | - Hassan Hartman
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Gauri Godbole
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - David Powell
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | - Martin Day
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| | | | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, United Kingdom
| |
Collapse
|
23
|
Food safety behavior and handling practices during purchase, preparation, storage and consumption of chicken meat and eggs. Food Res Int 2019; 125:108631. [DOI: 10.1016/j.foodres.2019.108631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
|
24
|
Van Goethem N, Descamps T, Devleesschauwer B, Roosens NHC, Boon NAM, Van Oyen H, Robert A. Status and potential of bacterial genomics for public health practice: a scoping review. Implement Sci 2019; 14:79. [PMID: 31409417 PMCID: PMC6692930 DOI: 10.1186/s13012-019-0930-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is increasingly being translated into routine public health practice, affecting the surveillance and control of many pathogens. The purpose of this scoping review is to identify and characterize the recent literature concerning the application of bacterial pathogen genomics for public health practice and to assess the added value, challenges, and needs related to its implementation from an epidemiologist's perspective. METHODS In this scoping review, a systematic PubMed search with forward and backward snowballing was performed to identify manuscripts in English published between January 2015 and September 2018. Included studies had to describe the application of NGS on bacterial isolates within a public health setting. The studied pathogen, year of publication, country, number of isolates, sampling fraction, setting, public health application, study aim, level of implementation, time orientation of the NGS analyses, and key findings were extracted from each study. Due to a large heterogeneity of settings, applications, pathogens, and study measurements, a descriptive narrative synthesis of the eligible studies was performed. RESULTS Out of the 275 included articles, 164 were outbreak investigations, 70 focused on strategy-oriented surveillance, and 41 on control-oriented surveillance. Main applications included the use of whole-genome sequencing (WGS) data for (1) source tracing, (2) early outbreak detection, (3) unraveling transmission dynamics, (4) monitoring drug resistance, (5) detecting cross-border transmission events, (6) identifying the emergence of strains with enhanced virulence or zoonotic potential, and (7) assessing the impact of prevention and control programs. The superior resolution over conventional typing methods to infer transmission routes was reported as an added value, as well as the ability to simultaneously characterize the resistome and virulome of the studied pathogen. However, the full potential of pathogen genomics can only be reached through its integration with high-quality contextual data. CONCLUSIONS For several pathogens, it is time for a shift from proof-of-concept studies to routine use of WGS during outbreak investigations and surveillance activities. However, some implementation challenges from the epidemiologist's perspective remain, such as data integration, quality of contextual data, sampling strategies, and meaningful interpretations. Interdisciplinary, inter-sectoral, and international collaborations are key for an appropriate genomics-informed surveillance.
Collapse
Affiliation(s)
- Nina Van Goethem
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tine Descamps
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nele A. M. Boon
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de recherche expérimentale et clinique, Faculty of Public Health, Université catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Woluwe-Saint-Lambert, Belgium
| |
Collapse
|
25
|
Tang S, Orsi RH, Luo H, Ge C, Zhang G, Baker RC, Stevenson A, Wiedmann M. Assessment and Comparison of Molecular Subtyping and Characterization Methods for Salmonella. Front Microbiol 2019; 10:1591. [PMID: 31354679 PMCID: PMC6639432 DOI: 10.3389/fmicb.2019.01591] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
The food industry is facing a major transition regarding methods for confirmation, characterization, and subtyping of Salmonella. Whole-genome sequencing (WGS) is rapidly becoming both the method of choice and the gold standard for Salmonella subtyping; however, routine use of WGS by the food industry is often not feasible due to cost constraints or the need for rapid results. To facilitate selection of subtyping methods by the food industry, we present: (i) a comparison between classical serotyping and selected widely used molecular-based subtyping methods including pulsed-field gel electrophoresis, multilocus sequence typing, and WGS (including WGS-based serovar prediction) and (ii) a scoring system to evaluate and compare Salmonella subtyping assays. This literature-based assessment supports the superior discriminatory power of WGS for source tracking and root cause elimination in food safety incident; however, circumstances in which use of other subtyping methods may be warranted were also identified. This review provides practical guidance for the food industry and presents a starting point for further comparative evaluation of Salmonella characterization and subtyping methods.
Collapse
Affiliation(s)
- Silin Tang
- Mars Global Food Safety Center, Beijing, China
| | - Renato H. Orsi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Hao Luo
- Mars Global Food Safety Center, Beijing, China
| | - Chongtao Ge
- Mars Global Food Safety Center, Beijing, China
| | | | | | | | - Martin Wiedmann
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
26
|
Polonsky JA, Baidjoe A, Kamvar ZN, Cori A, Durski K, Edmunds WJ, Eggo RM, Funk S, Kaiser L, Keating P, de Waroux OLP, Marks M, Moraga P, Morgan O, Nouvellet P, Ratnayake R, Roberts CH, Whitworth J, Jombart T. Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180276. [PMID: 31104603 PMCID: PMC6558557 DOI: 10.1098/rstb.2018.0276] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Despite continued efforts to improve health systems worldwide, emerging pathogen epidemics remain a major public health concern. Effective response to such outbreaks relies on timely intervention, ideally informed by all available sources of data. The collection, visualization and analysis of outbreak data are becoming increasingly complex, owing to the diversity in types of data, questions and available methods to address them. Recent advances have led to the rise of outbreak analytics, an emerging data science focused on the technological and methodological aspects of the outbreak data pipeline, from collection to analysis, modelling and reporting to inform outbreak response. In this article, we assess the current state of the field. After laying out the context of outbreak response, we critically review the most common analytics components, their inter-dependencies, data requirements and the type of information they can provide to inform operations in real time. We discuss some challenges and opportunities and conclude on the potential role of outbreak analytics for improving our understanding of, and response to outbreaks of emerging pathogens. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'. This theme issue is linked with the earlier issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'.
