1
|
Pyrihová E, King MS, King AC, Toleco MR, van der Giezen M, Kunji ERS. A mitochondrial carrier transports glycolytic intermediates to link cytosolic and mitochondrial glycolysis in the human gut parasite Blastocystis. eLife 2024; 13:RP94187. [PMID: 38780415 PMCID: PMC11115451 DOI: 10.7554/elife.94187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.
Collapse
Affiliation(s)
- Eva Pyrihová
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Martin S King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - Alannah C King
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| | - M Rey Toleco
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
| | - Mark van der Giezen
- University of Stavanger, Department of Chemistry, Bioscience, and Environmental EngineeringStavangerNorway
- Research Department Stavanger University HospitalStavangerNorway
| | - Edmund RS Kunji
- Medical Research Council Mitochondrial Biology Unit, The Keith Peters BuildingCambridgeUnited Kingdom
| |
Collapse
|
2
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
3
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
4
|
Newton JM, Betts EL, Yiangou L, Ortega Roldan J, Tsaousis AD, Thompson GS. Establishing a Metabolite Extraction Method to Study the Metabolome of Blastocystis Using NMR. Molecules 2021; 26:molecules26113285. [PMID: 34072445 PMCID: PMC8199492 DOI: 10.3390/molecules26113285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Blastocystis is an opportunistic parasite commonly found in the intestines of humans and other animals. Despite its high prevalence, knowledge regarding Blastocystis biology within and outside the host is limited. Analysis of the metabolites produced by this anaerobe could provide insights that can help map its metabolism and determine its role in both health and disease. Due to its controversial pathogenicity, these metabolites could define its deterministic role in microbiome's "health" and/or subsequently resolve Blastocystis' potential impact in gastrointestinal health. A common method for elucidating the presence of these metabolites is through 1H nuclear magnetic resonance (NMR). However, there are currently no described benchmarked methods available to extract metabolites from Blastocystis for 1H NMR analysis. Herein, several extraction solvents, lysis methods and incubation temperatures were compared for their usefulness as an extraction protocol for this protozoan. Following extraction, the samples were freeze-dried, re-solubilized and analysed with 1H NMR. The results demonstrate that carrying out the procedure at room temperature using methanol as an extraction solvent and bead bashing as a lysis technique provides a consistent, reproducible and efficient method to extract metabolites from Blastocystis for NMR.
Collapse
Affiliation(s)
- Jamie M. Newton
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.M.N.); (E.L.B.); (L.Y.)
- Wellcome Trust Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Emma L. Betts
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.M.N.); (E.L.B.); (L.Y.)
| | - Lyto Yiangou
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.M.N.); (E.L.B.); (L.Y.)
| | - Jose Ortega Roldan
- Wellcome Trust Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (J.M.N.); (E.L.B.); (L.Y.)
- Correspondence: (A.D.T.); (G.S.T.)
| | - Gary S. Thompson
- Wellcome Trust Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK;
- Correspondence: (A.D.T.); (G.S.T.)
| |
Collapse
|
5
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
6
|
Lloyd D, Millet CO, Williams CF, Hayes AJ, Pope SJA, Pope I, Borri P, Langbein W, Olsen LF, Isaacs MD, Lunding A. Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Adv Microb Physiol 2020; 76:41-79. [PMID: 32408947 DOI: 10.1016/bs.ampbs.2020.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Advances in optical microscopy are continually narrowing the chasm in our appreciation of biological organization between the molecular and cellular levels, but many practical problems are still limiting. Observation is always limited by the rapid dynamics of ultrastructural modifications of intracellular components, and often by cell motility: imaging of the unicellular protist parasite of ornamental fish, Spironucleus vortens, has proved challenging. Autofluorescence of nicotinamide nucleotides and flavins in the 400-580 nm region of the visible spectrum, is the most useful indicator of cellular redox state and hence vitality. Fluorophores emitting in the red or near-infrared (i.e., phosphors) are less damaging and more penetrative than many routinely employed fluors. Mountants containing free radical scavengers minimize fluorophore photobleaching. Two-photon excitation provides a small focal spot, increased penetration, minimizes photon scattering and enables extended observations. Use of quantum dots clarifies the competition between endosomal uptake and exosomal extrusion. Rapid motility (161 μm/s) of the organism makes high resolution of ultrastructure difficult even at high scan speeds. Use of voltage-sensitive dyes determining transmembrane potentials of plasma membrane and hydrogenosomes (modified mitochondria) is also hindered by intracellular motion and controlled anesthesia perturbs membrane organization. Specificity of luminophore binding is always questionable; e.g. cationic lipophilic species widely used to measure membrane potentials also enter membrane-bounded neutral lipid droplet-filled organelles. This appears to be the case in S. vortens, where Coherent Anti-Stokes Raman Scattering (CARS) micro-spectroscopy unequivocally images the latter and simultaneous provides spectral identification at 2840 cm-1. Secondary Harmonic Generation highlights the highly ordered structure of the flagella.
