1
|
Vasquez R, Song JH, Park YS, Paik HD, Kang DK. Application of probiotic bacteria in ginsenoside bioconversion and enhancing its health-promoting benefits: a review. Food Sci Biotechnol 2025; 34:1631-1659. [PMID: 40160953 PMCID: PMC11936870 DOI: 10.1007/s10068-024-01734-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 10/10/2024] [Indexed: 04/02/2025] Open
Abstract
Ginseng (Panax) is a perennial herb with medicinal properties found in Asia and North America. Ginseng extracts contain several compounds, such as ginsenosides, which have therapeutic properties and have been extensively studied. Because of their deglycosylated nature, minor ginsenosides exhibit more potent bioactive properties than their parent ginsenosides. However, untreated ginseng extracts contain low levels of bioactive minor ginsenosides. Thus, converting major ginsenosides to minor ginsenosides using various methods, including microbial bioconversion, is required. Probiotic bacteria such as lactic acid bacteria and bifidobacteria are safe and excellent agents for bioconverting ginsenosides. Numerous studies have demonstrated the application of probiotic bacteria to produce minor ginsenosides; however, a comprehensive discussion focusing on using probiotics in ginsenoside bioconversion has been lacking. Therefore, this review investigates the application of probiotic bacteria to produce minor ginsenosides. Moreover, improving the health-promoting properties of ginseng with the help of probiotics is also reviewed.
Collapse
Affiliation(s)
- Robie Vasquez
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Ji Hoon Song
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, 119 Dandae-Ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
2
|
Li BC, Wu B, Hou X, Ding GB. Substrate Selectivities of GH78 α-L-Rhamnosidases from Human Gut Bacteria on Dietary Flavonoid Glycosides. Molecules 2025; 30:980. [PMID: 40076204 PMCID: PMC11901676 DOI: 10.3390/molecules30050980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
α-L-rhamnosidases play a key role in the metabolism and biodegradation of dietary flavonoid glycosides. We have developed a novel microplate spectrophotometric method to rapidly evaluate the conversion rates and substrate selectivities of mesophilic α-L-rhamnosidases towards citrus flavanone diglycosides by combining with a high-active and thermophilic β-D-glucosidase based on UV-visible spectral differences between citrus flavanone diglycosides and the corresponding aglycones under alkaline conditions. Furthermore, catalytic activities and enzyme kinetics of four α-L-rhamnosidases from human gut bacteria on various dietary flavonoid glycosides with different glycosidic bonds from various subclasses have been explored by HPLC. The α-L-rhamnosidase BtRha78A specifically removed the rhamnose group from the flavones, flavanones and flavonols diglycosides with the α-1,6 glycosidic bonds. Moreover, BtRha78A displayed higher catalytic activities on the rutinose group at 7-OH of the aglycones than at 3-OH. HFM-RhaA preferred to catalyze the flavones, flavanones and dihydrochalcones diglycosides with the α-1,2 glycosidic linkages at the 7-OH. However, this enzyme also showed high catalytic activity on the flavonol diglycoside rutin with the α-1,6 glycosidic bonds at the 3-OH. HFM-RhaC exhibited certain hydrolytic abilities towards all flavonoid diglycosides, and displayed higher activities on the flavonoid diglycosides with the α-1,6 glycosidic bonds. HFM-Rha78 weakly hydrolyzed the flavones, flavanones and dihydrochalcones diglycosides with the α-1,2 glycosidic bonds, and the flavonols diglycosides with α-1,6 glycosidic bonds. All four α-L-rhamnosidases from human gut bacteria did not exhibit catalytic activity towards the flavonoid glycosides with the α-1 glycosidic bonds. It was revealed that the α-L-rhamnosidases from human gut bacteria possessed diverse substrate selectivity on dietary flavonoid diglycosides. The structural basis for the specificity of BtRha78A on the flavonoid diglycosides with α-1,6 glycosidic bonds and the preference of HFM-RhaA on the flavonoid diglycosides with α-1,2 glycosidic bonds have been analyzed by molecular docking.
Collapse
Affiliation(s)
- Bin-Chun Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (B.W.); (X.H.)
- Shanxi Key Laboratory of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Bingbing Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (B.W.); (X.H.)
| | - Xueting Hou
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (B.W.); (X.H.)
| | - Guo-Bin Ding
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (B.W.); (X.H.)
- Institutes of Biomedical Sciences/School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
3
|
Wang Y, Wang C, Shi J, Zhang Y. Effects of derivatization and probiotic transformation on the antioxidative activity of fruit polyphenols. Food Chem X 2024; 23:101776. [PMID: 39280222 PMCID: PMC11402117 DOI: 10.1016/j.fochx.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
Fruits contain numerous polyphenols in the form of conjugates, which exhibit low antioxidant activity. Probiotic fermentation is a strategy to improve the antioxidant activity of these conjugated polyphenols by modifying their structure. However, the mechanisms underlying the effects of functional groups and derivatizations on the antioxidative activities of polyphenols and the antioxidation enhancement by probiotic biotransformation haven't been comprehensively explored. This review aimed to explore the structure-antioxidant activity relationships of four functional groups and three derivatizations in flavonoids and phenolic acids. Further, the review elucidated the antioxidant mechanisms underlying the biotransformation of flavonoids and phenolic acids as glycoside, methylated, and ester conjugates by probiotic biotransformation. Deglycosylation, demethylation, and hydrolysis catalyzed by enzymes produced by Bifidobacterium and Lactobacillus facilitated the conversion of conjugated polyphenols into flavonoids and phenolic acids with hydrolyzed forms and highly active functional groups, thereby increasing hydrogen supply and electron transfer capacity to enhance the antioxidant activity.
