1
|
Okada K, Roobthaisong A, Nakkarach A, Hearn SM, Saenharn A, Naksen L, Doung-Ngern P, Okada PA, Iida T. First recorded food-borne outbreak of gastroenteritis caused by enteroinvasive Escherichia coli serotype O8:H19 in Thailand. Eur J Clin Microbiol Infect Dis 2025; 44:733-737. [PMID: 39718678 PMCID: PMC11880058 DOI: 10.1007/s10096-024-05024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
An enteroinvasive Escherichia coli (EIEC) outbreak affecting 154 individuals was identified among attendees at a wedding in Loei Province, Thailand. The median time to symptom onset was 18 h (range: 7-72 h). The epidemiological evidence suggested that larb-neua-dib (spicy minced raw beef salad) was the probable source of the outbreak. The O8:H19 isolates identified in this study closely resemble the O8:H19 strains from the United States and the United Kingdom, but not the O96:H19 strains from Europe. This is the first EIEC outbreak documented in Thailand. Complexities in identifying EIEC contribute to its underreporting.
Collapse
Affiliation(s)
- Kazuhisa Okada
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Muang, Nonthaburi, Thailand.
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | - Amonrattana Roobthaisong
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Muang, Nonthaburi, Thailand
| | - Atchareeya Nakkarach
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Muang, Nonthaburi, Thailand
| | | | | | - Lalada Naksen
- Loei Provincial Health Office, Muang, Loei, Thailand
| | - Pawinee Doung-Ngern
- Division of Epidemiology, Department of Disease Control, Ministry of Public Health, Muang, Nonthaburi, Thailand
| | - Pilailuk Akkapaiboon Okada
- Department of Medical Sciences, National Institute of Health, Ministry of Public Health, Muang, Nonthaburi, Thailand
| | - Tetsuya Iida
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Odundo EA, Kipkirui EC, Koech MC, Kirui MC, Kirera RK, Kipkemoi NC, Ndonye JN, Ragalo A, Kigen CK, Muturi JW, Onyonyi VN, Kimita G, Muthanje EK, Hetrich MK, Mahugu EW, Tiwari KK, Smith HJ. Azithromycin Resistance Patterns in Escherichia coli and Shigella before and after COVID-19, Kenya. Emerg Infect Dis 2024; 30:86-93. [PMID: 39530877 PMCID: PMC11559570 DOI: 10.3201/eid3014.240374] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Escherichia coli and Shigella spp. are leading bacterial causes of acute diarrhea in sub-Saharan Africa and pose risks to global communities, travelers, and the US military. Increasing antimicrobial resistance (AMR) in those and other enteric pathogens creates treatment challenges for clinicians. Inappropriate use of antimicrobial drugs, such as azithromycin for viral respiratory infections, increased during the COVID-19 pandemic. We evaluated AMR trends of 116 E. coli and 109 Shigella spp. isolates obtained from 1,672 pre-COVID-19 (2017-2019) and 1,118 post-COVID-19 (2022-2023) human fecal samples from Kenya. Azithromycin resistance increased significantly from before to after COVID-19, from 6.3% to 40.4% (p = 0.001). Phenotypic AMR profiles from a subset of isolates were compared with genotypic AMR information derived from whole genome sequencing. The most common AMR gene detected was the macrolide mph(A) gene. This study highlights the need for continued AMR surveillance.