Collapse
Affiliation(s)
- David Lloyd
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; School of Engineering, Cardiff, Wales, United Kingdom
| | - Coralie O Millet
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Anthony J Hayes
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Simon J A Pope
- School of Chemistry, Main Building, Cardiff University, Cardiff, Wales, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, Cardiff, Wales, United Kingdom
| | - Lars Folke Olsen
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marc D Isaacs
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Anita Lunding
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
7
|
Hackstein JHP, de Graaf RM, van Hellemond JJ, Tielens AGM. Hydrogenosomes of Anaerobic Ciliates. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-17941-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Tsaousis AD, Hamblin KA, Elliott CR, Young L, Rosell-Hidalgo A, Gourlay CW, Moore AL, van der Giezen M. The Human Gut Colonizer Blastocystis Respires Using Complex II and Alternative Oxidase to Buffer Transient Oxygen Fluctuations in the Gut. Front Cell Infect Microbiol 2018; 8:371. [PMID: 30406045 PMCID: PMC6204527 DOI: 10.3389/fcimb.2018.00371] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
Blastocystis is the most common eukaryotic microbe in the human gut. It is linked to irritable bowel syndrome (IBS), but its role in disease has been contested considering its widespread nature. This organism is well-adapted to its anoxic niche and lacks typical eukaryotic features, such as a cytochrome-driven mitochondrial electron transport. Although generally considered a strict or obligate anaerobe, its genome encodes an alternative oxidase. Alternative oxidases are energetically wasteful enzymes as they are non-protonmotive and energy is liberated in heat, but they are considered to be involved in oxidative stress protective mechanisms. Our results demonstrate that the Blastocystis cells themselves respire oxygen via this alternative oxidase thereby casting doubt on its strict anaerobic nature. Inhibition experiments using alternative oxidase and Complex II specific inhibitors clearly demonstrate their role in cellular respiration. We postulate that the alternative oxidase in Blastocystis is used to buffer transient oxygen fluctuations in the gut and that it likely is a common colonizer of the human gut and not causally involved in IBS. Additionally the alternative oxidase could act as a protective mechanism in a dysbiotic gut and thereby explain the absence of Blastocystis in established IBS environments.
Collapse
Affiliation(s)
- Anastasios D. Tsaousis
- RAPID Group, Laboratory of Molecular & Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Karleigh A. Hamblin
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Catherine R. Elliott
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Luke Young
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Alicia Rosell-Hidalgo
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anthony L. Moore
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | | |
Collapse
|
9
|
Stairs CW, Eme L, Muñoz-Gómez SA, Cohen A, Dellaire G, Shepherd JN, Fawcett JP, Roger AJ. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 2018; 7:34292. [PMID: 29697049 PMCID: PMC5953543 DOI: 10.7554/elife.34292] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/01/2023] Open
Abstract
Under hypoxic conditions, some organisms use an electron transport chain consisting of only complex I and II (CII) to generate the proton gradient essential for ATP production. In these cases, CII functions as a fumarate reductase that accepts electrons from a low electron potential quinol, rhodoquinol (RQ). To clarify the origins of RQ-mediated fumarate reduction in eukaryotes, we investigated the origin and function of rquA, a gene encoding an RQ biosynthetic enzyme. RquA is very patchily distributed across eukaryotes and bacteria adapted to hypoxia. Phylogenetic analyses suggest lateral gene transfer (LGT) of rquA from bacteria to eukaryotes occurred at least twice and the gene was transferred multiple times amongst protists. We demonstrate that RquA functions in the mitochondrion-related organelles of the anaerobic protist Pygsuia and is correlated with the presence of RQ. These analyses reveal the role of gene transfer in the evolutionary remodeling of mitochondria in adaptation to hypoxia.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Alejandro Cohen
- Proteomics Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, United States
| | - James P Fawcett
- Proteomics Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, Canada.,Department of Pharmacology, Dalhousie University, Halifax, Canada.,Department of Surgery, Dalhousie University, Halifax, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| |
Collapse
|
10
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Gentekaki E, Curtis BA, Stairs CW, Klimeš V, Eliáš M, Salas-Leiva DE, Herman EK, Eme L, Arias MC, Henrissat B, Hilliou F, Klute MJ, Suga H, Malik SB, Pightling AW, Kolisko M, Rachubinski RA, Schlacht A, Soanes DM, Tsaousis AD, Archibald JM, Ball SG, Dacks JB, Clark CG, van der Giezen M, Roger AJ. Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis. PLoS Biol 2017; 15:e2003769. [PMID: 28892507 PMCID: PMC5608401 DOI: 10.1371/journal.pbio.2003769] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than β-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.