Collapse
Affiliation(s)
- Yixuan Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Chenxi Wang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, Xi'an Province 710072, People's Republic of China
| | - Yan Zhang
- School of food science and technology, Shihezi University, Road Beisi, Shihezi, Xinjiang Province 832003, China
| |
Collapse
|
4
|
Pan L, Zhang Y, Zhang F, Wang Z, Zheng J. α-L-rhamnosidase: production, properties, and applications. World J Microbiol Biotechnol 2023; 39:191. [PMID: 37160824 DOI: 10.1007/s11274-023-03638-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/30/2023] [Indexed: 05/11/2023]
Abstract
α-L-rhamnosidase [EC 3.2.1.40] belongs to glycoside hydrolase (GH) families (GH13, GH78, and GH106 families) in the carbohydrate-active enzymes (CAZy) database, which specifically hydrolyzes the non-reducing end of α-L-rhamnose. Αccording to the sites of catalytic hydrolysis, α-L-rhamnosidase can be divided into α-1, 2-rhamnosidase, α-1, 3-rhamnosidase, α-1, 4-rhamnosidase and α-1, 6-rhamnosidase. α-L-rhamnosidase is an important enzyme for various biotechnological applications, especially in food, beverage, and pharmaceutical industries. α-L-rhamnosidase has a wide range of sources and is commonly found in animals, plants, and microorganisms, and its microbial source includes a variety of bacteria, molds and yeasts (such as Lactobacillus sp., Aspergillus sp., Pichia angusta and Saccharomyces cerevisiae). In recent years, a series of advances have been achieved in various aspects of α-validates the above-described-rhamnosidase research. A number of α-L-rhamnosidases have been successfully recombinant expressed in prokaryotic systems as well as eukaryotic systems which involve Pichia pastoris, Saccharomyces cerevisiae and Aspergillus niger, and the catalytic properties of the recombinant enzymes have been improved by enzyme modification techniques. In this review, the sources and production methods, general and catalytic properties and biotechnological applications of α-L-rhamnosidase in different fields are summarized and discussed, concluding with the directions for further in-depth research on α-L-rhamnosidase.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yueting Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Fei Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jianyong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
D’Archivio M, Santangelo C, Silenzi A, Scazzocchio B, Varì R, Masella R. Dietary EVOO Polyphenols and Gut Microbiota Interaction: Are There Any Sex/Gender Influences? Antioxidants (Basel) 2022; 11:antiox11091744. [PMID: 36139818 PMCID: PMC9495659 DOI: 10.3390/antiox11091744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence indicates that regular consumption of extra virgin olive oil (EVOO), the main source of fat in the Mediterranean diet, is associated with beneficial health effects and a reduced risk of developing chronic degenerative disorders. The beneficial effects of EVOO can be attributed to its unique composition in monounsaturated fats and phenolic compounds that provide important antioxidant, anti-inflammatory, and immune-modulating activities. On the other hand, it is well known that the gut microbiota has several important roles in normal human physiology, and its composition can be influenced by a multitude of environmental and lifestyle factors, among which dietary components play a relevant role. In the last few years, the two-way interaction between polyphenols, including those in EVOO, and the gut microbiota, i.e., the modulation of the microbiota by polyphenols and that of polyphenol metabolism and bioavailability by the microbiota, has attracted growing attention, being potentially relevant to explain the final effects of polyphenols, as well as of the microbiota profile. Furthermore, sex and gender can affect dietary habits, polyphenol intake, and nutrient metabolism. Lastly, it has been recently suggested that differences in gut microbiota composition could be involved in the unequal incidence of metabolic diseases observed between women and men, due to sex-dependent effects on shaping gut microbiota profiles according to diet. This review summarizes the most recent studies on the relationship between EVOO polyphenols and the gut microbiota, taking into account possible influences of sex and gender in modulating such an interaction.
Collapse
|
6
|
Borzova N, Gudzenko O, Varbanets L. α-L-rhamnosidase from Penicillium tardum and Its Application for Biotransformation of Citrus Rhamnosides. Appl Biochem Biotechnol 2022; 194:4915-4929. [PMID: 35670906 DOI: 10.1007/s12010-022-04008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Enzymatic deramnosylation of flavonoids is a convenient tool for improving the quality of citrus juices. α-L-rhamnosidase with a specific activity of 33.1 units/mg was isolated and characterized from the culture liquid of Penicillium tardum. The molecular weight of the enzyme was 95 kDa according to the data of gel filtration on Sepharose 6B and gel electrophoresis in SDS-PAGE. The pH optimum of the enzyme activity was 5.0, and the thermo optimum was 60 °C. Enzyme showed high stability in the temperature range of 45-50 and at 60-70 °C. It retained 80 to 50% of the initial activity for 90 min. The half-life of α-L-rhamnosidase at 70 °C increased twofold in the presence of 20-40% glycerol and 2.3-fold in the presence of 4 M sorbitol. The enzyme was completely inhibited in the presence of 10-3 M Ag+ and Cd2+ and approximately by 90% in the presence of Fe2+, Fe3+, and Al3+ ions. More than 60%, the enzyme activity was inhibited by Hg2+, Co2+, and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Activating effect of Ca2+ ions was also noted. Km and Vmax for the hydrolysis of p-nitrophenyl-α-L-rhamnopyranoside and naringin were 0.7 mM and 38.3 µM/min/mg and 1.34 mM and 43.7 µM/min/mg, respectively. Penicillium tardum α-L-rhamnosidase hydrolyzed naringin, neohesperidin, hesperidin, rutin, and narirutin at high rate, which allowed us to consider it as an effective tool for transformation of bioflavonoids in food industry.
Collapse
Affiliation(s)
- Nataliya Borzova
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine.
| | - Olena Gudzenko
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| | - Lyudmila Varbanets
- Department of Biochemistry of Microorganisms, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154 Zabolotny st, Kyiv, 03143, Ukraine
| |
Collapse
|
7
|
Xie J, Zhao J, Zhang N, Xu H, Yang J, Ye J, Jiang J. Efficient Production of Isoquercitin, Icariin and Icariside II by A Novel Thermostable α-l-Rhamnosidase PodoRha from Paenibacillus odorifer with High α-1, 6- / α-1, 2- Glycoside Specificity. Enzyme Microb Technol 2022; 158:110039. [DOI: 10.1016/j.enzmictec.2022.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
|
8
|
Ferreira-Lazarte A, Plaza-Vinuesa L, de Las Rivas B, Villamiel M, Muñoz R, Moreno FJ. Production of α-rhamnosidases from Lactobacillus plantarum WCFS1 and their role in deglycosylation of dietary flavonoids naringin and rutin. Int J Biol Macromol 2021; 193:1093-1102. [PMID: 34780892 DOI: 10.1016/j.ijbiomac.2021.11.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022]
Abstract
This work addresses the amino acid sequence, structural analysis, biochemical characterization and glycosidase activity of two recombinant α-rhamnosidases, Ram1 and Ram2, from Lactobacillus plantarum WCFS1. The substrate specificity of both enzymes towards the disaccharide rutinose and natural dietary flavonoids naringin and rutin was also determined and compared to that of a commercial multienzyme complex (Pectinex Ultra Passover, PPO). Ram1 is a less acidic- and heat-active enzyme than Ram2 and exhibited a high activity towards pNP-α-L-rhamnopyranoside, but it was unable to hydrolyze neither rutinose, naringin or rutin. In contrast, Ram2 enzyme showed a substrate specificity towards α-(1➔6) glycosidic flavonoids, such as rutin, and the disaccharide rutinose. The mechanism of action of Ram2 towards rutin was elucidated and revealed the potential cost-effective and selective production of the monoglycosylated flavonoid isoquercetin (quercetin-3-O-glucoside). PPO efficiently converted both naringin and rutin into their corresponding aglycones. These findings revealed the potential usefulness of PPO for the improvement of sensory properties of beverages through debittering of citrus juices, as well as the potential use of Ram2 to selectively produce isoquercetin, a highly valued and bioactive flavonoid whose production is not currently affordable.
Collapse
Affiliation(s)
- Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), C/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), C/ Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Rodrigues GR, Pinto OHB, Schroeder LF, Fernandes GDR, Costa OYA, Quirino BF, Kuramae EE, Barreto CC. Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. FEMS Microbiol Lett 2021; 367:5902847. [PMID: 32897365 DOI: 10.1093/femsle/fnaa149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/02/2020] [Indexed: 11/13/2022] Open
Abstract
The presence of genes for glycosyl hydrolases in many Acidobacteria genomes indicates an important role in the degradation of plant cell wall material. Acidobacteria bacterium AB60 was obtained from Cerrado oligotrophic soil in Brazil, where this phylum is abundant. The 16S rRNA gene analyses showed that AB60 was closely related to the genera Occallatibacter and Telmatobacter. However, AB60 grew on xylan as carbon source, which was not observed in Occallatibacter species; but growth was not detected on medium containing carboxymethyl cellulose, as observed in Telmatobacter. Nevertheless, the genome analysis of AB60 revealed genes for the enzymes involved in cellulose as well as xylan degradation. In addition to enzymes involved in xylan degradation, α-l-rhamnosidase was detected in the cultures of AB60. Functional screening of a small-insert genomic library did not identify any clones capable of carboxymethyl cellulose degradation, but open reading frames coding α-l-arabinofuranosidase and α-l-rhamnosidase were present in clones showing xylan degradation halos. Both enzymes act on the lateral chains of heteropolymers such as pectin and some hemicelluloses. These results indicate that the hydrolysis of α-linked sugars may offer a metabolic niche for slow-growing Acidobacteria, allowing them to co-exist with other plant-degrading microbes that hydrolyze β-linked sugars from cellulose or hemicellulose backbones.
