1
|
Kurilovich E, Geva-Zatorsky N. Effects of bacteriophages on gut microbiome functionality. Gut Microbes 2025; 17:2481178. [PMID: 40160174 PMCID: PMC11959909 DOI: 10.1080/19490976.2025.2481178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The gut microbiome, composed of bacteria, fungi, and viruses, plays a crucial role in maintaining the delicate balance of human health. Emerging evidence suggests that microbiome disruptions can have far-reaching implications, ranging from the development of inflammatory diseases and cancer to metabolic disorders. Bacteriophages, or "phages", are viruses that specifically infect bacterial cells, and their interactions with the gut microbiome are receiving increased attention. Despite the recently revived interest in the gut phageome, it is still considered the "dark matter" of the gut, with more than 80% of viral genomes remaining uncharacterized. Today, research is focused on understanding the mechanisms by which phages influence the gut microbiota and their potential applications. Bacteriophages may regulate the relative abundance of bacterial communities, affect bacterial functions in various ways, and modulate mammalian host immunity. This review explores how phages can regulate bacterial functionality, particularly in gut commensals and pathogens, emphasizing their role in gut health and disease.
Collapse
Affiliation(s)
- Elena Kurilovich
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Humans and the Microbiome program, CIFAR, Toronto, ON, Canada
| |
Collapse
|
2
|
Zhu X, Huang Y, Shi Y, Gao X, Chen D, Liu C, Cao S, Xue X, Li Y. Comparative genomic analysis of food-animal-derived and human-derived Clostridium perfringens isolates from markets in Shandong, China. Front Microbiol 2025; 16:1543511. [PMID: 40236475 PMCID: PMC11996926 DOI: 10.3389/fmicb.2025.1543511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Clostridium perfringens (C. perfringens) is a foodborne pathogen that poses a significant threat to both animal husbandry and public health. In this study, 27 C. perfringens strains were isolated from animal samples and animal-derived food products. Antibiotics resistances among the isolates were phenotypically and genotypically analyzed and Whole genome sequencing (WGS). In combination with the genomes of 141 human-derived C. perfringens strains from public databases, this study conducted comprehensive analyses of antibiotic resistance genes, virulence genes, multilocus sequence typing (MLST), prophage detection, and pan-genome analysis for a total of 168 strains of C. perfringens. Antibiotics resistances among the isolates were phenotypically and genotypically analyzed and found 24 of them (88.9%, 24/27) were identified as multidrug-resistant (MDR). WGS analysis revealed that 13 strains belonged to known sequence types (ST), and the remaining strains represented 10 new STs. By analysis in combination with data of 141 C. perfringens isolates from the database, it was implied that ST221, ST72 and ST370 were present in both animal-derived and human-derived C. perfringens. It is worth noting that 108 out of 168 strains of C. perfringens (64.3%, 108/168) were found to carry prophages, which were found more prevalent in human-derived C. perfringens isolates. Pan-genome and phylogenetic analysis of 168 C. perfringens strains indicated that C. perfringens possesses an open pan-genome with genetic diversity. This study provides genomic insights into C. perfringens from food animals and humans, shedding light on the importance for monitoring the C. perfringens in livestock in China for better public health.
Collapse
Affiliation(s)
- Xinyang Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yucui Huang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Yuxia Shi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Xiaojie Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Duanduan Chen
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Cheng Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Shengliang Cao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Weifang, Shandong, China
| | - Yubao Li
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
3
|
Seki M, Iwamoto R, Hou J, Fujiyoshi S, Maruyama F, Furusawa Y, Kagaya S, Sakatoku A, Nakamura S, Tanaka D. Size Distribution and Pathogenic Potential of Culturable Airborne Clostridium spp. in a Suburb of Toyama City, Japan. Microbes Environ 2025; 40:ME24078. [PMID: 39909442 PMCID: PMC11946412 DOI: 10.1264/jsme2.me24078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 02/07/2025] Open
Abstract
Clostridium spp. are anaerobic, Gram-positive, spore-forming bacteria comprising more than 150 species, some of which are important pathogens of humans and animals. Members of this genus have been isolated from a number of environments, but are rarely found in the atmosphere. In the present study, we exami-ned culturable airborne Clostridium spp. and clarified their pathogenicity. We obtained 19 culturable Clostridium isolates from size-fractionated samples collected at a suburban site in Toyama, central Japan. Culturable Clostridium spp. were detected in particles larger than 1.1 μm, and the size distribution peaked at 2.1-3.3 μm, corresponding to the spore size of Clostridium spp. More Clostridium spp. were detected in coarse particles >2.1 μm not only by culture methods, but also by 16S rRNA gene amplicon sequencing. Whole-genome sequencing (WGS) identified seven Clostridium species, among which Clostridium perfringens was predominant. Moreover, WGS revealed that C. perfringens isolates harbored many virulence and antibiotic resistance genes with the potential to cause gas gangrene. The detection and characterization of potential airborne pathogens are crucial for preventing the spread of diseases caused by these pathogens. To the best of our knowledge, this is the first study to demonstrate that anaerobic Clostridium spp. may be transported under aerobic conditions in the atmosphere and pose potential risks to human health.
