1
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
3
|
Abdelhamid AG, Yousef AE. Egg-associated Salmonella enterica serovar Enteritidis: comparative genomics unveils phylogenetic links, virulence potential, and antimicrobial resistance traits. Front Microbiol 2023; 14:1278821. [PMID: 38029128 PMCID: PMC10667436 DOI: 10.3389/fmicb.2023.1278821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) remains a frequent cause of foodborne illnesses associated with the consumption of contaminated hen eggs. Such a food-pathogen association has been demonstrated epidemiologically, but the molecular basis for this association has not been explored. Comparative genomic analysis was implemented to decipher the phylogenomic characteristics, antimicrobial resistance, and virulence potential of eggs-associated SE. Analyzing 1,002 genomes belonging to 841 sequence types of food-isolated SE strains suggests a high genomic similarity within the egg-related lineage, which is phylogenetically close to SE strains isolated from poultry but is different from those isolated from beef. Core genome- and single nucleotide polymorphism (SNP)-based phylogeny of 74 SE strains of egg origin showcased two distinct sublineages. Time-scaled phylogeny supported the possibility of a common ancestor of egg-related SE lineages. Additionally, genome mining revealed frequent antibiotic resistance due to the presence of aac(6')-Iaa and mdsAB encoded on the genomes of egg-associated SE strains. For virulence gene profiling, 103-113 virulence determinants were identified in the egg-associated SE, which were comparable to 112 determinants found in human-associated SE, emphasizing the capacity of egg-associated strains to infect humans and cause diseases. The findings of this study proved the genomic similarity of egg-associated SE strains, and these were closely related to poultry strains. The egg-associated strains also harbor virulence genes equivalent to those found in human-associated SE strains. The analysis provided critical insights into the genetic structure, phylogenomics, dynamics of virulence, and antibiotic resistance of Salmonella Enteritidis, circulating in eggs and emphasizing the necessity of implementing anti-Salmonella intervention strategies, starting at the production stage of the poultry supply chain.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Harris C, Bartenfeld Josselson L, Bourassa D, Buhr R. Examination of the eggshell cuticle and membranes on their impact of Salmonella Enteritidis or Typhimurium recovery from inoculated and stored eggs. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
5
|
Lin Q, Chousalkar KK, McWhorter AR, Khan S. Salmonella Hessarek: An emerging food borne pathogen and its role in egg safety. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Liu B, Hou W, Li K, Chen Q, Liu Y, Yue T. Specific gene SEN1393 contributes to higher survivability of Salmonella Enteritidis in egg white by regulating sulfate assimilation pathway. Int J Food Microbiol 2020; 337:108927. [PMID: 33152571 DOI: 10.1016/j.ijfoodmicro.2020.108927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) presents an excellent capacity to survive in egg white, which is a hostile environment for bacterial growth. To reveal its survival mechanism, this study focuses on the specific gene SEN1393, which has been found to exist only in the genomic sequence of S. Enteritidis. The survival capacity of the deletion mutant strain ΔSEN1393 was proven to be significantly reduced after incubation in egg white. RNA sequencing and RT-qPCR results demonstrate that the expression levels of 19 genes were up-regulated, while the expression levels of 9 genes were down-regulated in egg white. These genes were classified into 6 groups based on their functional categories, namely the sulfate assimilation pathway, arginine biosynthesis, the tricarboxylic acid cycle, the fimbrial protein, the transport and chelation of metal ion, and others (sctT, rhs, and pspG). The strain ΔSEN1393 was deduced to damage FeS cluster enzymes and increase the sulfate and iron requirements, and to reduce bacterial motility and copper homeostasis. Via InterProScan analysis, the gene SEN1393 was speculated to encode a TerB-like and/or DjlA-like protein, and therefore, together with cysJ, possibly reduced the oxidative toxicities resulting from oxyanions such as tellurite, and/or improved CysPUWA conformation to restrain the uptake of the toxic oxyanions. In summary, the gene SEN1393 enabled the higher survival of S. Enteritidis in egg white as compared to other pathogens by regulating the sulfate assimilation pathway.