Collapse
Affiliation(s)
- Gisele Regina Rodrigues
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Otávio Henrique Bezerra Pinto
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | - Luís Felipe Schroeder
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| | | | - Ohana Yonara Assis Costa
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| | - Betania Ferraz Quirino
- Brazilian Agricultural Research Corporation - EMBRAPA/Agroenergy, Brasília, DF 70770-901, Brazil
| | - Eiko Eurya Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Cristine Chaves Barreto
- Universidade Católica de Brasília, Graduate Program in Genomic Sciences and Biotechnology, SGAN 916, Brasília, DF 70790-160, Brazil
| |
Collapse
|
10
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
11
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
12
|
Jiang N, Dillon FM, Silva A, Gomez-Cano L, Grotewold E. Rhamnose in plants - from biosynthesis to diverse functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110687. [PMID: 33288005 DOI: 10.1016/j.plantsci.2020.110687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 05/27/2023]
Abstract
In plants, the deoxy sugar l-rhamnose is widely present as rhamnose-containing polymers in cell walls and as part of the decoration of various specialized metabolites. Here, we review the current knowledge on the distribution of rhamnose, highlighting the differences between what is known in dicotyledoneuos compared to commelinid monocotyledoneous (grasses) plants. We discuss the biosynthesis and transport of UDP-rhamnose, as well as the transfer of rhamnose from UDP-rhamnose to various primary and specialized metabolites. This is carried out by rhamnosyltransferases, enzymes that can use a large variety of substrates. Some unique characteristics of rhamnose synthases, the multifunctional enzymes responsible for the conversion of UDP-glucose into UDP-rhamnose, are considered, particularly from the perspective of their ability to convert glucose present in flavonoids. Finally, we discuss how little is still known with regards to how plants rescue rhamnose from the many compounds to which it is linked, or how rhamnose is catabolized.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Francisco M Dillon
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander Silva
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Delgado-Fernandez P, Plaza-Vinuesa L, Lizasoain-Sánchez S, de Las Rivas B, Muñoz R, Jimeno ML, García-Doyagüez E, Moreno FJ, Corzo N. Hydrolysis of Lactose and Transglycosylation of Selected Sugar Alcohols by LacA β-Galactosidase from Lactobacillus plantarum WCFS1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7040-7050. [PMID: 32476420 DOI: 10.1021/acs.jafc.0c02439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The production, biochemical characterization, and carbohydrate specificity of LacA β-galactosidase (locus lp_3469) belonging to the glycoside hydrolase family 42 from the probiotic organism Lactobacillus plantarum WCFS1 are addressed. The β-d-galactosidase activity was maximal in the pH range of 4.0-7.0 and at 30-37 °C. High hydrolysis capacity toward the β(1 → 4) linkages between galactose and glucose (lactose) or fructose (lactulose) was found. High efficiency toward galactosyl derivative formation was observed when lactose and glycerol, xylitol, or erythritol were used. Galactosyl derivatives of xylitol were characterized for the first time as 3-O-β-d-galactopyranosyl-xylitol and 1-O-β-d-galactopyranosyl-xylitol, displaying high preference of LacA β-galactosidase for the transfer of galactosyl residues from lactose to the C1 or C3 hydroxyl group of xylitol. These results indicate the feasibility of using LacA β-galactosidase for the synthesis of different galactosyl-polyols, which could be promising candidates for beneficial and appealing functional and technological applications such as novel prebiotics or hypocaloric sweeteners.
Collapse
Affiliation(s)
- Paloma Delgado-Fernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Laura Plaza-Vinuesa
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Silvia Lizasoain-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Luisa Jimeno
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elisa García-Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Nieves Corzo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
14
|
Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1: An α-galactosidase displaying regioselective transgalactosylation. Int J Biol Macromol 2020; 153:1070-1079. [DOI: 10.1016/j.ijbiomac.2019.10.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022]
|
15
|
Cortés-Martín A, Selma MV, Tomás-Barberán FA, González-Sarrías A, Espín JC. Where to Look into the Puzzle of Polyphenols and Health? The Postbiotics and Gut Microbiota Associated with Human Metabotypes. Mol Nutr Food Res 2020; 64:e1900952. [PMID: 32196920 DOI: 10.1002/mnfr.201900952] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Indexed: 12/23/2022]
Abstract
The full consensus on the role of dietary polyphenols as human-health-promoting compounds remains elusive. The two-way interaction between polyphenols and gut microbiota (GM) (i.e., modulation of GM by polyphenols and their catabolism by the GM) is determinant in polyphenols' effects. The identification of human metabotypes associated with a differential gut microbial metabolism of polyphenols has opened new research scenarios to explain the inter-individual variability upon polyphenols consumption. The metabotypes unequivocally identified so far are those involved in the metabolism of isoflavones (equol and(or) O-desmethylangolesin producers versus non-producers) and ellagic acid (urolithin metabotypes, including producers of only urolithin-A (UM-A), producers of urolithin-A, isourolithin-A, and urolithin-B (UM-B), and non-producers (UM-0)). In addition, the microbial metabolites (phenolic-derived postbiotics) such as equol, urolithins, valerolactones, enterolactone, and enterodiol, and 8-prenylnaringenin, among others, can exert differential health effects. The knowledge is updated and position is taken here on i) the two-way interaction between GM and polyphenols, ii) the evidence between phenolic-derived postbiotics and health, iii) the role of metabotypes as biomarkers of GM and the clustering of individuals depending on their metabotypes (metabotyping) to explain polyphenols' effects, and iv) the gut microbial metabolism of catecholamines to illustrate the intersection between personalized nutrition and precision medicine.