Collapse
|
3
|
Liu KH, Xiao YX, Jou R. Multidrug-resistant tuberculosis clusters and transmission in Taiwan: a population-based cohort study. Front Microbiol 2024; 15:1439532. [PMID: 39360329 PMCID: PMC11445003 DOI: 10.3389/fmicb.2024.1439532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Multidrug-resistant tuberculosis (MDR-TB) remains a challenge in the TB program of Taiwan, where 0.5% of new cases and 2.1% of previously treated cases were resistant to at least rifampin (RIF) and isoniazid (INH). Since >80% of our MDR-TB are new cases, genotyping of MDR Mycobacterium tuberculosis is implemented to facilitate contact investigation, cluster identification, and outbreak delineation. Methods This is a population-based retrospective cohort study analyzing MDR-TB cases from 2019 to 2022. Whole genome sequencing (WGS) was performed using the Illumina MiSeq and analyzed using the TB Profiler. A single nucleotide polymorphism (SNP) threshold of ≤ 12 and phylogenetic methods were used to identify putative transmission clusters. An outbreak was confirmed using genomic data and epidemiologic links. Results Of the 297 MDR-TB cases, 246 (82.8%), 45 (15.2%), and 6 (2.0%) were simple MDR, extensively drug-resistant tuberculosis (pre-XDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), respectively. The sublineage 2.2 modern Beijing was the predominant (48.8%) MDR-TB strain in Taiwan. Phylogenetic analysis identified 25.3% isolates in 20 clusters, with cluster sizes ranging from 2 to 13 isolates. Nevertheless, only 2 clusters, one household and one community, were confirmed as outbreaks. In this study, we found that males had a higher risk of MDR-TB transmission compared to females, and those infected with the sublineage 2.1-proto-Beijing genotype isolates were at a higher risk of transmission. Furthermore, 161 (54.2%) isolates harbored compensatory mutations in the rpoC and non-rifampicin resistant determinant region (non-RRDR) of the rpoB gene. MDR-TB strains containing rpoB S450L and other compensatory mutations concurrently were significantly associated with clusters, especially the proto-Beijing genotype strains with the compensatory mutation rpoC E750D or the modern Beijing genotype strains with rpoC D485Y/rpoC E1140D. Discussion Routine and continuous surveillance using WGS-based analysis is recommended to warn of risks and delineate transmission clusters of MDR-TB. We proposed the use of compensatory mutations as epidemiological markers of M. tuberculosis to interrupt putative MDR-TB transmission.
Collapse
Affiliation(s)
- Kuang-Hung Liu
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Xin Xiao
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Reference Laboratory of Mycobacteriology, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
4
|
Singh KKB, Salleh MZ, Ahmed N, Yean Yean C, Ismail A. Identification and analysis of immunoreactive proteins of Shigella flexneri in human sera and stool specimens. PeerJ 2024; 12:e17498. [PMID: 38827305 PMCID: PMC11141557 DOI: 10.7717/peerj.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Background The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.
Collapse
Affiliation(s)
- Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), UiTM Puncak Alam Campus, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Payne M, Williamson S, Wang Q, Zhang X, Sintchenko V, Pavic A, Lan R. Emergence of Poultry-Associated Human Salmonella enterica Serovar Abortusovis Infections, New South Wales, Australia. Emerg Infect Dis 2024; 30:691-700. [PMID: 38526124 PMCID: PMC10977856 DOI: 10.3201/eid3004.230958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.
Collapse
|
6
|
Miles SL, Torraca V, Dyson ZA, López-Jiménez AT, Foster-Nyarko E, Lobato-Márquez D, Jenkins C, Holt KE, Mostowy S. Acquisition of a large virulence plasmid (pINV) promoted temperature-dependent virulence and global dispersal of O96:H19 enteroinvasive Escherichia coli. mBio 2023; 14:e0088223. [PMID: 37255304 PMCID: PMC10470518 DOI: 10.1128/mbio.00882-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type 3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC responsible for recent outbreaks in Europe and South America. Here, we use 92 whole genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative isolate reveals a separate, temperature-independent mechanism of virulence, indicating that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these results suggest that an already pathogenic E. coli acquired pINV and that virulence of ST99 isolates became thermoregulated once pINV was acquired. IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause human disease by the recent acquisition of pINV, a large plasmid encoding a type 3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates is highly dependent on temperature, while T3SS-deficient isolates encode a separate temperature-independent mechanism of virulence. These results indicate that ST99 non-EIEC isolates may have been virulent before pINV acquisition and highlight an important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing wider dissemination across Europe and South America.