Collapse
Affiliation(s)
- Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China.
| | - Wanwan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Ke Li
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, China
| | - Qing Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yaxin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| |
Collapse
|
7
|
Baron F, Cochet MF, Alabdeh M, Guérin-Dubiard C, Gautier M, Nau F, Andrews SC, Bonnassie S, Jan S. Egg-White Proteins Have a Minor Impact on the Bactericidal Action of Egg White Toward Salmonella Enteritidis at 45°C. Front Microbiol 2020; 11:584986. [PMID: 33133053 PMCID: PMC7578404 DOI: 10.3389/fmicb.2020.584986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is noted for its ability to survive the harsh antibacterial activity of egg white which is presumed to explain its occurrence as the major food-borne pathogen associated with the consumption of eggs and egg products. Liquid egg white is a major ingredient for the food industry but, because of its thermal fragility, pasteurization is performed at the modest temperature of 57°C (for 2–6 min). Unfortunately, such treatment does not lead to sufficient reduction in S. Enteritidis contamination, which is a clear health concern when the product is consumed without cooking. However, egg white is able to limit S. Enteritidis growth due to its alkaline pH, iron deficiency and multiple antimicrobial proteins. This anti-Salmonella activity of egg white is temperature dependent and becomes bactericidal once the incubation temperature exceeds 42°C. This property is exploited in the highly promising pasteurization treatment (42–45°C for 1–5 days) which achieves complete killing of S. Enteritidis. However, the precise mechanism and the role of the egg-white proteins are not fully understood. Here, the impact of exposure of S. Enteritidis to egg white-based media, with or without egg-white proteins (>10 kDa), under bactericidal conditions (45°C) was explored by measuring survival and global expression. Surprisingly, the bactericidal activity of egg white at 45°C was only slightly affected by egg-white proteins indicating that they play a minor role in the bactericidal activity observed. Moreover, egg-white proteins had minimal impact on the global-gene-expression response to egg white such that very similar, major regulatory responses (20% genes affected) were observed both with and without egg-white proteins following incubation for 45 min at 45°C. Egg-white proteins caused a significant change in expression for just 64 genes, including the psp and lysozyme-inhibitor responses genes which is suggestive of an early membrane perturbation effect. Such damage was supported by disruption of the proton motive force by egg-white proteins. In summary, the results suggest that low-mass components of egg white are largely responsible for the bactericidal activity of egg white at 45°C.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simon C Andrews
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Sylvie Bonnassie
- STLO, INRAE, Institut Agro, Rennes, France.,UFR Sciences de la Vie et de l'Environnement, Université de Rennes I, Rennes, France
| | - Sophie Jan
- STLO, INRAE, Institut Agro, Rennes, France
| |
Collapse
|
8
|
Role of yoaE Gene Regulated by CpxR in the Survival of Salmonella enterica Serovar Enteritidis in Antibacterial Egg White. mSphere 2020; 5:5/1/e00638-19. [PMID: 31915212 PMCID: PMC6952189 DOI: 10.1128/msphere.00638-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is the predominant Salmonella serotype that causes human salmonellosis mainly through contaminated chicken eggs or egg products and has been a global public health threat. The spread and frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival in eggs, despite the antibacterial properties of egg white. Research on the survival mechanisms of S. Enteritidis in egg white will help develop effective strategies to control the contamination of eggs by this Salmonella serotype and help further elucidate the