Collapse
Affiliation(s)
- Adrián Cortés-Martín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - María Victoria Selma
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Francisco Abraham Tomás-Barberán
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| | - Juan Carlos Espín
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
16
|
Bayon-Vicente G, Wattiez R, Leroy B. Global Proteomic Analysis Reveals High Light Intensity Adaptation Strategies and Polyhydroxyalkanoate Production in Rhodospirillum rubrum Cultivated With Acetate as Carbon Source. Front Microbiol 2020; 11:464. [PMID: 32269553 PMCID: PMC7109303 DOI: 10.3389/fmicb.2020.00464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022] Open
Abstract
Purple non-sulfur bacteria (PNSBs) are well known for their metabolic versatility. Among them, Rhodospirillum rubrum can assimilate a broad range of carbon sources, including volatile fatty acids (VFAs), such as acetate, propionate or butyrate. These carbon sources are gaining increasing interest in bioindustrial processes since they allow reduction of the production costs. Recently, our lab discovered that, after long term cultivation with acetate as unique carbon source, Rs. rubrum got acclimated to this carbon source which resulted in a drastic reduction of the lag phase. This acclimation was characterized by the amplification of the genomic region containing, among others, genes belonging to the ethylmalonyl-CoA (EMC) pathway, which has been demonstrated to be required for acetate assimilation in Rs. rubrum. In this paper, we combined bacterial growth analysis with proteomic (SWATH -Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra-processing) investigation to better understand the bacterial response to a sudden increase of the light intensity. We compared the impact of suddenly increasing light intensity on the WT strain to that on the newly described acetate-competent strain in the presence of acetate. Contrary to what was observed with the WT strain, we observed that the acetate-competent strain was tolerant to the light stress. Proteomic analysis revealed that increasing light intensity had a significant impact on the photosynthetic apparatus, especially in the wild-type strain cultivated in the presence of acetate and low concentration of HCO3–. This phenomenon was accompanied by a relatively higher abundance of certain stress related proteins. Our results suggested that the production of PHA, but also potentially of branched chain amino acids synthesis, could be part of the mechanism used by Rs. rubrum to adapt to the light stress and the redox imbalance it triggered.
Collapse
Affiliation(s)
- Guillaume Bayon-Vicente
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
17
|
Tran A, Nguyen T, Nguyen V, Bujna E, Dam M, Nguyen Q. Changes in bitterness, antioxidant activity and total phenolic content of grapefruit juice fermented by Lactobacillus and Bifidobacterium strains. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.1.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Four strains of Lactobacillus and Bifidobacterium including L. plantarum 01, L. fermentum D13, L. rhamnosus B01725, and B. bifidum B7.5 exhibiting naringinase production were applied in grapefruit juice fermentation. All investigated strains grew well in grapefruit juice without nutrition supplementation. In all cases, cell counts were 108–109 CFU ml−1 after 24 hours of fermentation. The highest lactic acid and acetic acid productions were observed in the case of strain L. plantarum 01. The L. plantarum 01 and L. fermentum D13 strains prefer glucose over fructose and sucrose, whereas fructose was the most favoured sugar for L. rhamnosus B01725 and B. bifidum B7.5. At the end of the fermentation process, antioxidant activity and total polyphenol content of grapefruit juice decreased in all cases, but the changes were not significant. Significant decrease of naringin was observed in the case of L. plantarum 01, 28% naringin in grapefruit juice was removed after fermentation. This result is promising for development of technology for production of probiotic grapefruit juice.
Collapse
Affiliation(s)
- A.M. Tran
- aResearch Centre for Bioengineering and Process Engineering, Faculty of Food Science, Szent István University; H-1118 Budapest, Ménesi út 45. Hungary
- bInstitute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, No. 12, Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City. Vietnam
| | - T.B. Nguyen
- aResearch Centre for Bioengineering and Process Engineering, Faculty of Food Science, Szent István University; H-1118 Budapest, Ménesi út 45. Hungary
| | - V.D. Nguyen
- bInstitute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, No. 12, Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City. Vietnam
| | - E. Bujna
- aResearch Centre for Bioengineering and Process Engineering, Faculty of Food Science, Szent István University; H-1118 Budapest, Ménesi út 45. Hungary
| | - M.S. Dam
- bInstitute of Biotechnology and Food Technology, Industrial University of Ho Chi Minh City, No. 12, Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City. Vietnam
| | - Q.D. Nguyen
- aResearch Centre for Bioengineering and Process Engineering, Faculty of Food Science, Szent István University; H-1118 Budapest, Ménesi út 45. Hungary
| |
Collapse
|
18
|
Verni M, Verardo V, Rizzello CG. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019; 8:E362. [PMID: 31450581 PMCID: PMC6770679 DOI: 10.3390/foods8090362] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
The major role of antioxidant compounds in preserving food shelf life, as well as providing health promoting benefits, combined with the increasing concern towards synthetic antioxidants, has led the scientific community to focus on natural antioxidants present in food matrices or resulting from microbial metabolism during fermentation. This review aims at providing a comprehensive overview of the effect of fermentation on the antioxidant compounds of vegetables, with emphasis on cereals- and legumes- derived foods. Polyphenols are the main natural antioxidants in food. However, they are often bound to cell wall, glycosylated, or in polymeric forms, which affect their bioaccessibility, yet several metabolic activities are involved in their release or conversion in more active forms. In some cases, the antioxidant properties in vitro, were also confirmed during in vivo studies. Similarly, bioactive peptides resulted from bacterial and fungal proteolysis, were also found to have ex vivo protective effect against oxidation. Fermentation also influenced the bioaccessibility of other compounds, such as vitamins and exopolysaccharides, enabling a further improvement of antioxidant activity in vitro and in vivo. The ability of fermentation to improve food antioxidant properties strictly relies on the metabolic activities of the starter used, and to further demonstrate its potential, more in vivo studies should be carried out.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus Universitario de Cartuja, E-18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, E-18071 Granada, Spain
| | | |
Collapse
|
19
|
Li BC, Zhang T, Li YQ, Ding GB. Target Discovery of Novel α-L-Rhamnosidases from Human Fecal Metagenome and Application for Biotransformation of Natural Flavonoid Glycosides. Appl Biochem Biotechnol 2019; 189:1245-1261. [PMID: 31236895 DOI: 10.1007/s12010-019-03063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
As a green and powerful tool, biocatalysis has emerged as a perfect alternative to traditional chemistry. The bottleneck during process development is discovery of novel enzymes with desired properties and independent intellectual property. Herein, we have successfully bioprospected three novel bacterial α-L-rhamnosidases from human fecal metagenome using a combinatorial strategy by high-throughput de novo sequencing combined with in silico searching for catalytic key motifs. All three novel α-L-rhamnosidases shared low sequence identities with reported (< 35%) and putative ones (< 57%) from public database. All three novel α-L-rhamnosidases were over-expressed as soluble form in Escherichia coli with high-level production. Furthermore, all three novel α-L-rhamnosidases hydrolyzed the synthetic substrate p-nitrophenyl α-L-rhamnopyranoside and natural flavonoid glycosides rutin and naringin with some excellent properties, such as high activity in acidic pH, high activity at low or high temperature, and good tolerance for alcohols and DMSO. Our findings would provide a convenient route for target discovery of the promising biocatalysts from the metagenomes for biotransformation and biosynthesis.
Collapse
Affiliation(s)
- Bin-Chun Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Tian Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Yan-Qin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Guo-Bin Ding
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
20
|
Cloning and characterization of α-l-rhamnosidase from Chloroflexus aurantiacus and its application in the production of isoquercitrin from rutin. Biotechnol Lett 2019; 41:419-426. [DOI: 10.1007/s10529-019-02648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
21
|
Pachl P, Škerlová J, Šimčíková D, Kotik M, Křenková A, Mader P, Brynda J, Kapešová J, Křen V, Otwinowski Z, Řezáčová P. Crystal structure of native α-L-rhamnosidase from Aspergillus terreus. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:1078-1084. [DOI: 10.1107/s2059798318013049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/10/2022]
Abstract
α-L-Rhamnosidases cleave terminal nonreducing α-L-rhamnosyl residues from many natural rhamnoglycosides. This makes them catalysts of interest for various biotechnological applications. The X-ray structure of the GH78 family α-L-rhamnosidase from Aspergillus terreus has been determined at 1.38 Å resolution using the sulfur single-wavelength anomalous dispersion phasing method. The protein was isolated from its natural source in the native glycosylated form, and the active site contained a glucose molecule, probably from the growth medium. In addition to its catalytic domain, the α-L-rhamnosidase from A. terreus contains four accessory domains of unknown function. The structural data suggest that two of these accessory domains, E and F, might play a role in stabilizing the aglycon portion of the bound substrate.