Collapse
Affiliation(s)
- Jonathan A. Polonsky
- Department of Health Emergency Information and Risk Assessment, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
- Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Amrish Baidjoe
- Department of Infectious Disease Epidemiology, School of Public Health, MRC Centre for Global Infectious Disease Analysis, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place London W2 1PG, UK
| | - Zhian N. Kamvar
- Department of Infectious Disease Epidemiology, School of Public Health, MRC Centre for Global Infectious Disease Analysis, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place London W2 1PG, UK
| | - Anne Cori
- Department of Infectious Disease Epidemiology, School of Public Health, MRC Centre for Global Infectious Disease Analysis, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place London W2 1PG, UK
| | - Kara Durski
- Department of Infectious Hazard Management, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| | - W. John Edmunds
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Rosalind M. Eggo
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Sebastian Funk
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Laurent Kaiser
- Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva, Switzerland
| | - Patrick Keating
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Olivier le Polain de Waroux
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Public Health England, Wellington House, 133–155 Waterloo Road, London SE1 8UG, UK
| | - Michael Marks
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Paula Moraga
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster LA1 4YW, UK
| | - Oliver Morgan
- Department of Health Emergency Information and Risk Assessment, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| | - Pierre Nouvellet
- Department of Infectious Disease Epidemiology, School of Public Health, MRC Centre for Global Infectious Disease Analysis, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place London W2 1PG, UK
- School of Life Sciences, University of Sussex, Sussex House, Brighton BN1 9RH, UK
| | - Ruwan Ratnayake
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Chrissy H. Roberts
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Jimmy Whitworth
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Thibaut Jombart
- Department of Infectious Disease Epidemiology, School of Public Health, MRC Centre for Global Infectious Disease Analysis, Imperial College London, Medical School Building, St Mary's Campus, Norfolk Place London W2 1PG, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
- UK Public Health Rapid Support Team, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| |
Collapse
|
27
|
Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: A review. Zoonoses Public Health 2019; 66:562-578. [PMID: 31179637 DOI: 10.1111/zph.12611] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/17/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Livestock meat and offal contribute significantly to human nutrition as sources of high-quality protein and micronutrients. Livestock products are increasingly in demand, particularly in low- and middle-income settings where economies are growing and meat is increasingly seen as an affordable and desirable food item. Demand is also driving intensification of livestock keeping and processing. An unintended consequence of intensification is increased exposure to zoonotic agents, and a contemporary emerging problem is infection with Campylobacter and Salmonella spp. from livestock (avian and mammalian), which can lead to disease, malabsorption and undernutrition through acute and chronic diarrhoea. This can occur at the farm, in households or through the food chain. Direct infection occurs when handling livestock and through bacteria shed into the environment, on food preparation surfaces or around the house and surroundings. This manuscript critically reviews Campylobacter and Salmonella infections in animals, examines the factors affecting colonization and faecal shedding of bacteria of these two genera as well as risk factors for human acquisition of the infection from infected animals or environment and analyses priority areas for preventive actions with a focus on resource-poor settings.
Collapse
Affiliation(s)
- Elpidius Rukambile
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital and New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Gary Muscatello
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Kock
- The Royal Veterinary College, University of London, London, UK
| | - Robyn Alders
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Kyeema Foundation, Brisbane, Queensland, Australia.,Centre on Global Health Security, Chatham House, London, UK
| |
Collapse
|
28
|
Jagadeesan B, Gerner-Smidt P, Allard MW, Leuillet S, Winkler A, Xiao Y, Chaffron S, Van Der Vossen J, Tang S, Katase M, McClure P, Kimura B, Ching Chai L, Chapman J, Grant K. The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiol 2019; 79:96-115. [PMID: 30621881 PMCID: PMC6492263 DOI: 10.1016/j.fm.2018.11.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
Abstract
Next Generation Sequencing (NGS) combined with powerful bioinformatic approaches are revolutionising food microbiology. Whole genome sequencing (WGS) of single isolates allows the most detailed comparison possible hitherto of individual strains. The two principle approaches for strain discrimination, single nucleotide polymorphism (SNP) analysis and genomic multi-locus sequence typing (MLST) are showing concordant results for phylogenetic clustering and are complementary to each other. Metabarcoding and metagenomics, applied to total DNA isolated from either food materials or the production environment, allows the identification of complete microbial populations. Metagenomics identifies the entire gene content and when coupled to transcriptomics or proteomics, allows the identification of functional capacity and biochemical activity of microbial populations. The focus of this review is on the recent use and future potential of NGS in food microbiology and on current challenges. Guidance is provided for new users, such as public health departments and the food industry, on the implementation of NGS and how to critically interpret results and place them in a broader context. The review aims to promote the broader application of NGS technologies within the food industry as well as highlight knowledge gaps and novel applications of NGS with the aim of driving future research and increasing food safety outputs from its wider use.
Collapse
Affiliation(s)
- Balamurugan Jagadeesan
- Nestlé Research, Nestec Ltd, Route du Jorat 57, Vers-chez-les-Blanc, CH-1000, Lausanne 26, Switzerland.
| | - Peter Gerner-Smidt
- Centers for Disease Control and Prevention, MS-CO-3, 1600 Clifton Road, 30329-4027, Atlanta, USA
| | - Marc W Allard
- US Food and Drug Administration, 5001 Campus Drive, College Park, MD, 02740, USA
| | - Sébastien Leuillet
- Institut Mérieux, Mérieux NutriSciences, 3 route de la Chatterie, 44800, Saint Herblain, France
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809, Krefeld, Germany
| | - Yinghua Xiao
- Arla Innovation Center, Agro Food Park 19, 8200, Aarhus, Denmark
| | - Samuel Chaffron
- Laboratoire des Sciences du Numérique de Nantes (LS2N), CNRS UMR 6004 - Université de Nantes, 2 rue de la Houssinière, 44322, Nantes, France
| | - Jos Van Der Vossen
- The Netherlands Organisation for Applied Scientific Research, TNO, Utrechtseweg 48, 3704 HE, Zeist, NL, the Netherlands
| | - Silin Tang
- Mars Global Food Safety Center, Yanqi Economic Development Zone, 101407, Beijing, China
| | - Mitsuru Katase
- Fuji Oil Co., Ltd., Sumiyoshi-cho 1, Izumisano Osaka, 598-8540, Japan
| | - Peter McClure
- Mondelēz International, Linden 3, Bournville Lane, B30 2LU, Birmingham, United Kingdom
| | - Bon Kimura
- Tokyo University of Marine Science & Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Lay Ching Chai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - John Chapman
- Unilever Research & Development, Postbus, 114, 3130 AC, Vlaardingen, the Netherlands
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, 61 Colindale Avenue, London, NW9 5EQ, United Kingdom.
