1
|
Iușan SAL, Lucaciu OP, Petrescu NB, Mirică IC, Toc DA, Albu S, Costache C. Exploring Peri-Implantitis Risk-Factors: A Cross-Sectional Study. Dent J (Basel) 2025; 13:148. [PMID: 40277478 PMCID: PMC12026288 DOI: 10.3390/dj13040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: With the increasing use of dental implants in edentulous patients and the high prevalence of peri-implantitis, understanding its microbial and risk factors is crucial. This study investigated Romanian patients from two private dental clinics in Cluj-Napoca, Romania, diagnosed with peri-implantitis, focusing on identifying the predominant bacterial species at affected sites compared with healthy implant sites. Additionally, we examined the impact of factors such as smoking, gender, age, and prosthetic restoration type on disease prevalence. Methods: This cross-sectional study, conducted between January 2023 and December 2024, included randomly selected patients who met the predefined inclusion and exclusion criteria. We enrolled 22 patients and 50 implants in the study. Data collected from medical records, clinical evaluations, and microbiological assessments were subsequently entered into a computerized database. Clinical data were analyzed using Social Science Statistics software(Jeremy Staangroom 2018). Bacterial samples were assessed, incubated, and subsequently identified using the Vitek 2 Compact System (BioMérieux, Marcy-l' Étoile, France). Results: Peri-implantitis incidence was found to be independent of gender, more prevalent in the mandible, and equally affected smokers and non-smokers. The disease involves a complex polymicrobial infection, with pathogenic bacteria triggering the condition and opportunistic bacteria sustaining it. Conclusions: Peri-implantitis is a complex polymicrobial infection that arises from the interaction of strict pathogenic bacteria and opportunistic bacteria. Peri-implantitis results from intricate interactions of local, systemic, and microbial factors. Identifying its causes is essential for developing effective treatments, with future research emphasizing the role of opportunistic bacteria in disease progression.
Collapse
Affiliation(s)
| | - Ondine Patricia Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nausica Bianca Petrescu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Codruța Mirică
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Dan-Alexandru Toc
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Silviu Albu
- II-nd Department of Otolaryngology, Iuliu Hatieganudisx University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Sun C, Hu G, Yi L, Ge W, Yang Q, Yang X, He Y, Liu Z, Chen WH. Integrated analysis of facial microbiome and skin physio-optical properties unveils cutotype-dependent aging effects. MICROBIOME 2024; 12:163. [PMID: 39232827 PMCID: PMC11376020 DOI: 10.1186/s40168-024-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Our facial skin hosts millions of microorganisms, primarily bacteria, crucial for skin health by maintaining the physical barrier, modulating immune response, and metabolizing bioactive materials. Aging significantly influences the composition and function of the facial microbiome, impacting skin immunity, hydration, and inflammation, highlighting potential avenues for interventions targeting aging-related facial microbes amidst changes in skin physiological properties. RESULTS We conducted a multi-center and deep sequencing survey to investigate the intricate interplay of aging, skin physio-optical conditions, and facial microbiome. Leveraging a newly-generated dataset of 2737 species-level metagenome-assembled genomes (MAGs), our integrative analysis highlighted aging as the primary driver, influencing both facial microbiome composition and key skin characteristics, including moisture, sebum production, gloss, pH, elasticity, and sensitivity. Further mediation analysis revealed that skin characteristics significantly impacted the microbiome, mostly as a mediator of aging. Utilizing this dataset, we uncovered two consistent cutotypes across sampling cities and identified aging-related microbial MAGs. Additionally, a Facial Aging Index (FAI) was formulated based on the microbiome, uncovering the cutotype-dependent effects of unhealthy lifestyles on skin aging. Finally, we distinguished aging related microbial pathways influenced by lifestyles with cutotype-dependent effect. CONCLUSIONS Together, our findings emphasize aging's central role in facial microbiome dynamics, and support personalized skin microbiome interventions by targeting lifestyle, skin properties, and aging-related microbial factors. Video Abstract.
Collapse
Affiliation(s)
- Chuqing Sun
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Center for Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Guoru Hu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liwen Yi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Ge
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Qingyu Yang
- Department of Dermatology, Huazhong University of Science and Technology Hospital, Wuhan, 430074, China
| | - Xiangliang Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- National Engineering Research Center for Nanomedicine, Wuhan, 430074, China
| | - Yifan He
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510799, China.
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
3
|
Han H, Lee HJ, Kim KS, Chung J, Na HS. Comparison of the performance of MiSeq and NovaSeq in oral microbiome study. J Oral Microbiol 2024; 16:2344293. [PMID: 38645704 PMCID: PMC11028001 DOI: 10.1080/20002297.2024.2344293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Next generation sequencing is commonly used to characterize the microbiome structure. MiSeq is most commonly used to analyze the microbiome due to its relatively long read length. Illumina also introduced the 250 × 2 chip for NovaSeq. The purpose of this study was to compare the performance of MiSeq and NovaSeq in the context of oral microbiome study. Methods Total read count, read quality score, relative bacterial abundance, community diversity, and correlation between two platforms were analyzed. Phylogenetic trees were analyzed for Streptococcus and periodontopathogens. Results NovaSeq produced significantly more read counts and assigned more operational taxonomic units (OTUs) compared to MiSeq. Community diversity was similar between MiSeq and NovaSeq. NovaSeq were able to detect more unique OTUs compared to MiSeq. When phylogenetic trees were constructed for Streptococcus and periodontopathogens, both platforms detected OTUs for most of the clades. Conclusion Taken together, while both MiSeq and NovaSeq platforms effectively characterize the oral microbiome, NovaSeq outperformed MiSeq in terms of read counts and detection of unique OTUs, highlighting its potential as a valuable tool for large scale oral microbiome studies.
Collapse
Affiliation(s)
- Hyejung Han
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si, South Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, South Korea
| |
Collapse
|
4
|
Sathyan A, Kurtz I, Rathore P, Emrick T, Schiffman JD. Using Catechol and Zwitterion-Functionalized Copolymers to Prevent Dental Bacterial Adhesion. ACS APPLIED BIO MATERIALS 2023. [PMID: 37384901 DOI: 10.1021/acsabm.3c00371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
In this manuscript, we report the synthesis of zwitterionic copolymers and their ability to form antifouling coatings on porous hydroxyapatite as a mimic of dental coatings. Specifically, we systematically investigated how altering the composition of copolymers of catechol methacrylate (Cat-MA or 2) and methacryloyloxyethyl phosphorylcholine (2-MPC) with varying catechol-to-zwitterion ratios impacted their adhesive and antifouling properties, allowing for the rational design of functional coatings. Characterization by ellipsometry, contact angle goniometry, and X-ray photoelectron spectroscopy revealed the presence of hydrophilic copolymer coatings of ∼10 nm thickness. Notably, these copolymers adhered to hydroxyapatite and reduced the level of attachment of both Gram-negative Escherichia coli and Gram-positive Streptococcus oralis. Additionally, in vitro experiments that mimicked the complex mouth environment (i.e., swallowing and using mouthwash) were employed to evaluate S. oralis adhesion, finding that the copolymer coatings reduced the quantity of adhered bacteria. We suggest that these copolymers provide insights into the design of antifouling coatings that are appropriate for use in oral care.