Collapse
|
22
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
23
|
Antón-Millán N, García-Tojal J, Marty-Roda M, Garroni S, Cuesta-López S, Tamayo-Ramos JA. Influence of Three Commercial Graphene Derivatives on the Catalytic Properties of a Lactobacillus plantarum α-l-Rhamnosidase When Used as Immobilization Matrices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18170-18182. [PMID: 29732878 DOI: 10.1021/acsami.7b18844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The modification of carbon nanomaterials with biological molecules paves the way toward their use in biomedical and biotechnological applications, such as next-generation biocatalytic processes, development of biosensors, implantable electronic devices, or drug delivery. In this study, different commercial graphene derivatives, namely, monolayer graphene oxide (GO), graphene oxide nanocolloids (GOCs), and polycarboxylate-functionalized graphene nanoplatelets (GNs), were compared as biomolecule carrier matrices. Detailed spectroscopic analyses showed that GO and GOC were similar in composition and functional group content and very different from GN, whereas divergent morphological characteristics were observed for each nanomaterial through microscopy analyses. The commercial α-l-rhamnosidase RhaB1 from the probiotic bacterium Lactobacillus plantarum, selected as a model biomolecule for its relevant role in the pharma and food industries, was directly immobilized on the different materials. The binding efficiency and biochemical properties of RhaB1-GO, RhaB1-GOC, and RhaB1-GN composites were analyzed. RhaB1-GO and RhaB1-GOC showed high binding efficiency, whereas the enzyme loading on GN, not tested in previous enzyme immobilization studies, was low. The enzyme showed contrasting changes when immobilized on the different material supports. The effect of pH on the activity of the three RhaB1-immobilized versions was similar to that observed for the free enzyme, whereas the activity-temperature profiles and the response to the presence of inhibitors varied significantly between the RhaB1 versions. In addition, the apparent Km for the immobilized and soluble enzymes did not change. Finally, the free RhaB1 and the immobilized enzyme in GOC showed the best storage and reutilization stability, keeping most of their initial activity after 8 weeks of storage at 4 °C and 10 reutilization cycles, respectively. This study shows, for the first time, that distinct commercial graphene derivatives can influence differently the catalytic properties of an enzyme during its immobilization.
Collapse
Affiliation(s)
- Noemí Antón-Millán
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | | | - Marta Marty-Roda
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Sebastiano Garroni
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Santiago Cuesta-López
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| | - Juan Antonio Tamayo-Ramos
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology , Consolidated Research Unit UIC-154, University of Burgos , Hospital del Rey s/n, 09001 Burgos , Castilla y León, Spain
| |
Collapse
|
24
|
Mensitieri F, De Lise F, Strazzulli A, Moracci M, Notomista E, Cafaro V, Bedini E, Sazinsky MH, Trifuoggi M, Di Donato A, Izzo V. Structural and functional insights into RHA-P, a bacterial GH106 α-L-rhamnosidase from Novosphingobium sp. PP1Y. Arch Biochem Biophys 2018; 648:1-11. [PMID: 29678627 DOI: 10.1016/j.abb.2018.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Abstract
α-L-Rhamnosidases (α-RHAs, EC 3.2.1.40) are glycosyl hydrolases (GHs) hydrolyzing terminal α-l-rhamnose residues from different substrates such as heteropolysaccharides, glycosylated proteins and natural flavonoids. Although the possibility to hydrolyze rhamnose from natural flavonoids has boosted the use of these enzymes in several biotechnological applications over the past decades, to date only few bacterial rhamnosidases have been fully characterized and only one crystal structure of a rhamnosidase of the GH106 family has been described. In our previous work, an α-l-rhamnosidase belonging to this family, named RHA-P, was isolated from the marine microorganism Novosphingobium sp. PP1Y. The initial biochemical characterization highlighted the biotechnological potential of RHA-P for bioconversion applications. In this work, further functional and structural characterization of the enzyme is provided. The recombinant protein was obtained fused to a C-terminal His-tag and, starting from the periplasmic fractions of induced recombinant cells of E. coli strain BL21(DE3), was purified through a single step purification protocol. Homology modeling of RHA-P in combination with a site directed mutagenesis analysis confirmed the function of residues D503, E506, E644, likely located at the catalytic site of RHA-P. In addition, a kinetic characterization of the enzyme on natural flavonoids such as naringin, rutin, hesperidin and quercitrin was performed. RHA-P showed activity on all flavonoids tested, with a catalytic efficiency comparable or even higher than other bacterial α-RHAs described in literature. The results confirm that RHA-P is able to hydrolyze both α-1,2 and α-1,6 glycosidic linkages, and suggest that the enzyme may locate different polyphenolic aromatic moities in the active site.
Collapse
Affiliation(s)
- Francesca Mensitieri
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Federica De Lise
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Andrea Strazzulli
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Marco Moracci
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy; Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80131, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Valeria Cafaro
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Matthew Howard Sazinsky
- Department of Chemistry, Pomona College, Sumner Hall, 333 N College Way, Claremont, CA, 91711, United States
| | - Marco Trifuoggi
- Department of Chemical Sciences, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Alberto Di Donato
- Department of Biology, University Federico II of Naples, Via Cinthia 26, 80127, Naples, Italy
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende 2, 84131, Salerno, Italy.
| |
Collapse
|
25
|
Li B, Ji Y, Li Y, Ding G. Characterization of a glycoside hydrolase family 78 α-l-rhamnosidase from Bacteroides thetaiotaomicron VPI-5482 and identification of functional residues. 3 Biotech 2018; 8:120. [PMID: 29430381 PMCID: PMC5805665 DOI: 10.1007/s13205-018-1139-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/29/2018] [Indexed: 11/27/2022] Open
Abstract
A putative glycoside hydrolase family 78 α-l-rhamnosidase BtRha78A from Bacteroides thetaiotaomicron VPI-5482 was heterologously over-expressed in Escherichia coli. Enzymatic properties of recombinant BtRha78A were characterized in detail. Recombinant BtRha78A might efficiently hydrolyze p-nitrophenyl α-l-rhamnopyranoside. BtRha78A displayed the highest activity at 60 °C in pH 6.5. BtRha78A exhibited a good pH stability and relatively high thermostability. BtRha78A could be tolerant of a low concentration of alcohols. These attractive advantages made it a promising alternative biocatalyst for industrial applications. The catalytic general acid Asp335 and general base Glu595 of BtRha78A were confirmed by site-directed mutagenesis. Alanine scanning mutagenesis based on sequence alignment and structural analysis revealed that the conserved residues Asp330, Arg334, Trp339, Asp342, Tyr383, Trp440, and His620 were crucial for enzyme catalysis. Most functional residues located at the conserved general acid motif (Asp330-Asp342) and were completely conserved in the subfamily I Rha78s.
