1
|
Long TP, Cuong VV, Anh BTL, Van Toan T, Loan VT, Hung PV, Anh LTL, Tan NN, Mo LT, Van Khanh L, Van Tong H. Genetic and Antigenic Diversity of Neisseria meningitidis Serogroup B Strains in Vietnam. Pathogens 2025; 14:487. [PMID: 40430807 PMCID: PMC12114657 DOI: 10.3390/pathogens14050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/15/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Neisseria meningitidis (N. meningitidis) is a leading cause of acute meningitis and is classified into 13 serogroups, six of which are predominantly associated with invasive meningococcal disease. This study aimed to investigate the genotype, subgenotype, and antigenic profiles of N. meningitidis serogroup B strains isolated in Vietnam. METHODS Genotyping was performed on 106 N. meningitidis strains isolated from clinical samples from Vietnamese patients and nasopharyngeal swabs of healthy adolescents between 2019 and 2024. The genetic profiles, including the porA, porB, fetA, fHbp, abcZ, adk, aroE, fumC, gdh, pdhC, and pgm genes, were analyzed using Sanger sequencing and bioinformatic methods. RESULTS We found that 84.9% of the strains carried VR3 families 36 or 35-1, with VR1, VR2, and VR3 families 22-25, 14, and 36 being the most prevalent. Among the 106 serogroup B isolates, 20 variants of the porB allele 3 were identified, with porB 3-1212 being the most frequent (30.2%). Dominant PorB variable loops included L1.6, L4.5, L5.7, L6.6, and L7.13. fHbp variant group 2 was predominant (104/106 strains), and 12 FetA allele variants were identified, with F1-7 being the most common (47.2%). Three clonal complexes were identified, and clonal complex ST-32 was the most predominant. Fifty-five strains (51.9%) belonged to sequence types that have not yet been assigned to any clonal complexes, and 15 strains (14.1%) with allelic profiles were not assigned to STs. The 3-253 and 3-1212 alleles of porB, the F1-7 variant of FetA, the ST-44 and ST-1576 sequence types, and the ST-41/44 complex were observed more frequently in patients compared to asymptomatic carriers, suggesting their association with more virulence. CONCLUSIONS This study showed a high genetic and antigenic diversity of N. meningitidis serogroup B isolates in Vietnam, with VR3 family 36 most common and porB 3-1212 as the predominant allele. fHbp variant group 2 and FetA allele F1-7 were most frequent. ST-32 was the dominant clonal complex, though many strains remained unassigned, highlighting the need for ongoing molecular surveillance.
Collapse
Affiliation(s)
- Trieu Phi Long
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Department of Microbiology, Military Institute of Preventive Medicine, Hanoi 100000, Vietnam
| | - Vo Viet Cuong
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Bui Thi Lan Anh
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Trinh Van Toan
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Vu Thi Loan
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Pham Viet Hung
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Le Thi Lan Anh
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Nguyen Ngoc Tan
- Institute of Tropical Medicine, Joint Vietnam-Russia Tropical Science and Technology Research Center, Hanoi 100000, Vietnam
| | - Luong Thi Mo
- Southern Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center, Ho Chi Minh City 700000, Vietnam
| | - Le Van Khanh
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 100000, Vietnam
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi 100000, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Phan TV, Vo DTT, Nguyen HTK, Ho TNL, Pham QD, Luong QC, Cao TM, Nguyen TV, Taha MK, Nguyen TV. Characterizing Neisseria meningitidis in Southern Vietnam between 2012 and 2021: A predominance of the chloramphenicol-resistant ST-1576 lineage. IJID REGIONS 2024; 10:52-59. [PMID: 38162295 PMCID: PMC10755043 DOI: 10.1016/j.ijregi.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Objectives Our goal was to describe Invasive Meningococcal Disease (IMD) in Southern Vietnam over the last 10 years. We characterized 109 Neisseria meningitidis strains in Southern Vietnam isolated between 1980s to 2021, that were collected from IMD (n = 44), sexually transmitted infections (n = 2), and healthy carriage (n = 63). Methods IMD were confirmed by bacterial culture and/or real-time polymerase chain reaction at the national reference laboratory in Pasteur Institute of Ho Chi Minh City (PIHCM). Antimicrobial resistance was determined on 31 IMD and two sexually transmitted infection isolates with E-test for chloramphenicol (CHL), penicillin (PEN), ciprofloxacin (CIP), ceftriaxone (CRO), and rifampicin (RIF). Sequencing was performed for analyzing of multilocus-sequence-typing (MLST), porA, fetA, and antibiotic resistance genes, including gyrA, penA, and rpoB. Results The incidence rate during this period was 0.02 per 100,000 persons/year. Serogroup B accounted for over 90% of cases (50/54). ST-1576 were mainly responsible for IMD, 27/42 MLST profiles, and associated with CHL resistance. Resistance was prevalent among IMD isolates. Thirteen were resistant to CHL (minimum inhibitory concentration [MIC] ≥16 mg/l), 12 were intermediate to PEN (MIC between 0.19 and 0.5 mg/l), and five were CIP-resistant (MIC between 0.19 and 0.5 mg/l). Particularly, one was non-susceptible to CRO (MIC at 0.125 mg/l), belonging to ST-5571 lineage. The resistance was due to carrying resistant alleles of penA and gyrA genes, and catP gene. Notably, seven isolates were resistant/non-susceptible to two or more antibiotics. Conclusion Our results suggest the persistence of the circulating ST-1576 in Southern Vietnam, with a spread of antimicrobial resistance across the community.
Collapse
Affiliation(s)
- Thanh Van Phan
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Dai Thi Trang Vo
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoang Thi Kim Nguyen
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Nguyen Loc Ho
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Quang Duy Pham
- Training Center and Division of Planning, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Quang Chan Luong
- Department for Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thang Minh Cao
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuong Vu Nguyen
- Department for Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Muhamed-Kheir Taha
- Invasive Bacterial Infectious Institut Pasteur and Université Paris Cité, Invasive bacterial infections Unit and National Reference Centre for meningococci and Haemophilus influenzae, Paris, France
| | - Trung Vu Nguyen
- Department for Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
4
|
Abuga KM, Nairz M, MacLennan CA, Atkinson SH. Severe anaemia, iron deficiency, and susceptibility to invasive bacterial infections. Wellcome Open Res 2023; 8:48. [PMID: 37600584 PMCID: PMC10439361 DOI: 10.12688/wellcomeopenres.18829.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 08/22/2023] Open
Abstract
Severe anaemia and invasive bacterial infections remain important causes of hospitalization and death among young African children. The emergence and spread of antimicrobial resistance demand better understanding of bacteraemia risk factors to inform prevention strategies. Epidemiological studies have reported an association between severe anaemia and bacteraemia. In this review, we explore evidence that severe anaemia is associated with increased risk of invasive bacterial infections in young children. We describe mechanisms of iron dysregulation in severe anaemia that might contribute to increased risk and pathogenesis of invasive bacteria, recent advances in knowledge of how iron deficiency and severe anaemia impair immune responses to bacterial infections and vaccines, and the gaps in our understanding of mechanisms underlying severe anaemia, iron deficiency, and the risk of invasive bacterial infections.
Collapse
Affiliation(s)
- Kelvin M. Abuga
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Open University, KEMRI-Wellcome Trust Research Programme – Accredited Research Centre, Kilifi, 80108, Kenya
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah H. Atkinson
- Kenya Medical Research Institute (KEMRI) Centre for Geographical Medicine Research-Coast, KEMRI-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
- Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Symptomatic Female Genital Tract Infections Due to Neisseria meningitidis in Athens, Greece. Diagnostics (Basel) 2021; 11:diagnostics11071265. [PMID: 34359348 PMCID: PMC8305777 DOI: 10.3390/diagnostics11071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Neisseria meningitidis is considered as an obligate human pathogen and can cause life-threatening diseases like meningitis and/or septicaemia. Occasionally, it can be recovered from infections outside the bloodstream or central nervous system, like respiratory, ocular, joint, urogenital or other unusual sites. Herein, we present two rare cases of female genital infections due to N. meningitidis within a two-year period (2019-2020), identified as serogroup B (MenB) and Y (MenY), respectively. Genotypic analysis for PorA, FetA and MLST revealed the following characteristics: MenB: 7-12, 14, F5-36, 1572cc and MenY: 5-1,10-1, F4-5, 23cc, respectively. Such unusual presentations should alert the clinicians and microbiologists not to exclude N. meningitidis from routine diagnosis and the need of early detection. This is the first report in Greece, and, to our knowledge, in Europe since 2005 describing meningococcal female genital infections.
Collapse
|
6
|
Delic S, Mijac V, Gajic I, Kekic D, Ranin L, Jegorovic B, Culic D, Cirkovic V, Siljic M, Stanojevic M, Paragi M, Markovic M, Opavski N. A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population-Implications for Vaccination. Diagnostics (Basel) 2021; 11:1059. [PMID: 34207530 PMCID: PMC8228891 DOI: 10.3390/diagnostics11061059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to present the epidemiology of invasive diseases caused by Neisseria meningitidis and Streptococcus pneumoniae in the pre-vaccine period, and Haemophilus influenzae in the post-vaccine period in a pediatric population from Serbia. Among the meningococci, serogroup B dominated (83%), followed by serogroup C (11.3%). High antigenic diversity was found, with fine type P1.5-1,10-4 being the most frequent. Moderate susceptibility to penicillin was common (55%). Within pneumococci, serotypes 19F, 14, 6B, 6A, 18C, 23F, 3, and 7F prevailed, while 19A was rare (3.6%). The coverages of PCV10 and PCV13 were 68% and 84%, respectively. Major sequence types were ST320, ST15, ST273, ST271, and ST81. Non-susceptibility to penicillin (66.7%), cefotaxime (37%), and macrolides (55%) was predominantly detected in vaccine-related serotypes. Among the 11 invasive H. influenzae isolates collected, there were six Hib, three non-type b, and two non-typeable strains (ntHi) that were antibiotic susceptible. These results imply a potential benefit of future Men-B vaccine implementations. For pneumococci, as PCV10 was recently introduced, a significant reduction of morbidity and antibiotic resistance might be expected. The efficiency of Hib vaccination is evident, but a shift towards non-type b and ntHi strains may be anticipated.
Collapse
Affiliation(s)
- Snezana Delic
- Centre for Microbiology, National Reference Laboratory for Meningococcus and Haemophilus, Institute of Public Health, 25101 Sombor, Serbia
| | - Vera Mijac
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ina Gajic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Dusan Kekic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Lazar Ranin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Boris Jegorovic
- Clinical Centre of Serbia, University Hospital for Infectious and Tropical Diseases, 11000 Belgrade, Serbia
| | - Davor Culic
- Centre for Microbiology, National Reference Laboratory for Meningococcus and Haemophilus, Institute of Public Health, 25101 Sombor, Serbia
| | - Valentina Cirkovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Marina Siljic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Metka Paragi
- National Laboratory of Health Environment and Food, Department for Public Health Microbiology, 1000 Ljubljana, Slovenia
| | - Milos Markovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Natasa Opavski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
- National Reference Laboratory for Streptococci, Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Abad R, García-Amil C, Navarro C, Martín E, Martín-Díaz A, Vázquez JA. Molecular characterization of invasive serogroup B Neisseria meningitidis isolates from Spain during 2015-2018: Evolution of the vaccine antigen factor H binding protein (FHbp). J Infect 2021; 82:37-44. [PMID: 33610688 DOI: 10.1016/j.jinf.2021.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Studies of meningococcal genetic population structure, including the potential associations between surface proteins variants and clonal complexes, are important to understand how new protein MenB vaccines might impact in specific scenarios. With the aim to analyze the diversity of Spanish invasive MenB strains, and genetic variability of the fHbp vaccine antigen, all MenB isolates received at National Reference Laboratory (NRL) from 2015 to 2018 were molecularly characterized. MATERIAL AND METHODS 108, 103, 87 and 112 invasive MenB strains isolated during 2015-2018, respectively, were received at NRL. The strains were whole genome sequenced, and porA, fetA, MLST and fHbp variability was analyzed. Potential impact on MenB vaccines coverage was also assessed. RESULTS A total of 42, 38 and 3 different FHbp subfamily A, B and A/B hybrid peptides, respectively, were found. FHbp subfamily A peptides were harboured by most of the strains (65.9%), being the most prevalent peptide 45 which was associated with genosubtype 22,14 and cc213. FHbp subfamily B peptides were harboured by 32.4% of the strains, and 6 strains harbouring subfamily A/B hybrid peptides were also found. The 64.15% of the strains showed FHbp variants "exact-match" or "cross-reactive" to the FHbp variants included in rLP2086 vaccine according to hSBA assays in the rLP2086 clinical development, and 15.85% showed FHbp peptides defined as predictors of FHbp-coverage for 4CMenB vaccine by gMATS. CONCLUSIONS Due to invasive meningococcal strains temporal variability (eg prevalence of the cc213 increased from 3.6% in 2007 to 33% in 2018) affecting to the presence and distribution of the vaccine antigens, continuous detailed meningococcal surveillance and monitoring of the vaccine antigens is needed to determine the degree and durability of coverage provided by these protein vaccine.