Collapse
Affiliation(s)
- Ashlin Sathyan
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Irene Kurtz
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, United States
| | - Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
5
|
Roy D, Kim J, Lee M, Park J. Adverse impacts of Asian dust events on human health and the environment-A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162637. [PMID: 36889412 DOI: 10.1016/j.scitotenv.2023.162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Antibiotic Resistance of Selected Bacteria after Treatment of the Supragingival Biofilm with Subinhibitory Chlorhexidine Concentrations. Antibiotics (Basel) 2022; 11:antibiotics11101420. [PMID: 36290078 PMCID: PMC9598507 DOI: 10.3390/antibiotics11101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Due to increasing rates of antibiotic resistance and very few novel developments of antibiotics, it is crucial to understand the mechanisms of resistance development. The aim of the present study was to investigate the adaptation of oral bacteria to the frequently used oral antiseptic chlorhexidine digluconate (CHX) and potential cross-adaptation to antibiotics after repeated exposure of supragingival plaque samples to subinhibitory concentrations of CHX. Plaque samples from six healthy donors were passaged for 10 days in subinhibitory concentrations of CHX, while passaging of plaque samples without CHX served as control. The surviving bacteria were cultured on agar plates and identified with Matrix-assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF). Subsequently, the minimum inhibitory concentrations (MIC) of these isolates toward CHX were determined using a broth-microdilution method, and phenotypic antibiotic resistance was evaluated using the epsilometertest. Furthermore, biofilm-forming capacities were determined. Repeated exposure of supragingival plaque samples to subinhibitory concentrations of CHX led to the selection of oral bacteria with 2-fold up to 4-fold increased MICs toward CHX. Furthermore, these isolates showed up to 12-fold increased MICs towards some antibiotics such as erythromycin and clindamycin. Conversely, biofilm-forming capacity was decreased. In summary, this study shows that oral bacteria are able to adapt to CHX, while also decreasing their susceptibility to antibiotics.
Collapse
|
7
|
Gönczi NN, Strang O, Bagi Z, Rákhely G, Kovács KL. Interactions between probiotic and oral pathogenic strains. Biol Futur 2021; 72:461-471. [PMID: 34554489 DOI: 10.1007/s42977-021-00091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
More than 6 billion bacteria and other microorganisms live in the adult oral cavity. As a result of any deleterious effect on this community, some microorganisms will survive better than others, which may trigger pathogenic processes like caries, halitosis, gingivitis or periodontitis. Oral dysbiosis is among the most frequent human health hazards globally. Quality of life of patients deteriorates notably, while treatments are often unpleasant, expensive and irreversible, e.g. tooth loss. In the experiments reported here, we investigated the individual interactions between 8 pathogenic and 8 probiotic strains and a commercially available probiotic product. Almost all pathogens, namely Fusobacterium nucleatum, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Streptococcus oralis, Streptococcus gordonii, Enterococcus faecalis and Prevotella buccae are pathogens frequently occurring in the oral cavity. The used probiotic strains were Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus delbrueckii, Bifidobacterium thermophilum and two Streptococcus dentisani isolates. Using a modified agar diffusion method, we investigated capability of the probiotic bacteria to prevent the growth of the pathogenic ones in order to identify candidates for future therapeutic treatments. The results indicated successful bacteriocin production, i.e. growth inhibition, against every pathogenic bacterium by at least 5 probiotic strains.
Collapse
Affiliation(s)
- Noémi N Gönczi
- Department of Biotechnology, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.
| | - Orsolya Strang
- Department of Biotechnology, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,Institute of Biophysics, Biological Research Centre, Temesvári krt. 62., Szeged, 6726, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Tisza Lajos körút 64-66., Szeged, 6726, Hungary
| |
Collapse
|
8
|
Seferovic MD, Mohammad M, Pace RM, Engevik M, Versalovic J, Bode L, Haymond M, Aagaard KM. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome. Sci Rep 2020; 10:22092. [PMID: 33328537 PMCID: PMC7745035 DOI: 10.1038/s41598-020-79022-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Human milk is the optimal nutrition source for infants, and oligosaccharides represent the third most abundant component in milk after lactose and fat. Human milk oligosaccharides (HMO) are favorable macromolecules which are, interestingly, indigestible by the infant but serve as substrates for bacteria. Hypothesizing that the maternal diet itself might influence HMO composition, we sought to directly determine the effect maternal diet on HMO and the milk bacteria. Employing a human cross-over study design, we demonstrate that distinct maternal dietary carbohydrate and energy sources preferentially alter milk concentrations of HMO, including fucosylated species. We find significant associations between the concentration of HMO-bound fucose and the abundance of fucosidase (a bacterial gene that digests fucose moieties) harbored by milk bacteria. These studies reveal a successive mechanism by which the maternal diet during lactation alters milk HMO composition, which in turn shapes the functional milk microbiome prior to infant ingestion.
Collapse
Affiliation(s)
- Maxim D Seferovic
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, One Baylor Plaza, Jones 314, Houston, TX, 77030, USA
| | - Mahmoud Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Food Science and Nutrition Department, National Research Centre, El Buhouth St., Dokki, Cairo, Egypt
| | - Ryan M Pace
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, One Baylor Plaza, Jones 314, Houston, TX, 77030, USA
| | - Melinda Engevik
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Lars Bode
- Division of Neonatology and Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA, 92093, USA
| | - Morey Haymond
- Department of Pediatrics, Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kjersti M Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children's Hospital, One Baylor Plaza, Jones 314, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Mori DI, Schurr MJ, Nair DP. Selective Inhibition of Streptococci Biofilm Growth via a Hydroxylated Azobenzene Coating. ADVANCED MATERIALS INTERFACES 2020; 7:1902149. [PMID: 33575161 PMCID: PMC7872137 DOI: 10.1002/admi.201902149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 06/12/2023]
Abstract
Strategies to engineer surfaces that can enable the selective inhibition of bacterial pathogens while preserving beneficial microbes can serve as tools to precisely edit the microbiome. In the oral microbiome, this selectivity is crucial in preventing the proliferation of cariogenic species such as Streptococcus mutans (S. mutans). In this communication, coatings consisting of a covalently tethered hydroxylated azobenzene (OH-AAZO) on glassy acrylic resins are studied and characterized for their ability to selectively prevent the attachment and growth of oral Streptococci biofilms. The coating applied on the surface of glassy resins inhibits the growth and proliferation of cariogenic S. mutans and S. oralis biofilms while A. actinomycetemcomitans, S. aureus, and E. coli biofilms are unaffected by the coating . The antibacterial effect is characterized as a function of both the OH-AAZO concentration in the coatings (≥50 mg mL-1) and the structure of the monomer in the coating. Preliminary mechanistic results suggest that the targeted bactericidal effect against Streptococci species is caused by a disruption of membrane ion potential, inducing cell death.
Collapse
Affiliation(s)
- Dylan I Mori
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Nahm MH, Brissac T, Kilian M, Vlach J, Orihuela CJ, Saad JS, Ganaie F. Pneumococci Can Become Virulent by Acquiring a New Capsule From Oral Streptococci. J Infect Dis 2020; 222:372-380. [PMID: 31605125 PMCID: PMC7457184 DOI: 10.1093/infdis/jiz456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Pneumococcal conjugate vaccines have been successful, but their use has increased infections by nonvaccine serotypes. Oral streptococci often harbor capsular polysaccharide (PS) synthesis loci (cps). Although this has not been observed in nature, if pneumococcus can replace its cps with oral streptococcal cps, it may increase its serotype repertoire. In the current study, we showed that oral Streptococcus strain SK95 and pneumococcal strain D39 both produce structurally identical capsular PS, and their genetic backgrounds influence the amount of capsule production and shielding from nonspecific killing. SK95 is avirulent in a well-established in vivo mouse model. When acapsular pneumococcus was transformed with SK95 cps, the transformant became virulent and killed all mice. Thus, cps from oral Streptococcus strains can make acapsular pneumococcus virulent, and interspecies cps transfer should be considered a potential mechanism of serotype replacement. Our findings, along with publications from the US Centers for Disease Control and Prevention, highlight potential limitations of the 2013 World Health Organization criterion for studying pneumococcal serotypes carried without isolating bacteria. We show that an oral streptococcal strain, SK95, and a pneumococcal strain, D39, both produce chemically identical capsular PS. We also show that transferring SK95 cps into noncapsulated, avirulent pneumococcus gave it the capacity for virulence in a mouse model.