Collapse
Affiliation(s)
- Binchun Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yaru Ji
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Yanqin Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| | - Guobin Ding
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006 China
| |
Collapse
|
26
|
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9:688-704. [DOI: 10.1039/c7fo01820g] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diet has shaped microbiota profiles through human evolution.
Collapse
Affiliation(s)
- T. Requena
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - M. C. Martínez-Cuesta
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| | - C. Peláez
- Department of Food Biotechnology and Microbiology
- Institute of Food Science Research
- 28049 Madrid
- Spain
| |
Collapse
|
27
|
Mueller M, Zartl B, Schleritzko A, Stenzl M, Viernstein H, Unger FM. Rhamnosidase activity of selected probiotics and their ability to hydrolyse flavonoid rhamnoglucosides. Bioprocess Biosyst Eng 2017; 41:221-228. [PMID: 29124335 PMCID: PMC5773629 DOI: 10.1007/s00449-017-1860-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 11/29/2022]
Abstract
Bioavailability of flavonoids is low, especially when occurring as rhamnoglucosides. Thus, the hydrolysis of rutin, hesperidin, naringin and a mixture of narcissin and rutin (from Cyrtosperma johnstonii) by 14 selected probiotics was tested. All strains showed rhamnosidase activity as shown using 4-nitrophenyl α-l-rhamnopyranoside as a substrate. Hesperidin was hydrolysed by 8–27% after 4 and up to 80% after 10 days and narcissin to 14–56% after 4 and 25–97% after 10 days. Rutin was hardly hydrolysed with a conversion rate ranging from 0 to 5% after 10 days. In the presence of narcissin, the hydrolysis of rutin was increased indicating that narcissin acts as an inducer. The rhamnosidase activity as well as the ability to hydrolyse flavonoid rhamnoglucosides was highly strain specific. Naringin was not hydrolysed by rhamnosidase from probiotics, not even by the purified recombinant enzyme, only by fungal rhamnosidase. In conclusion, rhamnosidases from the tested probiotics are substrate specific cleaving hesperidin, narcissin and to a small extent rutin, but not naringin.
Collapse
Affiliation(s)
- Monika Mueller
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Barbara Zartl
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Agnes Schleritzko
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Margit Stenzl
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Helmut Viernstein
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Frank M Unger
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
28
|
Zhu Y, Jia H, Xi M, Li J, Yang L, Li X. Characterization of a naringinase from Aspergillus oryzae 11250 and its application in the debitterization of orange juice. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, Flores-Sánchez F, Navarro-Garcia F, Serrano-Luna J, Shibayama M. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol 2017; 12:781-799. [PMID: 28608712 PMCID: PMC5619013 DOI: 10.2217/fmb-2016-0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
AIM The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. MATERIALS & METHODS Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. RESULTS A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. CONCLUSION Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Collapse
Affiliation(s)
- Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rosa Elena Cárdenas-Guerra
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Rossana Arroyo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Anjan Debnath
- Center for Discovery & Innovation in Parasitic Diseases, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Mario Alberto Rodríguez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Myrna Sabanero
- Department of Biology, University of Guanajuato, Noria Alta S/N, Noria Alta, Guanajuato 36050, Mexico
| | - Fernando Flores-Sánchez
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of the National Polytechnic Institute, Av IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
30
|
Genetic and biochemical characterization of an oligo-α-1,6-glucosidase from Lactobacillus plantarum. Int J Food Microbiol 2017; 246:32-39. [DOI: 10.1016/j.ijfoodmicro.2017.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/03/2016] [Accepted: 01/30/2017] [Indexed: 01/01/2023]
|
31
|
Matsumoto S, Yamada H, Kunishige Y, Takenaka S, Nakazawa M, Ueda M, Sakamoto T. Identification of a novel Penicillium chrysogenum rhamnogalacturonan rhamnohydrolase and the first report of a rhamnogalacturonan rhamnohydrolase gene. Enzyme Microb Technol 2017; 98:76-85. [DOI: 10.1016/j.enzmictec.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 01/29/2023]
|
32
|
Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu Rev Food Sci Technol 2017; 8:155-180. [PMID: 28125348 DOI: 10.1146/annurev-food-030216-025636] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review considers recent investigations on the bioavailability of anthocyanins and flavanones. Both flavonoids are significant dietary components and are considered to be poorly bioavailable, as only low levels of phase II metabolites appear in the circulatory system and are excreted in urine. However, when lower molecular weight phenolic and aromatic ring-fission catabolites, produced primarily by the action of the colonic microbiota, are taken into account, it is evident that anthocyanins and flavanones are much more bioavailable than previously envisaged. The metabolic events to which these flavonoids are subjected as they pass along the gastrointestinal tract and are absorbed into the circulatory system prior to their rapid elimination by renal excretion are highlighted. Studies on the impact of other food components and the probiotic intake on flavonoid bioavailability are summarized, as is the bioactivity of metabolites and catabolites assayed using a variety of in vitro model systems.
Collapse
Affiliation(s)
- Colin D Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina 28081
| | - Gema Pereira-Caro
- Andalusian Institute of Agricultural and Fishery Research and Training, IFAPA, Alameda del Obispo, 14004 Córdoba, Spain
| | - Iziar A Ludwig
- Department of Food Technology, Universitat de Lleida, 25198 Lleida, Spain
| | - Michael N Clifford
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 5XH, Surrey, United Kingdom
| | - Alan Crozier
- Department of Nutrition, University of California, Davis, California 95616-5270;
| |
Collapse
|
33
|
Zhu Y, Jia H, Xi M, Xu L, Wu S, Li X. Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids. Food Chem 2017; 214:39-46. [DOI: 10.1016/j.foodchem.2016.06.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
|
34
|
De Lise F, Mensitieri F, Tarallo V, Ventimiglia N, Vinciguerra R, Tramice A, Marchetti R, Pizzo E, Notomista E, Cafaro V, Molinaro A, Birolo L, Di Donato A, Izzo V. RHA-P: Isolation, expression and characterization of a bacterial α- l -rhamnosidase from Novosphingobium sp. PP1Y. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur J Nutr 2016; 57:231-242. [PMID: 27722779 DOI: 10.1007/s00394-016-1312-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Orange juice (OJ) flavanones undergo limited absorption in the upper gastrointestinal tract and reach the colon where they are transformed by the microbiota prior to absorption. This study investigated the ability of two probiotic bacteria, Bifidobacterium longum R0175 and Lactobacillus rhamnosus subsp. Rhamnosus NCTC 10302 to catabolise OJ flavanones. METHODS The bacteria were incubated with hesperetin-7-O-rutinoside, naringenin-7-O-rutinoside, hesperetin and naringenin, and the culture medium and intracellular cell extracts were collected at intervals over a 48 h of incubation period. The flavanones and their phenolic acid catabolites were identified and quantified by HPLC-HR-MS. RESULTS Both probiotics were able to subject hesperetin to ring fission yielding 3-(3'-hydroxy-4'-methoxyphenyl)propionic acid which was subsequently demethylated producing 3-(3',4'-dihydroxyphenyl)propionic acid and then via successive dehydroxylations converted to 3-(3'-hydroxyphenyl)propionic acid and 3-(phenyl)propionic acid. Incubation of both bacteria with naringenin resulted in its conversion to 3-(4'-hydroxyphenyl)propionic acid which underwent dehydroxylation yielding 3-(phenyl)propionic acid. In addition, only L. rhamnosus exhibited rhamnosidase and glucosidase activity and unlike B. longum, which was able to convert hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside to their respective aglycones. The aglycones were then subjected to ring fission and further catabolised in a similar manner to that described above. The flavanones and their catabolites were found in the culture medium but not accumulated in the bacterial cells. CONCLUSIONS These findings demonstrate the enzymatic potential of single strains of bifidobacterium and lactobacillus which may be involved in the colonic catabolism of OJ flavanones in vivo.