| |
Collapse
|
29
|
Hu L, Stones R, Brown EW, Allard MW, Ma LM, Zhang G. DNA sequences and predicted protein structures of prot6E and sefA genes for Salmonella ser. Enteritidis detection. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Chattaway MA, Chandra N, Painset A, Shah V, Lamb P, Acheampong E, Lo J, Patel B, Larkin L, Sergeant M, Cormican M, Litrup E, Crook P. Genomic approaches used to investigate an atypical outbreak of Salmonella Adjame. Microb Genom 2019; 5. [PMID: 30648934 PMCID: PMC6412060 DOI: 10.1099/mgen.0.000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2017, an outbreak of gastroenteritis in England attributed to Salmonella Adjame was detected and investigated. With the introduction of whole genome sequencing (WGS) for microbial typing, methods for comparing international outbreak data require evaluation. A case was defined as a person resident in England with a clinical sample from 1 June 2017 to 27 July 2017 from whom S. Adjame was isolated. Cases were interviewed and exposures analysed. Backward tracing of food provenance was undertaken. WGS was performed on isolates from cases and historical isolates and compared using Public Health England’s SnapperDB high-quality SNP pipeline and Enterobase’s Salmonella core genome multi-locus sequence typing (cgMLST) scheme. In total, 14 cases were identified. The majority were vegetarian, probably of South Asian descent, with a median age of 66.5 years with no recent international travel reported. Cases consumed a range of fresh food products including herbs and spices bought from South Asian grocers. Backward tracing did not identify a common source. WGS typing showed sub-clustering and considerable genetic variation across human samples. cgMLST allele-based analysis was comparable to SNP-derived phylogenetic analysis and clusters were defined using each method. Imported herbs or spices were suspected vehicles. The cases were linked in time and place but WGS showed marked heterogeneity, atypical of a point source Salmonella outbreak. The application of incorporating SNP or allelic differences into the case definition may not always be appropriate. With further validation, cgMLST could be used for international outbreak alerts when WGS analysis is being undertaken to facilitate comparison.
Collapse
Affiliation(s)
| | | | - Anaïs Painset
- 1Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK
| | - Victoria Shah
- 3North West London Health Protection Team, Public Health England, London, UK
| | - Peter Lamb
- 2Field Epidemiology Service, Public Health England, London, UK
| | - Elsie Acheampong
- 3North West London Health Protection Team, Public Health England, London, UK
| | - Janice Lo
- 3North West London Health Protection Team, Public Health England, London, UK
| | - Bharat Patel
- 4Public Health Laboratory, Public Health England, London, UK
| | - Lesley Larkin
- 5Centre for Infectious Disease Surveillance and Control, Public Health England, London, UK
| | | | - Martin Cormican
- 7School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Eva Litrup
- 8Bacterial Typing, Statens Serum Institute, Copenhagen, Denmark
| | - Paul Crook
- 2Field Epidemiology Service, Public Health England, London, UK
| |
Collapse
|
31
|
Campioni F, Cao G, Kastanis G, Janies DA, Bergamini AMM, Rodrigues DDP, Stones R, Brown E, Allard MW, Falcão JP. Changing of the Genomic Pattern of Salmonella Enteritidis Strains Isolated in Brazil Over a 48 year-period revealed by Whole Genome SNP Analyses. Sci Rep 2018; 8:10478. [PMID: 29993044 PMCID: PMC6041339 DOI: 10.1038/s41598-018-28844-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 06/28/2018] [Indexed: 11/09/2022] Open
Abstract
Salmonella Enteritidis became the main serovar isolated from gastroenteritis cases in Brazil after the 90's. In this study we used whole genome sequence analysis to determine the phylogenetic relationships among a collection of strains isolated in Brazil to identify possible genomic differences between the strains isolated in the pre and post-epidemic period. Also, we compared our data from strains isolated in Brazil to strains available in the public domain from other South American countries. Illumina technology was used to sequence the genome of 256 Salmonella Enteritidis strains isolated over a 48 year-period in Brazil, comprising the pre- and post-epidemic period. Phylogenetic analyses revealed distinct lineages for strains isolated before and after 1994. Moreover, the phage region SE20 that may be related to the emergence of Salmonella Enteritidis worldwide was present only in strains of the post-epidemic cluster. In conclusion, our results showed that the genomic profile of Salmonella Enteritidis strains isolated in Brazil shifted after 1994, replaced by a global epidemic group of strains. It may be hypothesized that the presence of the prophage SE20 might have conferred to these strains a better ability to colonize chicken and consequently to infect and cause disease in humans, which might better explain the increase in the number of S. Enteritidis cases in Brazil and other South American countries. However, to verify this hypothesis further studies are needed.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n°, Ribeirão Preto, SP, Brazil
| | - Guojie Cao
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - George Kastanis
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | | | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, FIOCRUZ/Fundação Instituto Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, 3°andar, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Robert Stones
- Newcastle University, Newcastle upon Tyne, Newcastle, United Kingdom
| | - Eric Brown
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Marc W Allard
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA.