Collapse
Affiliation(s)
- Raquel Abad
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Cristina García-Amil
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Carmen Navarro
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Elena Martín
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Ariadna Martín-Díaz
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain
| | - Julio A Vázquez
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
8
|
Tzanakaki G, Xirogianni A, Tsitsika A, Clark SA, Kesanopoulos K, Bratcher HB, Papandreou A, Rodrigues CMC, Maiden MCJ, Borrow R, Tsolia M. Estimated strain coverage of serogroup B meningococcal vaccines: A retrospective study for disease and carrier strains in Greece (2010-2017). Vaccine 2021; 39:1621-1630. [PMID: 33597116 DOI: 10.1016/j.vaccine.2021.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022]
Abstract
Invasive meningococcal disease (IMD) is associated with high case fatality rates and long-term sequelae among survivors. Meningococci belonging to six serogroups (A, B, C, W, X, and Y) cause nearly all IMD worldwide, with serogroup B meningococci (MenB) the predominant cause in many European countries, including Greece (~80% of all IMD). In the absence of protein-conjugate polysaccharide MenB vaccines, two protein-based vaccines are available to prevent MenB IMD in Greece: 4CMenB (Bexsero™, GlaxoSmithKline), available since 2014; and MenB-FHbp, (Trumenba™, Pfizer), since 2018. This study investigated the potential coverage of MenB vaccines in Greece using 107 MenB specimens, collected from 2010 to 2017 (66 IMD isolates and 41 clinical samples identified solely by non-culture PCR), alongside 6 MenB isolates from a carriage study conducted during 2017-2018. All isolates were characterized by multilocus sequence typing (MLST), PorA, and FetA antigen typing. Whole Genome Sequencing (WGS) was performed on 66 isolates to define the sequences of vaccine components factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria adhesin A (NadA). The expression of fHbp was investigated with flow cytometric meningococcal antigen surface expression (MEASURE) assay. The fHbp gene was present in-frame in all isolates tested by WGS and in 41 MenB clinical samples. All three variant families of fHbp peptides were present, with subfamily B peptides (variant 1) occurring in 69.2% and subfamily A in 30.8% of the samples respectively. Sixty three of 66 (95.5%) MenB isolates expressed sufficient fHbp to be susceptible to bactericidal killing by MenB-fHbp induced antibodies, highlighting its potential to protect against most IMD in Greece.
Collapse
Affiliation(s)
- G Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece.
| | - A Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - A Tsitsika
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| | - S A Clark
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - K Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - H B Bratcher
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - A Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | - C M C Rodrigues
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - M C J Maiden
- Department of Zoology, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
| | - R Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - M Tsolia
- Second Dept of Paediatrics, Medical School, National Kapodistrian University, Athens, Greece
| |
Collapse
|
9
|
Wang J, Xiong K, Pan Q, He W, Cong Y. Application of TonB-Dependent Transporters in Vaccine Development of Gram-Negative Bacteria. Front Cell Infect Microbiol 2021; 10:589115. [PMID: 33585268 PMCID: PMC7873555 DOI: 10.3389/fcimb.2020.589115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Multiple scarce nutrients, such as iron and nickel, are essential for bacterial growth. Gram-negative bacteria secrete chelators to bind these nutrients from the environment competitively. The transport of the resulting complexes into bacterial cells is mediated by TonB-dependent transporters (TBDTs) located at the outer membrane in Gram-negative bacteria. The characteristics of TBDTs, including surface exposure, protective immunogenicity, wide distribution, inducible expression in vivo, and essential roles in pathogenicity, make them excellent candidates for vaccine development. The possible application of a large number of TBDTs in immune control of the corresponding pathogens has been recently investigated. This paper summarizes the latest progresses and current major issues in the application.
Collapse
Affiliation(s)
- Jia Wang
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| | - Kun Xiong
- Department of Cold Environmental Medicine, Institute of High Altitude Military Medicine, Army Medical University, Chongqiong, China
| | - Qu Pan
- Department of Microbiology, Chengdu Medical College, Chengdu, China
| | - Weifeng He
- Department of Burn, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yanguang Cong
- Department of Clinical Laboratory, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China.,Precision Medicine Center, Traditional Medicine Hospital Affiliated to Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Thangarajah D, Guglielmino CJD, Lambert SB, Khandaker G, Vasant BR, Malo JA, Smith HV, Jennison AV. Genomic Characterization of Recent and Historic Meningococcal Serogroup E Invasive Disease in Australia: A Case Series. Clin Infect Dis 2021; 70:1761-1763. [PMID: 31420664 DOI: 10.1093/cid/ciz767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/08/2019] [Indexed: 11/14/2022] Open
Abstract
We report the recent emergence of invasive meningococcal disease due to serogroup E in Queensland, Australia, in previously healthy patients. Molecular typing revealed the genotype of these strains to be E:P1.21-7,16:F5-36:ST-1157 (cc1157); when analyzed phylogenetically, compared with international cc1157 strains, they were relatively unrelated to each other.
Collapse
Affiliation(s)
- Dharshi Thangarajah
- Communicable Diseases Branch, Queensland Health, Brisbane.,National Centre for Epidemiology and Population Health, Australian National University, Brisbane
| | | | - Stephen B Lambert
- Communicable Diseases Branch, Queensland Health, Brisbane.,Centre for Child Health Research, The University of Queensland, Brisbane
| | - Gulam Khandaker
- Central Queensland Public Health Unit, Queensland Health, Rockhampton, Australia
| | - Bhakti R Vasant
- Metro South Public Health Unit, Queensland Health, Brisbane, Australia
| | | | - Helen V Smith
- Queensland Health Forensic and Scientific Services, Brisbane
| | - Amy V Jennison
- Queensland Health Forensic and Scientific Services, Brisbane
| |
Collapse
|
11
|
Koliou M, Kasapi D, Mazeri S, Maikanti P, Demetriou A, Skordi C, Agathocleous M, Tzanakaki G, Constantinou E. Epidemiology of invasive meningococcal disease in Cyprus 2004 to 2018. ACTA ACUST UNITED AC 2020; 25. [PMID: 32734853 PMCID: PMC7393851 DOI: 10.2807/1560-7917.es.2020.25.30.1900534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Despite progress in the management of invasive meningococcal disease (IMD) it causes significant mortality and sequelae. Aim This study aims to describe the epidemiology and clinical characteristics of IMD in Cyprus and discuss the current immunisation programmes. Methods This is a retrospective study of all cases of IMD notified to the Ministry of Health between 2004 and 2018. Demographic, epidemiological, clinical and microbiological data were collected when a new case was notified. Risk factors associated with mortality were investigated using univariable logistic regression. Results 54 cases of IMD were recorded, an overall incidence of 0.4 cases per 100,000 population. The incidence rate was highest among infants (7.2/100,000) and adolescents (1.4/100,000). Case fatality rate was 10.4%. Serogroup B accounted for 24 of 40 cases caused by known serogroup. Serogroups W and Y comprised nine cases and were responsible for most fatal cases. Serogroup C was the cause in only four cases. There was an increase in the odds of death with increasing age, while the presence of meningitis in the clinical picture was found to be associated with lower odds of death. Conclusion Despite the low incidence of IMD in Cyprus, it remains an important cause of morbidity and mortality. Serogroup B is the most frequent serogroup, while incidence of serogroups W and Y is rising. Monitoring new cases and yearly evaluation of the immunisation programmes by the National Immunization Technical Advisory Group (NITAG) is essential for successful control of the disease.
Collapse
Affiliation(s)
- Maria Koliou
- Unit for Surveillance and control of Communicable diseases, Medical and Public Health Services, Ministry of Health, Nicosia, Cyprus.,Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - Stella Mazeri
- The Roslin Institute, Division of Genetics and Genomics, Easter Bush Veterinary Centre, Roslin, United Kingdom.,The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
| | | | - Anna Demetriou
- Health Monitoring Unit, Ministry of Health, Nicosia, Cyprus
| | | | | | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, Athens, Greece
| | | |
Collapse
|
12
|
Predicted coverage by 4CMenB vaccine against invasive meningococcal disease cases in the Netherlands. Vaccine 2020; 38:7850-7857. [PMID: 33097311 DOI: 10.1016/j.vaccine.2020.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022]
Abstract
Neisseria meningitidis serogroup B is a major cause of invasive meningococcal disease in Europe. In the absence of a conjugate serogroup B vaccine, a subcapsular 4CMenB vaccine was developed. Data on 4CMenB vaccine efficacy is still limited. Recently, genomic MATS (Meningococcal Antigen Typing System) was developed as a tool to predict strain coverage, using vaccine antigens sequence data. We characterized all invasive meningococcal isolates received by the Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM) in two epidemiological years 2017-2019 using whole-genome sequencing and determined serogroup, clonal complex (cc) and estimated 4CMenB vaccine coverage by gMATS. Of 396 cases of invasive meningococcal disease, corresponding to an incidence of 1.22 cases/105 inhabitants, 180 (45%) were serogroup W, 155 (39%) serogroup B, 46 (12%) serogroup Y, 10 (3%) serogroup C, 2 non-groupable (0.5%) and 3 (0.7%) unknown. The incidence was the highest among 0-4 years olds (4 cases/105 inhabitants), and 57/72 (79%) of these cases were serogroup B. Serogroup W predominated among persons 45 years of age or older with 110/187 (59%) cases. Serogroup B isolates comprised 11 different clonal complexes, with 103/122 (84%) isolates belonging to 4 clonal complexes: cc32, cc41/44, cc269 and cc213. In contrast, serogroup W isolates were genetically similar with 95% belonging to cc11. Of 122 serogroup B isolates, 89 (73%; 95% CI: 64-80%) were estimated to be covered by 4CMenB and the degree of coverage varied largely by clonal complex and age. Among the 0-4 year olds, 25 of 43 (58%; 95% CI: 43-72%) MenB isolates were estimated to be covered. Since the coverage of the 4CMenB vaccine is dependent on circulating clonal complexes, our findings emphasize the need for surveillance of circulating meningococcal strains. In addition, estimation of age specific coverage is relevant to determine the right target age group for vaccination.
Collapse
|
13
|
Monalisa Mendes Dantas Sales N, Azevedo J, Teles Bastos Ribeiro M, Fonseca de Freitas H, Pedreira da Silva Filho H, Machado Cordeiro S, Galvão Reis M, Neves Reis J. Long-term impacts of MenC vaccination campaign in the Salvador, Brazil metropolitan region: A comparison of pre- and post-vaccine periods. Vaccine 2020; 38:6267-6273. [PMID: 32741673 DOI: 10.1016/j.vaccine.2020.07.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
The Meningococcal Serogroup C Conjugate Vaccine (MenC) was introduced into the Brazilian Immunization Program in 2010. However, in Salvador, the fourth largest capital in Brazil, an extended catch-up campaign was conducted earlier in that year, which focused on adolescents and young adults aged 10-24 years. To evaluate the long-term impact of MenC vaccination, we analyzed hospital-based surveillance data on cases of meningococcal disease in the Salvador metropolitan region during the pre-vaccine (2005-2009) and post-vaccine (2011-2016) campaign periods. Six years after the introduction of the MenC vaccine, the mean incidence rate decreased from 3.20 to 0.93 cases per 100,000 individuals (71% reduction, 95% CI [58.7-83.3]) in children <4 years. Reductions of 25.6% and 21.1% were also observed for the age groups of 5-9 and 10-14 years, respectively. On the other hand, incidence increased in the 15-24-year age group from 0.72 to 1.11, and from 0.31 to 0.60 in individuals aged >25 years (p < 0.05). At the end of the study period, serogroup C was the most prevalent (65.7%), followed by serogroups B (9.8%), W (2.3%), Y (1.6%) and A (1.0%); serogrouping was not possible in 19.6% of the cases, or adequate material was not available for serogroup identification. The use of real-time PCR from 2010 onwards increased detection rates of meningococcal meningitis by 29.6%. The long-term impact of the MenC vaccination campaign was associated with a significant reduction in MenC disease in children aged 0-4 years, yet no effect was observed in adolescents and adults, as evidenced by increasing trends in infection rates. In addition, the emergence of meningococcal serogroup A was identified, which should serve as an alert to public health officials and deserves further investigation.