Collapse
Affiliation(s)
- Moon H Nahm
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Terry Brissac
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jiri Vlach
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Feroze Ganaie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
11
|
Comparison of the Microbiota and Inorganic Anion Content in the Saliva of Patients with Gastroesophageal Reflux Disease and Gastroesophageal Reflux Disease-Free Individuals. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2681791. [PMID: 32509854 PMCID: PMC7244971 DOI: 10.1155/2020/2681791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/29/2022]
Abstract
The oral cavity is one of the most complex microbial environments; however, the complex nature of the salivary microbiota and the level of inorganic anions in the saliva of subjects with and without gastroesophageal reflux disease (GERD) are poorly understood. The primary goals of this pilot research were to assess differences in salivary bacterial community composition and inorganic anion concentrations between patients with GERD and GERD-free people. Thus, the salivary microbiota within both groups was dominated by these genera: Streptococcus, Prevotella, Porphyromonas, Veillonella, Neisseria, Haemophilus, Fusobacterium, Rothia, and Leptotrichia. However, the relative abundances of the genera Actinomyces, Atopobium, Stomatobaculum, Ruminococcaceae_[G-2], Veillonella, and Leptotrichia were significantly higher in the saliva samples of patients with GERD, while the genera Porphyromonas, Gemella, Peptostreptococcus, and Neisseria were less abundant in this group. The concentrations of chloride, phosphate, and sulphate ions in the human saliva varied among all subjects and sampling time. These results broaden our knowledge of the salivary microbial community composition and chemistry of saliva of patients with GERD and GERD-free individuals.
Collapse
|
12
|
Chen Q, Wu G, Chen H, Li H, Li S, Zhang C, Pang X, Wang L, Zhao L, Shen J. Quantification of Human Oral and Fecal Streptococcus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene. Front Microbiol 2020; 10:2910. [PMID: 31921079 PMCID: PMC6933288 DOI: 10.3389/fmicb.2019.02910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Two pairs of species-specific PCR primers targeting the housekeeping groEL gene, Spa146f-Spa525r and Spa93f-Spa525r, were designed to quantify human oral and fecal Streptococcus parasanguinis. Blast analysis against reference sequences of NCBI nucleotide collection database and the Chaperonin Sequence Database showed the forward primers Spa146f and Spa93f 100% matched only with S. parasanguinis, and the in silico Simulated PCR algorithm showed both primer pairs hit only S. parasanguinis groEL gene in Chaperonin Sequence Database. The two primer pairs were respectively used to perform PCR with saliva DNA of each of 6 human subjects, and the amplicons of individual PCR reactions were cloned. The phylogenetic analysis showed cloned sequences were all affiliated to S. parasanguinis, which further validates the specificity of two primer pairs, and that individual subjects harbored multiple genotypes of S. parasanguinis in saliva. By spiking S. parasanguinis into human fecal samples, we found the quantification limit of quantitative real-time PCR (qPCR) assays for both primer pairs was 5-6 log10 groEL copies/g feces. Human fecal S. parasanguinis amounts quantified with qPCR using each of the two primer pairs correlated well with those determined with metagenomic sequencing. qPCR with either primer pair showed periodontitis patients had significantly lower level of saliva S. parasanguinis than healthy people. In both feces and saliva, the S. parasanguinis abundances quantified with two primer pairs exhibited strong and significant correlation. Our results show that the two S. parasanguinis-specific primer pairs can be used to quantify and profile human saliva and fecal S. parasanguinis.
Collapse
Affiliation(s)
- Qiurong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Preseptal Cellulitis in Children: A Single-Center Experience. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2019; 53:409-412. [PMID: 32377117 PMCID: PMC7192284 DOI: 10.14744/semb.2018.75010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
Abstract
Objectives: Preseptal cellulitis is an infection that affects the palpebra and the periorbital superficial tissue. This study is an evaluation of the clinical findings, treatment, and complications of patients hospitalized with preseptal cellulitis in a single clinic. Methods: The records of 29 patients with preseptal cellulitis who were hospitalized in the Şişli Hamidiye Etfal Education and Research Hospital Pediatric Infection Clinic between November 2012 and November 2017 were analyzed retrospectively. Results: Of the 29 cases, 34.5% (n=10) were female and 65.5% (n=19) were male. The mean age was 61.76±46.95 months, and the mean length of hospital stay was 4.03±2.04 days. Periorbital swelling (72.4%) was the most common cause of complaint at hospital admission, and periorbital hyperemia and edema were observed in 93.1% of the clinical findings. Nine (52.9%) of 17 cases with predisposing factors were sinusitis-related. A blood culture was obtained in 21 (72.4%) cases. Imaging methods were used in 9 (31%) cases to support the diagnosis. All of the patients received broad-spectrum intravenous antibiotic therapy during hospitalization. The mean duration of antibiotic use was 10.10±3.41 days, including after discharge. None of the patients developed complications related to preseptal cellulitis. Conclusion: Preseptal cellulitis is a very common orbital infection, especially in childhood. Although it generally has a good prognosis, it can progress rapidly to the orbita and intracranial structures. An accurate clinical approach and rapid treatment can prevent the spread of infection and avoid serious complications.
Collapse
|
14
|
García Sánchez P, Rosich Del Cacho B, Calle Gómez Á, López RL, Barriocanal MB, de Ceano-Vivas La Calle M. Clinical Report of an Unusual Life-Threatening Complication of Gingivostomatitis. J Emerg Med 2019; 57:e91-e93. [PMID: 31409502 DOI: 10.1016/j.jemermed.2019.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 06/10/2023]
|
15
|
Gordon JH, LaMonte MJ, Genco RJ, Zhao J, Li L, Hovey KM, Tsompana M, Buck MJ, Andrews CA, Mcskimming DI, Zheng W, Sun Y, Wactawski-Wende J. Is the Oral Microbiome Associated with Blood Pressure in Older Women? High Blood Press Cardiovasc Prev 2019; 26:217-225. [PMID: 31236901 DOI: 10.1007/s40292-019-00322-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION A possible role of the oral microbiome, specifically oral nitrate reducing flora, in blood pressure (BP) homeostasis, if proven etiologic in nature, could lead to novel mechanism-based therapy to improve hypertension prevention and control. AIM This cross-sectional study characterized and compared the oral microbiome between four study groups based on BP status among 446 postmenopausal women aged 53-82 years. METHODS Three study groups were not taking hypertension medication and were separated based on BP, as follows: normal BP (systolic < 120 and diastolic < 80; N = 179), elevated BP/Stage I hypertension (systolic 120-139 or diastolic 80-90; N = 106), Stage II hypertension (systolic > 140 or diastolic > 90; N = 42). The forth group consisted of anyone taking hypertension medications, regardless of BP (N = 119). Subgingival microbiome composition was determined using 16S rRNA sequencing with the Illumina MiSeq platform. Kruskal-Wallis tests were used to compare species-level relative abundance of bacterial operational taxonomic units across the four groups. RESULTS Sixty-five bacterial species demonstrated significant differences in relative abundance in women with elevated BP or using hypertension medication as compared to those with normal BP. After correction for multiple testing, two species, Prevotella oral (species 317) and Streptococcus oralis, remained significant and were lower in abundance among women taking antihypertension medications compared to those with normal BP (corrected P < 0.05). CONCLUSIONS These data provide novel description of oral subgingival bacteria grouped according to BP status. Additional larger studies including functional analysis and prospective designs will help further assess the potential role of the oral microbiome in BP regulation and hypertension.