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas - Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n°, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
32
|
Inns T, Cleary P, Bundle N, Foulkes S, Sharp A, Utsi L, McBrien C, Teagle R, Waldram A, Williams C, McCann C, Smith R, Saleh S, McCarthy N, Vivancos R, Hawker J, Decraene V. Novel application of the matched case-control design to compare food supply chains during an Escherichia coli O157 outbreak, United Kingdom, 2016. Euro Surveill 2018; 23:17-00195. [PMID: 29741154 PMCID: PMC6053626 DOI: 10.2807/1560-7917.es.2018.23.18.17-00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
There is a need for innovative methods to investigate outbreaks of food-borne infection linked to produce with a complex distribution network. The investigation of a large outbreak of Escherichia coli O157 PT34 infection in the United Kingdom in 2016 indicated that catering venues associated with multiple cases had used salad leaves sourced from one supplier. Our aim was to investigate whether catering venues linked to cases were more likely to have used salad leaves from this supplier. We conducted a matched case-control study, with catering venues as the units of analysis. We compared venues linked to cases to those without known linked cases. We included 43 study pairs and obtained information on salad leaf products received by each venue. The odds of a case venue being supplied with salad leaves by Supplier A were 7.67 times (95% confidence interval: 2.30-25.53) those of control venues. This association provided statistical evidence to support the findings of the other epidemiological investigations undertaken for this outbreak. This is a novel approach which is labour-intensive but which addresses the challenge of investigating exposures to food across a complex distribution network.
Collapse
Affiliation(s)
- Thomas Inns
- Field Epidemiology Service, Public Health England, London, United Kingdom
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Paul Cleary
- Field Epidemiology Service, Public Health England, London, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Nick Bundle
- Field Epidemiology Service, Public Health England, London, United Kingdom
- Field Epidemiology Training Programme, Public Health England, London, United Kingdom
| | - Sarah Foulkes
- Field Epidemiology Service, Public Health England, London, United Kingdom
| | - Ashley Sharp
- North West Health Protection Team, Public Health England, Liverpool, United Kingdom
| | - Lara Utsi
- Field Epidemiology Service, Public Health England, London, United Kingdom
| | - Chris McBrien
- North West Health Protection Team, Public Health England, Liverpool, United Kingdom
| | - Rehman Teagle
- Field Epidemiology Service, Public Health England, London, United Kingdom
| | - Alison Waldram
- Field Epidemiology Service, Public Health England, London, United Kingdom
| | - Chris Williams
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, United Kingdom
| | - Cathy McCann
- Field Epidemiology Service, Public Health England, London, United Kingdom
| | - Rob Smith
- Communicable Disease Surveillance Centre, Public Health Wales, Cardiff, United Kingdom
| | - Sepeedeh Saleh
- North West Health Protection Team, Public Health England, Liverpool, United Kingdom
| | - Noel McCarthy
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- Warwick Medical School, University of Warwick, Warwick, United Kingdom
| | - Roberto Vivancos
- Field Epidemiology Service, Public Health England, London, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| | - Jeremy Hawker
- Field Epidemiology Service, Public Health England, London, United Kingdom
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Valerie Decraene
- Field Epidemiology Service, Public Health England, London, United Kingdom
| |
Collapse
|
33
|
Dallman T, Ashton P, Schafer U, Jironkin A, Painset A, Shaaban S, Hartman H, Myers R, Underwood A, Jenkins C, Grant K. SnapperDB: a database solution for routine sequencing analysis of bacterial isolates. Bioinformatics 2018; 34:3028-3029. [DOI: 10.1093/bioinformatics/bty212] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/04/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy Dallman
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
| | - Philip Ashton
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Ulf Schafer
- Infectious Disease Informatics, National Infections Service, Public Health England, London, UK
| | - Aleksey Jironkin
- Infectious Disease Informatics, National Infections Service, Public Health England, London, UK
| | - Anais Painset
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
| | | | - Hassan Hartman
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
| | - Richard Myers
- Infectious Disease Informatics, National Infections Service, Public Health England, London, UK
| | - Anthony Underwood
- Infectious Disease Informatics, National Infections Service, Public Health England, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
| | - Kathie Grant
- Gastrointestinal Bacteria Reference Unit, National Infections Service, Public Health England, London, UK
| |
Collapse
|
34
|
Abstract
For many decades, Salmonella enterica has been subdivided by serological properties into serovars or further subdivided for epidemiological tracing by a variety of diagnostic tests with higher resolution. Recently, it has been proposed that so-called eBurst groups (eBGs) based on the alleles of seven housekeeping genes (legacy multilocus sequence typing [MLST]) corresponded to natural populations and could replace serotyping. However, this approach lacks the resolution needed for epidemiological tracing and the existence of natural populations had not been independently validated by independent criteria. Here, we describe EnteroBase, a web-based platform that assembles draft genomes from Illumina short reads in the public domain or that are uploaded by users. EnteroBase implements legacy MLST as well as ribosomal gene MLST (rMLST), core genome MLST (cgMLST), and whole genome MLST (wgMLST) and currently contains over 100,000 assembled genomes from Salmonella. It also provides graphical tools for visual interrogation of these genotypes and those based on core single nucleotide polymorphisms (SNPs). eBGs based on legacy MLST are largely consistent with eBGs based on rMLST, thus demonstrating that these correspond to natural populations. rMLST also facilitated the selection of representative genotypes for SNP analyses of the entire breadth of diversity within Salmonella. In contrast, cgMLST provides the resolution needed for epidemiological investigations. These observations show that genomic genotyping, with the assistance of EnteroBase, can be applied at all levels of diversity within the Salmonella genus.
Collapse
|
35
|
Abstract
The number of human salmonellosis within the European Union tended to increase since 2013. One of the reasons might be Salmonella Enteritidis rising in laying hens flocks by around 17% in 2015 vs 2014 and by 57% in 2016 vs 2015. The most important sources of food-borne Salmonella outbreaks are still eggs and egg products as well as ready-to-eat foods having a long shelf life. Specific actions are suggested to restart decreasing the number of human salmonellosis: (1) revision of sampling schemes to solve pathogen under detection in both animals and foods; (2) integration of microbiological criteria with fit for purpose performance objectives and food safety objectives; and (3) improvement of epidemiological investigations of human, food, and animal isolates by using whole-genome sequencing in order to effectively track salmonellosis and verify which prevention measures are most effective.
