1
|
Conaway A, Mould DL, Todorovic I, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. J Bacteriol 2025:e0018924. [PMID: 40366151 DOI: 10.1128/jb.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
The Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically distinct lineages. However, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings, including infections where they are associated with worse clinical outcomes. In LasR- strains, the LasR-regulated transcription factor RhlR can also be stimulated by the activity of the two-component system PhoR-PhoB in low-inorganic phosphate (Pi) conditions. Here, we demonstrate a novel link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and increases the Pi concentration necessary for PhoB inhibition. PhoB activity was also less sensitive to repression by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for QS-induced phenazine production, suggesting that decreased phenazine production is one reason for increased PhoB activity in LasR- strains. In addition, the CbrA-CbrB two-component system, which can be more active in LasR- strains, was necessary for increased PhoB activity in LasR- strains, and loss of the CbrA-CbrB-controlled translational repressor Crc was sufficient to activate PhoB in LasR+ P. aeruginosa. Phenazines and CbrA-CbrB affected PhoB activity independently. The ∆lasR mutant also had PhoB-dependent growth advantages in the Pi-deplete medium and increased virulence-associated gene expression at physiological Pi, in part through reactivation of QS. This work suggests PhoR-PhoB activity may contribute to the fitness and virulence of LasR- P. aeruginosa and subsequent clinical outcomes.IMPORTANCELoss-of-function mutations in the gene encoding the Pseudomonas aeruginosa quorum sensing (QS) regulator LasR occur frequently and are associated with worse clinical outcomes. We have found that LasR- P. aeruginosa have elevated PhoB activity at physiological concentrations of inorganic phosphate (Pi). PhoB activity promotes Pi acquisition as well as the expression of QS and virulence-associated genes. Previous work has shown that PhoB induces RhlR, another QS regulator, in a LasR- mutant in low-Pi conditions. Here, we demonstrate a novel relationship wherein LasR represses PhoB activity through the production of phenazines and Crc-mediated translational repression. This work suggests PhoB activity may contribute to the increased virulence of LasR- P. aeruginosa.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Dallas L Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Treinen C, Peternell C, Noll P, Magosch O, Hausmann R, Henkel M. Molecular process control for industrial biotechnology. Trends Biotechnol 2025:S0167-7799(25)00130-1. [PMID: 40335343 DOI: 10.1016/j.tibtech.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
The development of sustainable and economically competitive biotechnological processes is a central challenge of modern industrial biotechnology. Conventional strategies such as macroscopic and molecular bioprocess design are often insufficient to exploit their full potential. To circumvent this, molecular process control provides the missing link to further consolidate various optimization strategies to achieve multilayered process design. This review highlights the molecular mechanisms that can be exploited for molecular process control. These can either be endogenous or specifically implemented into the organism, and comprise regulatory mechanisms at the transcriptional, translational, and system levels. In addition to serving as a design tool to enhance existing bioprocesses, molecular process control is the gateway to biotechnological advances that will extend the boundaries of future process design.
Collapse
Affiliation(s)
- Chantal Treinen
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Christina Peternell
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Philipp Noll
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany
| | - Olivia Magosch
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150k), Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Strasse 4, 85354 Freising, Germany.
| |
Collapse
|
3
|
Dzalamidze E, Gorzynski M, Vande Voorde R, Nelson D, Danelishvili L. Discovery of Biofilm-Inhibiting Compounds to Enhance Antibiotic Effectiveness Against M. abscessus Infections. Pharmaceuticals (Basel) 2025; 18:225. [PMID: 40006039 PMCID: PMC11859778 DOI: 10.3390/ph18020225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Mycobacterium abscessus (MAB) is a highly resilient pathogen that causes difficult-to-treat pulmonary infections, particularly in individuals with cystic fibrosis (CF) and other underlying conditions. Its ability to form robust biofilms within the CF lung environment is a major factor contributing to its resistance to antibiotics and evasion of the host immune response, making conventional treatments largely ineffective. These biofilms, encased in an extracellular matrix, enhance drug tolerance and facilitate metabolic adaptations in hypoxic conditions, driving the bacteria into a persistent, non-replicative state that further exacerbates antimicrobial resistance. Treatment options remain limited, with multidrug regimens showing low success rates, highlighting the urgent need for more effective therapeutic strategies. Methods: In this study, we employed artificial sputum media to simulate the CF lung environment and conducted high-throughput screening of 24,000 compounds from diverse chemical libraries to identify inhibitors of MAB biofilm formation, using the Crystal Violet (CV) assay. Results: The screen established 17 hits with ≥30% biofilm inhibitory activity in mycobacteria. Six of these compounds inhibited MAB biofilm formation by over 60%, disrupted established biofilms by ≥40%, and significantly impaired bacterial viability within the biofilms, as confirmed by reduced CFU counts. In conformational assays, select compounds showed potent inhibitory activity in biofilms formed by clinical isolates of both MAB and Mycobacterium avium subsp. hominissuis (MAH). Key compounds, including ethacridine, phenothiazine, and fluorene derivatives, demonstrated potent activity against pre- and post-biofilm conditions, enhanced antibiotic efficacy, and reduced intracellular bacterial loads in macrophages. Conclusions: This study results underscore the potential of these compounds to target biofilm-associated resistance mechanisms, making them valuable candidates for use as adjuncts to existing therapies. These findings also emphasize the need for further investigations, including the initiation of a medicinal chemistry campaign to leverage structure-activity relationship studies and optimize the biological activity of these underexplored class of compounds against nontuberculous mycobacterial (NTM) strains.
Collapse
Affiliation(s)
- Elizaveta Dzalamidze
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Mylene Gorzynski
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Rebecca Vande Voorde
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Lomri N, Hulen C. Effects of Several Bile Acids on the Production of Virulence Factors by Pseudomonas aeruginosa. Life (Basel) 2024; 14:1676. [PMID: 39768382 PMCID: PMC11728048 DOI: 10.3390/life14121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
The presence of bile acids in the cystic fibrosis patient's lungs contributes to an increase in the inflammatory response, in the dominance of pathogens, as well as in the decline in lung function, increasing morbidity. The aim of this study is to determine the effects of exposure of Pseudomonas aeruginosa to primary and secondary bile acids on the production of several virulence factors which are involved in its pathogenic power. The presence of bile acids in the bacterial culture medium had no effect on growth up to a concentration of 1 mM. However, a slight decrease in the adhesion index as well as a reduction in the virulence of the bacteria on the HT29 cell line could be observed. In this model, exposure of P. aeruginosa to bile acids showed a significant decrease in the production of LasB and AprA proteases due to the reduction in the expression of their genes. A decrease in pyocyanin production was also observed in relation to the effects of bile acids on the quorum sensing regulators. In order to have an effect on gene expression, it is necessary for bile acids to enter the bacteria. P. aeruginosa harbors two potential homologs of the eukaryotic genes encoding the bile acid transporters NTCP1 and NTCP2 that are expressed in hepatocytes and enterocytes, respectively. By carrying out a comparative BLAST-P between the amino acid sequences of the PAO1 proteins and those of NTCP1 and NTCP2, we identified the products of the PA1650 and PA3264 genes as the unique homologs of the two eukaryotic genes. Exposure of the mutant in the PA1650 gene to chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) showed a less significant effect on pyocyanin production than with the isogenic PAO1 strain. Also, no effect of CDCA on the PA3264 gene mutant was observed. This result indicated that CDCA should enter the bacteria by the transporter produced by this gene. The entry of LCA into bacteria seemed more complex and rather responded to a multifactorial system involving the product of the PA1650 gene but also the products of other genes encoding potential transporters.