Collapse
Affiliation(s)
- Joshua H Gordon
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | - Robert J Genco
- Department of Oral Biology, School of Dental Medicine, UB Microbiome Center, University at Buffalo, Buffalo, NY, USA
| | - Jiwei Zhao
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, USA
| | - Lu Li
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Maria Tsompana
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michael J Buck
- Department of Biochemistry, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Christopher A Andrews
- Department of Ophthalmology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel I Mcskimming
- Genome Environment, and Microbiome Center of Excellence, University at Buffalo, Buffalo, NY, USA
| | - Wei Zheng
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Computer and Engineering Science, NY State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, 273 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
16
|
Velsko IM, Perez MS, Richards VP. Resolving Phylogenetic Relationships for Streptococcus mitis and Streptococcus oralis through Core- and Pan-Genome Analyses. Genome Biol Evol 2019; 11:1077-1087. [PMID: 30847473 PMCID: PMC6461889 DOI: 10.1093/gbe/evz049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Taxonomic and phylogenetic relationships of Streptococcus mitis and Streptococcus oralis have been difficult to establish biochemically and genetically. We used core-genome analyses of S. mitis and S. oralis, as well as the closely related species Streptococcus pneumoniae and Streptococcus parasanguinis, to clarify the phylogenetic relationships between S. mitis and S. oralis, as well as within subclades of S. oralis. All S. mitis (n = 67), S. oralis (n = 89), S. parasanguinis (n = 27), and 27 S. pneumoniae genome assemblies were downloaded from NCBI and reannotated. All genes were delineated into homologous clusters and maximum-likelihood phylogenies built from putatively nonrecombinant core gene sets. Population structure was determined using Bayesian genome clustering, and patristic distance was calculated between populations. Population-specific gene content was assessed using a phylogenetic-based genome-wide association approach. Streptococcus mitis and S. oralis formed distinct clades, but species mixing suggests taxonomic misassignment. Patristic distance between populations suggests that S. oralis subsp. dentisani is a distinct species, whereas S. oralis subsp. tigurinus and subsp. oralis are supported as subspecies, and that S. mitis comprises two subspecies. None of the genes within the pan-genomes of S. mitis and S. oralis could be statistically correlated with either, and the dispensable genomes showed extensive variation among isolates. These are likely important factors contributing to established overlap in biochemical characteristics for these taxa. Based on core-genome analysis, the substructure of S. oralis and S. mitis should be redefined, and species assignments within S. oralis and S. mitis should be made based on whole-genome analysis to be robust to misassignment.
Collapse
Affiliation(s)
| | - Megan S Perez
- Department of Biological Sciences, Clemson University
- Department of Arts and Sciences, LeTourneau University
| | | |
Collapse
|
17
|
Abstract
This paper attempts to identify the sources and evaluate the prevalence of halitosis in children with adenoid hypertrophy. The study included pediatric patients admitted for adenoidectomy due to obstructive symptoms. Patients with possibly other causes of halitosis, were excluded from the study. Halitosis was detected in 30 out of 136 children (22.1%). The effect of adenoid hypertrophy on halitosis was confirmed by the significant reduction in the organoleptic score rated according to the Rosenberg scale (on average by 2°) and the levels of volatile sulfur compounds (on average 84 ppb) post-adenoidectomy, as compared to pre-surgery results. In total, we reported a statistically significant decrease in the abovementioned values in 90% of patients with halitosis. It was found that in patients with halitosis, as compared to patients with no oral malodor, anaerobic bacteria and Staphylococcus aureus were more frequently observed in the adenoid tissue. Streptococcus oralis strains were more commonly reported in the material taken during adenoidectomy in children without oral malodor.
Collapse
Affiliation(s)
- Małgorzata Sikorska-Żuk
- Department of Otolaryngology, Faculty of Dentistry, Wroclaw Medical University, Poland. Department of Otolaryngology, Provincial Specialist Hospital, Legnica, Poland
| | | |
Collapse
|
18
|
Abstract
BACKGROUND Recently, problems associated with proton pump inhibitor (PPI) use have begun to surface. PPIs influence the gut microbiota; therefore, PPI use may increase the risk of enteric infections and cause bacterial translocation. In this study, we investigated fecal microbiota composition, fecal organic acid concentrations and pH, and gut bacteria in the blood of the same patients before and after PPI use. METHODS Twenty patients with reflux esophagitis based on endoscopic examination received 8 weeks of treatment with PPIs. To analyze fecal microbiota composition and gut bacteria in blood and organic acid concentrations, 16S and 23S rRNA-targeted quantitative RT-PCR and high-performance liquid chromatography were conducted. RESULTS Lactobacillus species were significantly increased at both 4 and 8 weeks after PPI treatment compared with bacterial counts before treatment (P = 0.011 and P = 0.002, respectively). Among Lactobacillus spp., counts of the L. gasseri subgroup, L. fermentum, the L. reuteri subgroup, and the L. ruminis subgroup were significantly increased at 4 and 8 weeks after treatment compared with counts before treatment. Streptococcus species were also significantly increased at 4 and 8 weeks after PPI treatment compared with counts before treatment (P < 0.01 and P < 0.001, respectively). There was no significant difference in the total organic acid concentrations before and after PPI treatment. Detection rates of bacteria in blood before and after PPI treatment were 22 and 28%, respectively, with no significant differences. CONCLUSIONS Our quantitative RT-PCR results showed that gut dysbiosis was caused by PPI use, corroborating previous results obtained by metagenomic analysis.
Collapse
|
19
|
Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods 2017; 141:48-54. [DOI: 10.1016/j.mimet.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022]
|
20
|
Streptococcus oralis Neuraminidase Modulates Adherence to Multiple Carbohydrates on Platelets. Infect Immun 2017; 85:IAI.00774-16. [PMID: 27993975 DOI: 10.1128/iai.00774-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/15/2016] [Indexed: 11/20/2022] Open
Abstract
Adherence to host surfaces is often mediated by bacterial binding to surface carbohydrates. Although it is widely appreciated that some bacterial species express glycosidases, previous studies have not considered whether bacteria bind to multiple carbohydrates within host glycans as they are modified by bacterial glycosidases. Streptococcus oralis is a leading cause of subacute infective endocarditis. Binding to platelets is a critical step in disease; however, the mechanisms utilized by S. oralis remain largely undefined. Studies revealed that S. oralis, like Streptococcus gordonii and Streptococcus sanguinis, binds platelets via terminal sialic acid. However, unlike those organisms, S. oralis produces a neuraminidase, NanA, which cleaves terminal sialic acid. Further studies revealed that following NanA-dependent removal of terminal sialic acid, S. oralis bound exposed β-1,4-linked galactose. Adherence to both these carbohydrates required Fap1, the S. oralis member of the serine-rich repeat protein (SRRP) family of adhesins. Mutation of a conserved residue required for sialic acid binding by other SRRPs significantly reduced platelet binding, supporting the hypothesis that Fap1 binds this carbohydrate. The mechanism by which Fap1 contributes to β-1,4-linked galactose binding remains to be defined; however, binding may occur via additional domains of unknown function within the nonrepeat region, one of which shares some similarity with a carbohydrate binding module. This study is the first demonstration that an SRRP is required to bind β-1,4-linked galactose and the first time that one of these adhesins has been shown to be required for binding of multiple glycan receptors.
Collapse
|
21
|
Improved Differentiation of Streptococcus pneumoniae and Other S. mitis Group Streptococci by MALDI Biotyper Using an Improved MALDI Biotyper Database Content and a Novel Result Interpretation Algorithm. J Clin Microbiol 2017; 55:914-922. [PMID: 28053215 DOI: 10.1128/jcm.01990-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Reliable distinction of Streptococcus pneumoniae and viridans group streptococci is important because of the different pathogenic properties of these organisms. Differentiation between S. pneumoniae and closely related Sreptococcusmitis species group streptococci has always been challenging, even when using such modern methods as 16S rRNA gene sequencing or matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. In this study, a novel algorithm combined with an enhanced database was evaluated for differentiation between S. pneumoniae and S. mitis species group streptococci. One hundred one clinical S. mitis species group streptococcal strains and 188 clinical S. pneumoniae strains were identified by both the standard MALDI Biotyper database alone and that combined with a novel algorithm. The database update from 4,613 strains to 5,627 strains drastically improved the differentiation of S. pneumoniae and S. mitis species group streptococci: when the new database version containing 5,627 strains was used, only one of the 101 S. mitis species group isolates was misidentified as S. pneumoniae, whereas 66 of them were misidentified as S. pneumoniae when the earlier 4,613-strain MALDI Biotyper database version was used. The updated MALDI Biotyper database combined with the novel algorithm showed even better performance, producing no misidentifications of the S. mitis species group strains as S. pneumoniae All S. pneumoniae strains were correctly identified as S. pneumoniae with both the standard MALDI Biotyper database and the standard MALDI Biotyper database combined with the novel algorithm. This new algorithm thus enables reliable differentiation between pneumococci and other S. mitis species group streptococci with the MALDI Biotyper.
Collapse
|
22
|
Jung JE, Cai JN, Cho SD, Song KY, Jeon JG. Influence of fluoride on the bacterial composition of a dual-species biofilm composed of Streptococcus mutans and Streptococcus oralis. BIOFOULING 2016; 32:1079-1087. [PMID: 27643392 DOI: 10.1080/08927014.2016.1230607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.