complex antibacterial mechanisms of egg white. This study revealed the importance of yoaE, a gene with unknown function, on the survival of S. Enteritidis in egg white, as well as its transcriptional regulation by CpxR. Our work provides the basis to reveal the mechanisms of survival of S. Enteritidis in egg white and the specific function of the yoaE gene. The survival ability of Salmonella enterica serovar Enteritidis in antibacterial egg white is an important factor leading to Salmonella outbreaks through eggs and egg products. In this study, the role of the gene yoaE, encoding an inner membrane protein, in the survival of Salmonella Enteritidis in egg white, and its transcriptional regulation by CpxR were investigated. Quantitative reverse transcription-PCR (RT-qPCR) results showed that the yoaE gene expression was upregulated 35-fold after exposure to egg white for 4 h compared to that in M9FeS medium, and the deletion of yoaE (ΔyoaE) dramatically decreased the survival rate of bacteria in egg white to less than 1% of the wild type (WT) and the complementary strain at both 37 and 20°C, indicating that yoaE was essential for bacteria to survive in egg white. Furthermore, the ΔyoaE strain was sensitive to a 3-kDa ultrafiltration matrix of egg white because of its high pH and antimicrobial peptide components. Putative conserved binding sites for the envelope stress response regulator CpxR were found in the yoaE promoter region. In vivo, the RT-qPCR assay results showed that the upregulation of yoaE in a ΔcpxR strain in egg white was 1/5 that of the WT. In vitro, results from DNase I footprinting and electrophoretic mobility shift assays further demonstrated that CpxR could directly bind to the yoaE promoter region, and a specific CpxR binding sequence was identified. In conclusion, it was shown for the first time that CpxR positively regulated the transcription of yoaE, which was indispensable for survival of Salmonella Enteritidis in egg white. IMPORTANCESalmonella enterica serovar Enteritidis is the predominant Salmonella serotype that causes human salmonellosis mainly through contaminated chicken eggs or egg products and has been a global public health threat. The spread and frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival in eggs, despite the antibacterial properties of egg white. Research on the survival mechanisms of S. Enteritidis in egg white will help develop effective strategies to control the contamination of eggs by this Salmonella serotype and help further elucidate the complex antibacterial mechanisms of egg white. This study revealed the importance of yoaE, a gene with unknown function, on the survival of S. Enteritidis in egg white, as well as its transcriptional regulation by CpxR. Our work provides the basis to reveal the mechanisms of survival of S. Enteritidis in egg white and the specific function of the yoaE gene.
Collapse
|
9
|
Messens W, Grijspeerdt K, Herman L. Eggshell penetration by Salmonella: a review. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200443] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- W. Messens
- Ministry of the Flemish Community, Agricultural Research Centre-Ghent, Department of Animal Product Quality and Transformation Technology, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - K. Grijspeerdt
- Ministry of the Flemish Community, Agricultural Research Centre-Ghent, Department of Animal Product Quality and Transformation Technology, Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - L. Herman
- Ministry of the Flemish Community, Agricultural Research Centre-Ghent, Department of Animal Product Quality and Transformation Technology, Brusselsesteenweg 370, B-9090 Melle, Belgium
| |
Collapse
|
10
|
Biofilm Formation by Shiga Toxin-Producing Escherichia coli on Stainless Steel Coupons as Affected by Temperature and Incubation Time. Microorganisms 2019; 7:microorganisms7040095. [PMID: 30935149 PMCID: PMC6518284 DOI: 10.3390/microorganisms7040095] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.