Collapse
Affiliation(s)
- Noureddine Lomri
- Bacterial Communication and Antimicrobial Strategies Research Unit, University of Rouen Normandy, IUT, 55 Rue Saint Germain, 27000 Evreux, France;
| | | |
Collapse
|
5
|
Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog 2024; 193:106743. [PMID: 38879138 DOI: 10.1016/j.micpath.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 μg/mL at a rhamnolipid concentration of 1000 μg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 μg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Ayesha Firdose
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Asif Mohd Sukri
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Noramiza Sabturani
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Wan Syaidatul Aqma
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Kamer AMA, El Maghraby GM, Shafik MM, Al-Madboly LA. Silver nanoparticle with potential antimicrobial and antibiofilm efficiency against multiple drug resistant, extensive drug resistant Pseudomonas aeruginosa clinical isolates. BMC Microbiol 2024; 24:277. [PMID: 39060955 PMCID: PMC11282727 DOI: 10.1186/s12866-024-03397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The study aims to investigate the effect of combining silver nanoparticles (AGNPs) with different antibiotics on multi-drug resistant (MDR) and extensively drug resistant (XDR) isolates of Pseudomonas aeruginosa (P. aeruginosa) and to investigate the mechanism of action of AGNPs. METHODS AGNPs were prepared by reduction of silver nitrate using trisodium citrate and were characterized by transmission electron microscope (TEM) in addition to an assessment of cytotoxicity. Clinical isolates of P. aeruginosa were collected, and antimicrobial susceptibility was conducted. Multiple Antibiotic Resistance (MAR) index was calculated, and bacteria were categorized as MDR or XDR. Minimum inhibitory concentration (MIC) of gentamicin, ciprofloxacin, ceftazidime, and AGNPs were determined. The mechanism of action of AGNPs was researched by evaluating their effect on biofilm formation, swarming motility, protease, gelatinase, and pyocyanin production. Real-time PCR was performed to investigate the effect on the expression of genes encoding various virulence factors. RESULTS TEM revealed the spherical shape of AGNPs with an average particle size of 10.84 ± 4.64 nm. AGNPS were safe, as indicated by IC50 (42.5 µg /ml). The greatest incidence of resistance was shown against ciprofloxacin which accounted for 43% of the bacterial isolates. Heterogonous resistance patterns were shown in 63 isolates out of the tested 107. The MAR indices ranged from 0.077 to 0.84. Out of 63 P. aeruginosa isolates, 12 and 13 were MDR and XDR, respectively. The MIC values of AGNPs ranged from 2.65 to 21.25 µg /ml. Combination of AGNPs with antibiotics reduced their MIC by 5-9, 2-9, and 3-10Fold in the case of gentamicin, ceftazidime, and ciprofloxacin, respectively, with synergism being evident. AGNPs produced significant inhibition of biofilm formation and decreased swarming motility, protease, gelatinase and pyocyanin production. PCR confirmed the finding, as shown by decreased expression of genes encoding various virulence factors. CONCLUSION AGNPs augment gentamicin, ceftazidime, and ciprofloxacin against MDR and XDR Pseudomonas isolates. The efficacy of AGNPs can be attributed to their effect on the virulence factors of P. aeruginosa. The combination of AGNPs with antibiotics is a promising strategy to attack resistant isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maha Mohamed Shafik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt
| |
Collapse
|
7
|
Sosa-Fajardo A, Díaz-Muñoz C, Van der Veken D, Pradal I, Verce M, Weckx S, Leroy F. Genomic exploration of the fermented meat isolate Staphylococcus shinii IMDO-S216 with a focus on competitiveness-enhancing secondary metabolites. BMC Genomics 2024; 25:575. [PMID: 38849728 PMCID: PMC11161930 DOI: 10.1186/s12864-024-10490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Staphylococcus shinii appears as an umbrella species encompassing several strains of Staphylococcus pseudoxylosus and Staphylococcus xylosus. Given its phylogenetic closeness to S. xylosus, S. shinii can be found in similar ecological niches, including the microbiota of fermented meats where the species may contribute to colour and flavour development. In addition to these conventional functionalities, a biopreservation potential based on the production of antagonistic compounds may be available. Such potential, however, remains largely unexplored in contrast to the large body of research that is available on the biopreservative properties of lactic acid bacteria. The present study outlines the exploration of the genetic basis of competitiveness and antimicrobial activity of a fermented meat isolate, S. shinii IMDO-S216. To this end, its genome was sequenced, de novo assembled, and annotated. RESULTS The genome contained a single circular chromosome and eight plasmid replicons. Focus of the genomic exploration was on secondary metabolite biosynthetic gene clusters coding for ribosomally synthesized and posttranslationally modified peptides. One complete cluster was coding for a bacteriocin, namely lactococcin 972; the genes coding for the pre-bacteriocin, the ATP-binding cassette transporter, and the immunity protein were also identified. Five other complete clusters were identified, possibly functioning as competitiveness factors. These clusters were found to be involved in various responses such as membrane fluidity, iron intake from the medium, a quorum sensing system, and decreased sensitivity to antimicrobial peptides and competing microorganisms. The presence of these clusters was equally studied among a selection of multiple Staphylococcus species to assess their prevalence in closely-related organisms. CONCLUSIONS Such factors possibly translate in an improved adaptation and competitiveness of S. shinii IMDO-S216 which are, in turn, likely to improve its fitness in a fermented meat matrix.
Collapse
Affiliation(s)
- Ana Sosa-Fajardo
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Van der Veken
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
8
|
Alipour-Khezri E, Moqadami A, Barzegar A, Mahdavi M, Skurnik M, Zarrini G. Bacteriophages and Green Synthesized Zinc Oxide Nanoparticles in Combination Are Efficient against Biofilm Formation of Pseudomonas aeruginosa. Viruses 2024; 16:897. [PMID: 38932188 PMCID: PMC11209622 DOI: 10.3390/v16060897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages (phages) are viruses that infect the bacteria within which their reproduction cycle takes place, a process that ends in the lysis and death of the bacterial cell. Some phages are also able to destroy bacterial biofilms. Due to increased antibiotics resistance, Pseudomonas aeruginosa, another biofilm-forming pathogen, is a problem in many parts of the world. Zinc oxide (ZnO) and other metal nanoparticles (NPs) are biologically active and also possess anti-biofilm properties. ZnO-NPs were prepared by the green synthesis method using orange peels. The vibrational peaks of the ZnO-NPs were analyzed using FTIR analysis, and their size and morphological properties were determined using scanning electron microscopy (SEM). The ability of the ZnO-NPs to reduce or eliminate P. aeruginosa biofilm alone or in combination with phages PB10 and PA19 was investigated. The P. aeruginosa cells were effectively killed in the preformed 48 h biofilms during a 24 h incubation with the ZnO-NP-phage combination, in comparison with the control or ZnO-NPs alone. The treatments on growing biofilms were most efficient in the final stages of biofilm development. All five treatment groups showed a significant biofilm reduction compared to the control group (p < 0.0001) at 48 h of incubation. The influence of the ZnO-NPs and phages on the quorum sensing system of P. aeruginosa was monitored by quantitative real-time PCR (qRT-PCR) of the autoinducer biosynthesis gene lasI. While the ZnO-NPs repressed the lasI gene transcription, the phages slightly activated it at 24 and 48 h of incubation. Also, the effect of the ZnO-NPs and phage PA19 on the viability of HFF2 cells was investigated and the results showed that the combination of NPs with PA19 reduced the toxic effect of ZnO-NPs and also stimulated the growth in normal cells.
Collapse
Affiliation(s)
- Elaheh Alipour-Khezri
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Amin Moqadami
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Abolfazl Barzegar
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mikael Skurnik
- Human Microbiome Research Program, and Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Gholamreza Zarrini
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran; (E.A.-K.); (A.M.); (A.B.)
- Microbial Biotechnology Research Group, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
9
|
Conaway A, Todorovic I, Mould DL, Hogan DA. Loss of LasR function leads to decreased repression of Pseudomonas aeruginosa PhoB activity at physiological phosphate concentrations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586856. [PMID: 38585852 PMCID: PMC10996656 DOI: 10.1101/2024.03.27.586856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
While the Pseudomonas aeruginosa LasR transcription factor plays a role in quorum sensing (QS) across phylogenetically-distinct lineages, isolates with loss-of-function mutations in lasR (LasR- strains) are commonly found in diverse settings including infections where they are associated with worse clinical outcomes. In LasR- strains, the transcription factor RhlR, which is controlled by LasR, can be alternately activated in low inorganic phosphate (Pi) concentrations via the two-component system PhoR-PhoB. Here, we demonstrate a new link between LasR and PhoB in which the absence of LasR increases PhoB activity at physiological Pi concentrations and raises the Pi concentration necessary for PhoB inhibition. PhoB activity was also less repressed by Pi in mutants lacking different QS regulators (RhlR and PqsR) and in mutants lacking genes required for the production of QS-regulated phenazines suggesting that decreased phenazine production was one reason for decreased PhoB repression by Pi in LasR- strains. In addition, the CbrA-CbrB two-component system, which is elevated in LasR- strains, was necessary for reduced PhoB repression by Pi and a Δcrc mutant, which lacks the CbrA-CbrB-controlled translational repressor, activated PhoB at higher Pi concentrations than the wild type. The ΔlasR mutant had a PhoB-dependent growth advantage in a medium with no added Pi and increased virulence-determinant gene expression in a medium with physiological Pi, in part through reactivation of QS. This work suggests PhoB activity may contribute to the virulence of LasR- P. aeruginosa and subsequent clinical outcomes.
Collapse
Affiliation(s)
- Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Igor Todorovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|
10
|
Padaga SG, Ch S, Paul M, Wable BD, Ghosh B, Biswas S. Chitosan oligosaccharide/pluronic F127 micelles exhibiting anti-biofilm effect to treat bacterial keratitis. Carbohydr Polym 2024; 330:121818. [PMID: 38368100 DOI: 10.1016/j.carbpol.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Mono or dual chitosan oligosaccharide lactate (COL)-conjugated pluronic F127 polymers, FCOL1 and FCOL2 were prepared, self-assembled to form micelles, and loaded with gatifloxacin. The Gati@FCOL1/Gati@FCOL2 micelles preparation process was optimized by QbD analysis. Micelles were characterized thoroughly for size, CMC, drug compatibility, and viscosity by GPC, DLS, SEM, IR, DSC, and XRD. The micelles exhibited good cellular uptake in both monolayers and spheroids of HCEC. The antibacterial and anti-biofilm activities of the micelles were evaluated on P. aeruginosa and S. aureus. The anti-quorum sensing activity was explored in P. aeruginosa by analyzing micelles' ability to produce virulence factors, including AHLs, pyocyanin, and the motility behavior of the organism. Gati@FCOL2 Ms was mucoadhesive, cornea-penetrant, antibacterial, and inhibited the biofilm formation by P. aeruginosa and S. aureus significantly more than Gati@FCOL1. A significant reduction in bacterial load in mice cornea was observed after Gati@FCOL2 Ms-treatment to the P. aeruginosa-induced bacterial keratitis-infected mice.