Collapse
|
36
|
Portmann AC, Fournier C, Gimonet J, Ngom-Bru C, Barretto C, Baert L. A Validation Approach of an End-to-End Whole Genome Sequencing Workflow for Source Tracking of Listeria monocytogenes and Salmonella enterica. Front Microbiol 2018; 9:446. [PMID: 29593690 PMCID: PMC5861296 DOI: 10.3389/fmicb.2018.00446] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Whole genome sequencing (WGS), using high throughput sequencing technology, reveals the complete sequence of the bacterial genome in a few days. WGS is increasingly being used for source tracking, pathogen surveillance and outbreak investigation due to its high discriminatory power. In the food industry, WGS used for source tracking is beneficial to support contamination investigations. Despite its increased use, no standards or guidelines are available today for the use of WGS in outbreak and/or trace-back investigations. Here we present a validation of our complete (end-to-end) WGS workflow for Listeria monocytogenes and Salmonella enterica including: subculture of isolates, DNA extraction, sequencing and bioinformatics analysis. This end-to-end WGS workflow was evaluated according to the following performance criteria: stability, repeatability, reproducibility, discriminatory power, and epidemiological concordance. The current study showed that few single nucleotide polymorphism (SNPs) were observed for L. monocytogenes and S. enterica when comparing genome sequences from five independent colonies from the first subculture and five independent colonies after the tenth subculture. Consequently, the stability of the WGS workflow for L. monocytogenes and S. enterica was demonstrated despite the few genomic variations that can occur during subculturing steps. Repeatability and reproducibility were also demonstrated. The WGS workflow was shown to have a high discriminatory power and has the ability to show genetic relatedness. Additionally, the WGS workflow was able to reproduce published outbreak investigation results, illustrating its capability of showing epidemiological concordance. The current study proposes a validation approach comprising all steps of a WGS workflow and demonstrates that the workflow can be applied to L. monocytogenes or S. enterica.
Collapse
Affiliation(s)
| | - Coralie Fournier
- Nestle Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Gimonet
- Nestec Ltd., Nestle Research Center, Lausanne, Switzerland
| | | | | | - Leen Baert
- Nestec Ltd., Nestle Research Center, Lausanne, Switzerland
| |
Collapse
|
37
|
Pearce ME, Alikhan NF, Dallman TJ, Zhou Z, Grant K, Maiden MCJ. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol 2018; 274:1-11. [PMID: 29574242 PMCID: PMC5899760 DOI: 10.1016/j.ijfoodmicro.2018.02.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/10/2023]
Abstract
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. cgMLST is proposed as a universal typing scheme for Salmonella. cgMLST is congruent with SNP analyses and easier to implement across laboratories. Genomic data are consistent with the epidemiology of the outbreak.
Collapse
Affiliation(s)
- Madison E Pearce
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| | - Nabil-Fareed Alikhan
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Timothy J Dallman
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Zhemin Zhou
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | - Kathie Grant
- Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom; National Institute for Health Research, Health Protection Research Unit, Gastrointestinal Infections, University of Oxford, United Kingdom.
| |
Collapse
|
38
|
Lawson B, Franklinos LHV, Rodriguez-Ramos Fernandez J, Wend-Hansen C, Nair S, Macgregor SK, John SK, Pizzi R, Núñez A, Ashton PM, Cunningham AA, M de Pinna E. Salmonella Enteritidis ST183: emerging and endemic biotypes affecting western European hedgehogs (Erinaceus europaeus) and people in Great Britain. Sci Rep 2018; 8:2449. [PMID: 29402927 PMCID: PMC5799193 DOI: 10.1038/s41598-017-18667-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022] Open
Abstract
The impacts of hedgehog (Erinaceus europaeus) Salmonella infection on public health and on animal welfare and conservation are unknown. We isolated Salmonella Enteritidis multi-locus sequence-type (ST)183 from 46/170 (27%) hedgehog carcasses (27 S. Enteritidis phage type (PT)11, 18 of a novel PT66 biotype and one with co-infection of these PTs) and from 6/208 (3%) hedgehog faecal samples (4 PT11, 2 PT66) from across Great Britain, 2012–2015. Whole genome phylogenetic analysis of the hedgehog isolates and ST183 from people in England and Wales found that PT11 and PT66 form two divergent clades. Hedgehog and human isolates were interspersed throughout the phylogeny indicating that infections in both species originate from a common population. PT11 was recovered from hedgehogs across England and Scotland, consistent with endemic infection. PT66 was isolated from Scotland only, possibly indicating a recent emergence event. People infected with ST183 were four times more likely to be aged 0–4 years than people infected by the more common ST11 S. Enteritidis. Evidence for human ST183 infection being non-foodborne included stronger correlation between geographic and genetic distance, and significantly increased likelihood of infection in rural areas, than for ST11. These results are consistent with hedgehogs acting as a source of zoonotic infection.
Collapse
Affiliation(s)
- Becki Lawson
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom.
| | - Lydia H V Franklinos
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom.,University College London, Gower Street, London, WC1E 6BT, UK
| | - Julia Rodriguez-Ramos Fernandez
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom.,IDEXX Laboratories Limited, Grange House, Sandbeck Way, Wetherby, West Yorkshire, LS22 7DN, UK
| | - Clare Wend-Hansen
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, NW9 5EQ, United Kingdom
| | - Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, NW9 5EQ, United Kingdom
| | - Shaheed K Macgregor
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom
| | - Shinto K John
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom
| | - Romain Pizzi
- Scottish SPCA National Wildlife Rescue Centre, Fishcross, Alloa, FK10 3AN, & Royal Zoological Society of Scotland, Edinburgh, EH12 6TS, United Kingdom
| | - Alejandro Núñez
- Animal and Plant Health Agency (APHA), APHA Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Philip M Ashton
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, NW9 5EQ, United Kingdom.