Collapse
Affiliation(s)
- Eleni Gentekaki
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bruce A. Curtis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Courtney W. Stairs
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dayana E. Salas-Leiva
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emily K. Herman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Laura Eme
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maria C. Arias
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Bernard Henrissat
- CNRS UMR 7257, Aix-Marseille University, Marseille, France
- INRA, USC 1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mary J. Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Nanatsuka 562, Shobara, Hiroshima, Japan
| | - Shehre-Banoo Malik
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arthur W. Pightling
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin Kolisko
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Alexander Schlacht
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Darren M. Soanes
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Anastasios D. Tsaousis
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| | - Steven G. Ball
- Université des Sciences et Technologies de Lille, Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS-USTL, Cité Scientifique, Villeneuve d’Ascq Cedex, France
| | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Andrew J. Roger
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, Canada
| |
Collapse
|
12
|
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut. Curr Biol 2017; 27:807-820. [PMID: 28262486 DOI: 10.1016/j.cub.2017.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired by LGT. We identify LGTs both from prokaryote and eukaryote donors. Several transfers occurred specifically in ancestors of a subset of Blastocystis subtypes, demonstrating that LGT is an ongoing process. Functional predictions reveal that these genes are involved in diverse metabolic pathways, many of which appear related to adaptation of Blastocystis to the gut environment. Specifically, we identify genes involved in carbohydrate scavenging and metabolism, anaerobic amino acid and nitrogen metabolism, oxygen-stress resistance, and pH homeostasis. A number of the transferred genes encoded secreted proteins that are potentially involved in infection, escaping host defense, or most likely affect the prokaryotic microbiome and the inflammation state of the gut. We also show that Blastocystis subtypes differ in the nature and copy number of LGTs that could relate to variation in their prevalence and virulence. Finally, we identified bacterial-derived genes encoding NH3-dependent nicotinamide adenine dinucleotide (NAD) synthase in Blastocystis and other protozoan parasites, which are promising targets for drug development. Collectively, our results suggest new avenues for research into the role of Blastocystis in intestinal disease and unequivocally demonstrate that LGT is an important mechanism by which eukaryotic microbes adapt to new environments.
Collapse
Affiliation(s)
- Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Eleni Gentekaki
- School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Bruce Curtis
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - John M Archibald
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
13
|
Abstract
Mitochondrion-related organelles (MROs) have arisen independently in a wide range of anaerobic protist lineages. Only a few of these organelles and their functions have been investigated in detail, and most of what is known about MROs comes from studies of parasitic organisms such as the parabasalid Trichomonas vaginalis. Here, we describe the MRO of a free-living anaerobic jakobid excavate, Stygiella incarcerata. We report an RNAseq-based reconstruction of S. incarcerata’s MRO proteome, with an associated biochemical map of the pathways predicted to be present in this organelle. The pyruvate metabolism and oxidative stress response pathways are strikingly similar to those found in the MROs of other anaerobic protists, such as Pygsuia and Trichomonas. This elegant example of convergent evolution is suggestive of an anaerobic biochemical ‘module’ of prokaryotic origins that has been laterally transferred among eukaryotes, enabling them to adapt rapidly to anaerobiosis. We also identified genes corresponding to a variety of mitochondrial processes not found in Trichomonas, including intermembrane space components of the mitochondrial protein import apparatus, and enzymes involved in amino acid metabolism and cardiolipin biosynthesis. In this respect, the MROs of S. incarcerata more closely resemble those of the much more distantly related free-living organisms Pygsuia biforma and Cantina marsupialis, likely reflecting these organisms’ shared lifestyle as free-living anaerobes.
Collapse
Affiliation(s)
- Michelle M Leger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Laura A Hug
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Stairs CW, Leger MM, Roger AJ. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140326. [PMID: 26323757 PMCID: PMC4571565 DOI: 10.1098/rstb.2014.0326] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/27/2022] Open
Abstract
Across the diversity of life, organisms have evolved different strategies to thrive in hypoxic environments, and microbial eukaryotes (protists) are no exception. Protists that experience hypoxia often possess metabolically distinct mitochondria called mitochondrion-related organelles (MROs). While there are some common metabolic features shared between the MROs of distantly related protists, these organelles have evolved independently multiple times across the breadth of eukaryotic diversity. Until recently, much of our knowledge regarding the metabolic potential of different MROs was limited to studies in parasitic lineages. Over the past decade, deep-sequencing studies of free-living anaerobic protists have revealed novel configurations of metabolic pathways that have been co-opted for life in low oxygen environments. Here, we provide recent examples of anaerobic metabolism in the MROs of free-living protists and their parasitic relatives. Additionally, we outline evolutionary scenarios to explain the origins of these anaerobic pathways in eukaryotes.
Collapse
Affiliation(s)
- Courtney W Stairs
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Michelle M Leger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
15
|
In Vitro Antimicrobial Susceptibility Patterns of Blastocystis. Antimicrob Agents Chemother 2015; 59:4417-23. [PMID: 25987633 DOI: 10.1128/aac.04832-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
Blastocystis is the most common human enteric protist with controversial clinical significance. Metronidazole is considered a first-line treatment for Blastocystis infection; however, there has been increasing evidence for the lack of efficacy of this treatment. Treatment failure has been reported in several clinical cases, and recent in vitro studies have suggested the occurrence of metronidazole-resistant strains. In this study, we tested 12 Blastocystis isolates from 4 common Blastocystis subtypes (ST1, ST3, ST4, and ST8) against 12 commonly used antimicrobials (metronidazole, paromomycin, ornidazole, albendazole, ivermectin, trimethoprim-sulfamethoxazole [TMP-SMX], furazolidone, nitazoxanide, secnidazole, fluconazole, nystatin, and itraconazole) at 10 different concentrations in vitro. It was found that each subtype showed little sensitivity to the commonly used metronidazole, paromomycin, and triple therapy (furazolidone, nitazoxanide, and secnidazole). This study highlights the efficacy of other potential drug treatments, including trimethoprim-sulfamethoxazole and ivermectin, and suggests that current treatment regimens be revised.