Collapse
Affiliation(s)
- Sri Ganga Padaga
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Sanjay Ch
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Bhavika Deepak Wable
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
11
|
Krueger J, Preusse M, Oswaldo Gomez N, Frommeyer YN, Doberenz S, Lorenz A, Kordes A, Grobe S, Müsken M, Depledge DP, Svensson SL, Weiss S, Kaever V, Pich A, Sharma CM, Ignatova Z, Häussler S. tRNA epitranscriptome determines pathogenicity of the opportunistic pathogen Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2312874121. [PMID: 38451943 PMCID: PMC10945773 DOI: 10.1073/pnas.2312874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 03/09/2024] Open
Abstract
The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen Pseudomonas aeruginosa. We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnm5U34) of the anticodon drives translation of transcripts containing rare codons. Specifically, in P. aeruginosa the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.
Collapse
Affiliation(s)
- Jonas Krueger
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Sebastian Doberenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
| | - Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
| | - Adrian Kordes
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
| | - Svenja Grobe
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Daniel P. Depledge
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Institute of Virology, Hannover Medical School, Hannover30625, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover30625, Germany
| | - Sarah L. Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover, Hannover30625, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover 30625, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute for Toxicology, Hannover Medical School, Hannover30625, Germany
| | - Cynthia M. Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg97080, Germany
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University Hamburg, 20146, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research (TWINCORE), a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover30625, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, 38124Braunschweig, Germany
- Cluster of Excellence “Resolving Infection susceptibility” (RESIST), Hannover Medical School, Hannover30625, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital—Rigshospitalet, Copenhagen2100, Denmark
| |
Collapse
|
12
|
Li Y, Tao S, Liang Y. Time-Course Responses of Apple Leaf Endophytes to the Infection of Gymnosporangium yamadae. J Fungi (Basel) 2024; 10:128. [PMID: 38392801 PMCID: PMC10890309 DOI: 10.3390/jof10020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Apple rust, caused by Gymnosporangium yamadae, poses a significant challenge to apple production. Prior studies have underscored the pivotal role played by endophytic microbial communities, intimately linked with the host, in influencing plant diseases and their pathogenic outcomes. The objective of this study is to scrutinize alternations in endophytic microbial communities within apple leaves at different stages of apple rust using high-throughput sequencing technology. The findings revealed a discernible pattern characterized by an initial increase and subsequent decrease in the alpha diversity of microbial communities in diseased leaves. A microbial co-occurrence network analysis revealed that the complexity of the bacterial community in diseased leaves diminished initially and then rebounded during the progression of the disease. Additionally, employing the PICRUSt2 platform, this study provided preliminary insights into the functions of microbial communities at specific disease timepoints. During the spermogonial stage, endophytic bacteria particularly exhibited heightened activity in genetic information processing, metabolism, and environmental information processing pathways. Endophytic fungi also significantly enriched a large number of metabolic pathways during the spermogonial stage and aecial stage, exhibiting abnormally active life activities. These findings establish a foundation for comprehending the role of host endophytes in the interaction between pathogens and hosts. Furthermore, they offer valuable insights for the development and exploitation of plant endophytic resources, thereby contributing to enhanced strategies for managing apple rust.
Collapse
Affiliation(s)
- Yunfan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan 518000, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Joshi D, Shah S, Chbib C, Uddin MN. Potential of DPD ((S)-4,5-dihydroxy-2,3-pentanedione) Analogs in Microparticulate Formulation as Vaccine Adjuvants. Pharmaceuticals (Basel) 2024; 17:184. [PMID: 38399399 PMCID: PMC10891675 DOI: 10.3390/ph17020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD) is produced by many different species of bacteria and is involved in bacterial communication. DPD is the precursor of signal molecule autoinducer-2 (AI-2) and has high potential to be used as a vaccine adjuvant. Vaccine adjuvants are compounds that enhance the stability and immunogenicity of vaccine antigens, modulate efficacy, and increase the immune response to a particular antigen. Previously, the microparticulate form of (S)-DPD was found to have an adjuvant effect with the gonorrhea vaccine. In this study, we evaluated the immunogenicity and adjuvanticity of several synthetic analogs of the (S)-DPD molecule, including ent-DPD((R)-4,5-dihydroxy-2,3-pentanedione), n-butyl-DPD ((S)-1,2-dihydroxy-3,4-octanedione), isobutyl-DPD ((S)-1,2-dihydroxy-6-methyl-3,4-heptanedione), n-hexyl-DPD ((S)-1,2-dihydroxy-3,4-decanedione), and phenyl-DPD ((S)-3,4-dihydroxy-1-phenyl-1,2-butanedione), in microparticulate formulations. The microparticulate formulations of all analogs of (S)-DPD were found to be noncytotoxic toward dendritic cells. Among these analogs, ent-DPD, n-butyl-DPD, and isobutyl-DPD were found to be immunogenic toward antigens and showed adjuvant efficacy with microparticulate gonorrhea vaccines. It was observed that n-hexyl-DPD and phenyl-DPD did not show any adjuvant effect. This study shows that synthetic analogs of (S)-DPD molecules are capable of eliciting adjuvant effects with vaccines. A future in vivo evaluation will further confirm that these analogs are promising vaccine adjuvants.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Sarthak Shah
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| | - Christiane Chbib
- College of Pharmacy, Larkin University, 18301 N Miami Ave, Miami, FL 33169, USA;
| | - Mohammad N. Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (D.J.); (S.S.)
| |
Collapse
|
14
|
Mirpour M, Zahmatkesh H. Ketoprofen attenuates Las/Rhl quorum-sensing (QS) systems of Pseudomonas aeruginosa: molecular and docking studies. Mol Biol Rep 2024; 51:133. [PMID: 38236445 DOI: 10.1007/s11033-023-09071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Quorum sensing (QS) is the leading cause of persistent infections and recalcitrance to antibiotic treatment of Pseudomonas aeruginosa. Hence, QS inhibitors are promising agents for the potential treatment of P. aeruginosa infections. METHODS AND RESULTS Herein, the reducing effect of ketoprofen on virulence factors production including protease, hemolysin, pyocyanin, hydrogen cyanide, biofilm, and motility of P. aeruginosa strains was investigated. Furthermore, the quorum quenching activity of ketoprofen at the molecular level was examined by real-time PCR assessment. Our results showed that ketoprofen significantly attenuates virulence factors and biofilm formation in P. aeruginosa strains. Moreover, ketoprofen down-regulated the expression of lasI, lasR, rhlI, and rhlR genes, by 35-47, 22-48, 34-67, and 43-56%, respectively. As well, molecular docking simulation showed a high binding affinity of ketoprofen with QS regulatory proteins. CONCLUSIONS Consequently, this study confirmed the quorum quenching activity of ketoprofen, which could be employed as a useful agent for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Mirsasan Mirpour
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Hossein Zahmatkesh
- Department of Microbiology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
15
|
Khosakueng M, Taweechaisupapong S, Boonyanugomol W, Prapatpong P, Wongkaewkhiaw S, Kanthawong S. Cymbopogon citratus L. essential oil as a potential anti-biofilm agent active against antibiotic-resistant bacteria isolated from chronic rhinosinusitis patients. BIOFOULING 2024; 40:26-39. [PMID: 38286789 DOI: 10.1080/08927014.2024.2305387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024]
Abstract
Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (Cymbopogon citratus L.) EO showed the most effective antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased P. aeruginosa swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.
Collapse
Affiliation(s)
- Mintra Khosakueng
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Wongwarut Boonyanugomol
- Department of Medical Science, Amnatcharoen Campus, Mahidol University, Amnatcharoen, Thailand
| | - Pornpan Prapatpong
- Department of Public Health, Amnatcharoen Campus, Mahidol University, Amnatcharoen, Thailand
| | - Saharut Wongkaewkhiaw
- School of Dentistry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
16
|
Peng B, Li Y, Yin J, Ding W, Fazuo W, Xiao Z, Yin H. A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions. Front Microbiol 2023; 14:1297843. [PMID: 38098670 PMCID: PMC10720721 DOI: 10.3389/fmicb.2023.1297843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Background Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wang Fazuo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
17
|
Alghamdi S, Khandelwal K, Pandit S, Roy A, Ray S, Alsaiari AA, Aljuaid A, Almehmadi M, Allahyani M, Sharma R, Anand J, Alshareef AA. Application of nanomaterials as potential quorum quenchers for disease: Recent advances and challenges. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:13-31. [PMID: 37666284 DOI: 10.1016/j.pbiomolbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/30/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Chemical signal molecules are used by bacteria to interact with one another. Small hormone-like molecules known as autoinducers are produced, released, detected, and responded to during chemical communication. Quorum Sensing (QS) is the word for this procedure; it allows bacterial populations to communicate and coordinate group behavior. Several research has been conducted on using inhibitors to prevent QS and minimize the detrimental consequences. Through the enzymatic breakdown of the autoinducer component, by preventing the formation of autoinducers, or by blocking their reception by adding some compounds (inhibitors) that can mimic the autoinducers, a technique known as "quorum quenching" (QQ) disrupts microbial communication. Numerous techniques, including colorimetry, electrochemistry, bioluminescence, chemiluminescence, fluorescence, chromatography-mass spectroscopy, and many more, can be used to test QS/QQ. They all permit quantitative and qualitative measurements of QS/QQ molecules. The mechanism of QS and QQ, as well as the use of QQ in the prevention of biofilms, are all elaborated upon in this writing, along with the fundamental study of nanoparticle (NP)in QQ. Q.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Krisha Khandelwal
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering & Technology, Sharda University, Greater Noida, India.
| | - Subhasree Ray
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University Greater Noida, India
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Jigisha Anand
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Ahmad Adnan Alshareef
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
18
|
Raman V, Deshpande CP, Khanduja S, Howell LM, Van Dessel N, Forbes NS. Build-a-bug workshop: Using microbial-host interactions and synthetic biology tools to create cancer therapies. Cell Host Microbe 2023; 31:1574-1592. [PMID: 37827116 DOI: 10.1016/j.chom.2023.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Many systemically administered cancer therapies exhibit dose-limiting toxicities that reduce their effectiveness. To increase efficacy, bacterial delivery platforms have been developed that improve safety and prolong treatment. Bacteria are a unique class of therapy that selectively colonizes most solid tumors. As delivery vehicles, bacteria have been genetically modified to express a range of therapies that match multiple cancer indications. In this review, we describe a modular "build-a-bug" method that focuses on five design characteristics: bacterial strain (chassis), therapeutic compound, delivery method, immune-modulating features, and genetic control circuits. We emphasize how fundamental research into gut microbe pathogenesis has created safe bacterial therapies, some of which have entered clinical trials. The genomes of gut microbes are fertile grounds for discovery of components to improve delivery and modulate host immune responses. Future work coupling these delivery vehicles with insights from gut microbes could lead to the next generation of microbial cancer therapy.