Collapse
Affiliation(s)
- Ji-Eun Jung
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Jian-Na Cai
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Sung-Dae Cho
- b Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Kwang-Yeob Song
- c Department of Prosthodontics, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Jae-Gyu Jeon
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| |
Collapse
|
23
|
Draft Genome Sequence of the Oral Commensal Streptococcus oralis 89a with Interference Activity against Respiratory Pathogens. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01546-15. [PMID: 26769934 PMCID: PMC4714116 DOI: 10.1128/genomea.01546-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the draft genome sequence of the oral commensal Streptococcus oralis 89a isolated from the throat of a healthy child during a streptococcal tonsillitis outbreak in Umeå, Sweden. S. oralis 89a was known to have interference activity against respiratory pathogens in which the colicin V was the potential bacteriocin-encoding gene.
Collapse
|
24
|
Genotypic Diversity and Population Structure of Vibrio vulnificus Strains Isolated in Taiwan and Korea as Determined by Multilocus Sequence Typing. PLoS One 2015; 10:e0142657. [PMID: 26599487 PMCID: PMC4658092 DOI: 10.1371/journal.pone.0142657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
The genetic diversity and population structure of Vibrio vulnificus isolates from Korea and Taiwan were investigated using PCR-based assays targeting putative virulence-related genes and multilocus sequence typing (MLST). BOX-PCR genomic fingerprinting identified 52 unique genotypes in 84 environmental and clinical V. vulnificus isolates. The majority (> 50%) of strains had pathogenic genotypes for all loci tested; moreover, many environmental strains had pathogenic genotypes. Although significant (p < 0.05) inter-relationships among the genotypes were observed, the association between genotype and strain source (environmental or clinical) was not significant, indicating that genotypic characteristics alone are not sufficient to predict the isolation source or the virulence of a given V. vulnificus strain and vice versa. MLST revealed 23–35 allelic types per locus analyzed, resulting in a total of 44 unique sequence types (STs). Two major monophyletic groups (lineages A and B) corresponding to the two known lineages of V. vulnificus were observed; lineage A had six STs that were exclusively environmental, whereas lineage B had STs from both environmental and clinical sources. Pathogenic and nonpathogenic genotypes predominated in MLST lineages B and A, respectively. In addition, V. vulnificus was shown to be in linkage disequilibrium (p < 0.05), although two different recombination tests (PHI and Sawyer’s tests) detected significant evidence of recombination. Tajima’s D test also indicated that V. vulnificus might be comprised of recently sub-divided lineages. These results suggested that the two lineages revealed by MLST correspond to two distinct ecotypes of V. vulnificus.
Collapse
|
25
|
Inhibition of Oral Streptococci Growth Induced by the Complementary Action of Berberine Chloride and Antibacterial Compounds. Molecules 2015. [PMID: 26225951 PMCID: PMC6332409 DOI: 10.3390/molecules200813705] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synergistic interactions between natural bioactive compounds from medicinal plants and antibiotics may exhibit therapeutic benefits, acting against oral cariogenic and opportunistic pathogens. The aim of the presented work was to assess the antibacterial activity of berberine chloride (BECl) in light of the effect exerted by common antibiotics on selected reference strains of oral streptococci (OST), and to evaluate the magnitude of interactions. Three representative oral microorganisms were investigated: Streptococcus mutans ATCC 25175 (SM), S. sanguinis ATCC 10556 (SS), S. oralis ATCC 9811 (SO) and microdilution tests, along with disc diffusion assays were applied. Here, we report that growth (viability) of all oral streptococci was reduced by exposure to BECl and was dependent primarily on exposure/incubation time. A minimum inhibitory concentrations (MIC) of BECl against OST ranged from 512 µg/mL (SS) to 1024 µg/mL (SM, SO). The most noticeable antibacterial effects were observed for S. sanguinis (MIC 512 µg/mL) and the most significant synergistic action was found for the combinations BECl-penicillin, BECl-clindamycin and BECl-erythromycin. The S. oralis reflects the highest MBC value as assessed by the AlamarBlue assay (2058 µg/mL). The synergy between berberine and common antibiotics demonstrates its potential use as a novel antibacterial tool for opportunistic infections and also provides a rational basis for the use of berberine as an oral hygiene measure.
Collapse
|
26
|
Jolley KA, Maiden MCJ. Using multilocus sequence typing to study bacterial variation: prospects in the genomic era. Future Microbiol 2015; 9:623-30. [PMID: 24957089 DOI: 10.2217/fmb.14.24] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Multilocus sequence typing (MLST) indexes the sequence variation present in a small number (usually seven) of housekeeping gene fragments located around the bacterial genome. Unique alleles at these loci are assigned arbitrary integer identifiers, which effectively summarizes the variation present in several thousand base pairs of genome sequence information as a series of numbers. Comparing bacterial isolates using allele-based methods efficiently corrects for the effects of lateral gene transfer present in many bacterial populations and is computationally efficient. This 'gene-by-gene' approach can be applied to larger collections of loci, such as the ribosomal protein genes used in ribosomal MLST (rMLST), up to and including the complete set of coding sequences present in a genome, whole-genome MLST (wgMLST), providing scalable, efficient and readily interpreted genome analysis.
Collapse
Affiliation(s)
- Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | | |
Collapse
|
27
|
Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect 2015; 17:531-7. [PMID: 25862975 DOI: 10.1016/j.micinf.2015.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.
Collapse
Affiliation(s)
| | - J Grant Burgess
- School of Marine Science and Technology, Newcastle University, UK
| |
Collapse
|
28
|
Isaksson J, Rasmussen M, Nilson B, Stadler LS, Kurland S, Olaison L, Ek E, Herrmann B. Comparison of species identification of endocarditis associated viridans streptococci using rnpB genotyping and 2 MALDI-TOF systems. Diagn Microbiol Infect Dis 2014; 81:240-5. [PMID: 25616316 DOI: 10.1016/j.diagmicrobio.2014.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/28/2014] [Accepted: 12/20/2014] [Indexed: 11/17/2022]
Abstract
Streptococcus spp. are important causes of infective endocarditis but challenging in species identification. This study compared identification based on sequence determination of the rnpB gene with 2 systems of matrix-assisted laser desorption ionization-time of flight mass spectrometry, MALDI Biotyper (Bruker) and VITEK MS IVD (bioMérieux). Blood culture isolates of viridans streptococci from 63 patients with infective endocarditis were tested. The 3 methods showed full agreement for all 36 isolates identified in the Anginosus, Bovis, and Mutans groups or identified as Streptococcus cristatus, Streptococcus gordonii, or Streptococcus sanguinis. None of the methods could reliably identify the 23 isolates to the species level when designated as Streptococcus mitis, Streptococcus oralis, or Streptococcus tigurinus. In 7 isolates classified to the Mitis group, the rnpB sequences deviated strikingly from all reference sequences, and additional analysis of sodA and groEL genes indicated the occurrence of yet unidentified Streptococcus spp.