Collapse
|
16
|
Mentel M, Röttger M, Leys S, Tielens AGM, Martin WF. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays 2014; 36:924-32. [PMID: 25118050 DOI: 10.1002/bies.201400060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The origin and early evolution of animals marks an important event in life's history. This event is historically associated with an important variable in Earth history - oxygen. One view has it that an increase in oceanic oxygen levels at the end of the Neoproterozoic Era (roughly 600 million years ago) allowed animals to become large and leave fossils. How important was oxygen for the process of early animal evolution? New data show that some modern sponges can survive for several weeks at low oxygen levels. Many groups of animals have mechanisms to cope with low oxygen or anoxia, and very often, mitochondria - organelles usually associated with oxygen - are involved in anaerobic energy metabolism in animals. It is a good time to refresh our memory about the anaerobic capacities of mitochondria in modern animals and how that might relate to the ecology of early metazoans.
Collapse
Affiliation(s)
- Marek Mentel
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
17
|
Wisecaver JH, Brosnahan ML, Hackett JD. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates. Genome Biol Evol 2014; 5:2368-81. [PMID: 24259313 PMCID: PMC3879968 DOI: 10.1093/gbe/evt179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.
Collapse
|
18
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
19
|
Jerlström-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, Steinhauf D, Hultenby K, Bergquist J, Andersson JO, Svärd SG. Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nat Commun 2014; 4:2493. [PMID: 24042146 PMCID: PMC3778541 DOI: 10.1038/ncomms3493] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/22/2013] [Indexed: 11/30/2022] Open
Abstract
Acquisition of the mitochondrion is a key event in the evolution of the eukaryotic cell, but diversification of the organelle has occurred during eukaryotic evolution. One example of such mitochondria-related organelles (MROs) are hydrogenosomes, which produce ATP by substrate-level phosphorylation with hydrogen as a byproduct. The diplomonad parasite Giardia intestinalis harbours mitosomes, another type of MRO. Here we identify MROs in the salmon parasite Spironucleus salmonicida with similar protein import and Fe–S cluster assembly machineries as in Giardia mitosomes. We find that hydrogen production is prevalent in the diplomonad genus Spironucleus, and that S. salmonicida MROs contain enzymes characteristic of hydrogenosomes. Evolutionary analyses of known hydrogenosomal components indicate their presence in the diplomonad ancestor, and subsequent loss in Giardia. Our results suggest that hydrogenosomes are metabolic adaptations predating the split between parabasalids and diplomonads, which is deeper than the split between animals and fungi in the eukaryotic tree. Hydrogenosomes and mitosomes are mitochondria-related organelles with distinct properties. Here the authors find that the mitochondria-related organelle of the salmon parasite Spironucleus salmonicida has characteristics of both diplomonad mitosomes and of parabasalid hydrogenosomes, suggesting the presence of hydrogenosomes in the last common ancestor.
Collapse
Affiliation(s)
- Jon Jerlström-Hultqvist
- 1] Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Evolution of the cytosolic iron-sulfur cluster assembly machinery in Blastocystis species and other microbial eukaryotes. EUKARYOTIC CELL 2013; 13:143-53. [PMID: 24243793 DOI: 10.1128/ec.00158-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytosolic iron/sulfur cluster assembly (CIA) machinery is responsible for the assembly of cytosolic and nuclear iron/sulfur clusters, cofactors that are vital for all living cells. This machinery is uniquely found in eukaryotes and consists of at least eight proteins in opisthokont lineages, such as animals and fungi. We sought to identify and characterize homologues of the CIA system proteins in the anaerobic stramenopile parasite Blastocystis sp. strain NandII. We identified transcripts encoding six of the components-Cia1, Cia2, MMS19, Nbp35, Nar1, and a putative Tah18-and showed using immunofluorescence microscopy, immunoelectron microscopy, and subcellular fractionation that the last three of them localized to the cytoplasm of the cell. We then used comparative genomic and phylogenetic approaches to investigate the evolutionary history of these proteins. While most Blastocystis homologues branch with their eukaryotic counterparts, the putative Blastocystis Tah18 seems to have a separate evolutionary origin and therefore possibly a different function. Furthermore, our phylogenomic analyses revealed that all eight CIA components described in opisthokonts originated before the diversification of extant eukaryotic lineages and were likely already present in the last eukaryotic common ancestor (LECA). The Nbp35, Nar1 Cia1, and Cia2 proteins have been conserved during the subsequent evolutionary diversification of eukaryotes and are present in virtually all extant lineages, whereas the other CIA proteins have patchy phylogenetic distributions. Cia2 appears to be homologous to SufT, a component of the prokaryotic sulfur utilization factors (SUF) system, making this the first reported evolutionary link between the CIA and any other Fe/S biogenesis pathway. All of our results suggest that the CIA machinery is an ubiquitous biosynthetic pathway in eukaryotes, but its apparent plasticity in composition raises questions regarding how it functions in nonmodel organisms and how it interfaces with various iron/sulfur cluster systems (i.e., the iron/sulfur cluster, nitrogen fixation, and/or SUF system) found in eukaryotic cells.