Collapse
|
36
|
Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol 2016; 57:178-86. [DOI: 10.1016/j.fm.2016.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
|
37
|
Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016; 7:216-34. [PMID: 26963713 PMCID: PMC4939924 DOI: 10.1080/19490976.2016.1158395] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
38
|
Low calorie sweeteners and gut microbiota. Physiol Behav 2016; 164:494-500. [PMID: 26992958 DOI: 10.1016/j.physbeh.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Studies dating back to 1980s, using bacterial cultures, have reported associations between low calorie sweeteners (LCS) and alterations in bacterial composition, raising the potential that LCS might exert effects on the host via interactions with gut microbiota. However, the results of a few recent studies carried out in this area have produced controversies. There is evidence that human fecal samples, used in most human microbiome studies, may provide a poor representation of microbial contents of the proximal intestine. Furthermore, fecal short chain fatty acid levels do not exemplify the amount of short chain fatty acids produced in the intestine. Short chain fatty acids are largely absorbed in the intestine by a tightly regulated mechanism. Here we present an exemplar study showing that the determination of the molecular mechanism(s) underlying the precise mode of action of a LCS on gut microbiota allows for rational and scientifically-based recommendations.
Collapse
|
39
|
Singh P, Sahota PP, Singh RK. Evaluation and characterization of new α-L-rhamnosidase-producing yeast strains. J GEN APPL MICROBIOL 2015; 61:149-56. [PMID: 26582283 DOI: 10.2323/jgam.61.149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A total of thirty yeast strains were isolated from a whey beverage and screened for α-L-rhamnosidase enzyme production. Of these, only four isolates were capable of producing the α-L-rhamnosidase enzyme by hydrolyzing naringin. Scanning electron microscopy images showed that the morphology of the yeast isolate (isolate No. 84) producing the greatest enzyme, changed from oval to filamentous in the presence of naringin. On the basis of morphological and molecular characterization (ITS sequencing), these four isolates were identified as Clavispora lusitaniae-84, Clavispora lusitaniae-B82, Candida sp.-86 and Candida hyderabadensis-S82). Fermentation parameters and the biochemical characterization of the α-L-rhamnosidase-producing yeast isolates were studied based on carbon substrate utilization profiles using BIOLOG phenotype microarray plates. Intra-species genetic diversity among the isolates was evaluated by whole genome analysis with repetitive DNA sequences (ERIC, REP and BOX) based DNA fingerprinting. On the basis of these results, it was found that these isolates of yeast producing L-rhamnosidase have a great potential application for beverage quality enhancement, and can build a strong foundation of α-L-rhamnosidase-producing yeast strains in the debittering of citrus juice.
Collapse
|
40
|
Blackman LM, Cullerne DP, Torreña P, Taylor J, Hardham AR. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 2015; 10:e0136899. [PMID: 26332397 PMCID: PMC4558045 DOI: 10.1371/journal.pone.0136899] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of β-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.
Collapse
Affiliation(s)
- Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- * E-mail:
| | - Darren P. Cullerne
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Pernelyn Torreña
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| | - Jen Taylor
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
41
|
Daly K, Darby AC, Hall N, Wilkinson MC, Pongchaikul P, Bravo D, Shirazi-Beechey SP. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus. Environ Microbiol 2015; 18:2159-71. [PMID: 26058469 DOI: 10.1111/1462-2920.12942] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 12/27/2022]
Abstract
Disruption in stable establishment of commensal gut microbiota by early weaning is an important factor in susceptibility of young animals to enteric disorders. The artificial sweetener SUCRAM [consisting of neohesperidin dihydrochalcone (NHDC) and saccharin] included in piglets' feed reduces incidence of enteric disease. Pyrosequencing of pig caecal 16S rRNA gene amplicons identified 25 major families encompassing seven bacterial classes with Bacteroidia, Clostridia and Bacilli dominating the microbiota. There were significant shifts in microbial composition in pigs maintained on a diet containing SUCRAM, establishing SUCRAM as a major influence driving bacterial community dynamics. The most notable change was a significant increase of Lactobacillaceae population abundance, almost entirely due to a single phylotype, designated Lactobacillus 4228. The sweetener-induced increase in Lactobacillaceae was observed in two different breeds of pigs signifying a general effect. We isolated Lactobacillus 4228, sequenced its genome and found it to be related to Lactobacillus amylovorus. In vitro analyses of Lactobacillus 4228 growth characteristics showed that presence of NHDC significantly reduces the lag phase of growth and enhances expression of specific sugar transporters, independently of NHDC metabolism. This study suggests that sensing of NHDC by a bacterial plasma membrane receptor underlies sweetener-induced growth of a health promoting gut bacterium.
Collapse
Affiliation(s)
- Kristian Daly
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Alistair C Darby
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Neil Hall
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark C Wilkinson
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Pisut Pongchaikul
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Soraya P Shirazi-Beechey
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
42
|
Pereira-Caro G, Oliver CM, Weerakkody R, Singh T, Conlon M, Borges G, Sanguansri L, Lockett T, Roberts SA, Crozier A, Augustin MA. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radic Biol Med 2015; 84:206-214. [PMID: 25801290 DOI: 10.1016/j.freeradbiomed.2015.03.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 11/18/2022]
Abstract
Orange juice (OJ) flavanones are bioactive polyphenols that are absorbed principally in the large intestine. Ingestion of probiotics has been associated with favorable changes in the colonic microflora. The present study examined the acute and chronic effects of orally administered Bifidobacterium longum R0175 on the colonic microflora and bioavailability of OJ flavanones in healthy volunteers. In an acute study volunteers drank OJ with and without the microencapsulated probiotic, whereas the chronic effects were examined when OJ was consumed after daily supplementation with the probiotic over 4 weeks. Bioavailability, assessed by 0-24h urinary excretion, was similar when OJ was consumed with and without acute probiotic intake. Hesperetin-O-glucuronides, naringenin-O-glucuronides, and hesperetin-3'-O-sulfate were the main urinary flavanone metabolites. The overall urinary excretion of these metabolites after OJ ingestion and acute probiotic intake corresponded to 22% of intake, whereas excretion of key colon-derived phenolic and aromatic acids was equivalent to 21% of the ingested OJ (poly)phenols. Acute OJ consumption after chronic probiotic intake over 4 weeks resulted in the excretion of 27% of flavanone intake, and excretion of selected phenolic acids also increased significantly to 43% of (poly)phenol intake, corresponding to an overall bioavailability of 70%. Neither the probiotic bacterial profiles of stools nor the stool moisture, weight, pH, or levels of short-chain fatty acids and phenols differed significantly between treatments. These findings highlight the positive effect of chronic, but not acute, intake of microencapsulated B. longum R0175 on the bioavailability of OJ flavanones.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Technology, Postharvest and Food Industry, IFAPA-Alameda del Obispo, Córdoba, Spain
| | | | | | - Tanoj Singh
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Michael Conlon
- CSIRO Food & Nutrition Flagship, Adelaide, SA, Australia
| | - Gina Borges
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | - Luz Sanguansri
- CSIRO Food & Nutrition Flagship, Werribee, VIC, Australia
| | - Trevor Lockett
- CSIRO Food & Nutrition Flagship, North Ryde, NSW, Australia
| | - Susan A Roberts
- Global Scientific and Regulatory Affairs, The Coca-Cola Company, Atlanta, GA 30313, USA
| | - Alan Crozier
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
43
|
Rabausch U, Ilmberger N, Streit W. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-l-rhamnosidases. J Biotechnol 2014; 191:38-45. [DOI: 10.1016/j.jbiotec.2014.04.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/23/2014] [Accepted: 04/28/2014] [Indexed: 11/26/2022]
|
44
|
Huynh NT, Van Camp J, Smagghe G, Raes K. Improved release and metabolism of flavonoids by steered fermentation processes: a review. Int J Mol Sci 2014; 15:19369-88. [PMID: 25347275 PMCID: PMC4264116 DOI: 10.3390/ijms151119369] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023] Open
Abstract
This paper provides an overview on steered fermentation processes to release phenolic compounds from plant-based matrices, as well as on their potential application to convert phenolic compounds into unique metabolites. The ability of fermentation to improve the yield and to change the profile of phenolic compounds is mainly due to the release of bound phenolic compounds, as a consequence of the degradation of the cell wall structure by microbial enzymes produced during fermentation. Moreover, the microbial metabolism of phenolic compounds results in a large array of new metabolites through different bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation, depending on the microbial strains and substrates used. A whole range of metabolites is produced, however metabolic pathways related to the formation and bioactivities, and often quantification of the metabolites are highly underinvestigated. This strategy could have potential to produce extracts with a high-added value from plant-based matrices.