Collapse
Affiliation(s)
| | - Jailton Azevedo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | | | | | | | | | - Mitermayer Galvão Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil; School of Medicine, Federal University of Bahia, Salvador, Brazil; Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Joice Neves Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil; School of Pharmacy, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
14
|
Tzanakaki G, Georgakopoulou T, Xirogianni A, Papandreou A, Deghmane AE, Magaziotou I, Taha MK. First report of meningococcal ciprofloxacin resistance in Greece due to invasive isolates of the sequence type ST-3129. Eur J Clin Microbiol Infect Dis 2020; 39:2467-2470. [PMID: 32621148 DOI: 10.1007/s10096-020-03965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
A local outbreak caused by Neisseria meningitidis occurred in the migration camp in the Greek island of Lesbos during January-February 2020 (4 of 5 cases). In total, 5 samples positive for N. meningitidis were further investigated for sero-/genogroup, PorA, and WGS analysis. MenB was found among 3 cases, while in two cases, MenY was identified. WGS analysis and antibiotic susceptibility testing on the 2 culture positive MenB samples showed the new ST-3129, ciprofloxacin-resistant clone was circulating among the immigrants in the aforementioned camp. This is the first report of ciprofloxacin resistance in Greece.
Collapse
Affiliation(s)
- Georgina Tzanakaki
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, Athens, Greece.
| | - Theano Georgakopoulou
- Department of Epidemiological Surveillance and Intervention of the National Public Health Organization (NPHO), Athens, Greece
| | - Athanasia Xirogianni
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, Athens, Greece
| | - Anastasia Papandreou
- National Meningitis Reference Laboratory, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, Athens, Greece
| | | | - Ioanna Magaziotou
- Department of Epidemiological Surveillance and Intervention of the National Public Health Organization (NPHO), Athens, Greece
| | | |
Collapse
|
15
|
Brik A, Terrade A, Hong E, Deghmane A, Taha MK, Bouafsoun A, Khmiri M, Boussetta K, Boukhir S, Jaballah NB, Kechrid A, Smaoui H. Phenotypic and genotypic characterization of meningococcal isolates in Tunis, Tunisia: High diversity and impact on vaccination strategies. Int J Infect Dis 2019; 91:73-78. [PMID: 31756567 DOI: 10.1016/j.ijid.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The aim of this study was to characterize Neisseria meningitidis (Men) isolates in Tunisian paediatric patients with invasive meningococcal disease (IMD) in order to target therapeutic and preventive strategies. METHODS Fifty-nine isolates of Men and four cerebrospinal fluid samples that were culture-negative but Men-positive by PCR (NC-MenPPCR) (2009-2016) were collected from IMD patients. Isolates were analysed for their antimicrobial susceptibility. Whole-genome sequencing (WGS) was used to characterize isolates and multilocus sequence typing for NC-MenPPCR. Coverage of Men serogroup B (MenB) was determined by Genetic Meningococcal Antigen Typing System (gMATS) and fHbp expression by ELISA. RESULTS MenB was the predominant type (88.9%). The majority of isolates (81%) had reduced susceptibility to penicillin G with altered penA alleles. The clonal complex CC461 (27.1%) was the most frequent. Among the MenB vaccine targets neisserial heparin binding antigen (NHBA) and fHbp, the predominant variants were NHBA118 (30.8%) and fHbp peptide 47 (25%), respectively. The nadA gene was present in 17.3% of isolates. Using gMATS, 36.5% of MenB were predicted to be covered by the 4CMenB vaccine. ELISA showed that 92.4% of the MenB were expected to be killed by anti-fHbp antibodies. CONCLUSIONS MenB was the leading serogroup in IMD, and more than 90% had a sufficient level of fHbp expression for vaccine coverage. The study results will be useful for the Tunisian vaccination programme.
Collapse
Affiliation(s)
- A Brik
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia; Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Terrade
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - E Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - M K Taha
- Institut Pasteur, Invasive Bacterial Infections Unit, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - A Bouafsoun
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia
| | - M Khmiri
- Department of Paediatrics A, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - K Boussetta
- Department of Paediatrics B, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - S Boukhir
- Department of Paediatrics C, Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - N Ben Jaballah
- Intensive Care Unit, Béchir Hamza Children's Hospital of Tunis, Beb Saadoun, 1007 Tunis, Tunisia
| | - A Kechrid
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia
| | - H Smaoui
- University of Tunis El Manar, Children's Hospital of Tunis, Laboratory of Microbiology, LR18ES39, Beb Saadoun, 1007 Tunis, Tunisia.
| |
Collapse
|
16
|
Epidemiology of invasive meningococcal disease in Greece, 2006–2016. Eur J Clin Microbiol Infect Dis 2019; 38:2197-2203. [DOI: 10.1007/s10096-019-03668-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
17
|
Mulhall RM, Bennett DE, Bratcher HB, Jolley KA, Bray JE, O’Lorcain PP, Cotter SM, Maiden MCJ, Cunney RJ. cgMLST characterisation of invasive Neisseria meningitidis serogroup C and W strains associated with increasing disease incidence in the Republic of Ireland. PLoS One 2019; 14:e0216771. [PMID: 31141820 PMCID: PMC6541471 DOI: 10.1371/journal.pone.0216771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION AND AIMS Since 2013 MenC and MenW disease incidence and associated mortality rates have increased in the Republic of Ireland. From 2002/2003 to 2012/2013, the average annual MenC incidence was 0.08/100,000, which increased to 0.34/100,000 during 2013/2014 to 2017/18, peaking in 2016/17 (0.72/100,000) with an associated case fatality rate (CFR) of 14.7%. MenW disease incidence has increased each year from 0.02/100,000 in 2013/2014, to 0.29/100,000 in 2017/18, with an associated CFR of 28.6%. We aimed to characterise and relate recent MenC isolates to the previously prevalent MenC:cc11 ET-15 clones, and also characterise and relate recent MenW isolates to the novel 'Hajj' clones. METHODS Using WGS we characterised invasive (n = 74, 1997/98 to 2016/17) and carried (n = 16, 2016/17) MenC isolates, and invasive (n = 18, 2010/11 to 2016/17) and carried (n = 15, 2016/17) MenW isolates. Genomes were assembled using VelvethOptimiser and stored on the PubMLST Neisseria Bacterial Isolate Genome Sequence Database. Isolates were compared using the cgMLST approach. RESULTS Most MenC and MenW isolates identified were cc11. A single MenC:cc11 sub-lineage contained the majority (68%, n = 19/28) of recent MenC:cc11 disease isolates and all carried MenC:cc11 isolates, which were interspersed and distinct from the historically significant ET-15 clones. MenW:cc11 study isolates clustered among international examples of both the original UK 2009 MenW:cc11, and novel 2013 MenW:cc11clones. CONCLUSIONS We have shown that the majority of recent MenC disease incidence was caused by strain types distinct from the MenC:cc11 ET-15 clone of the late 1990s, which still circulate but have caused only sporadic disease in recent years. We have identified that the same aggressive MenW clone now established in several other European countries, is endemic in the RoI and responsible for the recent MenW incidence increases. This data informed the National immunisation Advisory Committee, who are currently deliberating a vaccine policy change to protect teenagers.
Collapse
Affiliation(s)
- Robert M. Mulhall
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
| | - Desiree E. Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
| | - Holly B. Bratcher
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - James E. Bray
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | | | | | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Robert J. Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Guo Q, Mustapha MM, Chen M, Qu D, Zhang X, Chen M, Doi Y, Wang M, Harrison LH. Evolution of Sequence Type 4821 Clonal Complex Meningococcal Strains in China from Prequinolone to Quinolone Era, 1972-2013. Emerg Infect Dis 2019; 24:683-690. [PMID: 29553310 PMCID: PMC5875256 DOI: 10.3201/eid2404.171744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expansion of hypervirulent sequence type 4821 clonal complex (CC4821) lineage Neisseria meningitidis bacteria has led to a shift in meningococcal disease epidemiology in China, from serogroup A (MenA) to MenC. Knowledge of the evolution and genetic origin of the emergent MenC strains is limited. In this study, we subjected 76 CC4821 isolates collected across China during 1972–1977 and 2005–2013 to phylogenetic analysis, traditional genotyping, or both. We show that successive recombination events within genes encoding surface antigens and acquisition of quinolone resistance mutations possibly played a role in the emergence of CC4821 as an epidemic clone in China. MenC and MenB CC4821 strains have spread across China and have been detected in several countries in different continents. Capsular switches involving serogroups B and C occurred among epidemic strains, raising concerns regarding possible increases in MenB disease, given that vaccines in use in China do not protect against MenB.
Collapse
|
19
|
Maiden MCJ. The Impact of Nucleotide Sequence Analysis on Meningococcal Vaccine Development and Assessment. Front Immunol 2019; 9:3151. [PMID: 30697213 PMCID: PMC6340965 DOI: 10.3389/fimmu.2018.03151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
Since it became available as a routine tool in biology, the determination and analysis of nucleotide sequences has been applied to the design of vaccines and the investigation of their effectiveness. As vaccination is primarily concerned with the interaction of biological molecules with the immune system, the utility of sequence data is not immediately obvious and, indeed, nucleotide sequence data are most effective when used to complement more conventional immunological approaches. Here, the impact of sequencing on the field of vaccinology will be illustrated with reference to the development and implementation of vaccines against Neisseria meningitidis (the meningococcus) over the 30-year period from the late-1980s to the late-2010s. Nucleotide sequence-based studies have been important in the fight against this aggressive pathogen largely because of its high genetic and antigenic diversity, properties that were only fully appreciated because of sequence-based studies. Five aspects will be considered, the use of sequence data to: (i) discover vaccine antigens; (ii) assess the diversity and distribution of vaccine antigens; (iii) determine the evolutionary and population biology of the organism and their implications for immunization; and (iv) develop molecular approaches to investigate pre- and post-vaccine pathogen populations to assess vaccine impact. One of the great advantages of nucleotide sequence data has been its scalability, which has meant that increasingly large data sets have been available, which has proved invaluable in the investigation of an organism as diverse and enigmatic as the meningococcus.
Collapse
|
20
|
Kesanopoulos K, Bratcher HB, Hong E, Xirogianni A, Papandreou A, Taha MK, Maiden MCJ, Tzanakaki G. Characterization of meningococcal carriage isolates from Greece by whole genome sequencing: Implications for 4CMenB vaccine implementation. PLoS One 2018; 13:e0209919. [PMID: 30592763 PMCID: PMC6310245 DOI: 10.1371/journal.pone.0209919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Herd protection, resulting from the interruption of transmission and asymptomatic carriage, is an important element of the effectiveness of vaccines against the meningococcus. Whilst this has been well established for conjugate polysaccharide vaccines directed against the meningococcal capsule, two uncertainties surround the potential herd protection provided by the novel protein-based vaccines that are used in place of serogroup B (MenB) polysaccharide vaccines (i) the strain coverage of such vaccines against carried meningococci, which are highly diverse; and (ii) the generation of a protective immune response in the mucosa. These considerations are essential for realistic estimates of cost-effectiveness of new MenB vaccines. Here the first of these questions is addressed by the whole genome sequence (WGS) analysis of meningococci isolated from healthy military recruits and university students in Greece. The study included a total of 71 MenB isolates obtained from 1420 oropharyngeal single swab samples collected from military recruits and university students on voluntary basis, aged 18-26 years. In addition to WGS analysis to identify genetic lineage and vaccine antigen genes, including the Bexsero Antigen Sequence Type (BAST), the isolates were examined with the serological Meningococcal antigen Typing System (MATS) assay. Comparison of these data demonstrated that the carried meningococcal population was highly diverse with 38% of the carriage isolates showed expression of antigens matching those included in the 4CMenB vaccine. Our data may suggest a limited potential herd immunity to be expected and be driven by an impact on a subset of carriage isolates.