Collapse
|
21
|
Millet COM, Williams CF, Hayes AJ, Hann AC, Cable J, Lloyd D. Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens. Exp Parasitol 2013; 135:262-73. [PMID: 23867147 DOI: 10.1016/j.exppara.2013.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 11/15/2022]
Abstract
In some eukaryotes, mitochondria have become modified during evolution to yield derived organelles (MDOs) of a similar size (hydrogenosomes), or extremely reduced to produce tiny cellular vesicles (mitosomes). The current study provides evidence for the presence of MDOs in the highly infectious fish pathogen Spironucleus vortens, an organism that produces H₂ and is shown here to have no detectable cytochromes. Transmission electron microscopy (TEM) reveals that S. vortens trophozoites contain electron-dense, membranous structures sometimes with an electron-dense core (200 nm-1 μm), resembling the hydrogenosomes previously described in other protists from habitats deficient in O₂. Confocal microscopy establishes that these organelles exhibit autofluorescence emission spectra similar to flavoprotein constituents previously described for mitochondria and also present in hydrogenosomes. These organelles possess a membrane potential and are labelled by a fluorescently labeled antibody against Fe-hydrogenase from Blastocystis hominis. Heterologous antibodies raised to mitochondrial proteins frataxin and Isu1, also exhibit a discrete punctate pattern of localization in S. vortens; however these labelled structures are distinctly smaller (90-150 nm) than hydrogenosomes as observed previously in other organisms. TEM confirms the presence of double-membrane bounded organelles of this smaller size. In addition, strong background immunostaining occurs in the cytosol for frataxin and Isu1, and labelling by anti-ferredoxin antibody is generally distributed and not specifically localized except for at the anterior polar region. This suggests that some of the functions traditionally attributed to such MDOs may also occur elsewhere. The specialized parasitic life-style of S. vortens may necessitate more complex intracellular compartmentation of redox reactions than previously recognized. Control of infection requires biochemical characterization of redox-related organelles.
Collapse
|
22
|
Leger MM, Gawryluk RMR, Gray MW, Roger AJ. Evidence for a hydrogenosomal-type anaerobic ATP generation pathway in Acanthamoeba castellanii. PLoS One 2013; 8:e69532. [PMID: 24086244 PMCID: PMC3785491 DOI: 10.1371/journal.pone.0069532] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Diverse, distantly-related eukaryotic lineages have adapted to low-oxygen environments, and possess mitochondrion-related organelles that have lost the capacity to generate adenosine triphosphate (ATP) through oxidative phosphorylation. A subset of these organelles, hydrogenosomes, has acquired a set of characteristic ATP generation enzymes commonly found in anaerobic bacteria. The recipient of these enzymes could not have survived prior to their acquisition had it not still possessed the electron transport chain present in the ancestral mitochondrion. In the divergence of modern hydrogenosomes from mitochondria, a transitional organelle must therefore have existed that possessed both an electron transport chain and an anaerobic ATP generation pathway. Here, we report a modern analog of this organelle in the habitually aerobic opportunistic pathogen, Acanthamoeba castellanii. This organism possesses a complete set of enzymes comprising a hydrogenosome-like ATP generation pathway, each of which is predicted to be targeted to mitochondria. We have experimentally confirmed the mitochondrial localizations of key components of this pathway using tandem mass spectrometry. This evidence is the first supported by localization and proteome data of a mitochondrion possessing both an electron transport chain and hydrogenosome-like energy metabolism enzymes. Our work provides insight into the first steps that might have occurred in the course of the emergence of modern hydrogenosomes.
Collapse
Affiliation(s)
- Michelle M. Leger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryan M. R. Gawryluk
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael W. Gray
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Sekar U, Shanthi M. Blastocystis: Consensus of treatment and controversies. Trop Parasitol 2013; 3:35-9. [PMID: 23961439 PMCID: PMC3745668 DOI: 10.4103/2229-5070.113901] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/24/2013] [Indexed: 12/14/2022] Open
Abstract
Blastocystis is a highly controversial protozoan parasite. It has been variably regarded as a commensal and pathogen. Scientists have for decades wondered whether it is truly an enteropathogen and if it is observed in symptomatic patients whether treatment is required because patient recovery and improvement has been noted even without any treatment. Though associated with self-limiting infection, treatment is warranted in many patients due to persistence of symptoms. This particularly holds true for children and adults who are immuno compromised. Several drugs have been used to treat Blastocystis but each one of them has produced widely variable rates of clinical cure and eradication of the parasite from the feces. Based on the studies carried out in vitro and clinical responses obtained in patients, metronidazole appears to be the most effective drug for Blastocystis infection. However, the therapy is complicated due to different dosages and regimens adopted and the unresponsiveness to treatment observed in several sections of the population studied. Recently, the finding of different subsets of Blastocystis exhibiting resistance to metronidazole and associated with variable degrees of symptoms has underscored the importance of typing the subsets of the parasite in order to foretell the clinical response and the need to treat. Till date, the mode of action of the drugs used and the mechanism of resistance is not entirely known and is a topic of speculation. Other drugs with anti Blastocystis activity and used in therapy includes trimethoprim sulfamethoxazole and nitazoxanide. Several other compounds have also been evaluated for the treatment either alone or in combination with the first or second line drugs. A lot of interest has also been generated on the role of probiotics particularly Saccharomyces boularrdii and other natural food compounds on eradication of the parasite. This review provides a comprehensive overview of antimicrobials used to target Blastocystis and discusses the issues pertaining to drug resistance, treatment failure, reinfection, and the current views on treatment modalities.