Collapse
Affiliation(s)
- Vishnu Raman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Ernest Pharmaceuticals, LLC, Hadley, MA, USA
| | - Chinmay P Deshpande
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Shradha Khanduja
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA
| | | | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, MA, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, Amherst, MA, USA; Institute for Applied Life Science, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
19
|
Jaramillo-Jaramillo AS, Coulson TJD, Hofacre C, Jones M, O'Neill L, Nguyen N, Labbe A. Effect of in-water administration of quorum system inhibitors in broilers' productive performance and intestinal microbiome in a mild necrotic enteritis challenge. Avian Pathol 2023; 52:309-322. [PMID: 37485826 DOI: 10.1080/03079457.2023.2224260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
The poultry industry has been facing the impact of necrotic enteritis (NE), a disease caused by the bacterium Clostridium perfringens producing the haemolytic toxin NetB. NE severity may vary from mild clinical to prominent enteric signs causing reduced growth rates and affecting feed conversion ratio. NetB production is controlled by the Agr-like quorum-sensing (QS) system, which coordinates virulence gene expression in response to bacterial cell density. In this study, the peptide-containing cell-free spent media (CFSM) from Enterococcus faecium was tested in NE challenged broilers in two battery cage and one floor pen studies. Results showed a significant reduction of NE mortality. Metagenomic sequencing of the jejunum microbiome revealed no impact of the CFSM on the microbial community, and growth of C. perfringens was unaffected by CFSM in vitro. The expression of QS-controlled virulence genes netB, plc and pfoA was found to be significantly repressed by CFSM during the mid-logarithmic stage of C. perfringens growth and this corresponded with a significant decrease in haemolytic activity. Purified fractions of CFSM containing bioactive peptides were found to cause reduced haemolysis. These results showed that bioactive peptides reduce NE mortality in broilers by interfering with the QS system of C. perfringens and reducing bacterial virulence. Furthermore, the microbiome of C. perfringens-challenged broilers is not affected by quorum sensing inhibitor containing CFSM.
Collapse
Affiliation(s)
| | | | - C Hofacre
- Southern Poultry Research Group, Inc., Watkinsville, GA, USA
| | - M Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA, USA
| | - L O'Neill
- MicroSintesis Inc., Victoria, P.E.I. Canada
| | - N Nguyen
- MicroSintesis Inc., Victoria, P.E.I. Canada
| | - A Labbe
- MicroSintesis Inc., Victoria, P.E.I. Canada
| |
Collapse
|
20
|
Rajasekaran J, Viswanathan P. Anti-bacterial and antibiofilm properties of seaweed polysaccharide-based nanoparticles. AQUACULTURE INTERNATIONAL 2023; 31:2799-2823. [DOI: 10.1007/s10499-023-01111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 12/19/2024]
|
21
|
Noori HG, Tadjrobehkar O, Moazamian E. Biofilm stimulating activity of solanidine and Solasodine in Pseudomonas aeruginosa. BMC Microbiol 2023; 23:208. [PMID: 37533040 PMCID: PMC10394856 DOI: 10.1186/s12866-023-02957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Biofilm formation has reported as an important virulence associated properties of Pseudomonas aeruginosa that is regulated by quorum-sensing associated genes. Biofilm and quorum-sensing interfering properties of steroidal alkaloids, Solanidine and Solasodine were investigated in the present study. RESULTS Biofilm formation capacity and relative expression level of five studied genes(lasI, lasR, rhlI, rhlR and algD) were significantly increased dose-dependently after treatment with sub-inhibitory concentrations (32 and 512 µg/ml) of the both Solanidine and Solasodine. Biofilm formation capacity was more stimulated in weak biofilm formers(9 iaolates) in comparison to the strong biofilm producers(11 isolates). The lasI gene was the most induced QS-associated gene among five investigated genes. CONCLUSION Biofilm inducing properties of the plants alkaloids and probably medicines derived from them has to be considered for revision of therapeutic guidelines. Investigating the biofilm stimulating properties of corticosteroids and other medicines that comes from plant alkaloids also strongly proposed.
Collapse
Affiliation(s)
- Hadi Ghoomdost Noori
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Omid Tadjrobehkar
- Department of Medical Microbiology (Bacteriology and Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
22
|
Mauritzen JJ, Søndberg E, Kalatzis PG, Roager L, Gram L, Svenningsen SL, Middelboe M. Strain-specific quorum-sensing responses determine virulence properties in Vibrio anguillarum. Environ Microbiol 2023; 25:1344-1362. [PMID: 36807464 DOI: 10.1111/1462-2920.16356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Bacterial populations communicate using quorum-sensing (QS) molecules and switch on QS regulation to engage in coordinated behaviour such as biofilm formation or virulence. The marine fish pathogen Vibrio anguillarum harbours several QS systems, and our understanding of its QS regulation is still fragmentary. Here, we identify the VanT-QS regulon and explore the diversity and trajectory of traits under QS regulation in Vibrio anguillarum through comparative transcriptomics of two wildtype strains and their corresponding mutants artificially locked in QS-on (ΔvanO) or QS-off (ΔvanT) states. Intriguingly, the two wildtype populations showed different QS responses to cell density changes and operated primarily in the QS-on and QS-off spectrum, respectively. Examining 27 V. anguillarum strains revealed that ~11% were QS-negative, and GFP-reporter measurements of nine QS-positive strains revealed a highly strain-specific nature of the QS responses. We showed that QS controls a plethora of genes involved in processes such as central metabolism, biofilm formation, competence, T6SS, and virulence properties in V. anguillarum, with large strain-specific differences. Moreover, we demonstrated that the QS state is an important driver of virulence towards fish larvae in one of two V. anguillarum strains. We speculate that infections by mixed-strain communities spanning diverse QS strategies optimize the infection efficiency of the pathogen.