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, United Kingdom
| | - Elizabeth M de Pinna
- Gastrointestinal Bacteria Reference Unit, Public Health England, London, NW9 5EQ, United Kingdom
| |
Collapse
|
39
|
Allard MW, Bell R, Ferreira CM, Gonzalez-Escalona N, Hoffmann M, Muruvanda T, Ottesen A, Ramachandran P, Reed E, Sharma S, Stevens E, Timme R, Zheng J, Brown EW. Genomics of foodborne pathogens for microbial food safety. Curr Opin Biotechnol 2018; 49:224-229. [DOI: 10.1016/j.copbio.2017.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
40
|
Kan B, Zhou H, Du P, Zhang W, Lu X, Qin T, Xu J. Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace. Front Med 2018; 12:23-33. [PMID: 29318441 DOI: 10.1007/s11684-017-0607-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Two decades have passed since the first bacterial whole-genome sequencing, which provides new opportunity for microbial genome. Consequently, considerable genetic diversity encoded by bacterial genomes and among the strains in the same species has been revealed. In recent years, genome sequencing techniques and bioinformatics have developed rapidly, which has resulted in transformation and expedited the application of strategy and methodology for bacterial genome comparison used in dissection of infectious disease epidemics. Bacterial whole-genome sequencing and bioinformatic computing allow genotyping to satisfy the requirements of epidemiological study in disease control. In this review, we outline the significance and summarize the roles of bacterial genome sequencing in the context of bacterial disease control and prevention.We discuss the applications of bacterial genome sequencing in outbreak detection, source tracing, transmission mode discovery, and new epidemic clone identification. Wide applications of genome sequencing and data sharing in infectious disease surveillance networks will considerably promote outbreak detection and early warning to prevent the dissemination of bacterial diseases.
Collapse
Affiliation(s)
- Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Wen Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Tian Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
41
|
Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J, Gilpin B, Smith AM, Man Kam K, Perez E, Trees E, Kubota K, Takkinen J, Nielsen EM, Carleton H. PulseNet International: Vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. ACTA ACUST UNITED AC 2017; 22:30544. [PMID: 28662764 PMCID: PMC5479977 DOI: 10.2807/1560-7917.es.2017.22.23.30544] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/11/2017] [Indexed: 11/21/2022]
Abstract
PulseNet International is a global network dedicated to laboratory-based surveillance for food-borne diseases. The network comprises the national and regional laboratory networks of Africa, Asia Pacific, Canada, Europe, Latin America and the Caribbean, the Middle East, and the United States. The PulseNet International vision is the standardised use of whole genome sequencing (WGS) to identify and subtype food-borne bacterial pathogens worldwide, replacing traditional methods to strengthen preparedness and response, reduce global social and economic disease burden, and save lives. To meet the needs of real-time surveillance, the PulseNet International network will standardise subtyping via WGS using whole genome multilocus sequence typing (wgMLST), which delivers sufficiently high resolution and epidemiological concordance, plus unambiguous nomenclature for the purposes of surveillance. Standardised protocols, validation studies, quality control programmes, database and nomenclature development, and training should support the implementation and decentralisation of WGS. Ideally, WGS data collected for surveillance purposes should be publicly available, in real time where possible, respecting data protection policies. WGS data are suitable for surveillance and outbreak purposes and for answering scientific questions pertaining to source attribution, antimicrobial resistance, transmission patterns, and virulence, which will further enable the protection and improvement of public health with respect to food-borne disease.
Collapse
Affiliation(s)
- Celine Nadon
- Public Health Agency of Canada, National Microbiology Laboratory, Canada.,These authors contributed equally to this work
| | - Ivo Van Walle
- These authors contributed equally to this work.,European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | - Josefina Campos
- National Institute of Infectious Diseases "Dr Carlos G. Malbran", Argentina
| | - Isabel Chinen
- National Institute of Infectious Diseases "Dr Carlos G. Malbran", Argentina
| | | | - Brent Gilpin
- Institute of Environmental Science and Research Limited; Christchurch, New Zealand
| | | | - Kai Man Kam
- Chinese University of Hong Kong, Hong Kong Special Adminstrative Region, China
| | - Enrique Perez
- Pan American Health Organization/World Health Organization, Washington, DC, United States
| | - Eija Trees
- Centers for Disease Control and Prevention, United States
| | - Kristy Kubota
- Association of Public Health Laboratories, United States
| | - Johanna Takkinen
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | | | | -
- The members of the FWD-NEXT Expert Panel are listed at the end of the article
| |
Collapse
|
42
|
The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017; 15:e05077. [PMID: 32625371 PMCID: PMC7009962 DOI: 10.2903/j.efsa.2017.5077] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of the zoonoses monitoring activities carried out in 2016 in 37 European countries (28 Member States (MS) and nine non-MS). Campylobacteriosis was the most commonly reported zoonosis and the increasing European Union (EU) trend for confirmed human cases since 2008 stabilised during 2012-2016. In food, the occurrence of Campylobacter remained high in broiler meat. The decreasing EU trend for confirmed human salmonellosis cases since 2008 ended during 2012-2016, and the proportion of human Salmonella Enteritidis cases increased. Most MS met their Salmonella reduction targets for poultry, except five MS for laying hens. At primary production level, the EU-level flock prevalence of target Salmonella serovars in breeding hens, broilers, breeding and fattening turkeys decreased or stabilised compared with previous years but the EU prevalence of S. Enteritidis in laying hens significantly increased. In foodstuffs, the EU-level Salmonella non-compliance for minced meat and meat preparations from poultry was low. The number of human listeriosis confirmed cases further increased in 2016, despite the fact that Listeria seldom exceeds the EU food safety limit in ready-to-eat foods. The decreasing EU trend for confirmed yersiniosis cases since 2008 stabilised during 2012-2016, and also the number of confirmed Shiga toxin-producing Escherichia coli (STEC) infections in humans was stable. In total, 4,786 food-borne outbreaks, including waterborne outbreaks, were reported. Salmonella was the most commonly detected causative agent - with one out of six outbreaks due to S. Enteritidis - followed by other bacteria, bacterial toxins and viruses. Salmonella in eggs continued to represent the highest risk agent/food combination. The report further summarises trends and sources for bovine tuberculosis, brucellosis, trichinellosis, echinococcosis, toxoplasmosis, rabies, Q fever, West Nile fever and tularaemia.