Collapse
Affiliation(s)
- Sydney L. Miles
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Zoe A. Dyson
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ana Teresa López-Jiménez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ebenezer Foster-Nyarko
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Damián Lobato-Márquez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Claire Jenkins
- Gastrointestinal Pathogens and Food Safety (One Health), UK Health Security Agency, London, United Kingdom
| | - Kathryn E. Holt
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
7
|
Ritchie G, Leung V, Himsworth CG, Byers KA, Lee LKF, Chorlton SD, Stefanovic A, Romney MG, Matic N, Lowe CF. No Isolate, No Problem: Using a Novel Insertion Sequence PCR to Link Rats to Human Shigellosis Cases in an Underserved Urban Community. Microbiol Spectr 2023; 11:e0477722. [PMID: 37255425 PMCID: PMC10434041 DOI: 10.1128/spectrum.04777-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
During an investigation into a cluster of Shigella flexneri serotype 2a cases in an underserved community, we assessed the relatedness of human and rat S. flexneri isolates utilizing a novel PCR targeting insertion sites (IS-PCR) of mobile elements in the Shigella genome characteristic of the cluster strain. Whole-genome sequences of S. flexneri (n = 50) associated with the cluster were analyzed. De novo genome assemblies were analyzed by a Geneious V10.2.6 motif search, and two unique IS were identified in all human Shigella sequences of the local cluster. Hydrolysis probe PCR assays were designed to detect these sequences consisting of forward and reverse primers to amplify across each insertion site and a hydrolysis probe spanning the insertion site. IS-PCR was performed for three Shigella PCR-positive culture-negative rat intestine specimens from this community. Both insertion sites were detected in the de novo genome assemblies of all clinical S. flexneri isolates (n = 50). Two of the three PCR-positive culture-negative rat samples were positive for both unique ISs identified in the human S. flexneri isolates, suggesting that the rat Shigella species strains were closely related to the human strains in the cluster. The cycle threshold (Ct) values were >35, indicating that the bacterial load was very low in the rat samples. Two unique IS were identified in clinical isolates from a community S. flexneri cluster. Both IS targets were identified in PCR-positive (Shigella spp.), culture-negative rat tissue and clinical isolates from humans, indicating relatedness. IMPORTANCE This article describes a novel molecular method to show relatedness between bacterial infections, which may not be able to grow in the laboratory due to treatment with antibiotics or for bacteria requiring unique conditions to grow well. Uniquely, we applied this technique to Shigella isolates from human cases associated with a local cluster in an underserved community, as well as rat samples from the same community. We believe that this novel approach can serve as a complementary method to support outbreak/cluster investigation for Shigella spp.
Collapse
Affiliation(s)
- Gordon Ritchie
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Chelsea G. Himsworth
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaylee A. Byers
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Pacific Institute on Pathogens, Pandemics and Society, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lisa K. F. Lee
- British Columbia Regional Centre, Canadian Wildlife Health Cooperative, Abbotsford, British Columbia, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada
| | - Samuel D. Chorlton
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Aleksandra Stefanovic
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Marc G. Romney
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Nancy Matic
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F. Lowe
- Division of Medical Microbiology and Virology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Libuit KG, Doughty EL, Otieno JR, Ambrosio F, Kapsak CJ, Smith EA, Wright SM, Scribner MR, Petit III RA, Mendes CI, Huergo M, Legacki G, Loreth C, Park DJ, Sevinsky JR. Accelerating bioinformatics implementation in public health. Microb Genom 2023; 9:mgen001051. [PMID: 37428142 PMCID: PMC10438813 DOI: 10.1099/mgen.0.001051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
We have adopted an open bioinformatics ecosystem to address the challenges of bioinformatics implementation in public health laboratories (PHLs). Bioinformatics implementation for public health requires practitioners to undertake standardized bioinformatic analyses and generate reproducible, validated and auditable results. It is essential that data storage and analysis are scalable, portable and secure, and that implementation of bioinformatics fits within the operational constraints of the laboratory. We address these requirements using Terra, a web-based data analysis platform with a graphical user interface connecting users to bioinformatics analyses without the use of code. We have developed bioinformatics workflows for use with Terra that specifically meet the needs of public health practitioners. These Theiagen workflows perform genome assembly, quality control, and characterization, as well as construction of phylogeny for insights into genomic epidemiology. Additonally, these workflows use open-source containerized software and the WDL workflow language to ensure standardization and interoperability with other bioinformatics solutions, whilst being adaptable by the user. They are all open source and publicly available in Dockstore with the version-controlled code available in public GitHub repositories. They have been written to generate outputs in standardized file formats to allow for further downstream analysis and visualization with separate genomic epidemiology software. Testament to this solution meeting the requirements for bioinformatic implementation in public health, Theiagen workflows have collectively been used for over 5 million sample analyses in the last 2 years by over 90 public health laboratories in at least 40 different countries. Continued adoption of technological innovations and development of further workflows will ensure that this ecosystem continues to benefit PHLs.