Collapse
Affiliation(s)
- Jesper Juel Mauritzen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Emilie Søndberg
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Panos G Kalatzis
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Line Roager
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sine Lo Svenningsen
- Section for Biomolecular Sciences, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Ng WJ, Hing CL, Loo CB, Hoh EK, Loke IL, Ee KY. Ginger-Enriched Honey Attenuates Antibiotic Resistant Pseudomonas aeruginosa Quorum Sensing Virulence Factors and Biofilm Formation. Antibiotics (Basel) 2023; 12:1123. [PMID: 37508219 PMCID: PMC10376338 DOI: 10.3390/antibiotics12071123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/30/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa plays an essential role in virulence factors, biofilm formation as well as antibiotic resistance. Approaches that target virulence factors are known to be more sustainable than antibiotics in weakening the infectivity of bacteria. Although honey has been shown to exert antipseudomonal activities, the enhancement of such activity in ginger-enriched honey is still unknown. The main objective of this study was to determine the impacts of honey and ginger-enriched honey on the QS virulence factors and biofilm formation of antibiotic resistant P. aeruginosa clinical isolates. Outcomes showed honey and/or ginger-enriched honey significantly reduced the protease activity, pyocyanin production and exotoxin A concentration of the isolates. The swarming and swimming motility together with biofilm formation in all clinical isolates were also significantly inhibited by both honey samples. Notable morphological alteration of bacterial cells was also observed using scanning electron microscopy. A principal component analysis (PCA) managed to distinguish the untreated group and treatment groups into two distinct clusters, although honey and ginger-enriched honey groups were not well differentiated. This study revealed the effectiveness of honey including ginger-enriched honey to attenuate QS virulence factors and biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Wen-Jie Ng
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Chin-Lu Hing
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Choon-Boq Loo
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ee-Khang Hoh
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Ian-Lung Loke
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
24
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
25
|
Shi Q, Wen H, Xu Y, Zhao X, Zhang J, Li Y, Meng Q, Yu F, Xiao J, Li X. Virtual screening-based discovery of AI-2 quorum sensing inhibitors that interact with an allosteric hydrophobic site of LsrK and their functional evaluation. Front Chem 2023; 11:1185224. [PMID: 37292175 PMCID: PMC10244669 DOI: 10.3389/fchem.2023.1185224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction: Quorum sensing (QS) is a bacterial intracellular and intercellular communication system that regulates virulence factor production, biofilm formation, and antibiotic sensitivity. Quorum-sensing inhibitors (QSIs) are a novel class of antibiotics that can effectively combat antibiotic resistance. Autoinducer-2 (AI-2) is a universal signaling molecule that mediates inter- and intraspecies QS systems among different bacteria. Furthermore, LsrK plays an important role in regulating the activity and stability of the intracellular AI-2 signaling pathway. Thus, LsrK is considered an important target for the development of QSIs. Methods: We designed a workflow integrating molecular dynamic (MD) simulations, virtual screening, LsrK inhibition assays, cell-based AI-2-mediated QS interference assays, and surface plasmon resonance (SPR)-based protein affinity assays to screen for potential LsrK kinase inhibitors. Results: MD simulation results of the LsrK/ATP complex revealed hydrogen bonds and salt bridge formation among four key residues, namely, Lys 431, Tyr 341, Arg 319, and Arg 322, which are critical for the binding of ATP to LsrK. Furthermore, MD simulation results indicated that the ATP-binding site has an allosteric pocket that can become larger and be occupied by small molecule compounds. Based on these MD simulation results, a constraint of forming at least one hydrogen bond with Arg 319, Arg 322, Lys 431, or Tyr 341 residues was introduced when performing virtual screening using Glide's virtual screening workflow (VSW). In the meantime, compounds with hydrophobic group likely to interact with the allosteric hydrophobic pocket are preferred when performing visual inspection. Seventy-four compounds were selected for the wet laboratory assays based on virtual screening and the absorption, distribution, metabolism, and excretion (ADME) properties of these compounds. LsrK inhibition assays revealed 12 compounds inhibiting LsrK by more than 60% at a 200 μM concentration; four of these (Y205-6768, D135-0149, 3284-1358, and N025-0038) had IC50 values below 50 μM and were confirmed as ATP-competitive inhibitors. Six of these 12 LsrK inhibitors exhibited high AI-2 QS inhibition, of which, Y205-6768 had the highest activity with IC50 = 11.28 ± 0.70 μM. The SPR assay verified that compounds Y205-6768 and N025-0038 specifically bound to LsrK. MD simulation analysis of the docking complexes of the four active compounds with LsrK further confirmed the importance of forming hydrogen bonds and salt bridges with key basic amino acid residues including Lys 431, Tyr 341, Arg 319, and Arg 322 and filling the allosteric hydrophobic pocket next to the purine-binding site of LsrK. Discussion: Our study clarified for the first time that there is an allosteric site near the ATP-binding site of Lsrk and that it enriches the structure-activity relationship information of Lsrk inhibitors. The four identified compounds showed novel structures, low molecular weights, high activities, and novel LsrK binding modes, rendering them suitable for further optimization for effective AI-2 QSIs. Our work provides a valuable reference for the discovery of QSIs that do not inhibit bacterial growth, thereby avoiding the emergence of drug resistance.
Collapse
Affiliation(s)
- Qianqian Shi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yijie Xu
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jing Zhang
- Qionglai Medical Center Hospital, Chengdu, China
| | - Ye Li
- The No 968 Hospital of PLA, Jinzhou, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fang Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, China
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Junhai Xiao
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingzhou Li
- National Engineering Research Center for the Emergency Strategic Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
26
|
Ahamad Khan M, Lone SA, Shahid M, Zeyad MT, Syed A, Ehtram A, Elgorban AM, Verma M, Danish M. Phytogenically Synthesized Zinc Oxide Nanoparticles (ZnO-NPs) Potentially Inhibit the Bacterial Pathogens: In Vitro Studies. TOXICS 2023; 11:toxics11050452. [PMID: 37235266 DOI: 10.3390/toxics11050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
The usefulness of nanoparticles (NPs) in biological applications, such as nanomedicine, is becoming more widely acknowledged. Zinc oxide nanoparticles (ZnO-NPs) are a type of metal oxide nanoparticle with an extensive use in biomedicine. Here, ZnO-NPs were synthesized using Cassia siamea (L.) leaf extract and characterized using state-of-the-art techniques; UV-vis spectroscopy, XRD, FTIR, and SEM. At sub-minimum inhibitory concentration (MIC) levels, the ability of ZnO@Cs-NPs to suppress quorum-mediated virulence factors and biofilm formation against clinical MDR isolates (Pseudomonas aeruginosa PAO1 and Chromobacterium violaceum MCC-2290) was tested. The ½MIC of ZnO@Cs-NPs reduced violacein production by C. violaceum. Furthermore, ZnO@Cs-NPs sub-MIC significantly inhibited virulence factors such aspyoverdin, pyocyanin, elastase, exoprotease, rhamnolipid, and the swimming motility of P. aeruginosa PAO1 by 76.9, 49.0, 71.1, 53.3, 89.5, and 60%, respectively. Moreover, ZnO@Cs-NPs also showed wide anti-biofilm efficacy, inhibiting a maximum of 67 and 56% biofilms in P. aeruginosa and C. violaceum, respectively. In addition, ZnO@Cs-NPs suppressed extra polymeric substances (EPS) produced by isolates. Additionally, under confocal microscopy, propidium iodide-stained cells of P. aeruginosa and C. violaceum show ZnO@Cs-NP-induced impairment in membrane permeability, revealing strong anti-bacterial efficacy. This research demonstrates that newly synthesized ZnO@Cs-NPs demonstrate a strong efficacy against clinical isolates. In a nutshell, ZnO@Cs-NPs can be used as an alternative therapeutic agent for managing pathogenic infections.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Jawahar Lal Nehru Medical College (JNMC), Aligarh Muslim University, Aligarh 202002, India
| | - Showkat Ahmad Lone
- Department of Microbiology, Government Medical College, Baramulla 19310, India
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, Aligarh Muslim University, Aligarh 202002, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aquib Ehtram
- La Jolla Institute for Immunology, San Diego, CA 92037, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meenakshi Verma
- Centre of Research & Development, Department of Chemistry, Chandigarh University, Mohali 160055, India
| | - Mohammad Danish
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
27
|
de Leon V, Orr K, Stelinski LL, Mandadi K, Ibanez-Carrasco F. Inoculation of Tomato With Plant Growth Promoting Rhizobacteria Affects the Tomato-Potato Psyllid-Candidatus Liberibacter Solanacearum Interactions. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:379-388. [PMID: 36723158 DOI: 10.1093/jee/toad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 05/30/2023]
Abstract
The Rio Grande Valley (RGV) in southern Texas is well-suited for vegetable production due to its relatively mild/warm weather conditions in the fall and winter. Consequently, insects inflict year-round, persistent damage to crops in the RGV and regions with similar climate. Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), commonly known as the potato psyllid, is a known vector of Candidatus Liberibacter solanacearum (CLso) (Hyphomicrobiales: Rhizobiaceae), a fastidious phloem-limited bacterium associated to vein-greening in tomatoes and Zebra Chip in potatoes. Vector control is the primary approach of integrated pest management (IPM) strategies that aim to prevent plant diseases in commercial agricultural systems. However, resistance-selective pressures that decrease the effectiveness of chemical control (insecticide) applications over time are of increasing concern. Therefore, we explore an ecological approach to devising alternative IPM methodologies to manage the psyllid-transmitted CLso pathogen to supplement existing chemical products and application schedules without increasing resistance. In this study, our objective was to examine the effects of plant-growth promoting rhizobacteria (PGPR) on host-vector-pathogen interactions. Soil-drench applications of PGPRs to Solanum lycopersicum (Solanales: Solanaceae) seedlings revealed structural and possible physiological changes to the plant host and indirect changes on psyllid behavior: host plants had increased length and biomass of roots and exhibited delayed colonization by CLso, while psyllids displayed changes in parental (F0) psyllid behavior (orientation and oviposition) in response to treated hosts and in the sex ratio of their progeny (F1). Based on our results, we suggest that PGPR may have practical use in commercial tomato production.
Collapse
Affiliation(s)
- Victoria de Leon
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Katharine Orr
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Kranthi Mandadi
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Plant Pathology & Microbiology, Texas A&M University, 496 Olsen Boulevard, College Station, TX, 77840, USA
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX, USA
| | - Freddy Ibanez-Carrasco
- Texas A&M AgriLife Research and Extension Center, 2415 East US Highway 83, Weslaco, TX, 78596, USA
- Department of Entomology, Texas A&M University, Minnie Bell Heep Center, Suite 412, 2475 TAMU, 370 Olsen Boulevard, College Station, TX, 77843, USA
| |
Collapse
|
28
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
29
|
Dominelli N, Regaiolo A, Willy L, Heermann R. Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA. Microorganisms 2023; 11:microorganisms11040890. [PMID: 37110313 PMCID: PMC10143992 DOI: 10.3390/microorganisms11040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants.
Collapse
|
30
|
Pan J, Zhou J, Tang X, Guo Y, Zhao Y, Liu S. Bacterial Communication Coordinated Behaviors of Whole Communities to Cope with Environmental Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4253-4265. [PMID: 36862939 DOI: 10.1021/acs.est.2c05780] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bacterial communication plays an important role in coordinating microbial behaviors in a community. However, how bacterial communication organizes the entire community for anaerobes to cope with varied anaerobic-aerobic conditions remains unclear. We constructed a local bacterial communication gene (BCG) database comprising 19 BCG subtypes and 20279 protein sequences. BCGs in anammox-partial nitrification consortia coping with intermittent aerobic and anaerobic conditions as well as gene expressions of 19 species were inspected. We found that when suffering oxygen changes, intra- and interspecific communication by a diffusible signal factor (DSF) and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) changed first, which in turn induced changes of autoinducer-2 (AI-2)-based interspecific and acyl homoserine lactone (AHLs)-based intraspecific communication. DSF and c-di-GMP-based communication regulated 455 genes, which covered 13.64% of the genomes and were mainly involved in antioxidation and metabolite residue degradation. For anammox bacteria, oxygen influenced DSF and c-di-GMP-based communication through RpfR to upregulate antioxidant proteins, oxidative damage-repairing proteins, peptidases, and carbohydrate-active enzymes, which benefited their adaptation to oxygen changes. Meanwhile, other bacteria also enhanced DSF and c-di-GMP-based communication by synthesizing DSF, which helped anammox bacteria survive at aerobic conditions. This study evidences the role of bacterial communication as an "organizer" within consortia to cope with environmental changes and sheds light on understanding bacterial behaviors from the perspective of sociomicrobiology.