Collapse
|
43
|
Hörmansdorfer S, Messelhäußer U, Rampp A, Schönberger K, Dallman T, Allerberger F, Kornschober C, Sing A, Wallner P, Zapf A. Re-evaluation of a 2014 multi-country European outbreak of Salmonella Enteritidis phage type 14b using recent epidemiological and molecular data. Euro Surveill 2017; 22:17-00196. [PMID: 29258650 PMCID: PMC5743097 DOI: 10.2807/1560-7917.es.2017.22.50.17-00196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022] Open
Abstract
A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016-2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation.
Collapse
Affiliation(s)
| | - Ute Messelhäußer
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Albert Rampp
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | | | - Tim Dallman
- Gastrointestinal Bacterial Reference Unit, London, United Kingdom
| | - Franz Allerberger
- Austrian Agency for Health and Food Safety (AGES), NRC Salmonella, Graz, Austria
| | | | - Andreas Sing
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Peter Wallner
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Andreas Zapf
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| |
Collapse
|
44
|
Draft Genome Sequences of 64 Salmonella enterica Serotype Enteritidis Isolates Obtained from Wild Mice. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00953-17. [PMID: 28883147 PMCID: PMC5589541 DOI: 10.1128/genomea.00953-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella enterica serotype Enteritidis is a foodborne pathogen of global concern, because it is frequently isolated from foods and patients. Draft genome sequences are reported here for 64 S. Enteritidis strains isolated from the intestines and spleens of mice caught live on chicken farms in the U.S. Northeast. The availability of these genomes provides baseline information on the genomic diversity of S. Enteritidis during the 1990s, when foodborne outbreaks traced to internal contamination of eggs were prevalent.
Collapse
|
45
|
Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany. Food Microbiol 2017; 71:46-54. [PMID: 29366468 DOI: 10.1016/j.fm.2017.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 11/20/2022]
Abstract
In Germany salmonellosis still represents the 2nd most common bacterial foodborne disease. The majority of infections are caused by Salmonella (S.) Typhimurium and S. Enteritidis followed by a variety of other broad host-range serovars. Salmonella Derby is one of the five top-ranked serovars isolated from humans and it represents one of the most prevalent serovars in pigs, thus bearing the potential risk for transmission to humans upon consumption of pig meat and products thereof. From November 2013 to January 2014 S. Derby caused a large outbreak that affected 145 primarily elderly people. Epidemiological investigations identified raw pork sausage as the probable source of infection, which was confirmed by microbiological evidence. During the outbreak isolates from patients, food specimen and asymptomatic carriers were investigated by conventional typing methods. However, the quantity and quality of available microbiological and epidemiological data made this outbreak highly suitable for retrospective investigation by Whole Genome Sequencing (WGS) and subsequent evaluation of different bioinformatics approaches for cluster definition. Overall the WGS-based methods confirmed the results of the conventional typing but were of significant higher discriminatory power. That was particularly beneficial for strains with incomplete epidemiological data. For our data set both, single nucleotide polymorphism (SNP)- and core genome multilocus sequence typing (cgMLST)-based methods proved to be appropriate tools for cluster definition.
Collapse
|
46
|
Croxen MA, Macdonald KA, Walker M, deWith N, Zabek E, Peterson C, Reimer A, Chui L, Tschetter L, Hoang L, King RK. Multi-provincial Salmonellosis Outbreak Related to Newly Hatched Chicks and Poults: A Genomics Perspective. PLOS CURRENTS 2017; 9. [PMID: 29034124 PMCID: PMC5614700 DOI: 10.1371/currents.outbreaks.309af53b9edcc785163539c30c3953f6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND A multi-provincial outbreak of Salmonella enterica serovar Enteritidis was linked to newly hatched chicks and poults from a single hatchery during the spring of 2015. In total, there were 61 human cases that were epidemiologically confirmed to be linked to the chicks and poults and the outbreak was deemed to have ended in the summer of 2015. METHODS PulseNet Canada, in coordination with the affected provinces, used genome sequencing of human and agricultural Salmonella Enteritidis isolates to aid in the epidemiological investigation, while also using traditional typing methods such as phagetyping and pulsed-field gel electrophoresis (PFGE). RESULTS All human outbreak cases, except one, were Phage Type (PT) 13a. Single nucleotide variant analysis (SNV) was able to provide a level of resolution commensurate with the results of the epidemiological investigation. SNV analysis was also able to separate PT13a outbreak-related isolates from isolates not linked to chicks or poults, while clustering some non-PT13a agricultural strains with the outbreak cluster. CONCLUSIONS Based on conventional typing methods (phagetyping or PFGE), clinical and agricultural PT13a SE isolates would have been considered as part of a related cluster. In contrast, phagetyping would have led to the exclusion of several non- PT13a strains that clustered with the outbreak isolates using the genome sequence data. This study demonstrates the improved resolution of genome sequence analysis for coordinated surveillance and source attribution of both human and agricultural SE isolates.