Collapse
Affiliation(s)
- Konstantinos Kesanopoulos
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | - Holly B. Bratcher
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Eva Hong
- Institute Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Athanasia Xirogianni
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | - Anastasia Papandreou
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| | | | - Martin C. J. Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory (NMRL), Dept of Public Health, National School of Public Health, Athens, Greece
| |
Collapse
|
21
|
Whaley MJ, Joseph SJ, Retchless AC, Kretz CB, Blain A, Hu F, Chang HY, Mbaeyi SA, MacNeil JR, Read TD, Wang X. Whole genome sequencing for investigations of meningococcal outbreaks in the United States: a retrospective analysis. Sci Rep 2018; 8:15803. [PMID: 30361650 PMCID: PMC6202316 DOI: 10.1038/s41598-018-33622-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
Although rare in the U.S., outbreaks due to Neisseria meningitidis do occur. Rapid, early outbreak detection is important for timely public health response. In this study, we characterized U.S. meningococcal isolates (N = 201) from 15 epidemiologically defined outbreaks (2009-2015) along with temporally and geographically matched sporadic isolates using multilocus sequence typing, pulsed-field gel electrophoresis (PFGE), and six whole genome sequencing (WGS) based methods. Recombination-corrected maximum likelihood (ML) and Bayesian phylogenies were reconstructed to identify genetically related outbreak isolates. All WGS analysis methods showed high degree of agreement and distinguished isolates with similar or indistinguishable PFGE patterns, or the same strain genotype. Ten outbreaks were caused by a single strain; 5 were due to multiple strains. Five sporadic isolates were phylogenetically related to 2 outbreaks. Analysis of 9 outbreaks using timed phylogenies identified the possible origin and estimated the approximate time that the most recent common ancestor emerged for outbreaks analyzed. U.S. meningococcal outbreaks were caused by single- or multiple-strain introduction, with organizational outbreaks mainly caused by a clonal strain and community outbreaks by divergent strains. WGS can infer linkage of meningococcal cases when epidemiological links are uncertain. Accurate identification of outbreak-associated cases requires both WGS typing and epidemiological data.
Collapse
Affiliation(s)
- Melissa J Whaley
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sandeep J Joseph
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Adam C Retchless
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cecilia B Kretz
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amy Blain
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Fang Hu
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - How-Yi Chang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah A Mbaeyi
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R MacNeil
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
| |
Collapse
|
22
|
Gutierrez-Fernandez J, Medina V, Hidalgo-Tenorio C, Abad R. Two Cases of Neisseria meningitidis Proctitis in HIV-Positive Men Who Have Sex with Men. Emerg Infect Dis 2018; 23:542-543. [PMID: 28221124 PMCID: PMC5382739 DOI: 10.3201/eid2303.161039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report 2 cases from Spain of infectious proctitis caused by Neisseria meningitidis in HIV-positive men who have sex with men. Genetic characterization of the isolates showed that they are unusual strains not found in other more frequent meningococcal locations. This finding suggests an association between specific strains and anogenital tract colonization.
Collapse
|
23
|
Cornelissen CN. Subversion of nutritional immunity by the pathogenic Neisseriae. Pathog Dis 2018; 76:4553517. [PMID: 29045638 PMCID: PMC6251569 DOI: 10.1093/femspd/ftx112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
The pathogenic Neisseria species, including Neisseria meningitidis and Neisseria gonorrhoeae, are obligate human pathogens that cause significant morbidity and mortality. The success of these pathogens, with regard to causing disease in humans, is inextricably linked to their ability to acquire necessary nutrients in the hostile environment of the host. Humans deploy a significant arsenal of weaponry to defend against bacterial pathogens, not least of which are the metal-sequestering proteins that entrap and withhold transition metals, including iron, zinc and manganese, from invaders. This review will discuss the general strategies that bacteria employ to overcome these metal-sequestering attempts by the host, and then will focus on the relatively uncommon 'metal piracy' approaches utilized by the pathogenic Neisseria for this purpose. Because acquiring metals from the environment is critical to microbial survival, interfering with this process could impede growth and therefore disease initiation or progression. This review will also discuss how interfering with metal uptake by the pathogenic Neisseriae could be deployed in the development of novel or improved preventative or therapeutic measures against these important pathogens.
Collapse
Affiliation(s)
- Cynthia Nau Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Box 980678, Richmond, VA 23298-0678, USA
| |
Collapse
|
24
|
Mori N, Hayashi T, Nakamura H, Takahashi H. Meningococcal meningitis with neurological complications and meningococcemia due to serogroup W sequence type 11 complex. J Infect Chemother 2018; 24:398-400. [PMID: 29373268 DOI: 10.1016/j.jiac.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Invasive meningococcal disease (IMD) caused by the serogroup W (MenW) sequence type-11 complex strain has recently emerged worldwide. Meningococcal infections due to this strain are associated with high case fatality and often atypical clinical manifestations. However, the annual IMD incidence was low, and MenW is rare in Japan. We described the first Japanese case of meningococcal meningitis and meningococcemia caused by this strain in a previously healthy 27-year-old woman. This case showed various neurological complications such as abducens palsy, cerebellitis, and cerebellar infarction, and reactive arthritis. This case provides useful information on the possibility of spreading IMD strains and the cause of various complications.
Collapse
Affiliation(s)
- Nobuaki Mori
- Department of General Internal Medicine, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan.
| | - Tomofumi Hayashi
- Department of General Internal Medicine, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Hideki Nakamura
- Department of General Internal Medicine, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Disease, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
25
|
Potential impact of the 4CMenB vaccine on oropharyngeal carriage of Neisseria meningitidis. J Infect 2017; 75:511-520. [PMID: 28987549 DOI: 10.1016/j.jinf.2017.09.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
Abstract
The analysis of the potential impact of the meningococcal vaccines in asymptomatic carriers has become one of the key aspects in the evaluation of new vaccines and of their impact on disease control. An important step in this direction is provided by the analysis of the sequence variability and surface-exposure of the 4CMenB (Bexsero®) vaccine antigens, as well as the cross-reactivity of vaccine induced antibodies, in isolates from healthy carriers. The Spanish Reference Laboratory, in collaboration with the University Hospital Marqués de Valdecilla in Santander (Spain), carried out a meningococcal carrier survey between May 2010 and April 2012 (population aged 4 to 19 years). The present study was done on 60 meningococcal carrier strains representative of the overall strain panel obtained and compared to invasive strains isolated in Spain in the same time. We found quantifiable levels of fHbp and NHBA expression and immunologic cross-reactivity in 10% and 75% of analyzed carrier strains, respectively, so the potential impact of the 4CMenB vaccine on Spanish asymptomatic carrier strains is expected to be mediated by the NHBA antigen.
Collapse
|
26
|
Moura ARSS, Kretz CB, Ferreira IE, Nunes AMPB, de Moraes JC, Reis MG, McBride AJA, Wang X, Campos LC. Molecular characterization of Neisseria meningitidis isolates recovered from 11-19-year-old meningococcal carriers in Salvador, Brazil. PLoS One 2017; 12:e0185038. [PMID: 28931058 PMCID: PMC5607198 DOI: 10.1371/journal.pone.0185038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Characterization of meningococci isolated from the pharynx is essential towards understanding the dynamics of meningococcal carriage and disease. Meningococcal isolates, collected from adolescents resident in Salvador, Brazil during 2014, were characterized by multilocus sequence typing, genotyping or whole-genome sequencing. Most were nongroupable (61.0%), followed by genogroups B (11.9%) and Y (8.5%). We identified 34 different sequence types (STs), eight were new STs, distributed among 14 clonal complexes (cc), cc1136 represented 20.3% of the nongroupable isolates. The porA and fetA genotypes included P1.18,25-37 (11.9%), P1.18-1,3 (10.2%); F5-5 (23.7%), F4-66 (16.9%) and F1-7 (13.6%). The porB class 3 protein and the fHbp subfamily A (variants 2 and 3) genotypes were found in 93.0 and 71.0% of the isolates, respectively. NHBA was present in all isolates, and while most lacked NadA (94.9%), we detected the hyperinvasive lineages B:P1.19,15:F5-1:ST-639 (cc32); C:P1.22,14-6:F3-9:ST-3780 (cc103) and W:P1.5,2:F1-1:ST-11 (cc11). This is the first report on the genetic diversity and vaccine antigen prevalence among N. meningitidis carriage isolates in the Northeast of Brazil. This study highlights the need for ongoing characterization of meningococcal isolates following the introduction of vaccines and for determining public health intervention strategies.
Collapse
Affiliation(s)
| | - Cécilia Batmalle Kretz
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Italo Eustáquio Ferreira
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brazil
| | | | | | - Mitermayer Galvão Reis
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brazil
| | - Alan John Alexander McBride
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, United States of America
| | - Leila Carvalho Campos
- Laboratório de Patologia e Biologia Molecular, Instituto Gonçalo Moniz, FIOCRUZ-BA, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
27
|
Wang Y, Chen H, Guo Z, Sun L, Fu Y, Li T, Lin W, Lin X. Quantitative proteomic analysis of iron-regulated outer membrane proteins in Aeromonas hydrophila as potential vaccine candidates. FISH & SHELLFISH IMMUNOLOGY 2017; 68:1-9. [PMID: 28676336 DOI: 10.1016/j.fsi.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The iron-regulated outer membrane protein (OMP) of Aeromonas hydrophila is an effective vaccine candidate, but its intrinsic functional components are largely unknown. In this study, we compared the differentially expressed sarcosine-insoluble fractions of A. hydrophila in iron-limited and normal medium using tandem mass tag labeling-based quantitative proteomics, and identified 91 upregulated proteins including 21 OMPs and 83 downregulated proteins including 10 OMPs. Subsequent bioinformatics analysis showed that iron chelate transport-related proteins were enriched in increasing abundance, whereas oxidoreductase activity and translation-related proteins were significantly enriched in decreasing abundance. The proteomics results were further validated in selected altered proteins by Western blotting. Finally, the vaccine efficacy of five iron-related recombinant OMPs (A0KGW8, A0KFG8, A0KQ46, A0KIU8, and A0KQZ1) that were increased abundance in iron-limited medium, were evaluated when challenged with virulent A. hydrophila against zebrafish, suggesting that these proteins had highly efficient immunoprotectivity. Our results indicate that quantitative proteomics combined with evaluation of vaccine efficacy is an effective strategy for screening novel recombinant antigens for vaccine development.
Collapse
Affiliation(s)
- Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Huarong Chen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Tao Li
- Shanghai MHelix BioTech Co., Ltd, Shanghai 201900, PR China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 35002, PR China.
| |
Collapse
|
28
|
Acevedo R, Zayas C, Norheim G, Fernández S, Cedré B, Aranguren Y, Cuello M, Rodriguez Y, González H, Mandiarote A, Pérez M, Hernández M, Hernández-Cedeño M, González D, Brorson SH, Rosenqvist E, Naess L, Tunheim G, Cardoso D, García L. Outer membrane vesicles extracted from Neisseria meningitidis serogroup X for prevention of meningococcal disease in Africa. Pharmacol Res 2017; 121:194-201. [PMID: 28495657 DOI: 10.1016/j.phrs.2017.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/13/2017] [Accepted: 04/29/2017] [Indexed: 11/30/2022]
Abstract
Meningococcal disease is caused mainly by serogroups A, B, C, Y, W of N. meningitidis. However, numerous cases of meningitis caused by serogroup X N. meningitidis (MenX) have recently been reported in several African countries. Currently, there are no licensed vaccines against this pathogen and most of the MenX cases have been caused by meningococci from clonal complex (c.c) 181. Detergent extracted meningococcal outer membrane vesicle (dOMV) vaccines have previously shown to be safe and effective against epidemics of serogroup B meningococcal disease in all age groups. The aim of this work is therefore to obtain, characterize and evaluate the vaccine potential of dOMVs derived from a MenX strain (OMVx). Three experimental lots of OMVx were prepared by deoxycholate extraction from the MenX strain BF 2/97. Size and morphology of the vesicles was determined by Dynamic Light Scattering and electron microscopy, whereas the antigenic composition was characterized by gel electrophoresis and immunoblotting. OMVx were thereafter adsorbed to aluminium hydroxide (OMVx/AL) and two doses of OMVx were administered s.c. to groups of Balb/c mice three weeks apart. The immunogenicity and functional antibody activities in sera were evaluated by ELISA (anti-OMVx specific IgG responses) and serum bactericidal activity (SBA) assay. The size range of OMVx was shown to be between 90 and 120nm, whereas some of the antigens detected were the outer membrane proteins PorA, OpcA and RmpM. The OMVx/AL elicited high anti-OMVx antibody responses with bactericidal activity and no bactericidal activity was observed in the control group of no immunised mice. The results demonstrate that OMVx are immunogenic and could form part of a future vaccine to prevent the majority of meningococcal disease in the African meningitis belt.