Collapse
Affiliation(s)
- Jenny Isaksson
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Magnus Rasmussen
- Division for Infection Medicine, Department of Clinical Sciences, Lund University, BMC B14, SE-22184 Lund, Sweden
| | - Bo Nilson
- Clinical Microbiology, Labmedicin, Region Skåne, SE-221 85 Lund, Sweden; Department of Laboratory Medicine Lund, Section of Medical Microbiology, Lund University, SE-22362 Lund, Sweden
| | - Liselott Svensson Stadler
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Siri Kurland
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Lars Olaison
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-416 85 Gothenburg, Sweden
| | - Elisabeth Ek
- Section of Infectious Diseases, Department of Medical Sciences, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Björn Herrmann
- Section of Clinical Bacteriology, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
29
|
Sonntag D, Ritter A, Burkhart A, Fischer J, Mondrzyk A, Ritter H. Experimental amine-epoxide sealer: a physicochemical study in comparison with AH Plus and EasySeal. Int Endod J 2014; 48:747-56. [DOI: 10.1111/iej.12372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 08/09/2014] [Indexed: 11/30/2022]
Affiliation(s)
- D. Sonntag
- Poliklinik für Zahnerhaltung, Parodontologie und Endodontologie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| | - A. Ritter
- Poliklinik für Zahnerhaltung, Parodontologie und Endodontologie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| | - A. Burkhart
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| | - J. Fischer
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| | - A. Mondrzyk
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| | - H. Ritter
- Institut für Organische Chemie und Makromolekulare Chemie; Heinrich-Heine-Universitaet Duesseldorf; Duesseldorf Germany
| |
Collapse
|
30
|
Henne K, Li J, Stoneking M, Kessler O, Schilling H, Sonanini A, Conrads G, Horz HP. Global analysis of saliva as a source of bacterial genes for insights into human population structure and migration studies. BMC Evol Biol 2014; 14:190. [PMID: 25183372 PMCID: PMC4360258 DOI: 10.1186/s12862-014-0190-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/13/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations. RESULTS Analysis of 10 individuals from each of seven geographic regions, encompassing Africa, Asia and Europe, revealed that the genes gdh and ITS exhibited the highest number of polymorphic sites (59% and 79%, respectively) and most OTUs (defined at 99% identity) were unique to a given country. In contrast, the gene gtf had the lowest number of polymorphic sites (21%), and most OTUs were shared among countries. Most of the variation in the gdh and ITS genes was explained by the high clonal diversity within individuals (around 80%) followed by inter-individual variation of around 20%, leaving the geographic region as providing virtually no source of sequence variation. Conversely, for gtf the variation within individuals accounted for 32%, between individuals for 57% and among geographic regions for 11%. This geographic signature persisted upon extension of the analysis to four additional locations from the American continent. Pearson correlation analysis, pairwise Fst-cluster analysis as well as UniFrac analyses consistently supported a tree structure in which the European countries clustered tightly together and branched with American countries and South Africa, to the exclusion of Asian countries and the Congo. CONCLUSION This study shows that saliva harbours protein-coding bacterial genes that are geographically structured, and which could potentially be used for addressing previously unresolved human migration events.
Collapse
Affiliation(s)
- Karsten Henne
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Jing Li
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
- Current address: Max Planck Independent Research Group on Population Genomics, Chinese Academy of Sciences and Max Planck Society Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany.
| | - Olga Kessler
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hildegard Schilling
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Anne Sonanini
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department for Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52057, Aachen, Germany.
| |
Collapse
|
31
|
GyrB polymorphisms accurately assign invasive viridans group streptococcal species. J Clin Microbiol 2014; 52:2905-12. [PMID: 24899021 DOI: 10.1128/jcm.01068-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Viridans group streptococci (VGS) are a heterogeneous group of medically important bacteria that cannot be accurately assigned to a particular species using conventional phenotypic methods. Although multilocus sequence analysis (MLSA) is considered the gold standard for VGS species-level identification, MLSA is not yet feasible in the clinical setting. Conversely, molecular methods, such as sodA and 16S rRNA gene sequencing, are clinically practical but not sufficiently accurate for VGS species-level identification. Here, we present data regarding the use of an ∼ 400-nucleotide internal fragment of the gene encoding DNA gyrase subunit B (GyrB) for VGS species-level identification. MLSA, internal gyrB, sodA, full-length, and 5' 16S gene sequences were used to characterize 102 unique VGS blood isolates collected from 2011 to 2012. When using the MLSA species assignment as a reference, full-length and 5' partial 16S gene and sodA sequence analyses failed to correctly assign all strains to a species. Precise species determination was particularly problematic for Streptococcus mitis and Streptococcus oralis isolates. However, the internal gyrB fragment allowed for accurate species designations for all 102 strains. We validated these findings using 54 VGS strains for which MLSA, 16S gene, sodA, and gyrB data are available at the NCBI, showing that gyrB is superior to 16S gene and sodA sequence analyses for VGS species identification. We also observed that specific polymorphisms in the 133-amino acid sequence of the internal GyrB fragment can be used to identify invasive VGS species. Thus, the GyrB amino acid sequence may offer a more practical and accurate method for classifying invasive VGS strains to the species level.
Collapse
|
32
|
Maiden MCJ, Jansen van Rensburg MJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Microbiol 2013; 11:728-36. [PMID: 23979428 PMCID: PMC3980634 DOI: 10.1038/nrmicro3093] [Citation(s) in RCA: 491] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multilocus sequence typing (MLST) was proposed in 1998 as a portable sequence-based method for identifying clonal relationships among bacteria. Today, in the whole-genome era of microbiology, the need for systematic, standardized descriptions of bacterial genotypic variation remains a priority. Here, to meet this need, we draw on the successes of MLST and 16S rRNA gene sequencing to propose a hierarchical gene-by-gene approach that reflects functional and evolutionary relationships and catalogues bacteria 'from domain to strain'. Our gene-based typing approach using online platforms such as the Bacterial Isolate Genome Sequence Database (BIGSdb) allows the scalable organization and analysis of whole-genome sequence data.
Collapse
Affiliation(s)
- Martin C J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, Kleerebezem M. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol 2013; 85:376-88. [PMID: 23614882 DOI: 10.1111/1574-6941.12127] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points.
Collapse
|
34
|
Fitzsimons MS, Novotny M, Lo CC, Dichosa AEK, Yee-Greenbaum JL, Snook JP, Gu W, Chertkov O, Davenport KW, McMurry K, Reitenga KG, Daughton AR, He J, Johnson SL, Gleasner CD, Wills PL, Parson-Quintana B, Chain PS, Detter JC, Lasken RS, Han CS. Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome. Genome Res 2013; 23:878-88. [PMID: 23493677 PMCID: PMC3638143 DOI: 10.1101/gr.142208.112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.
Collapse
Affiliation(s)
- Michael S Fitzsimons
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim W, Park HK, Hwang WJ, Shin HS. Simultaneous detection of Streptococcus pneumoniae, S. mitis, and S. oralis by a novel multiplex PCR assay targeting the gyrB gene. J Clin Microbiol 2013; 51:835-40. [PMID: 23269740 PMCID: PMC3592088 DOI: 10.1128/jcm.02920-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/17/2012] [Indexed: 01/05/2023] Open
Abstract
A multiplex PCR (mPCR) protocol was developed for simultaneous detection of the gyrB gene in Streptococcus pneumoniae, Streptococcus mitis, and Streptococcus oralis, and the specificity was evaluated using 141 coccus strains. Genomic DNAs purified from S. pneumoniae, S. mitis, and S. oralis strains were efficiently detected with size differences, whereas no PCR products were amplified from any of the reference strains tested. A pilot study of 47 human oral swab specimens was conducted in parallel, and the mPCR assay identified S. pneumoniae in 1 sample, S. mitis in 8 samples, and S. oralis in 2 samples, providing a powerful means for characterization at the level of species compared with traditional culture analysis. Our results suggest that the mPCR protocol presented here is a sensitive and promising tool for the rapid detection and discrimination of S. pneumoniae, S. mitis, and S. oralis from clinical specimens.
Collapse
Affiliation(s)
- Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hee Kuk Park
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo-Jin Hwang
- Department of Periodontology, Wonkwang University College of Dentistry, Iksan, Republic of Korea
| | - Hyoung-Shik Shin
- Department of Periodontology, Wonkwang University College of Dentistry, Iksan, Republic of Korea
| |
Collapse
|
36
|
Do T, Devine D, Marsh PD. Oral biofilms: molecular analysis, challenges, and future prospects in dental diagnostics. Clin Cosmet Investig Dent 2013; 5:11-9. [PMID: 23674928 PMCID: PMC3652372 DOI: 10.2147/ccide.s31005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oral biofilms are functionally and structurally organized polymicrobial communities that are embedded in an extracellular matrix of exopolymers on mucosal and dental surfaces. These biofilms are found naturally in health, and provide benefits to the host. However, this relationship can break down, and disease can occur; disease is associated with a shift in the balance of the species within these biofilms. Simple diagnostic tests have been developed that involve the culture of selected bacteria, eg, those implicated in dental caries, facilitating an assessment of risk of further disease in individual patients. However, oral diseases have a complex etiology, and because only around 50% of oral biofilm can be grown at present, culture-independent molecular-based approaches are being developed that give a more comprehensive assessment of the presence of a range of putative pathogens in samples. The diversity of these biofilms creates challenges in the interpretation of findings, and future work is investigating the ability of novel techniques to detect biological activity and function in oral biofilms, rather than simply providing a catalogue of microbial names.