Collapse
Affiliation(s)
- Uma Sekar
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | | |
Collapse
|
24
|
Abstract
Blastocystis is a common parasite of the human large intestine but has an uncertain role in disease. In this review, we appraise the published evidence addressing this and its weaknesses. Genetic diversity studies have led to the identification of numerous subtypes (STs) within the genus Blastocystis and, recently, methods for studying variation within STs have been developed, with implications for our understanding of host specificity. The geographic distribution of STs is summarised and the impact this may have on investigations into the role of the organism in disease is discussed. Finally, we describe the organelle and nuclear genome characteristics and look to future developments in the field.
Collapse
|
25
|
van Lis R, Baffert C, Couté Y, Nitschke W, Atteia A. Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate:ferredoxin oxidoreductase that functions with FDX1. PLANT PHYSIOLOGY 2013; 161:57-71. [PMID: 23154536 PMCID: PMC3532286 DOI: 10.1104/pp.112.208181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/11/2012] [Indexed: 05/24/2023]
Abstract
Eukaryotic algae have long been known to live in anoxic environments, but interest in their anaerobic energy metabolism has only recently gained momentum, largely due to their utility in biofuel production. Chlamydomonas reinhardtii figures remarkably in this respect, because it efficiently produces hydrogen and its genome harbors many genes for anaerobic metabolic routes. Central to anaerobic energy metabolism in many unicellular eukaryotes (protists) is pyruvate:ferredoxin oxidoreductase (PFO), which decarboxylates pyruvate and forms acetyl-coenzyme A with concomitant reduction of low-potential ferredoxins or flavodoxins. Here, we report the biochemical properties of the homodimeric PFO of C. reinhardtii expressed in Escherichia coli. Electron paramagnetic resonance spectroscopy of the recombinant enzyme (Cr-rPFO) showed three distinct [4Fe-4S] iron-sulfur clusters and a thiamine pyrophosphate radical upon reduction by pyruvate. Purified Cr-rPFO exhibits a specific decarboxylase activity of 12 µmol pyruvate min⁻¹ mg⁻¹ protein using benzyl viologen as electron acceptor. Despite the fact that the enzyme is very oxygen sensitive, it localizes to the chloroplast. Among the six known chloroplast ferredoxins (FDX1-FDX6) in C. reinhardtii, FDX1 and FDX2 were the most efficient electron acceptors from Cr-rPFO, with comparable apparent K(m) values of approximately 4 µm. As revealed by immunoblotting, anaerobic conditions that lead to the induction of CrPFO did not increase levels of either FDX1 or FDX2. FDX1, being by far the most abundant ferredoxin, is thus likely the partner of PFO in C. reinhardtii. This finding postulates a direct link between CrPFO and hydrogenase and provides new opportunities to better study and engineer hydrogen production in this protist.
Collapse
|
26
|
Atteia A, van Lis R, Tielens AGM, Martin WF. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:210-23. [PMID: 22902601 DOI: 10.1016/j.bbabio.2012.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/30/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Ariane Atteia
- Unité de Bioénergétique et Ingénierie des Protéines-UMR 7281, CNRS-Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | | | |
Collapse
|
27
|
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AGM, Martin WF. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 2012; 76:444-95. [PMID: 22688819 PMCID: PMC3372258 DOI: 10.1128/mmbr.05024-11] [Citation(s) in RCA: 526] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.
Collapse
Affiliation(s)
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Katrin Henze
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Christian Woehle
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Re-Young Yu
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Aloysius G. M. Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Dunn LA, Tan KSW, Vanelle P, Juspin T, Crozet MD, Terme T, Upcroft P, Upcroft JA. Development of metronidazole-resistant lines of Blastocystis sp. Parasitol Res 2012; 111:441-50. [PMID: 22362365 DOI: 10.1007/s00436-012-2860-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 02/07/2012] [Indexed: 01/22/2023]
Abstract
Metronidazole (MTR) is frequently used for the treatment of Blastocystis infections, but with variable effectiveness, and often with treatment failures as a possible result of drug resistance. We have developed two Blastocystis MTR-resistant (MTR(R)) subtype 4 WR1 lines (WR1-M4 and WR1-M5), with variable susceptibility to a panel of anti-protozoal agents including various 5-nitroimidazoles, nitazoxanide and furazolidone. WR1-M4 and WR1-M5 were developed and assessed over an 18-month period and displayed persistent MTR resistance, being more than 2.5-fold less susceptible to MTR than the parent isolate. The MTR(R) lines grew with a similar g time to WR1, but were morphologically less consistent with a mixture of size. All Blastocystis isolates and the MTR(R) lines were most susceptible to the 5-nitroimidazole drug ronidazole. WR1-M5 was apparently cross-resistant to satranidazole and furazolidone, and WR1-M4 was cross-resistant to nitazoxanide. These MTR(R) lines now provide a valuable tool for the continued assessment of the efficacy and mechanism of action of new and established drugs against a range of Blastocystis sp. subtypes, in order to identify a universally effective drug and to facilitate understanding of the mechanisms of drug action and resistance in Blastocystis.