Collapse
Affiliation(s)
| | - Caridad Zayas
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| | | | | | - Barbara Cedré
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| | | | - Maribel Cuello
- Faculty of Engineering and Technology, Techinal University "Luis Vargas Torres", Emeralds, Ecuador
| | | | | | | | | | | | | | | | | | | | | | - Gro Tunheim
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Luis García
- Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba
| |
Collapse
|
29
|
Mulhall RM, Brehony C, O'Connor L, Meyler K, Jolley KA, Bray J, Bennett D, Maiden MCJ, Cunney R. Resolution of a Protracted Serogroup B Meningococcal Outbreak with Whole-Genome Sequencing Shows Interspecies Genetic Transfer. J Clin Microbiol 2016; 54:2891-2899. [PMID: 27629899 PMCID: PMC5121376 DOI: 10.1128/jcm.00881-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/16/2016] [Indexed: 01/29/2023] Open
Abstract
A carriage study was undertaken (n = 112) to ascertain the prevalence of Neisseria spp. following the eighth case of invasive meningococcal disease in young children (5 to 46 months) and members of a large extended indigenous ethnic minority Traveller family (n = 123), typically associated with high-occupancy living conditions. Nested multilocus sequence typing (MLST) was employed for case specimen extracts. Isolates were genome sequenced and then were assembled de novo and deposited into the Bacterial Isolate Genome Sequencing Database (BIGSdb). This facilitated an expanded MLST approach utilizing large numbers of loci for isolate characterization and discrimination. A rare sequence type, ST-6697, predominated in disease specimens and isolates that were carried (n = 8/14), persisting for at least 44 months, likely driven by the high population density of houses (n = 67/112) and trailers (n = 45/112). Carriage for Neisseria meningitidis (P < 0.05) and Neisseria lactamica (P < 0.002) (2-sided Fisher's exact test) was more likely in the smaller, more densely populated trailers. Meningococcal carriage was highest in 24- to 39-year-olds (45%, n = 9/20). Evidence of horizontal gene transfer (HGT) was observed in four individuals cocolonized by Neisseria lactamica and Neisseria meningitidis One HGT event resulted in the acquisition of 26 consecutive N. lactamica alleles. This study demonstrates how housing density can drive meningococcal transmission and carriage, which likely facilitated the persistence of ST-6697 and prolonged the outbreak. Whole-genome MLST effectively distinguished between highly similar outbreak strain isolates, including those isolated from person-to-person transmission, and also highlighted how a few HGT events can distort the true phylogenetic relationship between highly similar clonal isolates.
Collapse
Affiliation(s)
- Robert M Mulhall
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children's University Hospital, Dublin, Republic of Ireland
| | - Carina Brehony
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Lois O'Connor
- Department of Public Health, HSE East, Dr Steevens' Hospital, Dublin, Republic of Ireland
| | - Kenneth Meyler
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children's University Hospital, Dublin, Republic of Ireland
| | - Keith A Jolley
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - James Bray
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Desiree Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children's University Hospital, Dublin, Republic of Ireland
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children's University Hospital, Dublin, Republic of Ireland
| |
Collapse
|
30
|
Bårnes GK, Kristiansen PA, Beyene D, Workalemahu B, Fissiha P, Merdekios B, Bohlin J, Préziosi MP, Aseffa A, Caugant DA. Prevalence and epidemiology of meningococcal carriage in Southern Ethiopia prior to implementation of MenAfriVac, a conjugate vaccine. BMC Infect Dis 2016; 16:639. [PMID: 27814682 PMCID: PMC5097444 DOI: 10.1186/s12879-016-1975-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/26/2016] [Indexed: 01/07/2023] Open
Abstract
Background Neisseria meningitidis colonizes humans and transmits mainly by asymptomatic carriage. We sought to determine the prevalence and epidemiology of meningococcal carriage in Ethiopia prior to the introduction of MenAfriVac, a serogroup A meningococcal conjugate vaccine. Methods A cross-sectional meningococcal carriage study was conducted in Arba Minch, southern Ethiopia. A total of 7479 oropharyngeal samples were collected from 1 to 29 year old volunteers, between March and October, 2014. The swabs were cultured for N. meningitidis and Neisseria lactamica in Ethiopia. N. meningitidis isolates were confirmed and characterized by their serogroup, sequence type (ST) and PorA:FetA profile in Norway. Results Overall carriage prevalence was 6.6 %. There was no significant difference in overall carriage between male (6.7 %) and female (6.4 %) participants. Highest carriage prevalence (10.9 %) for females was found in the 15–19 years of age, while prevalence among males was highest (11.3 %) in the 20–24 age group. Non-groupable isolates dominated (76.4 %), followed by serogroups X (14.0 %) and W (5.9 %) isolates. No serogroup A was found. Most non-groupable isolates were ST-192. Serogroup W isolates were assigned to the ST-11 clonal complex, and serogroup X isolates to the ST-181 and ST-41/44 clonal complexes. Overall carriage prevalence of N. lactamica was 28.1 %. Carriage of N. meningitidis and N. lactamica varied depending on age and geographic area, but there was no association between carriage of the two species. Conclusions Epidemic strains of serogroups W and X were circulating in this area of Ethiopia. As no serogroup A was found among the carriage isolates the immediate impact of mass-vaccination with MenAfriVac on transmission of N. meningitidis in this population is expected to be marginal.
Collapse
Affiliation(s)
- Guro K Bårnes
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Paul A Kristiansen
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | - Behailu Merdekios
- College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Jon Bohlin
- Department of Methodology Research and Analysis, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway. .,Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
31
|
Molecular characterization of a collection of Neisseria meningitidis isolates from Croatia, June 2009 to January 2014. J Med Microbiol 2016; 65:1013-1019. [DOI: 10.1099/jmm.0.000320] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
32
|
Taha MK, Claus H, Lappann M, Veyrier FJ, Otto A, Becher D, Deghmane AE, Frosch M, Hellenbrand W, Hong E, Parent du Châtelet I, Prior K, Harmsen D, Vogel U. Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men. PLoS One 2016; 11:e0154047. [PMID: 27167067 PMCID: PMC4864352 DOI: 10.1371/journal.pone.0154047] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Meningococci spread via respiratory droplets, whereas the closely related gonococci are transmitted sexually. Several outbreaks of invasive meningococcal disease have been reported in Europe and the United States among men who have sex with men (MSM). We recently identified an outbreak of serogroup C meningococcal disease among MSM in Germany and France. In this study, genomic and proteomic techniques were used to analyze the outbreak isolates. In addition, genetically identical urethritis isolates were recovered from France and Germany and included in the analysis. Genome sequencing revealed that the isolates from the outbreak among MSM and from urethritis cases belonged to a clade within clonal complex 11. Proteome analysis showed they expressed nitrite reductase, enabling anaerobic growth as previously described for gonococci. Invasive isolates from MSM, but not urethritis isolates, further expressed functional human factor H binding protein associated with enhanced survival in a newly developed transgenic mouse model expressing human factor H, a complement regulatory protein. In conclusion, our data suggest that urethritis and outbreak isolates followed a joint adaptation route including adaption to the urogenital tract.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Complement Factor H/antagonists & inhibitors
- Complement Factor H/genetics
- Complement Factor H/metabolism
- Disease Outbreaks
- Evolution, Molecular
- France/epidemiology
- Gene Expression
- Germany/epidemiology
- Homosexuality, Male
- Host-Pathogen Interactions
- Humans
- Male
- Meningitis, Meningococcal/diagnosis
- Meningitis, Meningococcal/epidemiology
- Meningitis, Meningococcal/microbiology
- Meningitis, Meningococcal/pathology
- Mice
- Mice, Transgenic
- Neisseria meningitidis/classification
- Neisseria meningitidis/genetics
- Neisseria meningitidis/isolation & purification
- Neisseria meningitidis/pathogenicity
- Neisseria meningitidis, Serogroup C/classification
- Neisseria meningitidis, Serogroup C/genetics
- Neisseria meningitidis, Serogroup C/isolation & purification
- Neisseria meningitidis, Serogroup C/pathogenicity
- Nitrite Reductases/genetics
- Nitrite Reductases/metabolism
- Phylogeny
- Proteome/genetics
- Proteome/metabolism
- Urethritis/diagnosis
- Urethritis/epidemiology
- Urethritis/microbiology
- Urethritis/pathology
Collapse
Affiliation(s)
- Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Center for meningococci, Paris, France
- * E-mail: (MKT); (UV)
| | - Heike Claus
- University of Würzburg, Institute for Hygiene and Microbiology, Reference laboratory for meningococci and Haemophilus influenzae, Würzburg, Germany
| | - Martin Lappann
- University of Würzburg, Institute for Hygiene and Microbiology, Reference laboratory for meningococci and Haemophilus influenzae, Würzburg, Germany
| | - Frédéric J. Veyrier
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Center for meningococci, Paris, France
| | - Andreas Otto
- Ernst-Moritz-Arndt-University, Department of Microbial Proteomics and Mass Spectrometry, Greifswald, Germany
| | - Dörte Becher
- Ernst-Moritz-Arndt-University, Department of Microbial Proteomics and Mass Spectrometry, Greifswald, Germany
| | - Ala-Eddine Deghmane
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Center for meningococci, Paris, France
| | - Matthias Frosch
- University of Würzburg, Institute for Hygiene and Microbiology, Reference laboratory for meningococci and Haemophilus influenzae, Würzburg, Germany
| | | | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit and National Reference Center for meningococci, Paris, France
| | | | - Karola Prior
- University of Münster, Department of Periodontology, Münster, Germany
| | - Dag Harmsen
- University of Münster, Department of Periodontology, Münster, Germany
| | - Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, Reference laboratory for meningococci and Haemophilus influenzae, Würzburg, Germany
- * E-mail: (MKT); (UV)
| |
Collapse
|
33
|
Bacterial Metabolism in the Host Environment: Pathogen Growth and Nutrient Assimilation in the Mammalian Upper Respiratory Tract. Microbiol Spectr 2016; 3. [PMID: 26185081 DOI: 10.1128/microbiolspec.mbp-0007-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogens evolve in specific host niches and microenvironments that provide the physical and nutritional requirements conducive to their growth. In addition to using the host as a source of food, bacterial pathogens must avoid the immune response to their presence. The mammalian upper respiratory tract is a site that is exposed to the external environment, and is readily colonized by bacteria that live as resident flora or as pathogens. These bacteria can remain localized, descend to the lower respiratory tract, or traverse the epithelium to disseminate throughout the body. By virtue of their successful colonization of the respiratory epithelium, these bacteria obtain the nutrients needed for growth, either directly from host resources or from other microbes. This chapter describes the upper respiratory tract environment, including its tissue and mucosal structure, prokaryotic biota, and biochemical composition that would support microbial life. Neisseria meningitidis and the Bordetella species are discussed as examples of bacteria that have no known external reservoirs but have evolved to obligately colonize the mammalian upper respiratory tract.