Collapse
Affiliation(s)
- Kevin G. Libuit
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Emma L. Doughty
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - James R. Otieno
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Frank Ambrosio
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Curtis J. Kapsak
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Emily A. Smith
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Sage M. Wright
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Michelle R. Scribner
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Robert A. Petit III
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
- Wyoming Public Health Laboratory, 208 S College Dr, Cheyenne, WY 82007, USA
| | - Catarina Inês Mendes
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Marcela Huergo
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Gregory Legacki
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| | - Christine Loreth
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
| | - Daniel J. Park
- Broad Institute of Harvard and MIT, 415 Main St, Cambridge, MA 02142, USA
| | - Joel R. Sevinsky
- Theiagen Genomics, Suite 400, 1745 Shea Center Drive, Highlands Ranch, CO, 80129, USA
| |
Collapse
|
9
|
Zhang X, Payne M, Kaur S, Lan R. Improved Genomic Identification, Clustering, and Serotyping of Shiga Toxin-Producing Escherichia coli Using Cluster/Serotype-Specific Gene Markers. Front Cell Infect Microbiol 2022; 11:772574. [PMID: 35083165 PMCID: PMC8785982 DOI: 10.3389/fcimb.2021.772574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have more than 470 serotypes. The well-known STEC O157:H7 serotype is a leading cause of STEC infections in humans. However, the incidence of non-O157:H7 STEC serotypes associated with foodborne outbreaks and human infections has increased in recent years. Current detection and serotyping assays are focusing on O157 and top six (“Big six”) non-O157 STEC serogroups. In this study, we performed phylogenetic analysis of nearly 41,000 publicly available STEC genomes representing 460 different STEC serotypes and identified 19 major and 229 minor STEC clusters. STEC cluster-specific gene markers were then identified through comparative genomic analysis. We further identified serotype-specific gene markers for the top 10 most frequent non-O157:H7 STEC serotypes. The cluster or serotype specific gene markers had 99.54% accuracy and more than 97.25% specificity when tested using 38,534 STEC and 14,216 non-STEC E. coli genomes, respectively. In addition, we developed a freely available in silico serotyping pipeline named STECFinder that combined these robust gene markers with established E. coli serotype specific O and H antigen genes and stx genes for accurate identification, cluster determination and serotyping of STEC. STECFinder can assign 99.85% and 99.83% of 38,534 STEC isolates to STEC clusters using assembled genomes and Illumina reads respectively and can simultaneously predict stx subtypes and STEC serotypes. Using shotgun metagenomic sequencing reads of STEC spiked food samples from a published study, we demonstrated that STECFinder can detect the spiked STEC serotypes, accurately. The cluster/serotype-specific gene markers could also be adapted for culture independent typing, facilitating rapid STEC typing. STECFinder is available as an installable package (https://github.com/LanLab/STECFinder) and will be useful for in silico STEC cluster identification and serotyping using genome data.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandeep Kaur
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Population structure analysis and laboratory monitoring of Shigella by core-genome multilocus sequence typing. Nat Commun 2022; 13:551. [PMID: 35087053 PMCID: PMC8795385 DOI: 10.1038/s41467-022-28121-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
The laboratory surveillance of bacillary dysentery is based on a standardised Shigella typing scheme that classifies Shigella strains into four serogroups and more than 50 serotypes on the basis of biochemical tests and lipopolysaccharide O-antigen serotyping. Real-time genomic surveillance of Shigella infections has been implemented in several countries, but without the use of a standardised typing scheme. Here, we study over 4000 reference strains and clinical isolates of Shigella, covering all serotypes, with both the current serotyping scheme and the standardised EnteroBase core-genome multilocus sequence typing scheme (cgMLST). The Shigella genomes are grouped into eight phylogenetically distinct clusters, within the E. coli species. The cgMLST hierarchical clustering (HC) analysis at different levels of resolution (HC2000 to HC400) recognises the natural population structure of Shigella. By contrast, the serotyping scheme is affected by horizontal gene transfer, leading to a conflation of genetically unrelated Shigella strains and a separation of genetically related strains. The use of this cgMLST scheme will facilitate the transition from traditional phenotypic typing to routine whole-genome sequencing for the laboratory surveillance of Shigella infections. Lab-based surveillance of Shigella has traditionally been based on serotyping but increasing availability of whole genome sequencing could enable higher resolution typing. Here, the authors apply a core genome multilocus sequence typing scheme to Shigella sequence data and describe its population structure.
Collapse
|
11
|
Luo L, Wang H, Payne MJ, Liang C, Bai L, Zheng H, Zhang Z, Zhang L, Zhang X, Yan G, Zou N, Chen X, Wan Z, Xiong Y, Lan R, Li Q. Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb Genom 2021; 7. [PMID: 34882085 PMCID: PMC8767325 DOI: 10.1099/mgen.0.000710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Michael J Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Liang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Bai
- Division I of Risk Assessment, National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ziting Wan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| |
Collapse
|