Collapse
|
11
|
Transcriptional Sequencing Uncovers Survival Mechanisms of Salmonella enterica Serovar Enteritidis in Antibacterial Egg White. mSphere 2019; 4:4/1/e00700-18. [PMID: 30760616 PMCID: PMC6374596 DOI: 10.1128/msphere.00700-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a major foodborne pathogen that causes salmonellosis mainly through contaminated chicken eggs or egg products and has been a worldwide public health threat since 1980. Frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival ability in the antibacterial egg white. Research on the survival mechanism of S. Enteritidis in egg white will help to further understand the complex and highly effective antibacterial mechanisms of egg white and lay the foundation for the development of safe and effective vaccines to prevent egg contamination by this Salmonella serotype. Key pathways and genes that were previously overlooked under bactericidal conditions were characterized as being induced in egg white, and synergistic effects between different antimicrobial factors appear to exist according to the gene expression changes. Our work provides new insights into the survival mechanism of S. Enteritidis in egg white. The survival mechanism of Salmonella enterica serovar Enteritidis in antibacterial egg white is not fully understood. In our lab, an egg white-resistant strain, S. Enteritidis SJTUF 10978, was identified. Cell envelope damage and osmotic stress response (separation of cell wall and inner membrane as well as cytoplasmic shrinkage) of this strain surviving in egg white were identified through microscopic observation. RNA-Seq analysis of the transcriptome of Salmonella survival in egg white showed that a considerable number of genes involved in DNA damage repair, alkaline pH adaptation, osmotic stress adaptation, envelope damage repair, Salmonella pathogenicity island 2 (SPI-2), iron absorption, and biotin synthesis were significantly upregulated (fold change ≥ 2) in egg white, indicating that these pathways or genes might be critical for bacterial survival. RNA-Seq results were confirmed by qRT-PCR, and the survival analysis of six gene deletion mutants confirmed their importance in the survival of bacteria in egg white. The importance of alkaline pH adaptation and envelope damage repair for Salmonella to survive in egg white were further confirmed by analysis of nhaA, cpxR, waaH, and eco deletion mutants. According to the RNA-Seq results, we propose that alkaline pH adaptation might be the cause of bacterial osmotic stress phenotype and that the synergistic effect between alkaline pH and other inhibitory factors can enhance the bacteriostatic effect of egg white. Moreover, cpxR and sigE were recognized as the central regulators that coordinate bacterial metabolism to adapt to envelope damage and alkaline pH. IMPORTANCESalmonella enterica serovar Enteritidis is a major foodborne pathogen that causes salmonellosis mainly through contaminated chicken eggs or egg products and has been a worldwide public health threat since 1980. Frequent outbreaks of this serotype through eggs correlate significantly with its exceptional survival ability in the antibacterial egg white. Research on the survival mechanism of S. Enteritidis in egg white will help to further understand the complex and highly effective antibacterial mechanisms of egg white and lay the foundation for the development of safe and effective vaccines to prevent egg contamination by this Salmonella serotype. Key pathways and genes that were previously overlooked under bactericidal conditions were characterized as being induced in egg white, and synergistic effects between different antimicrobial factors appear to exist according to the gene expression changes. Our work provides new insights into the survival mechanism of S. Enteritidis in egg white.
Collapse
|
12
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. Salmonella control in poultry flocks and its public health impact. EFSA J 2019; 17:e05596. [PMID: 32626222 PMCID: PMC7009056 DOI: 10.2903/j.efsa.2019.5596] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An increase in confirmed human salmonellosis cases in the EU after 2014 triggered investigation of contributory factors and control options in poultry production. Reconsideration of the five current target serovars for breeding hens showed that there is justification for retaining Salmonella Enteritidis, Salmonella Typhimurium (including monophasic variants) and Salmonella Infantis, while Salmonella Virchow and Salmonella Hadar could be replaced by Salmonella Kentucky and either Salmonella Heidelberg, Salmonella Thompson or a variable serovar in national prevalence targets. However, a target that incorporates all serovars is expected to be more effective as the most relevant serovars in breeding flocks vary between Member State (MS) and over time. Achievement of a 1% target for the current target serovars in laying hen flocks is estimated to be reduced by 254,400 CrI95[98,540; 602,700] compared to the situation in 2016. This translates to a reduction of 53.4% CrI95[39.1; 65.7] considering the layer-associated human salmonellosis true cases and 6.2% considering the overall human salmonellosis true cases in the 23 MSs included in attribution modelling. A review of risk factors for Salmonella in laying hens revealed that overall evidence points to a lower occurrence in non-cage compared to cage systems. A conclusion on the effect of outdoor access or impact of the shift from conventional to enriched cages could not be reached. A similar review for broiler chickens concluded that the evidence that outdoor access affects the occurrence of Salmonella is inconclusive. There is conclusive evidence that an increased stocking density, larger farms and stress result in increased occurrence, persistence and spread of Salmonella in laying hen flocks. Based on scientific evidence, an impact of Salmonella control programmes, apart from general hygiene procedures, on the prevalence of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter process is not expected.