Collapse
Affiliation(s)
- L A Dunn
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, 4029, Herston, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tsaousis AD, Leger MM, Stairs CAW, Roger AJ. The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Stensvold CR, Alfellani M, Clark CG. Levels of genetic diversity vary dramatically between Blastocystis subtypes. INFECTION GENETICS AND EVOLUTION 2011; 12:263-73. [PMID: 22116021 DOI: 10.1016/j.meegid.2011.11.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 11/26/2022]
Abstract
Blastocystis is a common single-celled parasite of humans and other animals comprising at least 13 genetically distinct small subunit ribosomal RNA lineages (subtypes (STs)). In this study we investigated intra-subtype genetic diversity and host specificity of two of the most common subtypes in humans, namely ST3 and ST4, by analysing and comparing over 400 complete and partial nuclear SSU-rDNAs and data from multilocus sequence typing (MLST) of the mitochondrion-like organelle (MLO) genome of 132 samples. Inferences from phylogenetic analyses of nuclear SSU-rDNA and concatenated MLST sequences were compatible. Human ST3 infections were restricted to one of four identified MLO clades except where exposure to non-human primates had occurred. This suggests relatively high host specificity within ST3, that human ST3 infections are caused predominantly by human-to-human transmission, and that human strains falling into other clades are almost certainly the result of zoonotic transmission. ST4 from humans belonged almost exclusively to one of two SSU-rDNA clades, and only five MLST sequence types were found among 50 ST4s belonging to Clade 1 (discriminatory index: 0.41) compared to 58 MLST sequence types among 81 ST3s (discriminatory index: 0.99). The remarkable differences in intra-subtype genetic variability suggest that ST4 has a more recent history of colonising humans than ST3. This is congruent with the apparently restricted geographical distribution of ST4 relative to ST3. The implications of this observation are unclear, however, and the population structure and distribution of ST4 should be subject to further scrutiny in view of the fact ST4 is being increasingly linked with intestinal disease.
Collapse
Affiliation(s)
- C Rune Stensvold
- Department of Microbiological Diagnostics, Statens Serum Institut, Orestads Boulevard 5, DK-2300 Copenhagen S, Denmark.
| | | | | |
Collapse
|
32
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.
Collapse
Affiliation(s)
- April M Shiflett
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1489, USA
| | | |
Collapse
|
34
|
MILLET CORALIEO, CABLE JOANNE, LLOYD DAVID. The Diplomonad Fish Parasite Spironucleus vortens Produces Hydrogen. J Eukaryot Microbiol 2010; 57:400-4. [DOI: 10.1111/j.1550-7408.2010.00499.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Staurosporine-induced programmed cell death in Blastocystis occurs independently of caspases and cathepsins and is augmented by calpain inhibition. Microbiology (Reading) 2010; 156:1284-1293. [DOI: 10.1099/mic.0.034025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the protozoan parasite Blastocystis exhibits apoptotic features with caspase-like activity upon exposure to a cytotoxic monoclonal antibody or the anti-parasitic drug metronidazole. The present study reports that staurosporine (STS), a common apoptosis inducer in mammalian cells, also induces cytoplasmic and nuclear features of apoptosis in Blastocystis, including cell shrinkage, phosphatidylserine (PS) externalization, maintenance of plasma membrane integrity, extensive cytoplasmic vacuolation, nuclear condensation and DNA fragmentation. STS-induced PS exposure and DNA fragmentation were abolished by the mitochondrial transition pore blocker cyclosporine A and significantly inhibited by the broad-range cysteine protease inhibitor iodoacetamide. Interestingly, the apoptosis phenotype was insensitive to inhibitors of caspases and cathepsins B and L, while calpain-specific inhibitors augmented the STS-induced apoptosis response. While the identities of the proteases responsible for STS-induced apoptosis warrant further investigation, these findings demonstrate that programmed cell death in Blastocystis is complex and regulated by multiple mediators.
Collapse
|
36
|
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:713-27. [PMID: 20124340 DOI: 10.1098/rstb.2009.0224] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Collapse
Affiliation(s)
- Karin Hjort
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
37
|
Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W. Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 2010; 40:387-97. [PMID: 20085767 DOI: 10.1016/j.ijpara.2009.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation.