Collapse
Affiliation(s)
- Thuy Do
- Department of Oral Biology, Leeds Dental Institute, Leeds
| | | | | |
Collapse
|
37
|
Pérez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. INFECTION GENETICS AND EVOLUTION 2013; 16:38-53. [PMID: 23357583 DOI: 10.1016/j.meegid.2013.01.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Multi-locus sequence typing (MLST) is a high-resolution genetic typing approach to identify species and strains of pathogens impacting human health, agriculture (animals and plants), and biosafety. In this review, we outline the general concepts behind MLST, molecular approaches for obtaining MLST data, analytical approaches for MLST data, and the contributions MLST studies have made in a wide variety of areas. We then look at the future of MLST and their relative strengths and weaknesses with respect to whole genome sequence typing approaches that are moving into the research arena at an ever-increasing pace. Throughout the paper, we provide exemplar references of these various aspects of MLST. The literature is simply too vast to make this review comprehensive, nevertheless, we have attempted to include enough references in a variety of key areas to introduce the reader to the broad applications and complications of MLST data.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | | | | | | |
Collapse
|
38
|
Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental Caries from a Molecular Microbiological Perspective. Caries Res 2013. [DOI: 10.1159/000345367] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
Park HK, Myung SC, Kim W. Comparative transcriptomic analysis of streptococcus pseudopneumoniae with viridans group streptococci. BMC Microbiol 2012; 12:77. [PMID: 22607240 PMCID: PMC3391171 DOI: 10.1186/1471-2180-12-77] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/18/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Streptococcus pseudopneumoniae, is a novel member of the genus Streptococcus, falling close to related members like S. pneumoniae, S. mitis, and S. oralis. Its recent appearance has shed light on streptococcal infections, which has been unclear till recently. In this study, the transcriptome of S. pseudopneumoniae CCUG 49455T was analyzed using the S. pneumoniae R6 microarray platform and compared with those of S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, and S. oralis KCTC 13048T strains. RESULTS Comparative transcriptome analysis revealed the extent of genetic relatedness among the species, and implies that S. pseudopneumoniae is the most closely related to S. pneumoniae. A total of 489, 444 and 470 genes were upregulated while 347, 484 and 443 were downregulated relative to S. pneumoniae in S. pseudopneumoniae, S. oralis and S. mitis respectively. Important findings were the up-regulation of TCS (two component systems) and transposase which were found to be specific to S. pseudopneumoniae. CONCLUSIONS This study provides insight to the current understanding of the genomic content of S. pseudopneumoniae. The comparative transcriptome analysis showed hierarchical clustering of expression data of S. pseudopneumoniae with S. pneumoniae and S. mitis with S. oralis. This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.
Collapse
Affiliation(s)
- Hee Kuk Park
- Department of Microbiology & Research Center for Medical Sciences, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | - Soon Chul Myung
- Department of Urology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology & Research Center for Medical Sciences, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| |
Collapse
|
40
|
Amplification of oral streptococcal DNA from human incisors and bite marks. Curr Microbiol 2012; 65:207-11. [PMID: 22638842 DOI: 10.1007/s00284-012-0148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
Challenges to the evidentiary value of morphometric determinations have led to a requirement for scientifically substantiated approaches to the forensic analysis of bite marks. Human teeth support genotypically distinctive populations of bacteria that could be exploited for forensic purposes. This study explored the feasibility of directly amplifying bacterial DNA from bite marks for comparison with that from teeth. Samples from self-inflicted experimental bite marks (n = 24) and human incisors were amplified by PCR using primers specific for streptococcal 16S ribosomal DNA. Amplicon profiles (resolved by denaturing gradient gel electrophoresis) from bite mark samples aligned significantly more closely with profiles generated from the teeth responsible than with those from other teeth. Streptococcal amplicons were generated from dental samples applied to excised porcine skin for up to 48 h. These findings indicate that streptococcal DNA can be amplified directly from bite marks, and have potential application in bite mark analysis.
Collapse
|
41
|
Kitten T, Munro CL, Zollar NQ, Lee SP, Patel RD. Oral streptococcal bacteremia in hospitalized patients: taxonomic identification and clinical characterization. J Clin Microbiol 2012; 50:1039-42. [PMID: 22189124 PMCID: PMC3295135 DOI: 10.1128/jcm.06438-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/06/2011] [Indexed: 01/23/2023] Open
Abstract
Oral streptococci have been associated with systemic diseases, including infective endocarditis and neutropenic bacteremia. We analyzed 58 recent oral streptococcal bloodstream isolates, and we obtained clinical and demographic data for source patients. The sodA gene was found to be a better target than the 16S-23S rRNA internal transcribed spacer for DNA sequence-based species identification. Together, Streptococcus mitis and Streptococcus oralis were significantly more likely than the 12 combined remaining species to be isolated from neutropenic patients.
Collapse
Affiliation(s)
- Todd Kitten
- The Philips Institute of Oral and Craniofacial Molecular Biology, Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | |
Collapse
|
42
|
Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C, Colles FM, Wimalarathna H, Harrison OB, Sheppard SK, Cody AJ, Maiden MCJ. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. MICROBIOLOGY-SGM 2012; 158:1005-1015. [PMID: 22282518 PMCID: PMC3492749 DOI: 10.1099/mic.0.055459-0] [Citation(s) in RCA: 425] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.
Collapse
Affiliation(s)
| | - Carly M Bliss
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | - Alison J Cody
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
43
|
Do T, Gilbert S, Klein J, Warren S, Wade W, Beighton D. Clonal structure of Streptococcus sanguinis strains isolated from endocarditis cases and the oral cavity. Mol Oral Microbiol 2011; 26:291-302. [DOI: 10.1111/j.2041-1014.2011.00618.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Wade WG. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol 2011; 38 Suppl 11:7-16. [PMID: 21323699 DOI: 10.1111/j.1600-051x.2010.01679.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. AIM This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. RESULTS Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. CONCLUSIONS The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority.
Collapse
|
45
|
Effect of lectins from Diocleinae subtribe against oral Streptococci. Molecules 2011; 16:3530-43. [PMID: 21525793 PMCID: PMC6263318 DOI: 10.3390/molecules16053530] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 04/20/2011] [Accepted: 04/25/2011] [Indexed: 01/21/2023] Open
Abstract
Surface colonization is an essential step in biofilm development. The ability of oral pathogens to adhere to tooth surfaces is directly linked with the presence of specific molecules at the bacterial surface that can interact with enamel acquired pellicle ligands. In light of this, the aim of this study was to verify inhibitory and antibiofilm action of lectins from the Diocleinaesubtribe against Streptococcus mutans and Streptococcus oralis. The inhibitory action against planctonic cells was assessed using lectins from Canavaliaensi formis (ConA), Canavalia brasiliensis (ConBr), Canavalia maritima (ConM), Canavalia gladiata (CGL) and Canavalia boliviana (ConBol). ConBol, ConBr and ConM showed inhibitory activity on S. mutans growth. All lectins, except ConA, stimulated significantly the growth of S. oralis. To evaluate the effect on biofilm formation, clarified saliva was added to 96-well, flat-bottomed polystyrene plates, followed by the addition of solutions containing 100 or 200 µg/mL of the selected lectins. ConBol, ConM and ConA inhibited the S. mutans biofilms. No effects were found on S. oralis biofilms. Structure/function analysis were carried out using bioinformatics tools. The aperture and deepness of the CRD (Carbohydrate Recognition Domain) permit us to distinguish the two groups of Canavalia lectins in accordance to their actions against S. mutans and S. oralis. The results found provide a basis for encouraging the use of plant lectins as biotechnological tools in ecological control and prevention of caries disease.