Collapse
Affiliation(s)
- Makoto Seki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Reika Iwamoto
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Jianjian Hou
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - So Fujiyoshi
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - Fumito Maruyama
- Center for the Planetary Health and Innovation Science (PHIS), The IDEC Institute, Hiroshima University, 1–3–2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8511, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939–0398, Japan
| | - Shigehiro Kagaya
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Akihiro Sakatoku
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Shogo Nakamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930–8555, Japan
| |
Collapse
|
4
|
Heidarpanah S, Li K, Thibodeau A, Meniaï I, Parreira VR, Quessy S, Segura M, Fittipaldi N, Gaucher ML. Genomic Diversity and Virulence Factors of Clostridium perfringens Isolated from Healthy and Necrotic Enteritis-Affected Broiler Chicken Farms in Quebec Province. Microorganisms 2024; 12:2624. [PMID: 39770825 PMCID: PMC11677781 DOI: 10.3390/microorganisms12122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Avian necrotic enteritis due to the Gram-positive bacterium Clostridium perfringens has re-emerged following the ban on antibiotic growth promoters in many poultry producing countries. The limited number of previous studies has left important gaps in our understanding of the genetic diversity and virulence traits of the pathogen. To address these knowledge gaps, in this study, we sequenced the genomes of 41 Clostridium perfringens isolates recovered from commercial broiler chicken flocks in Quebec, Canada, including isolates from healthy birds and those affected by necrotic enteritis. We sought to understand the pangenome diversity and interrogated the genomes for key virulence factors involved in necrotic enteritis pathogenesis. On average, the genomes had a GC content of 28% and contained 3206 coding sequences. A variable presence of toxins, degradative hydrolytic enzymes, and collagen-binding proteins was also found. Through pangenome analysis, we revealed a total of 10,223 genes, 652 (6.4%) of which formed the core genome. Additionally, we identified 17 different plasmids, 12 antibiotic resistance genes, and nine prophage regions. Overall, our results demonstrated a relatively high genetic diversity among chicken Clostridium perfringens isolates collected from the same geographical location, offering new insights into potential virulence mechanisms and adaptation of the pathogen within poultry populations.
Collapse
Affiliation(s)
- Sara Heidarpanah
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (I.M.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Kevin Li
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Alexandre Thibodeau
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (I.M.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ilhem Meniaï
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (I.M.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Valeria R. Parreira
- Canadian Research Institute for Food Safety (CRIFS), Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Sylvain Quessy
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (I.M.); (S.Q.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mariela Segura
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Nahuel Fittipaldi
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Lou Gaucher
- Chaire de Recherche en Salubrité des Viandes (CRSV), Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (S.H.); (A.T.); (I.M.); (S.Q.)
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (K.L.); (M.S.); (N.F.)
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Xiao X, Qin S, Cui T, Liu J, Wu Y, Zhong Y, Yang C. Bacillus licheniformis suppresses Clostridium perfringens infection via modulating inflammatory response, antioxidant status, inflammasome activation and microbial homeostasis in broilers. Poult Sci 2024; 103:104222. [PMID: 39241614 PMCID: PMC11406086 DOI: 10.1016/j.psj.2024.104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024] Open
Abstract
Pathogenic bacteria infection, especially Clostridium perfringens (C. perfringens), markedly threatened the health of animals, and further caused huge economic loss. In this study, Bacillus licheniformis HJ0135 (BL) was used. Oxford cup bacteriostatic test and inhibitory rate test were conducted to evaluate the antibacterial ability of BL. Results showed the strongest inhibitory role of BL on C. perfringens (P < 0.05). Afterwards, 540 one-day-old yellow-feather broilers (32.7 ± 0.2 g) were randomly allocated into 3 groups, including CON group (basal diet), CP group (basal diet + 1 × 109 CFU C. perfringens in gavage), and BL + CP group (basal diet containing 7.5 × 106 CFU/g BL + 1 × 109 CFU C. perfringens in gavage). At d 70, broilers in the CP and BL + CP groups were treated with C. perfringens by continuously oral administration for 5 d. The experiment lasted for 75 d. The serum, immune organs, jejunal mucosa, and cecal contents were collected for analysis. In vivo experiment showed that BL supplementation markedly improved (P < 0.05) BW, ADG, thymus index, serum immunoglobins and antioxidases, reduced feed conversion ratio (FCR) and serum pro-inflammatory cytokines of C. perfringens-infected broilers. Furthermore, the increased jejunal injury and levels of pro-inflammatory cytokines, decreased gene expressions of tight junction proteins in the jejunal mucosa were significantly alleviated (P < 0.05) by BL. More importantly, the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome was inhibited (P < 0.05) by BL to further attenuate jejunal damage. Besides, BL supplementation markedly increased (P < 0.05) the cecal isobutyric acid and isovaleric acid. Microbial analysis showed that BL changed the composition and relative abundances of microbiota in the cecal contents (P < 0.05), especially the short chain fatty acids (SCFAs)-producing bacteria including Eubacterium_coprostanoligenes_group, Megamonas, Faecalibacterium, and Lactobacillus, which further protected against C. perfringens-induced jejunal inflammation in broilers. Our study laid a theoretical basis for the application of probiotics in lessening C. perfringens-related diseases in poultry farming.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou 313300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Lahti P, Jaakkola K, Hörman A, Heikinheimo A, Sovijärvi A, Korkeala H. Identification of a new Clostridium perfringens variant with a chromosomally encoded enterotoxin gene in a suspected persistent food poisoning outbreak in Eritrea. Front Microbiol 2024; 15:1459840. [PMID: 39529666 PMCID: PMC11552304 DOI: 10.3389/fmicb.2024.1459840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Clostridium perfringens is a causative agent of various human and animal enteric diseases including food poisoning. In this study, we describe an interesting case of a persistent food poisoning outbreak among Finnish peacekeepers in Eritrea, possibly caused by Clostridium perfringens carrying a new variant of the chromosomally encoded enterotoxin gene. C. perfringens strains causing food poisoning carry the enterotoxin gene, cpe, in its chromosome (c-cpe) or on a plasmid (p-cpe). PCR assays are widely used for toxinotype C. perfringens strains. The integration sites for the cpe gene are highly conserved, and PCR assays targeting the cpe gene and the adjacent IS elements (the IS1470 in c-cpe and the IS1470-like or IS1151 in p-cpe strains) are used to further determine the genetic location of the cpe gene. We sequenced nine enteropathogenic C. perfringens strains related to a persistent food poisoning outbreak among Finnish peacekeepers in Eritrea. Six of these strains produced non-typeable cpe results in the standard PCR assay due to divergence in the enterotoxin integration site. The gene order of the new variant of the chromosomal cpe insertion site with an additional IS1470 element impairing genotyping PCR assay for the location of cpe is described. In addition, variant c-cpe strains carried 58-81 copies of IS1470 in their genomes, compared to 9-23 copies found in previously described c-cpe strains. Thus, the present study represents an untraditional type of C. perfringens food poisoning caused by variant c-cpe strains, and the sequenced strains bring geographic variation to the existing strain collection of sequenced C. perfringens.