Collapse
Affiliation(s)
- Juejun Pan
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Jianhang Zhou
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Xi Tang
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Yongzhao Guo
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Yunpeng Zhao
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Liu D, Han Z, Hu Z, Yu C, Wang Y, Tong J, Fang X, Yue W, Nie G. Comparative analysis of the transcriptome of Bacillus subtilis natto incubated in different substrates for nattokinase production. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
32
|
Zhang Y, Xue X, Sun F, Li X, Zhang M, Wu Q, Zhang T, Luo X, Lu R. Quorum sensing and QsvR tightly control the transcription of vpa0607 encoding an active RNase II-type protein in Vibrio parahaemolyticus. Front Microbiol 2023; 14:1123524. [PMID: 36744098 PMCID: PMC9894610 DOI: 10.3389/fmicb.2023.1123524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Vibrio parahaemolyticus, a Gram-negative, halophilic bacterium, is a leading cause of acute gastroenteritis in humans. AphA and OpaR are the master quorum sensing (QS) regulators operating at low cell density (LCD) and high cell density (HCD), respectively. QsvR is an AraC-type protein that integrates into the QS system to control gene expression by directly controlling the transcription of aphA and opaR. However, the regulation of QsvR itself remains unclear to date. In this study, we show that vpa0607 and qsvR are transcribed as an operon, vpa0607-qsvR. AphA indirectly activates the transcription of vpa0607 at LCD, whereas OpaR and QsvR directly repress vpa0607 transcription at HCD, leading to the highest expression levels of vpa0607 occurs at LCD. Moreover, VPA0607 acts as an active RNase II-type protein in V. parahaemolyticus and feedback inhibits the expression of QsvR at the post-transcriptional level. Taken together, this work deepens our understanding of the regulation of QsvR and enriches the integration mechanisms of QsvR with the QS system in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yiquan Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xingfan Xue
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjun Sun
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qimin Wu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Tingting Zhang
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Renfei Lu
- Department of Clinical Laboratory, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China,*Correspondence: Renfei Lu,
| |
Collapse
|
33
|
Disalicylic Acid Provides Effective Control of Pectobacterium brasiliense. Microorganisms 2022; 10:microorganisms10122516. [PMID: 36557768 PMCID: PMC9784377 DOI: 10.3390/microorganisms10122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bis(2-carboxyphenyl) succinate (disalicylic acid; DSA) is composed of two salicylic acids connected by a succinyl linker. Here, we propose its use as a new, synthetic plant-protection agent. DSA was shown to control Pectobacterium brasiliense, an emerging soft-rot pathogen of potato and ornamental crops, at minimal inhibitory concentrations (MIC) lower than those of salicylic acid. Our computational-docking analysis predicted that DSA would inhibit the quorum-sensing (QS) synthase of P. brasiliense ExpI more strongly than SA would. In fact, applying DSA to P. brasiliense inhibited its biofilm formation, secretion of plant cell wall-degrading enzymes, motility and production of acyl-homoserine lactones (AHL) and, subsequently, impaired its virulence. DSA also inhibited the production of AHL by a QS-negative Escherichia coli strain (DH5α) that had been transformed with P. brasiliense AHL synthase, as demonstrated by the biosensors Chromobacterium violaceaum CV026 and E. coli pSB401. Inhibition of the QS machinery appears to be one of the mechanisms by which DSA inhibits specific virulence determinants. A new route is proposed for the synthesis of DSA, which holds greater potential for use as an anti-virulence agent than its precursor SA. Based on these findings, DSA is an excellent candidate for repurposing for new applications.
Collapse
|
34
|
Effects of Sub-Minimum Inhibitory Concentrations of Imipenem and Colistin on Expression of Biofilm-Specific Antibiotic Resistance and Virulence Genes in Acinetobacter baumannii Sequence Type 1894. Int J Mol Sci 2022; 23:ijms232012705. [PMID: 36293559 PMCID: PMC9603859 DOI: 10.3390/ijms232012705] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 12/15/2022] Open
Abstract
Antibiotics at suboptimal doses promote biofilm formation and the development of antibiotic resistance. The underlying molecular mechanisms, however, were not investigated. Here, we report the effects of sub-minimum inhibitory concentrations (sub-MICs) of imipenem and colistin on genes associated with biofilm formation and biofilm-specific antibiotic resistance in a multidrug-tolerant clinical strain of Acinetobacter baumannii Sequence Type (ST) 1894. Comparative transcriptome analysis was performed in untreated biofilm and biofilm treated with sub-MIC doses of imipenem and colistin. RNA sequencing data showed that 78 and 285 genes were differentially expressed in imipenem and colistin-treated biofilm cells, respectively. Among the differentially expressed genes (DEGs), 48 and 197 genes were upregulated exclusively in imipenem and colistin-treated biofilm cells, respectively. The upregulated genes included those encoding matrix synthesis (pgaB), multidrug efflux pump (novel00738), fimbrial proteins, and homoserine lactone synthase (AbaI). Upregulation of biofilm-associated genes might enhance biofilm formation when treated with sub-MICs of antibiotics. The downregulated genes include those encoding DNA gyrase (novel00171), 30S ribosomal protein S20 (novel00584), and ribosome releasing factor (RRF) were downregulated when the biofilm cells were treated with imipenem and colistin. Downregulation of these genes affects protein synthesis, which in turn slows down cell metabolism and makes biofilm cells more tolerant to antibiotics. In this investigation, we also found that 5 of 138 small RNAs (sRNAs) were differentially expressed in biofilm regardless of antibiotic treatment or not. Of these, sRNA00203 showed the highest expression levels in biofilm. sRNAs regulate gene expression and are associated with biofilm formation, which may in turn affect the expression of biofilm-specific antibiotic resistance. In summary, when biofilm cells were exposed to sub-MIC doses of colistin and imipenem, coordinated gene responses result in increased biofilm production, multidrug efflux pump expression, and the slowdown of metabolism, which leads to drug tolerance in biofilm. Targeting antibiotic-induced or repressed biofilm-specific genes represents a new strategy for the development of innovative and effective treatments for biofilm-associated infections caused by A. baumannii.
Collapse
|
35
|
Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:209. [PMID: 36040540 DOI: 10.1007/s11274-022-03384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilm formation and quorum sensing (QS) dependent virulence factors are considered the major causes of the emergence of drug resistance, therapeutic failure and development of Pseudomonas aeruginosa infections. This study aimed to investigate the effects of samarium oxide nanoparticles (Sm2O3NPs) on biofilm, virulence factors, and motility of multidrug-resistant P. aeruginosa. Sm2O3NPs were synthesized using curcumin and characterized by Transmission Electron Microscopy, X-ray diffractometer, Field Emission Scanning Electron Microscopy, and Energy-dispersive X-ray spectroscopy. Minimum inhibitory concentration (MIC) was determined using broth microdilution method. The antibiofilm potential of Sm2O3NPs was also evaluated by crystal violet staining and light microscopy examination. Then, the effect of sub-MICs concentrations of Sm2O3NPs on the proteolytic and hemolytic activities of P. aeruginosa was investigated. Finally, the effect of Sm2O3NPs on various types of motility including swarming, swimming, and twitching was studied. Our results showed that Sm2O3NPs significantly inhibited biofilm formation of P. aeruginosa by 49-61%. Additionally, sub-MICs concentrations of Sm2O3NPs effectively decreased virulence factors including pyocyanin (33-55%), protease (24-45%), and hemolytic activity (22-41%). Moreover, swarming, swimming, and twitching motility remarkably was reduced after exposure to the NPs. The findings of this work showed that Sm2O3NPs have a high potential in inhibiting QS-dependent virulence of P. aeruginosa, which could be considered for antibacterial chemotherapy after further characterization.