Collapse
Affiliation(s)
- Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 2009; 137:1315-31. [PMID: 20028611 DOI: 10.1017/s0031182009991843] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Parasites that often grow anaerobically in their hosts have adopted a fermentative strategy relying on the production of partially oxidized end products, including lactate, glycerol, ethanol, succinate and acetate. This review focuses on recent progress in understanding acetate production in protist parasites, such as amoebae, diplomonads, trichomonads, trypanosomatids and in the metazoan parasites helminths, as well as the succinate production pathway(s) present in some of them. We also describe the unconventional organisation of the tricarboxylic acid cycle associated with the fermentative strategy adopted by the procyclic trypanosomes, which may resemble the probable structure of the primordial TCA cycle in prokaryotes.
Collapse
|
40
|
de Graaf RM, Duarte I, van Alen TA, Kuiper JWP, Schotanus K, Rosenberg J, Huynen MA, Hackstein JHP. The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 2009; 9:287. [PMID: 20003182 PMCID: PMC2796672 DOI: 10.1186/1471-2148-9-287] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Hydrogenosomes are organelles that produce molecular hydrogen and ATP. The broad phylogenetic distribution of their hosts suggests that the hydrogenosomes of these organisms evolved several times independently from the mitochondria of aerobic progenitors. Morphology and 18S rRNA phylogeny suggest that the microaerophilic amoeboflagellate Psalteriomonas lanterna, which possesses hydrogenosomes and elusive "modified mitochondria", belongs to the Heterolobosea, a taxon that consists predominantly of aerobic, mitochondriate organisms. This taxon is rather unrelated to taxa with hitherto studied hydrogenosomes. Results Electron microscopy of P. lanterna flagellates reveals a large globule in the centre of the cell that is build up from stacks of some 20 individual hydrogenosomes. The individual hydrogenosomes are surrounded by a double membrane that encloses a homogeneous, dark staining matrix lacking cristae. The "modified mitochondria" are found in the cytoplasm of the cell and are surrounded by 1-2 cisterns of rough endoplasmatic reticulum, just as the mitochondria of certain related aerobic Heterolobosea. The ultrastructure of the "modified mitochondria" and hydrogenosomes is very similar, and they have the same size distribution as the hydrogenosomes that form the central stack. The phylogenetic analysis of selected EST sequences (Hsp60, Propionyl-CoA carboxylase) supports the phylogenetic position of P. lanterna close to aerobic Heterolobosea (Naegleria gruberi). Moreover, this analysis also confirms the identity of several mitochondrial or hydrogenosomal key-genes encoding proteins such as a Hsp60, a pyruvate:ferredoxin oxidoreductase, a putative ADP/ATP carrier, a mitochondrial complex I subunit (51 KDa), and a [FeFe] hydrogenase. Conclusion Comparison of the ultrastructure of the "modified mitochondria" and hydrogenosomes strongly suggests that both organelles are just two morphs of the same organelle. The EST studies suggest that the hydrogenosomes of P. lanterna are physiologically similar to the hydrogenosomes of Trichomonas vaginalis and Trimastix pyriformis. Phylogenetic analysis of the ESTs confirms the relationship of P. lanterna with its aerobic relative, the heterolobosean amoeboflagellate Naegleria gruberi, corroborating the evolution of hydrogenosomes from a common, mitochondriate ancestor.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
41
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Boorom KF, Smith H, Nimri L, Viscogliosi E, Spanakos G, Parkar U, Li LH, Zhou XN, Ok UZ, Leelayoova S, Jones MS. Oh my aching gut: irritable bowel syndrome, Blastocystis, and asymptomatic infection. Parasit Vectors 2008; 1:40. [PMID: 18937874 PMCID: PMC2627840 DOI: 10.1186/1756-3305-1-40] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Accepted: 10/21/2008] [Indexed: 12/14/2022] Open
Abstract
Blastocystis is a prevalent enteric protozoan that infects a variety of vertebrates. Infection with Blastocystis in humans has been associated with abdominal pain, diarrhea, constipation, fatigue, skin rash, and other symptoms. Researchers using different methods and examining different patient groups have reported asymptomatic infection, acute symptomatic infection, and chronic symptomatic infection. The variation in accounts has lead to disagreements concerning the role of Blastocystis in human disease, and the importance of treating it. A better understanding of the number of species of Blastocystis that can infect humans, along with realization of the limitations of the existing clinical laboratory diagnostic techniques may account for much of the disagreement. The possibility that disagreement was caused by the emergence of particular pathogenic variants of Blastocystis is discussed, along with the potential role of Blastocystis infection in irritable bowel syndrome (IBS). Findings are discussed concerning the role of protease-activated receptor-2 in enteric disease which may account for the presence of abdominal pain and diffuse symptoms in Blastocystis infection, even in the absence of fever and endoscopic findings. The availability of better diagnostic techniques and treatments for Blastocystis infection may be of value in understanding chronic gastrointestinal illness of unknown etiology.
Collapse
Affiliation(s)
- Kenneth F Boorom
- Blastocystis Research Foundation, 5060 SW Philomath Blvd, #202, Corvallis, OR 97333, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|