Collapse
Affiliation(s)
- Päivi Lahti
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Ari Hörman
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Medical Services, Defence Command, The Finnish Defence Forces, Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
- Microbiology Unit, Finnish Food Authority, Seinäjoki, Finland
| | - Ava Sovijärvi
- Medical Services, Defence Command, The Finnish Defence Forces, Helsinki, Finland
- Retired, Turku, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Chen C, Hu H, Li Z, Qi M, Qiu Y, Hu Z, Feng F, Tang W, Diao H, Sun W, Tang Z. Dietary tryptophan improves growth and intestinal health by promoting the secretion of intestinal β-defensins against enterotoxigenic Escherichia coli F4 in weaned piglets. J Nutr Biochem 2024; 129:109637. [PMID: 38574828 DOI: 10.1016/j.jnutbio.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Adequate dietary L-tryptophan (Trp) governs intestinal homeostasis in piglets. However, the defensive role of Trp in the diet against enterotoxigenic Escherichia coli F4 (K88) in pigs is still poorly understood. Here, sixty (6.15 ± 1.52 kg, 24-day-old, Duroc × Landrace × Yorkshire) weaned piglets were used for an E. coli F4 attack test in a 2 × 2 factorial design. The growth (ADG, ADFI, GH), immune factors (IL-10, IgA, IgG, IgM), Trp metabolite 5-HT, intestinal morphology (jejunal and colonic VH), mRNA expression of β-defensins (jejunal BD-127, BD-119, ileal BD-1, BD-127), and abundance of beneficial microorganisms in the colon (Prevotella 9, Lactobacillus, Phascolarctobacterium, Faecalibacterium) were higher in the piglets in the HT (High Trp) and HTK (High Trp, K88) groups than in the LT (Low Trp) and LTK (Low Trp, K88) groups (P<.05), while FCR, diarrhea rate, diarrhea index, serum Trp, Kyn, IDO, D-LA, ET, and abundance of harmful microorganisms in the colon (Spirochaetes, Fusobacteria, Prevotella, Christensenellaceae R7) were lower in the HT and HTK groups than in the LT and LTK groups (P<.05). High Trp reduced the expression of virulence genes (K88 and LT) after E. coli F4 attack (P<.05). The IL-6, TNF-α was lower in the HTK group than in the LT, LTK group (P<.05). In short, a diet containing 0.35% Trp protected piglets from enterotoxigenic E. coli F4 (K88) via Trp metabolism promoting BD expression in the intestinal mucosa, which improved growth and intestinal health.
Collapse
Affiliation(s)
- Chen Chen
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhangcheng Li
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Min Qi
- Yunnan Animal Husbandry Station, Kunming 650225, China
| | - Yibin Qiu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhijin Hu
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Fu Feng
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Weizhong Sun
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Animal Nutrition and Bio-feed, Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
8
|
Liu D, Xie LS, Lian S, Li K, Yang Y, Wang WZ, Hu S, Liu SJ, Liu C, He Z. Anaerostipes hadrus, a butyrate-producing bacterium capable of metabolizing 5-fluorouracil. mSphere 2024; 9:e0081623. [PMID: 38470044 PMCID: PMC11036815 DOI: 10.1128/msphere.00816-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Anaerostipes hadrus (A. hadrus) is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that A. hadrus may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of A. hadrus is complex and unclear. Therefore, comprehensive genomic studies on A. hadrus need to be performed. We integrated 527 high-quality public A. hadrus genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based in vitro assays. We constructed the first large-scale pan-genome of A. hadrus (n = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in A. hadrus genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of A. hadrus in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more A. hadrus. The predicted high-quality protein structure indicated that A. hadrus might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the preTA operon). Through in vitro assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of A. hadrus. We observed for the first time that A. hadrus can convert 5-fluorouracil to α-fluoro-β-ureidopropionic acid, which may result from the combined action of the preTA operon and adjacent hydA (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of A. hadrus, exceptionally functional features, and potential applications. IMPORTANCE This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of Anaerostipes hadrus.