Collapse
|
36
|
Ahator SD, Sagar S, Zhu M, Wang J, Zhang LH. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa. mSystems 2022; 7:e0009222. [PMID: 35699339 PMCID: PMC9426516 DOI: 10.1128/msystems.00092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) coordinates bacterial communication and cooperation essential for virulence and dominance in polymicrobial settings. QS also regulates the CRISPR-Cas system for targeted defense against parasitic genomes from phages and horizontal gene transfer. Although the QS and CRISPR-Cas systems are vital for bacterial survival, they undergo frequent selection in response to biotic and abiotic factors. Using the opportunistic Pseudomonas aeruginosa with well-established QS and CRISPR-Cas systems, we show how the social interactions between the acyl-homoserine lactone (AHL)-QS signal-blind mutants (ΔlasRrhlR) and the CRISPR-Cas mutants are affected by phage exposure and nutrient availability. We demonstrate that media conditions and phage exposure alter the resistance and relative fitness of ΔlasRrhlR and CRISPR-Cas mutants while tipping the fitness advantage in favor of the QS signal-blind mutants under nutrient-limiting conditions. We also show that the AHL signal-blind mutants are less selected by phages under QS-inducing conditions than the CRISPR-Cas mutants, whereas the mixed population of the CRISPR-Cas and AHL signal-blind mutants reduce phage infectivity, which can improve survival during phage exposure. Our data reveal that phage exposure and nutrient availability reshape the population dynamics between the ΔlasRrhlR QS mutants and CRISPR-Cas mutants, with key indications for cooperation and conflict between the strains. IMPORTANCE The increase in antimicrobial resistance has created the need for alternative interventions such as phage therapy. However, as previously observed with antimicrobial resistance, phage therapy will not be effective if bacteria evolve resistance and persist in the presence of the phages. The QS is commonly known as an arsenal for bacteria communication, virulence, and regulation of the phage defense mechanism, the CRISPR-Cas system. The QS and CRISPR-Cas systems are widespread in bacteria. However, they are known to evolve rapidly under the influence of biotic and abiotic factors in the bacterial environment, resulting in alteration in bacterial genotypes, which enhance phage resistance and fitness. We believe that adequate knowledge of the influence of environmental factors on the bacterial community lifestyle and phage defense mechanisms driven by the QS and CRISPR-Cas system is necessary for developing effective phage therapy.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Sadhanna Sagar
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minya Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, Michel H. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism. EMBO J 2022; 41:e109990. [PMID: 35698912 PMCID: PMC9475539 DOI: 10.15252/embj.2021109990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.
Collapse
Affiliation(s)
- Radhika Khera
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Centre for molecular modelling, Ghent University, Zwijnaarde, Belgium
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK.,Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Joerg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Design of stable and self-regulated microbial consortia for chemical synthesis. Nat Commun 2022; 13:1554. [PMID: 35322005 PMCID: PMC8943006 DOI: 10.1038/s41467-022-29215-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Microbial coculture engineering has emerged as a promising strategy for biomanufacturing. Stability and self-regulation pose a significant challenge for the generation of intrinsically robust cocultures for large-scale applications. Here, we introduce the use of multi-metabolite cross-feeding (MMCF) to establish a close correlation between the strains and the design rules for selecting the appropriate metabolic branches. This leads to an intrinicially stable two-strain coculture where the population composition and the product titer are insensitive to the initial inoculation ratios. With an intermediate-responsive biosensor, the population of the microbial coculture is autonomously balanced to minimize intermediate accumulation. This static-dynamic strategy is extendable to three-strain cocultures, as demonstrated with de novo biosynthesis of silybin/isosilybin. This strategy is generally applicable, paving the way to the industrial application of microbial cocultures. Stability and tunability are two desirable properties of microbial consortia-based bioproduction. Here, the authors integrate a caffeate-responsive biosensor into two and three strains coculture system to achieve autonomous regulation of strain ratios for coniferol and silybin/isosiltbin production, respectively.
Collapse
|
39
|
Ponte JMS, Seca AML, Barreto MC. Asparagopsis Genus: What We Really Know About Its Biological Activities and Chemical Composition. Molecules 2022; 27:1787. [PMID: 35335151 PMCID: PMC8948725 DOI: 10.3390/molecules27061787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the genus Asparagopsis includes only two taxonomically accepted species, the published literature is unanimous about the invasive nature of this genus in different regions of the globe, and about the availability of large amounts of biomass for which it is important to find a commercial application. This review shows that extracts from Asparagospsis species have already been evaluated for antioxidant, antibacterial, antifungal, antiviral, antifouling, cytotoxic, antimethanogenic and enzyme-inhibitory activity. However, the tables presented herein show, with few exceptions, that the activity level displayed is generally low when compared with positive controls. Studies involving pure compounds being identified in Asparagopsis species are rare. The chemical compositions of most of the evaluated extracts are unknown. At best, the families of the compounds present are suggested. This review also shows that the volatile halogenated compounds, fatty acids and sterols that are biosynthesized by the Asparagopsis species are relatively well known. Many other non-volatile metabolites (halogen compounds, flavonoids, other phenolic compounds) seem to be produced by these species, but their chemical structures and properties haven'been investigated. This shows how much remains to be investigated regarding the secondary-metabolite composition of these species, suggesting further studies following more targeted methodologies.
Collapse
Affiliation(s)
- José M. S. Ponte
- Faculty of Sciences and Technology, University of the Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal;
| | - Ana M. L. Seca
- Faculty of Sciences and Technology, University of the Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal;
- cE3c-Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal;
- LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Carmo Barreto
- Faculty of Sciences and Technology, University of the Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal;
- cE3c-Centre for Ecology Evolution and Environmental Changes/Azorean Biodiversity Group, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal;
| |
Collapse
|
40
|
Abbas-Egbariya H, Haberman Y, Braun T, Hadar R, Denson L, Gal-Mor O, Amir A. Meta-analysis defines predominant shared microbial responses in various diseases and a specific inflammatory bowel disease signal. Genome Biol 2022; 23:61. [PMID: 35197084 PMCID: PMC8867743 DOI: 10.1186/s13059-022-02637-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gut microbial alteration is implicated in inflammatory bowel disease but is noted in other diseases. Systematic comparison to define similarities and specificities is hampered since most studies focus on a single disease. RESULTS We develop a pipeline to compare between disease cohorts starting from the raw V4 16S amplicon sequence variants. Including 12,838 subjects, from 59 disease cohorts, we demonstrate a predominant shared signature across diseases, indicating a common bacterial response to different diseases. We show that classifiers trained on one disease cohort predict relatively well other diseases due to this shared signal, and hence, caution should be taken when using such classifiers in real-world scenarios, where diseases are intermixed. Based on this common signature across a large array of diseases, we develop a universal dysbiosis index that successfully differentiates between cases and controls across various diseases and can be used for prioritizing fecal donors and samples with lower disease probability. Finally, we identify a set of IBD-specific bacteria, which can direct mechanistic studies and design of IBD-specific microbial interventions. CONCLUSIONS A robust non-specific general response of the gut microbiome is detected in a large array of diseases. Disease classifiers may confuse between different diseases due to this shared microbial response. Our universal dysbiosis index can be used as a tool to prioritize fecal samples and donors. Finally, the IBD-specific taxa may indicate a more direct association to gut inflammation and disease pathogenesis, and those can be further used as biomarkers and as future targets for interventions.
Collapse
Affiliation(s)
- Haya Abbas-Egbariya
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Tzipi Braun
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| | - Lee Denson
- Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, and the Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-HaShomer, affiliated with the Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
41
|
Zanetti M, Xian S, Dosset M, Carter H. The Unfolded Protein Response at the Tumor-Immune Interface. Front Immunol 2022; 13:823157. [PMID: 35237269 PMCID: PMC8882736 DOI: 10.3389/fimmu.2022.823157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.
Collapse
Affiliation(s)
- Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Maurizio Zanetti, ; orcid.org/0000-0001-6346-8776
| | - Su Xian
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| | - Magalie Dosset
- The Laboratory of Immunology, Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, Bioinformatics and System Biology Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
42
|
The Promoter of the Immune-Modulating Gene TIR-Containing Protein C of the Uropathogenic Escherichia coli Strain CFT073 Reacts to the Pathogen's Environment. Int J Mol Sci 2022; 23:ijms23031148. [PMID: 35163072 PMCID: PMC8835471 DOI: 10.3390/ijms23031148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
The TIR-containing protein C (TcpC) of the uropathogenic Escherichia coli strain CFT073 modulates innate immunity by interfering with the Toll-like receptor and NALP3 inflammasome signaling cascade. During a urinary tract infection the pathogen encounters epithelial and innate immune cells and replicates by several orders of magnitude. We therefore analyzed whether these cell types and also the density of the pathogen would induce the recently defined promoter of the CFT073 tcpC gene to, in time, dampen innate immune responses. Using reporter constructs we found that the uroepithelial cell line T24/83 and the monocytic cell line THP-1 induced the tcpC promoter. Differentiation of monocytic THP-1 cells to macrophages increased their potential to switch on the promoter. Cell-associated CFT073 displayed the highest promoter activity. Since potassium represents the most abundant intracellular ion and is secreted to induce the NLRP3 inflammasome, we tested its ability to activate the tcpC promoter. Potassium induced the promoter with high efficiency. Sodium, which is enriched in the renal cortex generating an antibacterial hypersalinity, also induced the tcpC promoter. Finally, the bacterial density modulated the tcpC promoter activity. In the search for promoter-regulating proteins, we found that the DNA-binding protein H-NS dampens the promoter activity. Taken together, different cell types and salts, present in the kidney, are able to induce the tcpC promoter and might explain the mechanism of TcpC induction during a kidney infection with uropathogenic E. coli strains.
Collapse
|
43
|
Wang Y, Zheng Q, Li L, Pan L, Zhu H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar Drugs 2022; 20:md20020085. [PMID: 35200615 PMCID: PMC8924889 DOI: 10.3390/md20020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.
Collapse
|
44
|
Gallo-Francisco PH, Brocchi M, Giorgio S. Leishmania and its relationships with bacteria. Future Microbiol 2022; 17:199-218. [PMID: 35040703 DOI: 10.2217/fmb-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is a zoonotic and neglected disease, which represents an important public health problem worldwide. Different species of Leishmania are associated with different manifestations, and a practical problem that can worsen the condition of hosts infected with Leishmania is the secondary infection caused by bacteria. This review aims to examine the importance and prevalence of bacteria co-infection during leishmaniasis and the nature of this ecological relationship. In the cases discussed in this review, the facilitation phenomenon, defined as any interaction where the action of one organism has a beneficial effect on an organism of another species, was considered in the Leishmania-bacteria interaction, as well as the effects on one another and their consequences for the host.