Collapse
|
34
|
Diallo K, Trotter C, Timbine Y, Tamboura B, Sow SO, Issaka B, Dano ID, Collard JM, Dieng M, Diallo A, Mihret A, Ali OA, Aseffa A, Quaye SL, Bugri A, Osei I, Gamougam K, Mbainadji L, Daugla DM, Gadzama G, Sambo ZB, Omotara BA, Bennett JS, Rebbetts LS, Watkins ER, Nascimento M, Woukeu A, Manigart O, Borrow R, Stuart JM, Greenwood BM, Maiden MCJ. Pharyngeal carriage of Neisseria species in the African meningitis belt. J Infect 2016; 72:667-677. [PMID: 27018131 PMCID: PMC4879866 DOI: 10.1016/j.jinf.2016.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/29/2022]
Abstract
Objectives Neisseria meningitidis, together with the non-pathogenic Neisseria species (NPNs), are members of the complex microbiota of the human pharynx. This paper investigates the influence of NPNs on the epidemiology of meningococcal infection. Methods Neisseria isolates were collected during 18 surveys conducted in six countries in the African meningitis belt between 2010 and 2012 and characterized at the rplF locus to determine species and at the variable region of the fetA antigen gene. Prevalence and risk factors for carriage were analyzed. Results A total of 4694 isolates of Neisseria were obtained from 46,034 pharyngeal swabs, a carriage prevalence of 10.2% (95% CI, 9.8–10.5). Five Neisseria species were identified, the most prevalent NPN being Neisseria lactamica. Six hundred and thirty-six combinations of rplF/fetA_VR alleles were identified, each defined as a Neisseria strain type. There was an inverse relationship between carriage of N. meningitidis and of NPNs by age group, gender and season, whereas carriage of both N. meningitidis and NPNs was negatively associated with a recent history of meningococcal vaccination. Conclusion Variations in the prevalence of NPNs by time, place and genetic type may contribute to the particular epidemiology of meningococcal disease in the African meningitis belt. A prevalence of 10.2% of Neisseria infection was observed during the study. Five Neisseria species were identified in nasopharyngeal samples. High level of genetic diversity was observed in carried isolates. Inverse relationship between carriage of Neisseria meningitidis and non-pathogenic Neisseria.
Collapse
Affiliation(s)
- Kanny Diallo
- Centre pour les Vaccins en Développement, Bamako, Mali; Department of Zoology, University of Oxford, Oxford, UK.
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Samba O Sow
- Centre pour les Vaccins en Développement, Bamako, Mali
| | - Bassira Issaka
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | - Ibrahim D Dano
- Centre de Recherche Médicale et Sanitaire, Niamey, Niger
| | | | - Marietou Dieng
- Institut de Recherche pour le Développement, Dakar, Senegal
| | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Oumer A Ali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | | | | | | | | | | | | | | | | | | | | | - Arouna Woukeu
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, UK
| | - James M Stuart
- London School of Hygiene & Tropical Medicine, London, UK
| | | | | |
Collapse
|
35
|
Abad R, Medina V, Stella M, Boccadifuoco G, Comanducci M, Bambini S, Muzzi A, Vázquez JA. Predicted Strain Coverage of a New Meningococcal Multicomponent Vaccine (4CMenB) in Spain: Analysis of the Differences with Other European Countries. PLoS One 2016; 11:e0150721. [PMID: 26950303 PMCID: PMC4780694 DOI: 10.1371/journal.pone.0150721] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background A novel meningococcal multicomponent vaccine, 4CMenB (Bexsero®), has been approved in Europe, Canada, Australia and US. The potential impact of 4CMenB on strain coverage is being estimated by using Meningococcal Antigen Typing System (MATS), an ELISA assay which measures vaccine antigen expression and diversity in each strain. Here we show the genetic characterization and the 4CMenB potential coverage of Spanish invasive strains (collected during one epidemiological year) compared to other European countries and discuss the potential reasons for the lower estimate of coverage in Spain. Material and Methods A panel of 300 strains, a representative sample of all serogroup B Neisseria meningitidis notified cases in Spain from 2009 to 2010, was characterized by multilocus sequence typing (MLST) and FetA variable region determination. 4CMenB vaccine antigens, PorA, factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial adhesin A (NadA) were molecularly typed by sequencing. PorA coverage was assigned to strain with VR2 = 4. The levels of expression and cross-reactivity of fHbp, NHBA and NadA were analyzed using MATS ELISA. Findings Global estimated strain coverage by MATS was 68.67% (95% CI: 47.77–84.59%), with 51.33%, 15.33% and 2% of strains covered by one, two and three vaccine antigens, respectively. The predicted strain coverage by individual antigens was: 42% NHBA, 36.33% fHbp, 8.33% PorA and 1.33% NadA. Coverage within the most prevalent clonal complexes (cc) was 70.37% for cc 269, 30.19% for cc 213 and 95.83% for cc 32. Conclusions Clonal complexes (cc) distribution accounts for variations in strain coverage, so that country-by-country investigations of strain coverage and cc prevalence are important. Because the cc distribution could also vary over time, which in turn could lead to changes in strain coverage, continuous detailed surveillance and monitoring of vaccine antigens expression is needed in those countries where the multicomponent vaccine is introduced. This is really important in countries like Spain where most of the strains are predicted to be covered by only one vaccine antigen and the chance for escape mutants to emerge with vaccine use is higher. Based on the observed data, cc213 should receive special attention as it is associated with low predicted strain coverage, and has recently emerged in Spain.
Collapse
Affiliation(s)
- Raquel Abad
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- * E-mail:
| | - Verónica Medina
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Maria Stella
- Novartis Vaccines and diagnostics, a GSK Company, Siena, Italy
| | | | | | | | | | - Julio A. Vázquez
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
36
|
Mustapha MM, Marsh JW, Harrison LH. Global epidemiology of capsular group W meningococcal disease (1970-2015): Multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex. Vaccine 2016; 34:1515-1523. [PMID: 26876439 DOI: 10.1016/j.vaccine.2016.02.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
Abstract
Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages.
Collapse
Affiliation(s)
- Mustapha M Mustapha
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA
| | - Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA.
| |
Collapse
|
37
|
Zhu B, Xu Z, Du P, Xu L, Sun X, Gao Y, Shao Z. Sequence Type 4821 Clonal Complex Serogroup B Neisseria meningitidis in China, 1978-2013. Emerg Infect Dis 2015; 21:925-32. [PMID: 25989189 PMCID: PMC4451889 DOI: 10.3201/eid2106.140687] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serogroup B Neisseria meningitidis strains belonging to sequence type 4821 clonal complex (CC4821), a hyperinvasive lineage first identified for serogroup C in 2003, have been increasingly isolated in China. We characterized the outer membrane protein genes of 48 serogroup B and 214 serogroup C strains belonging to CC4821 and analyzed the genomic sequences of 22 strains. Four serogroup B strains had porin A (i.e., PorA), PorB, and ferric enterobactin transport (i.e., FetA) genotypes identical to those for serogroup C. Phylogenetic analysis of the genomic sequences showed that the 22 CC4821 strains from patients and healthy carriers were unevenly clustered into 2 closely related groups; each group contained serogroup B and C strains. Serogroup B strains appeared variable at the capsule locus, and several recombination events had occurred at uncertain breakpoints. These findings suggest that CC4821 serogroup C N. meningitidis is the probable origin of highly pathogenic CC4821 serogroup B strains.
Collapse
|
38
|
Mattheus W, Hanquet G, Collard JM, Vanhoof R, Bertrand S. Changes in Meningococcal Strains in the Era of a Serogroup C Vaccination Campaign: Trends and Evolution in Belgium during the Period 1997-2012. PLoS One 2015; 10:e0139615. [PMID: 26425857 PMCID: PMC4591272 DOI: 10.1371/journal.pone.0139615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Invasive meningococcal disease (IMD) is a major cause of bacterial meningitides and septicaemia. This study shows the results of the laboratory-based surveillance of IMD in Belgium over the period 1997-2012. METHODS The results are based on microbiological and molecular laboratory surveillance of 2997 clinical isolates of N. meningitides received by the Belgian Meningococcal Reference Centre (BMRC) over the period 1997-2012. RESULTS Serogroup B has always been a major cause of meningococcal disease in Belgium, with P3.4 as most frequent serotype till 2008, while an increase in non-serotypable strains has been observed in the last few years. Clonal complexes cc-41/44 and cc-269 are most frequently observed in serogroup B strains. In the late nineties, the incidence of serogroup C disease increased considerably and peaked in 2001, mainly associated with phenotypes C:2a:P1.5,2, C:2a:P1.5 and C:2a:P1.2 (ST-11/ET-37 clonal complex). The introduction of the meningococcal C conjugate vaccine has been followed by an 88% significant decrease in serogroup C disease from 2001 to 2004 nationally, yet sharper in Flanders (92%) compared to Wallonia (77%). Since 2008 a difference in incidence of serogroup C was observed in Flanders (0-0.1/100,000) versus Wallonia (0.1-0.3/100,000). CONCLUSION This study showed the change in epidemiology and strain population over a 16 years period spanning an exhaustive vaccination campaign and highlights the influence of regional vaccination policies with different cohorts sizes on short and long-term IMD incidences.
Collapse
Affiliation(s)
- Wesley Mattheus
- Sections of Bacterial Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Germaine Hanquet
- Medical Epidemiologist, Health Care Knowledge Centre, Brussels, Belgium
| | - Jean-Marc Collard
- Sections of Bacterial Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Raymond Vanhoof
- Sections of Bacterial Diseases, Scientific Institute of Public Health, Brussels, Belgium
| | - Sophie Bertrand
- Sections of Bacterial Diseases, Scientific Institute of Public Health, Brussels, Belgium
| |
Collapse
|
39
|
Norheim G, Sanders H, Mellesdal JW, Sundfør I, Chan H, Brehony C, Vipond C, Dold C, Care R, Saleem M, Maiden MCJ, Derrick JP, Feavers I, Pollard AJ. An OMV Vaccine Derived from a Capsular Group B Meningococcus with Constitutive FetA Expression: Preclinical Evaluation of Immunogenicity and Toxicity. PLoS One 2015; 10:e0134353. [PMID: 26390123 PMCID: PMC4577077 DOI: 10.1371/journal.pone.0134353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/09/2015] [Indexed: 11/26/2022] Open
Abstract
Following the introduction of effective protein-polysaccharide conjugate vaccines against capsular group C meningococcal disease in Europe, meningococci of capsular group B remain a major cause of death and can result in debilitating sequelae. The outer membrane proteins PorA and FetA have previously been shown to induce bactericidal antibodies in humans. Despite considerable antigenic variation among PorA and FetA OMPs in meningococci, systematic molecular epidemiological studies revealed this variation is highly structured so that a limited repertoire of antigenic types is congruent with the hyperinvasive meningococcal lineages that have caused most of the meningococcal disease in Europe in recent decades. Here we describe the development of a prototype vaccine against capsular group B meningococcal infection based on a N. meningitidis isolate genetically engineered to have constitutive expression of the outer membrane protein FetA. Deoxycholate outer membrane vesicles (dOMVs) extracted from cells cultivated in modified Frantz medium contained 21.8% PorA protein, 7.7% FetA protein and 0.03 μg LPS per μg protein (3%). The antibody response to the vaccine was tested in three mouse strains and the toxicological profile of the vaccine was tested in New Zealand white rabbits. Administration of the vaccine, MenPF-1, when given by intramuscular injection on 4 occasions over a 9 week period, was well tolerated in rabbits up to 50 μg/dose, with no evidence of systemic toxicity. These data indicated that the MenPF-1 vaccine had a toxicological profile suitable for testing in a phase I clinical trial.