Collapse
Affiliation(s)
- Danping Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Li-Sheng Xie
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shitao Lian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Kexin Li
- Systems Biology and Bioinformatics (SBI), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Jena, Germany
| | - Yun Yang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| | - Wen-Zhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing, China
- Key Laboratory of Biomechanics and Mechanobiology, Beihang University, Ministry of Education, Beijing, China
| |
Collapse
|
9
|
Kawamura T, Prah I, Mahazu S, Ablordey A, Saito R. Types A and F Clostridium perfringens in healthcare wastewater from Ghana. Appl Environ Microbiol 2023; 89:e0161923. [PMID: 38051072 PMCID: PMC10734495 DOI: 10.1128/aem.01619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Clostridium perfringens causes gas gangrene and food poisoning in humans, and monitoring this bacterium is important for public health. Although whole-genome sequencing is useful to comprehensively understand the virulence, resistome, and global genetic relatedness of bacteria, limited genomic data from environmental sources and developing countries hamper our understanding of the richness of the intrinsic genomic diversity of this pathogen. Here, we successfully accumulated the genetic data on C. perfringens strains isolated from hospital effluent and provided the first evidence that predicted pathogenic C. perfringens may be disseminated in the clinical environment in Ghana. Our findings suggest the importance of risk assessment in the environment as well as the clinical setting to mitigate the potential outbreak of C. perfringens food poisoning in Ghana.
Collapse
Affiliation(s)
- Taira Kawamura
- Department of Molecular Microbiology and Immunology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Graduate School of Medicine and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Kiu R, Shaw AG, Sim K, Acuna-Gonzalez A, Price CA, Bedwell H, Dreger SA, Fowler WJ, Cornwell E, Pickard D, Belteki G, Malsom J, Phillips S, Young GR, Schofield Z, Alcon-Giner C, Berrington JE, Stewart CJ, Dougan G, Clarke P, Douce G, Robinson SD, Kroll JS, Hall LJ. Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains. Nat Microbiol 2023; 8:1160-1175. [PMID: 37231089 PMCID: PMC10234813 DOI: 10.1038/s41564-023-01385-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Clostridium perfringens is an anaerobic toxin-producing bacterium associated with intestinal diseases, particularly in neonatal humans and animals. Infant gut microbiome studies have recently indicated a link between C. perfringens and the preterm infant disease necrotizing enterocolitis (NEC), with specific NEC cases associated with overabundant C. perfringens termed C. perfringens-associated NEC (CPA-NEC). In the present study, we carried out whole-genome sequencing of 272 C. perfringens isolates from 70 infants across 5 hospitals in the United Kingdom. In this retrospective analysis, we performed in-depth genomic analyses (virulence profiling, strain tracking and plasmid analysis) and experimentally characterized pathogenic traits of 31 strains, including 4 from CPA-NEC patients. We found that the gene encoding toxin perfringolysin O, pfoA, was largely deficient in a human-derived hypovirulent lineage, as well as certain colonization factors, in contrast to typical pfoA-encoding virulent lineages. We determined that infant-associated pfoA+ strains caused significantly more cellular damage than pfoA- strains in vitro, and further confirmed this virulence trait in vivo using an oral-challenge C57BL/6 murine model. These findings suggest both the importance of pfoA+ C. perfringens as a gut pathogen in preterm infants and areas for further investigation, including potential intervention and therapeutic strategies.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Kathleen Sim
- Faculty of Medicine, Imperial College London, London, UK
| | | | | | - Harley Bedwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sally A Dreger
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Wesley J Fowler
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Emma Cornwell
- Faculty of Medicine, Imperial College London, London, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gusztav Belteki
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge, UK
| | - Jennifer Malsom
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Sarah Phillips
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Zoe Schofield
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Neonatal Services, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Paul Clarke
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Gillian Douce
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Stephen D Robinson
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J Simon Kroll
- Faculty of Medicine, Imperial College London, London, UK
| | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
11
|
Wu D, Luo R, Gong G, Zhang L, Huang J, Cai C, Li Y, Irshad I, Song R, Suolang S. Antimicrobial susceptibility and multilocus sequence typing of Clostridium perfringens isolated from yaks in Qinghai-Tibet plateau, China. Front Vet Sci 2022; 9:1022215. [DOI: 10.3389/fvets.2022.1022215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is an opportunistic pathogen that cause necrotic enteritis, food poisoning and even death in animals. In this study, we explored the prevalence, antibiotic resistance and genetic diversity of Clostridium perfringens isolated from yak in the Qinghai-Tibet plateau, China. A total of 744 yak fecal samples were collected and assessed for toxin genes, antimicrobial susceptibility and multilocus sequence typing (MLST). Results indicated that 144 out of 744 (19.35%) yak fecal samples were tested to be positive for C. perfringens, 75% (n = 108, 108/144) were C. perfringens type A, 17.36% (n = 25, 25/144) were C. perfringens type C, 2.78% (n = 4, 4/144) were C. perfringens type D, and 4.86% (n = 7, 7/144) were C. perfringens type F. In addition, 2.78% (n = 4, 4/144) of the isolates were positive for cpb2 toxin gene. Antimicrobial susceptibility testing revealed that 98.61% (142/144) of the isolates showed multiple-antibiotic resistance. According to MLST and phylogenetic tree, 144 yak-derived C. perfringens isolates had an average of 12.95 alleles and could be divided into 89 sequence types (STs) and clustered in 11 clonal complexes (CCs). The most of isolates belong to type A with a considerable genetic diversity, having Simpson index up to 0.9754. MLST and phylogenetic analysis showed that the isolates under the same clade came from multiple regions. Cross-transmission among isolates and interconnectedness were observed in the genetic evolution. According to the study, the most of the isolates exhibited broad-spectrum antibacterial resistance, diverse alleles, and multiple lethal toxin genes of C. perfringens.