Collapse
Affiliation(s)
- Nguyen Thai Huynh
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| | - John Van Camp
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University-Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium.
| |
Collapse
|
45
|
Liu JY, Yu HS, Feng B, Kang LP, Pang X, Xiong CQ, Zhao Y, Li CM, Zhang Y, Ma BP. Selective hydrolysis of flavonoid glycosides by Curvularia lunata. Chin J Nat Med 2014; 11:684-9. [PMID: 24345511 DOI: 10.1016/s1875-5364(13)60080-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Twelve flavonoid glycosides were involved in the biotransformation of the glycosyl moieties by Curvularia lunata 3.4381, and the products were analyzed by UPLC/PDA-Q-TOF-MS(E). Curvularia lunata displayed hydrolyzing activities on the terminal Rha or Glc units of some flavonoid glycosides. Terminal Rha with a 1 → 2 linkage of isorhamnetin-3-O-neohesperidoside and typhaneoside could be hydrolyzed by Curvularia lunata, but terminal Rha with a 1 → 6 linkage of rutin, typhaneoside, and quercetin-3-O-apiosyl-(1 → 2)-[rhamnosyl-(1 → 6)]-glucoside could not be hydrolyzed. Curvularia lunata could also hydrolyze the Glc of icariin, floramanoside B, and naringin. This is the first report of the hydrolysis of glycosyl units of flavonoid glycosides by Curvularia lunata. A new way to convert naringin to naringenin was found in this research.
Collapse
Affiliation(s)
- Jing-Yuan Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - He-Shui Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Bing Feng
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li-Ping Kang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Cheng-Qi Xiong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chun-Mei Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yi Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Bai-Ping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
46
|
Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.028] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
47
|
|
48
|
Rodionova IA, Li X, Thiel V, Stolyar S, Stanton K, Fredrickson JK, Bryant DA, Osterman AL, Best AA, Rodionov DA. Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria. Front Microbiol 2013; 4:407. [PMID: 24391637 PMCID: PMC3870299 DOI: 10.3389/fmicb.2013.00407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.
Collapse
Affiliation(s)
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA
| | - Sergey Stolyar
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | | | - James K Fredrickson
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | | | - Aaron A Best
- Department of Biology, Hope College Holland, MI, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA ; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
49
|
Rossi M, Amaretti A, Leonardi A, Raimondi S, Simone M, Quartieri A. Potential impact of probiotic consumption on the bioactivity of dietary phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9551-9558. [PMID: 24007212 DOI: 10.1021/jf402722m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many healthy phytochemicals occur in food in the form of esters, glycoconjugates, or polymers, which are not directly bioavailable. Probiotic lactobacilli and bifidobacteria, which have evolved within the colonic ecosystem where indigestible oligo- and polysaccharides are their sole carbon sources, bear several glycosyl-hydrolases and can contribute to release the aglycones from glycoconjugated phytochemicals. Among the glycosyl-hydrolases, β-glucosidases are the most pertinent, because many phytochemicals are glucoconjugates. β-Glucosidase-positive probiotic bacteria were proved to release the aglycones of isoflavones and lignans in vitro, but studies in vivo are scarce. A positive correlation between probiotic consumption and urinary and/or plasma levels of isoflavone or lignan metabolites was not established. However, the strains used in the trials were not validated for the enzymatic properties or for the ability to hydrolyze lignans or isoflavones. Thus, activation of specific phytochemicals by probiotic bacteria still needs substantial efforts to be proved.
Collapse
Affiliation(s)
- Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia , 41125 Modena, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Grandits M, Michlmayr H, Sygmund C, Oostenbrink C. Calculation of substrate binding affinities for a bacterial GH78 rhamnosidase through molecular dynamics simulations. ACTA ACUST UNITED AC 2013; 92:34-43. [PMID: 23914137 PMCID: PMC3663046 DOI: 10.1016/j.molcatb.2013.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/21/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
Structural model of rhamnosidase Ram2 of Pediococcus acidilactici. Calculated binding free energies of rutinose and p-NPR agree with experiments. Suggested binding poses of rutinose and p-NPR are distinctly different. Different binding poses of rutinose and p-NPR are supported by experiments. Active site residues are proposed for further mutagenesis studies
Ram2 from Pediococcus acidilactici is a rhamnosidase from the glycoside hydrolase family 78. It shows remarkable selectivity for rutinose rather than para-nitrophenyl-alpha-l-rhamnopyranoside (p-NPR). Molecular dynamics simulations were performed using a homology model of this enzyme, in complex with both substrates. Free energy calculations lead to predicted binding affinities of −34.4 and −30.6 kJ mol−1 respectively, agreeing well with an experimentally estimated relative free energy of 5.4 kJ mol−1. Further, the most relevant binding poses could be determined. While p-NPR preferably orients its rhamnose moiety toward the active site, rutinose interacts most strongly with its glucose moiety. A detailed hydrogen bond analysis confirms previously implicated residues in the active site (Asp217, Asp222, Trp226, Asp229 and Glu488) and quantifies the importance of individual residues for the binding. The most important amino acids are Asp229 and Phe339 which are involved in many interactions during the simulations. While Phe339 was observed in more simulations, Asp229 was involved in more persistent interactions (forming an average of at least 2 hydrogen bonds during the simulation). These analyses directly suggest mutations that could be used in a further experimental characterization of the enzyme. This study shows once more the strength of computer simulations to rationalize and guide experiments at an atomic level.
Collapse
Affiliation(s)
- Melanie Grandits
- Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|