Collapse
Affiliation(s)
- Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Norwegian Institute of Public Health, Oslo, Norway
- * E-mail:
| | - Holly Sanders
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | - Hannah Chan
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Carina Brehony
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Caroline Vipond
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Chris Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Rory Care
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | | | | | | | - Ian Feavers
- National Institute of Biological Standards and Control, Potters Bar, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
40
|
Mustapha MM, Marsh JW, Krauland MG, Fernandez JO, de Lemos APS, Dunning Hotopp JC, Wang X, Mayer LW, Lawrence JG, Hiller NL, Harrison LH. Genomic Epidemiology of Hypervirulent Serogroup W, ST-11 Neisseria meningitidis. EBioMedicine 2015; 2:1447-55. [PMID: 26629539 PMCID: PMC4634745 DOI: 10.1016/j.ebiom.2015.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/15/2022] Open
Abstract
Neisseria meningitidis is a leading bacterial cause of sepsis and meningitis globally with dynamic strain distribution over time. Beginning with an epidemic among Hajj pilgrims in 2000, serogroup W (W) sequence type (ST) 11 emerged as a leading cause of epidemic meningitis in the African ‘meningitis belt’ and endemic cases in South America, Europe, Middle East and China. Previous genotyping studies were unable to reliably discriminate sporadic W ST-11 strains in circulation since 1970 from the Hajj outbreak strain (Hajj clone). It is also unclear what proportion of more recent W ST-11 disease clusters are caused by direct descendants of the Hajj clone. Whole genome sequences of 270 meningococcal strains isolated from patients with invasive meningococcal disease globally from 1970 to 2013 were compared using whole genome phylogenetic and major antigen-encoding gene sequence analyses. We found that all W ST-11 strains were descendants of an ancestral strain that had undergone unique capsular switching events. The Hajj clone and its descendants were distinct from other W ST-11 strains in that they shared a common antigen gene profile and had undergone recombination involving virulence genes encoding factor H binding protein, nitric oxide reductase, and nitrite reductase. These data demonstrate that recent acquisition of a distinct antigen-encoding gene profile and variations in meningococcal virulence genes was associated with the emergence of the Hajj clone. Importantly, W ST-11 strains unrelated to the Hajj outbreak contribute a significant proportion of W ST-11 cases globally. This study helps illuminate genomic factors associated with meningococcal strain emergence and evolution. Genomic characterization of serogroup W ST-11 of Neisseria meningitidis. . Epidemic W ST-11 strain (Hajj clone) emerged through recombination affecting virulence genes. Both the Hajj clone and W ST-11 strains unrelated to the Hajj outbreak have persisted globally.
Neisseria meningitidis, a bacterial cause of frequently fatal brain (meningitis) and blood stream (sepsis) infections, has variable strain distribution over time. Serogroup W sequence type 11 (W ST-11) lineage is associated on one hand with strains causing only rare (sporadic) disease cases, and the Hajj clone – a major global cause of epidemic and endemic meningococcal disease. In this study we analyzed complete genome sequences of a global collection of 270 W ST-11 isolates causing meningococcal disease from 1970-2013. The Hajj clone acquired novel gene sequences within genes involved in nitrogen metabolism (nitrogen oxide reductase, nitrite reductase) and evasion of human immune response (factor H binding protein). These genes may be the cause of increased virulence of the Hajj clone and can be used to trace continuing spread of the clone. These results shed light on mechanisms of meningococcal strain emergence.
Collapse
Affiliation(s)
- Mustapha M Mustapha
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary G Krauland
- Public Health Dynamics Laboratory, Graduate School of Public Health, University of Pittsburgh, USA
| | - Jorge O Fernandez
- Molecular Genetics Laboratory, Public Health Institute of Chile, Santiago, Chile
| | | | - Julie C Dunning Hotopp
- The Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Leonard W Mayer
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
41
|
Law DKS, Lefebvre B, Gilca R, Deng S, Zhou J, De Wals P, Tsang RSW. Characterization of invasive Neisseria meningitidis strains from Québec, Canada, during a period of increased serogroup B disease, 2009-2013: phenotyping and genotyping with special emphasis on the non-carbohydrate protein vaccine targets. BMC Microbiol 2015; 15:143. [PMID: 26204985 PMCID: PMC4514445 DOI: 10.1186/s12866-015-0469-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/19/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The epidemiology of invasive meningococcal disease (IMD) in Québec, Canada, has been dominated in the past decade by a clone of serogroup B (MenB) Neisseria meningitidis defined by multi-locus sequence typing (MLST) as sequence type (ST)-269. With the licensure of a new MenB vaccine Bexsero (4CMenB) in Canada, this study characterized invasive N. meningitidis recovered in Québec from 2009 to 2013, with an objective to examine the diversity of the 4CMenB vaccine antigens. Isolates were serogrouped by antisera and genogrouped by PCR, and further typed by whole cell ELISA for serotype and serosubtype antigens. Clonal analysis was done by MLST. Isolates were genotyped by analysis of their 4CMenB vaccine antigen genes of PorA, factor H binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria Adhesin A (NadA). RESULTS Of the 263 IMD isolates analysed, 229, 16, 10, 7, and 1 belonged to MenB, MenY, MenW, MenC, and MenX, respectively. Of the 229 MenB, 159 (69.4 %) were typed as ST-269 clonal complex (CC); and they possessed a restricted number of three fHbp and five nhba gene alleles. Nine N. meningitidis isolates (eight MenB and one MenY) were found to possess at least one gene that encoded for an antigen that matched exactly with protein variants in the 4CMenB vaccine. Two MenB expressed PorA antigen P1.4 and possessed the nhba gene for peptide 2; four other MenB were predicted to have NHBA peptide 2; another two MenB were predicted to encode fHbp peptide 1.1; and a single MenY was found to have nadA gene for NadA peptide 8. In addition, another 172 isolates were found to possess genes for variant 1 fHbp peptides other than peptide 1.1 or NadA variant 1-2/3 peptides other than peptide 8; and therefore, may potentially be covered by 4CMenB. CONCLUSION The most prevalent clone of N. meningitidis in Quebec was ST-269 CC; and 96 % of the isolates in this CC were predicted to be covered by 4CMenB vaccine. Extensive genetic diversity was found in the other IMD isolates in Québec which might suggest a lower coverage by the vaccine when compared to the ST-269 MenB.
Collapse
Affiliation(s)
- Dennis K S Law
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, R3E 3R2, Winnipeg, MB, Canada.
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, 20045 chemin Sante-Marie, Ste-Anne-de-Bellevue, H9X 3R5, Québec, Canada.
| | - Rodica Gilca
- Institut national de santé publique du Québec, Centre de Recherche du CHUL-CHUQ, Québec, Canada.
- Département de Médecine Sociale et Préventive de I'Université Laval, Québec, Canada.
| | - Saul Deng
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, R3E 3R2, Winnipeg, MB, Canada.
| | - Jianwei Zhou
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, R3E 3R2, Winnipeg, MB, Canada.
| | - Philippe De Wals
- Institut national de santé publique du Québec, Centre de Recherche du CHUL-CHUQ, Québec, Canada.
- Département de Médecine Sociale et Préventive de I'Université Laval, Québec, Canada.
| | - Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, R3E 3R2, Winnipeg, MB, Canada.
| |
Collapse
|
42
|
Poolman JT, Richmond P. Multivalent meningococcal serogroup B vaccines: challenges in predicting protection and measuring effectiveness. Expert Rev Vaccines 2015. [PMID: 26204792 DOI: 10.1586/14760584.2015.1071670] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines targeting Neisseria meningitidis serogroup B (MenB) have been attempted for 40 years. Monovalent outer membrane vesicle vaccines targeted at epidemic outbreaks have been successfully developed. Newer vaccines aim to induce antibodies to cross-reactive antigens, such as factor H binding protein (rLP2086) or a mix of outer membrane vesicle, factor H binding protein and other minor antigens (4CMenB). The true protective coverage among circulating MenB isolates afforded by these vaccines is unknown. Carefully conducted Phase IV post-implementation evaluations designed to measure specific effectiveness against major circulating MenB clonal lineages are needed to address the critical question of which antigens are linked to protection. Progress with whole-genome sequencing and bio-informatics may allow the composition of antigen mozaics based on two major outer membrane proteins: PorA and FetA.
Collapse
Affiliation(s)
- Jan T Poolman
- Bacterial Vaccine Discovery & Early Development, Janssen, Zernikedreef 9; 2333 CK Leiden, The Netherlands
| | | |
Collapse
|
43
|
O'Connor L, Ward M, Bennett D, Mulhall R, O'Lorcain P, Cunney R, McDermott R, Neville E, Heslin J, FitzGerald R, Meyler K, Conlon M, Clarke A, Corcoran B, Fitzpatrick G, O'Connor B, Flanagan P, O'Flanagan D, Cotter S. A prolonged outbreak of invasive meningococcal disease in an extended Irish Traveller family across three Health Service Executive (HSE) areas in Ireland, 2010 to 2013. ACTA ACUST UNITED AC 2015; 20. [PMID: 26062560 DOI: 10.2807/1560-7917.es2015.20.21.21139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Between March 2010 and November 2013 eight laboratory-confirmed cases of serogroup B, invasive meningococcal disease (IMD) were identified in an extended Irish Traveller family across three Health Service Executive (HSE) areas of Ireland. Cases were aged between 5 and 46 months, and were either a cousin or sibling of another case. All eight cases survived. Chemoprophylaxis was given to relevant nuclear family members and close contacts on each occasion, but failed to prevent further cases. Neisseria meningitidis isolates from six cases were highly related, belonging to the ST-41/44 clonal complex, and shared the porA designation 7–2,4. In November 2013, the outbreak control team recommended that directly observed ciprofloxacin chemoprophylaxis be administered simultaneously to the extended family, and that the four component meningococcal B (4CMenB) vaccine be administered to family members aged 2 months to 23 years inclusive and relevant close contacts of the eighth case. Subsequently these recommendations were implemented at three regional clinics. Additionally pharyngeal swabs (n=112) were collected to assess carriage rates of N. meningitidis in this extended family. Pharyngeal carriage of N. meningitidis was detected in 15 (13%) family members. From the epidemiological investigation and carriage study overcrowding was the most likely risk factor identified in this outbreak. To date, the combination of directly observed ciprofloxacin chemoprophylaxis and use of 4CMenB vaccine have controlled the outbreak with no further cases diagnosed.
Collapse
Affiliation(s)
- L O'Connor
- Department of Public Health, HSE East, Dr Steevens Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Marsay L, Dold C, Green CA, Rollier CS, Norheim G, Sadarangani M, Shanyinde M, Brehony C, Thompson AJ, Sanders H, Chan H, Haworth K, Derrick JP, Feavers IM, Maiden MC, Pollard AJ. A novel meningococcal outer membrane vesicle vaccine with constitutive expression of FetA: A phase I clinical trial. J Infect 2015; 71:326-37. [PMID: 25982025 PMCID: PMC4535279 DOI: 10.1016/j.jinf.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 12/01/2022]
Abstract
Objectives Outer membrane vesicle (OMV) vaccines are used against outbreaks of capsular group B Neisseria meningitidis (MenB) caused by strains expressing particular PorA outer membrane proteins (OMPs). Ferric enterobactin receptor (FetA) is another variable OMP that induces type-specific bactericidal antibodies, and the combination of judiciously chosen PorA and FetA variants in vaccine formulations is a potential approach to broaden protection of such vaccines. Methods The OMV vaccine MenPF-1 was generated by genetically modifying N. meningitidis strain 44/76 to constitutively express FetA. Three doses of 25 μg or 50 μg of MenPF-1 were delivered intra-muscularly to 52 healthy adults. Results MenPF-1 was safe and well tolerated. Immunogenicity was measured by serum bactericidal assay (SBA) against wild-type and isogenic mutant strains. After 3 doses, the proportion of volunteers with SBA titres ≥1:4 (the putative protective titre) was 98% for the wild-type strain, and 77% for the strain 44/76 FetAonPorAoff compared to 51% in the strain 44/76 FetAoffPorAoff, demonstrating that vaccination with MenPF-1 simultaneously induced FetA and PorA bactericidal antibodies. Conclusion This study provides a proof-of-concept for generating bactericidal antibodies against FetA after OMV vaccination in humans. Prevalence-based choice of PorA and FetA types can be used to formulate a vaccine for broad protection against MenB disease. MenB OMV vaccines' efficacy is strain-restricted by the variable antigen PorA. FetA is another variable antigen, but has iron-dependent expression. The combination of only a few PorA and FetA can induce broad-protection. A mutated OMV was created containing one PorA and one FetA. FetA induces bactericidal antibody response in addition to the PorA response in a Phase I trial.