Collapse
|
12
|
Podrzaj L, Burtscher J, Domig KJ. Comparative Genomics Provides Insights Into Genetic Diversity of Clostridium tyrobutyricum and Potential Implications for Late Blowing Defects in Cheese. Front Microbiol 2022; 13:889551. [PMID: 35722315 PMCID: PMC9201417 DOI: 10.3389/fmicb.2022.889551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridium tyrobutyricum has been recognized as the main cause of late blowing defects (LBD) in cheese leading to considerable economic losses for the dairy industry. Although differences in spoilage ability among strains of this species have been acknowledged, potential links to the genetic diversity and functional traits remain unknown. In the present study, we aimed to investigate and characterize genomic variation, pan-genomic diversity and key traits of C. tyrobutyricum by comparing the genomes of 28 strains. A comparative genomics analysis revealed an “open” pangenome comprising 9,748 genes and a core genome of 1,179 genes shared by all test strains. Among those core genes, the majority of genes encode proteins related to translation, ribosomal structure and biogenesis, energy production and conversion, and amino acid metabolism. A large part of the accessory genome is composed of sets of unique, strain-specific genes ranging from about 5 to more than 980 genes. Furthermore, functional analysis revealed several strain-specific genes related to replication, recombination and repair, cell wall, membrane and envelope biogenesis, and defense mechanisms that might facilitate survival under stressful environmental conditions. Phylogenomic analysis divided strains into two clades: clade I contained human, mud, and silage isolates, whereas clade II comprised cheese and milk isolates. Notably, these two groups of isolates showed differences in certain hypothetical proteins, transcriptional regulators and ABC transporters involved in resistance to oxidative stress. To the best of our knowledge, this is the first study to provide comparative genomics of C. tyrobutyricum strains related to LBD. Importantly, the findings presented in this study highlight the broad genetic diversity of C. tyrobutyricum, which might help us understand the diversity in spoilage potential of C. tyrobutyricum in cheese and provide some clues for further exploring the gene modules responsible for the spoilage ability of this species.
Collapse
Affiliation(s)
- Lucija Podrzaj
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
13
|
Venhorst J, van der Vossen JMBM, Agamennone V. Battling Enteropathogenic Clostridia: Phage Therapy for Clostridioides difficile and Clostridium perfringens. Front Microbiol 2022; 13:891790. [PMID: 35770172 PMCID: PMC9234517 DOI: 10.3389/fmicb.2022.891790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
The pathogenic Clostridioides difficile and Clostridium perfringens are responsible for many health care-associated infections as well as systemic and enteric diseases. Therefore, they represent a major health threat to both humans and animals. Concerns regarding increasing antibiotic resistance (related to C. difficile and C. perfringens) have caused a surge in the pursual of novel strategies that effectively combat pathogenic infections, including those caused by both pathogenic species. The ban on antibiotic growth promoters in the poultry industry has added to the urgency of finding novel antimicrobial therapeutics for C. perfringens. These efforts have resulted in various therapeutics, of which bacteriophages (in short, phages) show much promise, as evidenced by the Eliava Phage Therapy Center in Tbilisi, Georgia (https://eptc.ge/). Bacteriophages are a type of virus that infect bacteria. In this review, the (clinical) impact of clostridium infections in intestinal diseases is recapitulated, followed by an analysis of the current knowledge and applicability of bacteriophages and phage-derived endolysins in this disease indication. Limitations of phage and phage endolysin therapy were identified and require considerations. These include phage stability in the gastrointestinal tract, influence on gut microbiota structure/function, phage resistance development, limited host range for specific pathogenic strains, phage involvement in horizontal gene transfer, and-for phage endolysins-endolysin resistance, -safety, and -immunogenicity. Methods to optimize features of these therapeutic modalities, such as mutagenesis and fusion proteins, are also addressed. The future success of phage and endolysin therapies require reliable clinical trial data for phage(-derived) products. Meanwhile, additional research efforts are essential to expand the potential of exploiting phages and their endolysins for mitigating the severe diseases caused by C. difficile and C. perfringens.
Collapse
Affiliation(s)
- Jennifer Venhorst
- Biomedical Health, Netherlands Organisation for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Jos M. B. M. van der Vossen
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Valeria Agamennone
- Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
14
|
Mesa V, Monot M, Ferraris L, Popoff M, Mazuet C, Barbut F, Delannoy J, Dupuy B, Butel MJ, Aires J. Core-, pan- and accessory genome analyses of Clostridium neonatale: insights into genetic diversity. Microb Genom 2022; 8. [PMID: 35550024 PMCID: PMC9465065 DOI: 10.1099/mgen.0.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clostridium neonatale is a potential opportunistic pathogen recovered from faecal samples in cases of necrotizing enterocolitis (NEC), a gastrointestinal disease affecting preterm neonates. Although the C. neonatale species description and name validation were published in 2018, comparative genomics are lacking. In the present study, we provide the closed genome assembly of the C. neonatale ATCC BAA-265T (=250.09) reference strain with a manually curated functional annotation of the coding sequences. Pan-, core- and accessory genome analyses were performed using the complete 250.09 genome (4.7 Mb), three new assemblies (4.6–5.6 Mb), and five publicly available draft genome assemblies (4.6–4.7 Mb). The C. neonatale pan-genome contains 6840 genes, while the core-genome has 3387 genes. Pan-genome analysis revealed an ‘open’ state and genomic diversity. The strain-specific gene families ranged from five to 742 genes. Multiple mobile genetic elements were predicted, including a total of 201 genomic islands, 13 insertion sequence families, one CRISPR-Cas type I-B system and 15 predicted intact prophage signatures. Primary virulence classes including offensive, defensive, regulation of virulence-associated genes and non-specific virulence factors were identified. The presence of a tet(W/N/W) gene encoding a tetracycline resistance ribosomal protection protein and a 23S rRNA methyltransferase ermQ gene were identified in two different strains. Together, our results revealed a genetic diversity and plasticity of C. neonatale genomes and provide a comprehensive view of this species genomic features, paving the way for the characterization of its biological capabilities.