Collapse
Affiliation(s)
- Pedro H Gallo-Francisco
- Department of Animal Biology, Biology Institute, State University of Campinas, Campinas SP, 13083-862, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Microbiology & Immunology, Biology Institute, State University of Campinas, Campinas SP, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, State University of Campinas, Campinas SP, 13083-862, Brazil
| |
Collapse
|
45
|
Ahmed M, SaKai Y, Fukudome M, Yuan DQ. Cucurbit[7]uril: Synthesis and quenching the quorum sensing in bacteria. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Pauer H, Teixeira FL, Robinson AV, Parente TE, De Melo MAF, Lobo LA, Domingues RMCP, Allen-Vercoe E, Ferreira RBR, Antunes LCM. Bioactive small molecules produced by the human gut microbiome modulate Vibrio cholerae sessile and planktonic lifestyles. Gut Microbes 2021; 13:1-19. [PMID: 34006192 PMCID: PMC8143261 DOI: 10.1080/19490976.2021.1918993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans live in symbiosis with a diverse community of microorganisms, which has evolved to carry out many specific tasks that benefit the host, including protection against invading pathogens. Within the chemical diversity of the gastrointestinal tract, small molecules likely constitute chemical cues for the communication between the microbiota and pathogens. Therefore, we sought to investigate if molecules produced by the human gut microbiota show biological activity against the human pathogen Vibrio cholerae. To probe the effects of the gut metabolome on V. cholerae, we investigated its response to small-molecule extracts from human feces, from a complex bacterial community cultivated in vitro, and from culture supernatants of Enterocloster citroniae, Bacteroides thetaiotaomicron, and Bacteroides vulgatus. Using RNA sequencing, we determined the impact of the human gut metabolome on V. cholerae global gene expression. Among the genes downregulated in the presence of the fecal extract, the most overrepresented functional category was cell motility, which accounted for 39% of repressed genes. Repression of V. cholerae motility by the fecal extract was confirmed phenotypically, and E. citroniae extracts reproduced this phenotype. A complex in vitro microbial community led to increased motility, as did extracts from B. vulgatus, a species present in this community. Accordingly, mucin penetration was also repressed by fecal and E. citroniae extracts, suggesting that the phenotypes observed may have implications for host colonization. Together with previous studies, this work shows that small molecules from the gut metabolome may have a widespread, significant impact on microbe-microbe interactions established in the gut environment.
Collapse
Affiliation(s)
- Heidi Pauer
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças De Populações Negligenciadas, Centro De Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Felipe Lopes Teixeira
- Departamento de Tecnologia Farmacêutica, Universidade Federal Fluminense, Niterói, Brazil
| | - Avery V. Robinson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Thiago E. Parente
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marília A. F. De Melo
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Leandro A. Lobo
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Regina M. C. P. Domingues
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Canada
| | - Rosana B. R. Ferreira
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio De Janeiro, Rio de Janeiro, Brazil
| | - Luis Caetano M. Antunes
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças De Populações Negligenciadas, Centro De Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,Laboratório de Pesquisa Em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil,CONTACT Luis Caetano Antunes Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-900
| |
Collapse
|
47
|
Abd El-Aleam RH, George RF, Georgey HH, Abdel-Rahman HM. Bacterial virulence factors: a target for heterocyclic compounds to combat bacterial resistance. RSC Adv 2021; 11:36459-36482. [PMID: 35494393 PMCID: PMC9043591 DOI: 10.1039/d1ra06238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Antibiotic resistance is one of the most important challenges of the 21st century. However, the growing understanding of bacterial pathogenesis and cell-to-cell communication has revealed many potential strategies for the discovery of drugs that can be used for the treatment of bacterial infections. Interfering with bacterial virulence and/or quorum sensing could be a particularly interesting approach, because it is believed to exert less selective pressure on the bacterial resistance than with traditional strategies, geared toward killing bacteria or preventing their growth. Here, we discuss the mechanism of bacterial virulence, presenting promising strategies and recently synthesized heterocyclic compounds to combat future bacterial infections.
Collapse
Affiliation(s)
- Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI Cairo 11571 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University Cairo 11786 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University Beni Suef Egypt
| |
Collapse
|
48
|
Combining Colistin with Furanone C-30 Rescues Colistin Resistance of Gram-Negative Bacteria in Vitro and in Vivo. Microbiol Spectr 2021; 9:e0123121. [PMID: 34730415 PMCID: PMC8567244 DOI: 10.1128/spectrum.01231-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The spread of multidrug-resistant (MDR) Gram-negative bacteria (GNB) has led to serious public health problems worldwide. Colistin, as a “last resort” for the treatment of MDR bacterial infections, has been used significantly in recent years and has led to the continuous emergence of colistin-resistant strains. In this study, we aimed to investigate the synergistic effect on the antimicrobial and antibiofilm activities of a colistin/furanone C-30 combination against colistin-resistant GNB in vitro and in vivo. According to antimicrobial resistance profiles, most of the colistin-resistant strains we collected showed MDR phenotypes. The checkerboard method and time-kill curve showed that the combination with furanone C-30 increases the antibacterial activity of colistin significantly. In addition, the furanone C-30/colistin combination can not only inhibit the formation of bacterial biofilm but also has a better eradication effect on preformed mature biofilms. The result of scanning electron microscopy (SEM) demonstrated that the furanone C-30/colistin combination led to a significant reduction in the number of cells in biofilms. Furthermore, furanone C-30 at 50 μg/ml did not cause any additional toxicity to RAW264.7 cells according to a cytotoxicity assay. In in vivo infection experiments, the furanone C-30/colistin combination increased the survival rate of infected Galleria mellonella larvae as well as decreased the microbial load in a mouse thigh infection model. The synergistic effect of the furanone C-30/colistin combination against colistin-resistant GNB is encouraging, and this work may shed light on a new therapeutic approach to combat colistin-resistant pathogens. IMPORTANCE Colistin is among the few antibiotics effective against multidrug-resistant Gram-negative bacteria (GNB) clinical isolates. However, colistin-resistant GNB strains have emerged in recent years. Therefore, the combination of colistin and nonantibacterial drugs has attracted much attention. In this study, the furanone C-30/colistin combination showed good antibacterial and antibiofilm activity in vitro and in vivo. In addition, increased membrane permeability leads to the synergistic effect of the furanone C-30/colistin combination. Because of the low cytotoxicity of furanone C-30, this combination has good application prospects in clinical anti-infective therapy. This finding might shed light on the discovery of combination therapy for infections caused by colistin-resistant GNB pathogens.
Collapse
|
49
|
Hajipour MJ, Saei AA, Walker ED, Conley B, Omidi Y, Lee K, Mahmoudi M. Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100556. [PMID: 34558234 PMCID: PMC8564466 DOI: 10.1002/advs.202100556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/06/2021] [Indexed: 05/04/2023]
Abstract
The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed.
Collapse
Affiliation(s)
- Mohammad J. Hajipour
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| | - Amir Ata Saei
- Division of Physiological Chemistry IDepartment of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholm171 65Sweden
| | - Edward D. Walker
- Department of EntomologyMichigan State UniversityEast LansingMI48824USA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Brian Conley
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Yadollah Omidi
- Department of Pharmaceutical SciencesCollege of PharmacyNova Southeastern UniversityFort LauderdaleFL33328USA
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health ProgramMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
50
|
Kaur B, Gupta J, Sharma S, Sharma D, Sharma S. Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections. Int J Biol Macromol 2021; 190:33-43. [PMID: 34480904 DOI: 10.1016/j.ijbiomac.2021.08.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a common cause of skin infections, food poisoning and severe life-threatening infections. Methicillin-Resistant Staphylococcus aureus (MRSA) is known to cause chronic nosocomial infections by virtue of its multidrug resistance and biofilm formation mechanisms. The antimicrobial resistance owned by S. aureus is primarily due to efflux pumps and formation of microbial biofilms. These drug resistant, sessile and densely packed microbial communities possess various mechanisms including quorum sensing and drug efflux. Quorum sensing is a cooperative physiological process which is used by bacterial cells for social interaction and signal transduction in biofilm formation whereas efflux of drugs is derived by efflux pumps. Apart from their significant role in multidrug resistance, efflux pumps also contribute to transporting cell signalling molecules and due to their occurrence; we face the frightening possibility that we will enter the pre-antibiotic era soon. Compounds that modulate efflux pumps are also known as efflux pump inhibitors (EPI's) that act in a synergistic manner and potentiate the antibiotics efficacy which has been considered as a promising approach to encounter bacterial resistance. EPIs inhibit the mechanism of drug efflux s as well as transport of quorum sensing signalling molecules which are the supreme contributors of miscellaneous virulence factors. This review presents an accomplishments of the recent investigations allied to efflux pump inhibitors against S. aureus and also focus on related correspondence between quorum sensing system and efflux pump inhibitors in terms of S. aureus and MRSA biofilms that may open a new avenue for controlling MRSA infections.
Collapse
Affiliation(s)
- Bhawandeep Kaur
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jeena Gupta
- Department of Biochemistry, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sarika Sharma
- Department of Life Sciences, Arni University, Indora, Kangra, H.P. 176402, India
| | - Divakar Sharma
- Department of Microbiology, Maulana Azad Medical College, New Delhi 110002, India.
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|