Collapse
Affiliation(s)
- L Marsay
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C A Green
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - C S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom.
| | - G Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - M Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - M Shanyinde
- Nuffield Department of Primary Health Care Sciences, Primary Care Clinical Trials Unit, University of Oxford, 23-38 Hythe Bridge Street, Oxford, United Kingdom
| | - C Brehony
- Department of Zoology, University of Oxford, South Parks Road, United Kingdom
| | - A J Thompson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - H Sanders
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - H Chan
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - K Haworth
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| | - J P Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - I M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - M C Maiden
- Department of Zoology, University of Oxford, South Parks Road, United Kingdom
| | - A J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, CCVTM, Churchill Lane, Oxford OX37LE, United Kingdom
| |
Collapse
|
45
|
Jo YM, Bae SM, Kang YH. Cluster of serogroup W-135 meningococcal disease in 3 military recruits. J Korean Med Sci 2015; 30:662-5. [PMID: 25931801 PMCID: PMC4414654 DOI: 10.3346/jkms.2015.30.5.662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022] Open
Abstract
We describe a group of 3 cases of invasive meningococcal disease that occurred in a military training camp in April 2011. All three patients were hospitalized. Ultimately, two patients recovered and one died. One patient had meningitis, one patient had septicemia and meningitis, and the other had no definite septicemia or meningitis. Neisseria meningitidis serogroup W-135 was detected in the serum and cerebrospinal fluid (CSF) of all patients by real-time polymerase chain reaction. In the one case of mortality, two strains were isolated from the patient's blood and CSF. Using multilocus sequence typing analysis, these strains were identified as a novel sequence type, ST-8912. Special attention is required for the meningococcal disease in military camp because the military personnels are in high risk of contact transmission.
Collapse
Affiliation(s)
- Yu Mi Jo
- Division of Infectious Diseases, Konyang University College of Medicine, Daejeon, Korea
| | - Song-Mee Bae
- Division of Bacterial Respiratory Infections, Centers for Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon, Korea
| | - Yeon-Ho Kang
- Division of Bacterial Respiratory Infections, Centers for Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon, Korea
| |
Collapse
|
46
|
Whelan J, Bambini S, Biolchi A, Brunelli B, Robert–Du Ry van Beest Holle M. Outbreaks of meningococcal B infection and the 4CMenB vaccine: historical and future perspectives. Expert Rev Vaccines 2015; 14:713-36. [DOI: 10.1586/14760584.2015.1004317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Funk A, Uadiale K, Kamau C, Caugant DA, Ango U, Greig J. Sequential outbreaks due to a new strain of Neisseria meningitidis serogroup C in northern Nigeria, 2013-14. PLOS CURRENTS 2014; 6. [PMID: 25685621 PMCID: PMC4322033 DOI: 10.1371/currents.outbreaks.b50c2aaf1032b3ccade0fca0b63ee518] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background
Neisseria meningitidis serogroup C (NmC) outbreaks occur infrequently in the African meningitis belt; the most recent report of an outbreak of this serogroup was in Burkina Faso, 1979. Médecins sans Frontières (MSF) has been responding to outbreaks of meningitis in northwest Nigeria since 2007 with no reported cases of serogroup C from 2007-2012. MenAfrivac®, a serogroup A conjugate vaccine, was first used for mass vaccination in northwest Nigeria in late 2012. Reactive vaccination using polysaccharide ACYW135 vaccine was done by MSF in parts of the region in 2008 and 2009; no other vaccination campaigns are known to have occurred in the area during this period. We describe the general characteristics of an outbreak due to a novel strain of NmC in Sokoto State, Nigeria, in 2013, and a smaller outbreak in 2014 in the adjacent state, Kebbi.
Methods
Information on cases and deaths was collected using a standard line-list during each week of each meningitis outbreak in 2013 and 2014 in northwest Nigeria. Initial serogroup confirmation was by rapid Pastorex agglutination tests. Cerebrospinal fluid (CSF) samples from suspected meningitis patients were sent to the WHO Reference Laboratory in Oslo, where bacterial isolates, serogrouping, antimicrobial sensitivity testing, genotype characterisation and real-time PCR analysis were performed.
Results
In the most highly affected outbreak areas, all of the 856 and 333 clinically suspected meningitis cases were treated in 2013 and 2014, respectively. Overall attack (AR) and case fatality (CFR) rates were 673/100,000 population and 6.8% in 2013, and 165/100,000 and 10.5% in 2014. Both outbreaks affected small geographical areas of less than 150km2 and populations of less than 210,000, and occurred in neighbouring regions in two adjacent states in the successive years. Initial rapid testing identified NmC as the causative agent. Of the 21 and 17 CSF samples analysed in Oslo, NmC alone was confirmed in 11 and 10 samples in 2013 and 2014, respectively. Samples confirmed as NmC through bacterial culture had sequence type (ST)-10217.
Conclusions
These are the first recorded outbreaks of NmC in the region since 1979, and the sequence (ST)-10217 has not been identified anywhere else in the world. The outbreaks had similar characteristics to previously recorded NmC outbreaks. Outbreaks of NmC in 2 consecutive years in northern Nigeria indicate a possible emergence of this serogroup. Increased surveillance for multiple serogroups in the region is needed, along with consideration of vaccination with conjugate vaccines rather than for NmA alone.
Collapse
Affiliation(s)
- Anna Funk
- Médecins sans Frontières, Sokoto, Nigeria
| | - Kennedy Uadiale
- Nigeria Emergency Response Unit (NERU), Médecins sans Frontières, Sokoto, Nigeria
| | | | - Dominique A Caugant
- WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway
| | - Umar Ango
- Sokoto State Ministry of Health, Sokoto, Nigeria
| | - Jane Greig
- Manson Unit, Médecins Sans Frontières, London, United Kingdom
| |
Collapse
|
48
|
Bratcher HB, Corton C, Jolley KA, Parkhill J, Maiden MCJ. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics 2014; 15:1138. [PMID: 25523208 PMCID: PMC4377854 DOI: 10.1186/1471-2164-15-1138] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/04/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Highly parallel, 'second generation' sequencing technologies have rapidly expanded the number of bacterial whole genome sequences available for study, permitting the emergence of the discipline of population genomics. Most of these data are publically available as unassembled short-read sequence files that require extensive processing before they can be used for analysis. The provision of data in a uniform format, which can be easily assessed for quality, linked to provenance and phenotype and used for analysis, is therefore necessary. RESULTS The performance of de novo short-read assembly followed by automatic annotation using the pubMLST.org Neisseria database was assessed and evaluated for 108 diverse, representative, and well-characterised Neisseria meningitidis isolates. High-quality sequences were obtained for >99% of known meningococcal genes among the de novo assembled genomes and four resequenced genomes and less than 1% of reassembled genes had sequence discrepancies or misassembled sequences. A core genome of 1600 loci, present in at least 95% of the population, was determined using the Genome Comparator tool. Genealogical relationships compatible with, but at a higher resolution than, those identified by multilocus sequence typing were obtained with core genome comparisons and ribosomal protein gene analysis which revealed a genomic structure for a number of previously described phenotypes. This unified system for cataloguing Neisseria genetic variation in the genome was implemented and used for multiple analyses and the data are publically available in the PubMLST Neisseria database. CONCLUSIONS The de novo assembly, combined with automated gene-by-gene annotation, generates high quality draft genomes in which the majority of protein-encoding genes are present with high accuracy. The approach catalogues diversity efficiently, permits analyses of a single genome or multiple genome comparisons, and is a practical approach to interpreting WGS data for large bacterial population samples. The method generates novel insights into the biology of the meningococcus and improves our understanding of the whole population structure, not just disease causing lineages.
Collapse
|
49
|
Boan P, Metasan N, Tempone S, Harnett G, Speers DJ, Keil AD. Neisseria meningitidis porA, fetA and fHbp gene distribution in Western Australia 2000 to 2011. BMC Infect Dis 2014; 14:686. [PMID: 25495685 PMCID: PMC4266217 DOI: 10.1186/s12879-014-0686-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 12/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PorA, fetA and fHbp are three antigen encoding genes useful for meningococcal typing and FHbp is an important component of meningococcal B vaccines. METHODS We performed sequence analysis of meningococcal porA, fetA and fHbp genes on 128 isolates from Western Australia, relating results to age, gender, race and geographic region. RESULTS We found predominantly PorA subtypes P1.22,14-16 (n = 23) and P1.7-2,4 (n = 19); FetA subtypes F1-5 (n = 41), F3-6 (n = 11), F5-1 (n = 10), F5-2 (n = 9), F5-5 (n = 8), F3-3 (n = 8); and FHbp variant groups 1 (n = 65) and 2 (n = 44). PorA P1.22,14-16 and FHbp variant group 2 were associated with younger age and aboriginality. CONCLUSIONS FHbp modular groups of the bivalent recombinant FHbp vaccine and the multicomponent 4CMenB vaccine make up 8.3% and 47.7% respectively of the examined serogroup B isolates from 2000-2011, however to estimate vaccine efficacy requires an account of all vaccine antigens and their levels of expression.
Collapse
Affiliation(s)
- Peter Boan
- Department of Microbiology, PathWest Laboratory Medicine WA, Princess Margaret Hospital for Children, Roberts Road, Subiaco 6008, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Kristiansen PA, Ba AK, Ouédraogo AS, Sanou I, Ouédraogo R, Sangaré L, Diomandé F, Kandolo D, Saga IM, Misegades L, Clark TA, Préziosi MP, Caugant DA. Persistent low carriage of serogroup A Neisseria meningitidis two years after mass vaccination with the meningococcal conjugate vaccine, MenAfriVac. BMC Infect Dis 2014; 14:663. [PMID: 25472422 PMCID: PMC4267149 DOI: 10.1186/s12879-014-0663-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The conjugate vaccine against serogroup A Neisseria meningitidis (NmA), MenAfriVac, is currently being introduced throughout the African meningitis belt. In repeated multicentre cross-sectional studies in Burkina Faso we demonstrated a significant effect of vaccination on NmA carriage for one year following mass vaccination in 2010. A new multicentre carriage study was performed in October-November 2012, two years after MenAfriVac mass vaccination. METHODS Oropharyngeal samples were collected and analysed for presence of N. meningitidis (Nm) from a representative selection of 1-29-year-olds in three districts in Burkina Faso using the same procedures as in previous years. Characterization of Nm isolates included serogrouping, multilocus sequence typing, and porA and fetA sequencing. A small sample of invasive isolates collected during the epidemic season of 2012 through the national surveillance system were also analysed. RESULTS From a total of 4964 oropharyngeal samples, overall meningococcal carriage prevalence was 7.86%. NmA prevalence was 0.02% (1 carrier), significantly lower (OR, 0.05, P = 0.005, 95% CI, 0.006-0.403) than pre-vaccination prevalence (0.39%). The single NmA isolate was sequence type (ST)-7, P1.20,9;F3-1, a clone last identified in Burkina Faso in 2003. Nm serogroup W (NmW) dominated with a carriage prevalence of 6.85%, representing 87.2% of the isolates. Of 161 NmW isolates characterized by molecular techniques, 94% belonged to the ST-11 clonal complex and 6% to the ST-175 complex. Nm serogroup X (NmX) was carried by 0.60% of the participants and ST-181 accounted for 97% of the NmX isolates. Carriage prevalence of serogroup Y and non-groupable Nm was 0.20% and 0.18%, respectively. Among the 20 isolates recovered from meningitis cases, NmW dominated (70%), followed by NmX (25%). ST-2859, the only ST with a serogroup A capsule found in Burkina Faso since 2004, was not found with another capsule, neither among carriage nor invasive isolates. CONCLUSIONS The significant reduction of NmA carriage still persisted two years following MenAfriVac vaccination, and no cases of NmA meningitis were recorded. High carriage prevalence of NmW ST-11 was consistent with the many cases of NmW meningitis in the epidemic season of 2012 and the high proportion of NmW ST-11 among the characterized invasive isolates.
Collapse
Affiliation(s)
- Paul A Kristiansen
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | - Absatou Ky Ba
- Laboratoire National de Santé Public, Ouagadougou, Burkina Faso.
| | | | - Idrissa Sanou
- Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso.
- Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso.
| | - Rasmata Ouédraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso.
| | - Lassana Sangaré
- Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso.
| | - Fabien Diomandé
- WHO Inter Country Support Team, Ouagadougou, Burkina Faso.
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Denis Kandolo
- WHO Inter Country Support Team, Ouagadougou, Burkina Faso.
| | - Inger Marie Saga
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | - Lara Misegades
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Thomas A Clark
- Centers for Disease Control and Prevention, Atlanta, USA.
| | - Marie-Pierre Préziosi
- Meningitis Vaccine Project, Ferney, France.
- WHO Initiative for Vaccine Research, Geneva, Switzerland.
| | - Dominique A Caugant
- WHO Collaborating Center for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|