Collapse
Affiliation(s)
- Victoria Mesa
- Université de Paris, UMR-S1139, F-75006, Paris, France
| | - Marc Monot
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques, Institut Pasteur, F-75015, Paris, France.,Institut Pasteur, Université de Paris, UMR-CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | | | - Michel Popoff
- Institut Pasteur, Université de Paris, Centre National de Référence des Bactéries anaérobies et Botulisme, F-75015, Paris, France
| | - Christelle Mazuet
- Institut Pasteur, Université de Paris, Centre National de Référence des Bactéries anaérobies et Botulisme, F-75015, Paris, France
| | - Frederic Barbut
- Université de Paris, UMR-S1139, F-75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital saint Antoine, Infection Control Unit, F-75012, Paris, France
| | | | - Bruno Dupuy
- Institut Pasteur, Université de Paris, UMR-CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | | | - Julio Aires
- Université de Paris, UMR-S1139, F-75006, Paris, France
| |
Collapse
|
15
|
Ueda K, Kawahara K, Kimoto N, Yamaguchi Y, Yamada K, Oki H, Yoshida T, Matsuda S, Matsumoto Y, Motooka D, Kawatsu K, Iida T, Nakamura S, Ohkubo T, Yonogi S. Analysis of the complete genome sequences of Clostridium perfringens strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids. BMC Genomics 2022; 23:226. [PMID: 35321661 PMCID: PMC8941779 DOI: 10.1186/s12864-022-08453-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background BEC-producing Clostridium perfringens is a causative agent of foodborne gastroenteritis. It was first reported in 2014, and since then, several isolates have been identified in Japan and the United Kingdom. The novel binary ADP-ribosylating toxin BEC, which consists of two components (BECa and BECb), is encoded on a plasmid that is similar to pCP13 and harbours a conjugation locus, called Pcp, encoding homologous proteins of the type 4 secretion system. Despite the high in vitro conjugation frequency of pCP13, its dissemination and that of related plasmids, including bec-harbouring plasmids, in the natural environment have not been characterised. This lack of knowledge has limited our understanding of the genomic epidemiology of bec-harbouring C. perfringens strains. Results In this study, we determined the complete genome sequences of five bec-harbouring C. perfringens strains isolated from 2009 to 2019. Each isolate contains a ~ 3.36 Mbp chromosome and 1–3 plasmids of either the pCW3-like family, pCP13-like family, or an unknown family, and the bec-encoding region in all five isolates was located on a ~ 54 kbp pCP13-like plasmid. Phylogenetic and SNP analyses of these complete genome sequences and the 211 assembled C. perfringens genomes in GenBank showed that although these bec-harbouring strains were split into two phylogenetic clades, the sequences of the bec-encoding plasmids were nearly identical (>99.81%), with a significantly smaller SNP accumulation rate than that of their chromosomes. Given that the Pcp locus is conserved in these pCP13-like plasmids, we propose a mechanism in which the plasmids were disseminated by horizontal gene transfer. Data mining showed that strains carrying pCP13-like family plasmids were unexpectedly common (58/216 strains) and widely disseminated among the various C. perfringens clades. Although these plasmids possess a conserved Pcp locus, their ‘accessory regions’ can accommodate a wide variety of genes, including virulence-associated genes, such as becA/becB and cbp2. These results suggest that this family of plasmids can integrate various foreign genes and is transmissible among C. perfringens strains. Conclusion This study demonstrates the potential significance of pCP13-like plasmids, including bec-encoding plasmids, for the characterisation and monitoring of the dissemination of pathogenic C. perfringens strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08453-4.
Collapse
Affiliation(s)
- Kengo Ueda
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Kawahara
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Narumi Kimoto
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Yamaguchi
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Yamada
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health, 7-6 Nagare, Tsujicho, Kita-ku, Nagoya, Aichi, 462-8576, Japan
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuya Yoshida
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeaki Matsuda
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Matsumoto
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kawatsu
- Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan
| | - Tetsuya Iida
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadayasu Ohkubo
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shinya Yonogi
- Department of Bacterial Infection, Research Institute for Microbial Disease (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Division of Microbiology, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka, Osaka, 537-0025, Japan.