Collapse
Affiliation(s)
- Matthew A Croxen
- British Columbia Centre for Disease Control Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Kimberley A Macdonald
- National Microbiology Laboratory (NML), Winnipeg, Manitoba, Canada; British Columbia Centre for Disease Control (BCCDC) Public Health Laboratory, Vancouver, British Columbia, Canada
| | - Matthew Walker
- Public Health Agency of Canada, Canadian Science Center for Human and Animal Health, Winnipeg, Manitoba, Canada
| | - Nancy deWith
- Animal Health Branch, BC Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Erin Zabek
- Animal Health Centre, BC Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | | | - Aleisha Reimer
- Department of Public Health Genomics, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - Linda Chui
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Lorelee Tschetter
- PulseNet Canada, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Linda Hoang
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Robin K King
- Alberta Agriculture and Forestry, Government of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Chatt C, Nicholds-Trainor D, Scrivener A, Suleman S, Harvey M, Dallman T, Hawker J, Sibal B. Outbreak of Salmonella enteritidis PT14b gastroenteritis at a restaurant in England: the use of molecular typing to achieve a successful prosecution. Public Health 2017; 151:51-58. [PMID: 28732304 DOI: 10.1016/j.puhe.2017.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/21/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To describe an outbreak of Salmonella enteritidis phage type (PT) 14b in people who had eaten at a restaurant, and the investigation and subsequent prosecution of the food business operator (FBO). STUDY DESIGN The local health protection team and environmental health department formed an outbreak control team to investigate the outbreak. METHODS Epidemiological, microbiological, and environmental investigations were undertaken. Epidemiological investigations involved case finding and interviews. Microbiological investigation: stool samples from the suspected cases and environmental samples from the implicated food business were investigated. Salmonella isolates obtained were subjected to multiple locus variable-number tandem repeat analysis (MLVA) profiling and whole genome sequencing. In addition, adenosine triphosphate (ATP) hygiene swab tests were used to verify the quality of cleaning procedures and data loggers were used to determine the water temperature of the mechanical dishwasher. RESULTS Fifteen cases of illness where the causative agent was shown to be S. enteritidis PT14b were identified, all of whom had eaten at the same restaurant. S. enteritidis PT14b was also identified from three of the 11 food and environmental samples taken at the restaurant and found to have the same MLVA profile as the cases. A case for prosecution was built and the FBO was successfully prosecuted in July 2015. CONCLUSIONS This investigation highlighted that the use of molecular typing as part of thorough epidemiological, microbiological, and environmental investigations can present a robust case for prosecution against restaurants which pose a risk to public health.
Collapse
Affiliation(s)
- C Chatt
- Public Health England Field Epidemiology Service (Birmingham Office), UK.
| | | | - A Scrivener
- Stratford-on-Avon District Council Environmental Health, UK
| | - S Suleman
- Public Health England Field Epidemiology Service (Birmingham Office), UK
| | - M Harvey
- Public Health England Food, Water and Environmental Microbiology Laboratory Birmingham, Good Hope Hospital, UK
| | - T Dallman
- Public Health England Gastrointestinal Bacteria Reference Unit, Colindale, UK
| | - J Hawker
- Public Health England Field Epidemiology Service (Birmingham Office), UK
| | - B Sibal
- Public Health England West Midlands East Health Protection Team, UK
| |
Collapse
|
48
|
TreeToReads - a pipeline for simulating raw reads from phylogenies. BMC Bioinformatics 2017; 18:178. [PMID: 28320310 PMCID: PMC5359950 DOI: 10.1186/s12859-017-1592-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 03/10/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using phylogenomic analysis tools for tracking pathogens has become standard practice in academia, public health agencies, and large industries. Using the same raw read genomic data as input, there are several different approaches being used to infer phylogenetic tree. These include many different SNP pipelines, wgMLST approaches, k-mer algorithms, whole genome alignment and others; each of these has advantages and disadvantages, some have been extensively validated, some are faster, some have higher resolution. A few of these analysis approaches are well-integrated into the regulatory process of US Federal agencies (e.g. the FDA's SNP pipeline for tracking foodborne pathogens). However, despite extensive validation on benchmark datasets and comparison with other pipelines, we lack methods for fully exploring the effects of multiple parameter values in each pipeline that can potentially have an effect on whether the correct phylogenetic tree is recovered. RESULTS To resolve this problem, we offer a program, TreeToReads, which can generate raw read data from mutated genomes simulated under a known phylogeny. This simulation pipeline allows direct comparisons of simulated and observed data in a controlled environment. At each step of these simulations, researchers can vary parameters of interest (e.g., input tree topology, amount of sequence divergence, rate of indels, read coverage, distance of reference genome, etc) to assess the effects of various parameter values on correctly calling SNPs and reconstructing an accurate tree. CONCLUSIONS Such critical assessments of the accuracy and robustness of analytical pipelines are essential to progress in both research and applied settings.
Collapse
|
49
|
Waldram A, Dolan G, Ashton PM, Jenkins C, Dallman TJ. Epidemiological analysis of Salmonella clusters identified by whole genome sequencing, England and Wales 2014. Food Microbiol 2017; 71:39-45. [PMID: 29366467 DOI: 10.1016/j.fm.2017.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/30/2017] [Accepted: 02/09/2017] [Indexed: 11/18/2022]
Abstract
The unprecedented level of bacterial strain discrimination provided by whole genome sequencing (WGS) presents new challenges with respect to the utility and interpretation of the data. Whole genome sequences from 1445 isolates of Salmonella belonging to the most commonly identified serotypes in England and Wales isolated between April and August 2014 were analysed. Single linkage single nucleotide polymorphism thresholds at the 10, 5 and 0 level were explored for evidence of epidemiological links between clustered cases. Analysis of the WGS data organised 566 of the 1445 isolates into 32 clusters of five or more. A statistically significant epidemiological link was identified for 17 clusters. The clusters were associated with foreign travel (n = 8), consumption of Chinese takeaways (n = 4), chicken eaten at home (n = 2), and one each of the following; eating out, contact with another case in the home and contact with reptiles. In the same time frame, one cluster was detected using traditional outbreak detection methods. WGS can be used for the highly specific and highly sensitive detection of biologically related isolates when epidemiological links are obscured. Improvements in the collection of detailed, standardised exposure information would enhance cluster investigations.
Collapse
Affiliation(s)
- Alison Waldram
- Field Epidemiology Services, National Infection Service, Public Health England, UK; Field Epidemiology Training Programme, Public Health England, London, UK; European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Gayle Dolan
- Field Epidemiology Services, National Infection Service, Public Health England, UK; Field Epidemiology Training Programme, Public Health England, London, UK; European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Philip M Ashton
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, UK
| | - Claire Jenkins
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, UK.
| | - Timothy J Dallman
- Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health England, London, UK
| |
Collapse
|