Collapse
|
46
|
Abstract
Severe early childhood caries (ECC), while strongly associated with Streptococcus mutans using selective detection (culture, PCR), has also been associated with a widely diverse microbiota using molecular cloning approaches. The aim of this study was to evaluate the microbiota of severe ECC using anaerobic culture. The microbial composition of dental plaque from 42 severe ECC children was compared with that of 40 caries-free children. Bacterial samples were cultured anaerobically on blood and acid (pH 5) agars. Isolates were purified, and partial sequences for the 16S rRNA gene were obtained from 5,608 isolates. Sequence-based analysis of the 16S rRNA isolate libraries from blood and acid agars of severe ECC and caries-free children had >90% population coverage, with greater diversity occurring in the blood isolate library. Isolate sequences were compared with taxon sequences in the Human Oral Microbiome Database (HOMD), and 198 HOMD taxa were identified, including 45 previously uncultivated taxa, 29 extended HOMD taxa, and 45 potential novel groups. The major species associated with severe ECC included Streptococcus mutans, Scardovia wiggsiae, Veillonella parvula, Streptococcus cristatus, and Actinomyces gerensceriae. S. wiggsiae was significantly associated with severe ECC children in the presence and absence of S. mutans detection. We conclude that anaerobic culture detected as wide a diversity of species in ECC as that observed using cloning approaches. Culture coupled with 16S rRNA identification identified over 74 isolates for human oral taxa without previously cultivated representatives. The major caries-associated species were S. mutans and S. wiggsiae, the latter of which is a candidate as a newly recognized caries pathogen.
Collapse
|
47
|
Pandya GA, McEllistrem MC, Venepally P, Holmes MH, Jarrahi B, Sanka R, Liu J, Karamycheva SA, Bai Y, Fleischmann RD, Peterson SN. Monitoring the long-term molecular epidemiology of the pneumococcus and detection of potential 'vaccine escape' strains. PLoS One 2011; 6:e15950. [PMID: 21264340 PMCID: PMC3018475 DOI: 10.1371/journal.pone.0015950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/01/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in 'vaccine escape' strains. METHODOLOGY We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP). RESULTS The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene. CONCLUSIONS The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting 'vaccine escape' strains among vaccine-candidate genes.
Collapse
Affiliation(s)
- Gagan A. Pandya
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - M. Catherine McEllistrem
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Pratap Venepally
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael H. Holmes
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Behnam Jarrahi
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ravi Sanka
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jia Liu
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Svetlana A. Karamycheva
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yun Bai
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Robert D. Fleischmann
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Scott N. Peterson
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Jolley KA, Maiden MCJ. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 2010; 11:595. [PMID: 21143983 PMCID: PMC3004885 DOI: 10.1186/1471-2105-11-595] [Citation(s) in RCA: 1784] [Impact Index Per Article: 118.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 12/10/2010] [Indexed: 02/06/2023] Open
Abstract
Background The opportunities for bacterial population genomics that are being realised by the application of parallel nucleotide sequencing require novel bioinformatics platforms. These must be capable of the storage, retrieval, and analysis of linked phenotypic and genotypic information in an accessible, scalable and computationally efficient manner. Results The Bacterial Isolate Genome Sequence Database (BIGSDB) is a scalable, open source, web-accessible database system that meets these needs, enabling phenotype and sequence data, which can range from a single sequence read to whole genome data, to be efficiently linked for a limitless number of bacterial specimens. The system builds on the widely used mlstdbNet software, developed for the storage and distribution of multilocus sequence typing (MLST) data, and incorporates the capacity to define and identify any number of loci and genetic variants at those loci within the stored nucleotide sequences. These loci can be further organised into 'schemes' for isolate characterisation or for evolutionary or functional analyses. Isolates and loci can be indexed by multiple names and any number of alternative schemes can be accommodated, enabling cross-referencing of different studies and approaches. LIMS functionality of the software enables linkage to and organisation of laboratory samples. The data are easily linked to external databases and fine-grained authentication of access permits multiple users to participate in community annotation by setting up or contributing to different schemes within the database. Some of the applications of BIGSDB are illustrated with the genera Neisseria and Streptococcus. The BIGSDB source code and documentation are available at http://pubmlst.org/software/database/bigsdb/. Conclusions Genomic data can be used to characterise bacterial isolates in many different ways but it can also be efficiently exploited for evolutionary or functional studies. BIGSDB represents a freely available resource that will assist the broader community in the elucidation of the structure and function of bacteria by means of a population genomics approach.
Collapse
|
49
|
Wyder AB, Boss R, Naskova J, Kaufmann T, Steiner A, Graber HU. Streptococcus spp. and related bacteria: their identification and their pathogenic potential for chronic mastitis - a molecular approach. Res Vet Sci 2010; 91:349-57. [PMID: 20971488 DOI: 10.1016/j.rvsc.2010.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 01/31/2023]
Abstract
Streptococcus spp. and related bacteria form a large group of organisms which are associated with bovine intramammary Infections (IMI). Some of them are the well-known mastitis pathogens Streptococcus uberis and Streptococcus agalactiae. In addition, there are a considerable number of these gram-positive, catalase-negative cocci (PNC) with unclear mastitic pathogenicity such as Aerococcus viridans which make the conventional diagnostics of PNC difficult. One diagnostic, API 20 Strep (API, Biomérieux) is recommended which, as a phenotypic assay, involves a series of miniaturized biochemical tests. Recently, preference is given to genotypic identification methods. In particular, sequencing of the 16S rRNA gene allows highly reproducible and accurate identification of bacteria and permits discovery of novel, clinically relevant bacteria. As a consequence, the aim of the present study was to compare identification of IMI-associated PNC by the API method as well as by sequencing of their 16S rRNA gene (16S). Furthermore, the correlation of these bacteria to bovine chronic mastitis and their phylogeny was investigated. 102 PNC isolated from single quarter milk samples were identified by API and 16S sequencing. Considering Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae and Streptococcus agalactiae, both methods generated fully concordant results. In contrast, a very high disconcordance was observed for most of the other PNC, in particular Enterococcus spp., Aerococcus viridans and the viridans streptococci were shown as apathogenic. Lactococcus garvieae was found to be an opportunistic pathogen causing IMI during late lactation. In addition, PNC isolated from milk were frequently observed together with other bacteria, in particular with Staphylococcus spp. In these cases, the levels of somatic cell counts (SCC) were determined by the specific PNC present in the sample. Considering PNC phylogeny based on 16S sequencing, 3 major clusters were observed. They included all the common mastitis pathogens (cluster I), the Lactococcus spp., Enterococcus spp. and Aerococcus spp. (cluster II) and all the viridans streptococci (cluster III).
Collapse
Affiliation(s)
- A B Wyder
- Clinic for Ruminants, Department of Clinical Veterinary Medicine, University of Berne, Bremgartenstrasse 109a, P.O. Box 8466, 3001 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Park HK, Lee HJ, Jeong EG, Shin HS, Kim W. The rgg gene is a specific marker for Streptococcus oralis. J Dent Res 2010; 89:1299-303. [PMID: 20739692 DOI: 10.1177/0022034510378426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although the pathogenesis of Streptococcus oralis may be different from that of other viridans group streptococci, S. oralis shares a high degree of DNA sequence similarity with these streptococci. As a result, discrimination of S. oralis from its close relatives has long been considered difficult. This study was conducted to find specific genes that allow for the in vitro identification of S. oralis, but not other oral commensals. Four hundred ninety S. oralis clones obtained by suppressive subtractive hybridization were used for Southern hybridization, and positive clones were sequenced. Of 5 S. oralis-specific clones, newly designed primer sets based on the glucosyltransferase regulatory gene amplified genomic DNA only from S. oralis strains, but not from any of the other 125 strains tested. Our findings may be useful for the future development of efficient diagnostic tools for the rapid identification and differentiation of S. oralis from other oral streptococci strains.
Collapse
Affiliation(s)
- H K Park
- Department of Microbiology & Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, 221 Heukseok-dong, Dongjak-ku, Seoul 156-756, Republic of Korea
| | | | | | | | | |
Collapse
|