| |
Collapse
|
16
|
Prevalence, Antibiotic Resistance, Toxin-Typing and Genotyping of Clostridium perfringens in Raw Beef Meats Obtained from Qazvin City, Iran. Antibiotics (Basel) 2022; 11:antibiotics11030340. [PMID: 35326802 PMCID: PMC8944464 DOI: 10.3390/antibiotics11030340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Clostridium perfringens is one of the highest prevailing spore-forming foodborne pathogens, which is widely distributed and causes severe disease and outbreaks in humans and animals. Raw meat and poultry are the main vehicles of this pathogen. In this study, we investigated the prevalence, antibiotic resistance pattern, toxin-encoding genes and genetic diversity of C. perfringens isolates from raw whole and minced meat samples purchased from local markets in Qazvin city, Iran (the source of beef cattle production was also located in Qazvin city, Iran). Methods: We used conventional culture-based and Kirby–Bauer disk diffusion and conventional and arbitrary primer PCR methods. Results: A total of 18 C. perfringens strains were isolated from 133 raw meat samples (13.53%). Up to 44.4 and 55.5% of these isolates were detected in raw minced and whole meat samples, respectively. We found that 72.2, 66.6, 61.1, 37.8 and 33.3% of the C. perfringens isolates were resistant to ampicillin, tetracycline, amoxicillin, ciprofloxacin and chloramphenicol antibiotics, respectively. Multidrug resistance was found in 38% of the isolates. Among the four main toxin genes evaluated, the Cpa gene was detected in all isolates, and 61.1% of the isolates were mostly recognized as type A C. perfringens. High levels of genetic diversity were observed among the isolates, and they were classified into five distinct groups. Conclusions: The isolates from whole meat samples were more resistant to antibiotics. However, toxin genes were more detected in the isolates from minced meat samples. Our findings suggest that contamination of raw meat products with multidrug resistant C. perfringens could be regarded as one of the concerning pathogens in these products. Comprehensive monitoring of C. perfringens isolates is strongly recommended.
Collapse
|
17
|
Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms 2022; 10:microorganisms10020213. [PMID: 35208668 PMCID: PMC8879937 DOI: 10.3390/microorganisms10020213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Clostridium baratii strains are rare opportunistic pathogens associated with botulism intoxication. They have been isolated from foods, soil and be carried asymptomatically or cause botulism outbreaks. Is not taxonomically related to Clostridium botulinum, but some strains are equipped with BoNT/F7 cluster. Despite their relationship with diseases, our knowledge regarding the genomic features and phylogenetic characteristics is limited. We analyzed the pangenome of C. baratii to understand the diversity and genomic features of this species. We compared existing genomes in public databases, metagenomes, and one newly sequenced strain isolated from an asymptomatic subject. The pangenome was open, indicating it comprises genetically diverse organisms. The core genome contained 28.49% of the total genes of the pangenome. Profiling virulence factors confirmed the presence of phospholipase C in some strains, a toxin capable of disrupting eukaryotic cell membranes. Furthermore, the genomic analysis indicated significant horizontal gene transfer (HGT) events as defined by the presence of prophage genomes. Seven strains were equipped with BoNT/F7 cluster. The active site was conserved in all strains, identifying a missing 7-aa region upstream of the active site in C. baratii genomes. This analysis could be important to advance our knowledge regarding opportunistic clostridia and better understand their contribution to disease.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto J. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Correspondence: (A.J.M.); (D.G.)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.J.M.); (D.G.)
| |
Collapse
|
18
|
Abdel-Glil MY, Thomas P, Linde J, Jolley KA, Harmsen D, Wieler LH, Neubauer H, Seyboldt C. Establishment of a Publicly Available Core Genome Multilocus Sequence Typing Scheme for Clostridium perfringens. Microbiol Spectr 2021; 9:e0053321. [PMID: 34704797 PMCID: PMC8549748 DOI: 10.1128/spectrum.00533-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 12/31/2022] Open
Abstract
Clostridium perfringens is a spore-forming anaerobic pathogen responsible for a variety of histotoxic and intestinal infections in humans and animals. High-resolution genotyping aiming to identify bacteria at strain level has become increasingly important in modern microbiology to understand pathogen transmission pathways and to tackle infection sources. This study aimed at establishing a publicly available genome-wide multilocus sequence-typing (MLST) scheme for C. perfringens. A total of 1,431 highly conserved core genes (1.34 megabases; 50% of the reference genome genes) were indexed for a core genome-based MLST (cgMLST) scheme for C. perfringens. The scheme was applied to 282 ecologically and geographically diverse genomes, showing that the genotyping results of cgMLST were highly congruent with the core genome-based single-nucleotide-polymorphism typing in terms of resolution and tree topology. In addition, the cgMLST provided a greater discrimination than classical MLST methods for C. perfringens. The usability of the scheme for outbreak analysis was confirmed by reinvestigating published outbreaks of C. perfringens-associated infections in the United States and the United Kingdom. In summary, a publicly available scheme and an allele nomenclature database for genomic typing of C. perfringens have been established and can be used for broad-based and standardized epidemiological studies. IMPORTANCE Global epidemiological surveillance of bacterial pathogens is enhanced by the availability of standard tools and sharing of typing data. The use of whole-genome sequencing has opened the possibility for high-resolution characterization of bacterial strains down to the clonal and subclonal levels. Core genome multilocus sequence typing is a robust system that uses highly conserved core genes for deep genotyping. The method has been successfully and widely used to describe the epidemiology of various bacterial species. Nevertheless, a cgMLST typing scheme for Clostridium perfringens is currently not publicly available. In this study, we (i) developed a cgMLST typing scheme for C. perfringens, (ii) evaluated the performance of the scheme on different sets of C. perfringens genomes from different hosts and geographic regions as well as from different outbreak situations, and, finally, (iii) made this scheme publicly available supported by an allele nomenclature database for global and standard genomic typing.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Muenster, Muenster, Germany
| | | | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
19
|
Jiang H, Qin YM, Yang XT, Li QL, Shen QC, Ding JB, Wei RY, Zhang JD, Sun JL, Sun MJ, Fan XZ. Bacteriological and molecular typing of Clostridium perfringens strains isolated in retail beef in Beijing, China. J Vet Med Sci 2021; 83:1593-1596. [PMID: 34456197 PMCID: PMC8569878 DOI: 10.1292/jvms.21-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clostridium perfringens is an important zoonotic pathogen. This study was designed to explore the prevalence and toxin types of C. perfringens in retail beef collected from Beijing, China. Among 221 beef samples collected, 53 samples were positive for C. perfringens, resulting in the average prevalence as 23.98%. By toxin gene-based typing, the most C. perfringens strains belong to type A (96.23%, 51/53), only 2 strains were identified as type D. By a multi-locus sequence typing (MLST)-based analysis, a total of 36 sequence types (STs) were detected, and the most STs (n=30) represented just a single strain. These finding suggested that the prevalence of C. perfringens in retail beef in Beijing was considerably high and these bacteria displayed extreme diversity in genetics.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yu-Ming Qin
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiao-Tong Yang
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Qiao-Ling Li
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Qing-Chun Shen
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jia-Bo Ding
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Run-Yu Wei
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jian-Dong Zhang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jia-Li Sun
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Ming-Jun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Xue-Zheng Fan
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| |
Collapse
|
20
|
Jaakkola K, Virtanen K, Lahti P, Keto-Timonen R, Lindström M, Korkeala H. Comparative Genome Analysis and Spore Heat Resistance Assay Reveal a New Component to Population Structure and Genome Epidemiology Within Clostridium perfringens Enterotoxin-Carrying Isolates. Front Microbiol 2021; 12:717176. [PMID: 34566921 PMCID: PMC8456093 DOI: 10.3389/fmicb.2021.717176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium perfringens causes a variety of human and animal enteric diseases including food poisoning, antibiotic-associated diarrhea, and necrotic enteritis. Yet, the reservoirs of enteropathogenic enterotoxin-producing strains remain unknown. We conducted a genomic comparison of 290 strains and a heat resistance phenotyping of 30 C. perfringens strains to elucidate the population structure and ecology of this pathogen. C. perfringens genomes shared a conserved genetic backbone with more than half of the genes of an average genome conserved in >95% of strains. The cpe-carrying isolates were found to share genetic context: the cpe-carrying plasmids had different distribution patterns within the genetic lineages and the estimated pan genome of cpe-carrying isolates had a larger core genome and a smaller accessory genome compared to that of 290 strains. We characterize cpe-negative strains related to chromosomal cpe-carrying strains elucidating the origin of these strains and disclose two distinct groups of chromosomal cpe-carrying strains with different virulence characteristics, spore heat resistance properties, and, presumably, ecological niche. Finally, an antibiotic-associated diarrhea isolate carrying two copies of the enterotoxin cpe gene and the associated genetic lineage with the potential for the emergence of similar strains are outlined. With C. perfringens as an example, implications of input genome quality for pan genome analysis are discussed. Our study furthers the understanding of genome epidemiology and population structure of enteropathogenic C. perfringens and brings new insight into this important pathogen and its reservoirs.
Collapse
Affiliation(s)
- Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Kira Virtanen
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Päivi Lahti
- City of Helsinki, Unit of Environmental Services, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Abdel-Glil MY, Thomas P, Linde J, Busch A, Wieler LH, Neubauer H, Seyboldt C. Comparative in silico genome analysis of Clostridium perfringens unravels stable phylogroups with different genome characteristics and pathogenic potential. Sci Rep 2021; 11:6756. [PMID: 33762628 PMCID: PMC7991664 DOI: 10.1038/s41598-021-86148-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Clostridium perfringens causes a plethora of devastating infections, with toxin production being the underlying mechanism of pathogenicity in various hosts. Genomic analyses of 206 public-available C. perfringens strains´ sequence data identified a substantial degree of genomic variability in respect to episome content, chromosome size and mobile elements. However, the position and order of the local collinear blocks on the chromosome showed a considerable degree of preservation. The strains were divided into five stable phylogroups (I–V). Phylogroup I contained human food poisoning strains with chromosomal enterotoxin (cpe) and a Darmbrand strain characterized by a high frequency of mobile elements, a relatively small genome size and a marked loss of chromosomal genes, including loss of genes encoding virulence traits. These features might correspond to the adaptation of these strains to a particular habitat, causing human foodborne illnesses. This contrasts strains that belong to phylogroup II where the genome size points to the acquisition of genetic material. Most strains of phylogroup II have been isolated from enteric lesions in horses and dogs. Phylogroups III, IV and V are heterogeneous groups containing a variety of different strains, with phylogroup III being the most abundant (65.5%). In conclusion, C. perfringens displays five stable phylogroups reflecting different disease involvements, prompting further studies on the evolution of this highly important pathogen.
Collapse
Affiliation(s)
- Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany. .,Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Province, Egypt.
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.,Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, India
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany
| | - Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Lothar H Wieler
- Robert Koch-Institut, Nordufer 20, 13353, Berlin, Germany.,Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität, Robert-von-Ostertag-Str. 7-13, Building 35, 14163, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96A, 07743, Jena, Germany.
| |
Collapse
|