Collapse
|
13
|
Crabb HK, Gilkerson JR, Browning GF. Does only the age of the hen matter in Salmonella enterica contamination of eggs? Food Microbiol 2019; 77:1-9. [DOI: 10.1016/j.fm.2018.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/20/2018] [Accepted: 08/12/2018] [Indexed: 12/29/2022]
|
14
|
Salmonella Typhimurium is Attracted to Egg Yolk and Repelled by Albumen. Curr Microbiol 2019; 76:393-397. [PMID: 30600359 DOI: 10.1007/s00284-018-1619-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Salmonella Typhimurium is the causative agent of non-typhoidal, foodborne salmonellosis. Contamination of hen eggs by the bacterium is a common source of S. Typhimurium infection. S. Typhimurium is peritrichous, and flagellum-dependent motility and chemotaxis are believed to facilitate egg contamination despite the presence of many antimicrobial egg components. We performed motility and chemotaxis assays to demonstrate that S. Typhimurium cells are attracted to egg yolks and are repelled by albumen. The bacterial flagellar motor shows bidirectional rotation, and counterclockwise-biased rotation allows cells to swim smoothly. A rotation assay for a single flagellum showed that, in comparison with thin albumen, the thick albumen more strongly affected the directional bias of the flagellar rotation, resulting in a remarkable suppression of the migration distance. Nevertheless, the S. Typhimurium cells retained positive chemotaxis toward the yolk in the presence of the albumens, suggesting that motility facilitates the growth of S. Typhimurium and survival in eggs.
Collapse
|
15
|
Qin X, He S, Zhou X, Cheng X, Huang X, Wang Y, Wang S, Cui Y, Shi C, Shi X. Quantitative proteomics reveals the crucial role of YbgC for Salmonella enterica serovar Enteritidis survival in egg white. Int J Food Microbiol 2019; 289:115-126. [DOI: 10.1016/j.ijfoodmicro.2018.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
|
16
|
Wang Y, Jia B, Xu X, Zhang L, Wei C, Ou H, Cui Y, Shi C, Shi X. Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites. Front Microbiol 2018; 9:2111. [PMID: 30245675 PMCID: PMC6137255 DOI: 10.3389/fmicb.2018.02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.
Collapse
Affiliation(s)
- Yanyan Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Ou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Gast RK, Guard J, Guraya R, Locatelli A. Multiplication in Egg Yolk and Survival in Egg Albumen of Genetically and Phenotypically Characterized Salmonella Enteritidis Strains. J Food Prot 2018; 81:876-880. [PMID: 29714623 DOI: 10.4315/0362-028x.jfp-17-484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt refrigeration of eggs to prevent the multiplication of Salmonella Enteritidis to high levels during storage is an important practice for reducing the risk of egg-transmitted human illness. The efficacy of egg refrigeration for achieving this goal depends on the interaction among the location of contamination, the ability of contaminant strains to survive or multiply, and the rate at which growth-restricting temperatures are attained. The present study assessed the significance of several characterized genetic and phenotypic properties for the capabilities of 10 Salmonella Enteritidis isolates to multiply rapidly in egg yolk and survive for several days in egg albumen during unrefrigerated (25°C) storage. The growth of small numbers of each Salmonella Enteritidis strain (approximately 101 CFU/mL) inoculated into egg yolk samples was determined after 6 and 24 h of incubation. The survival of larger numbers of Salmonella Enteritidis (approximately 105 CFU/mL) inoculated into albumen samples was determined at 24 and 96 h of incubation. In yolk, the inoculated Salmonella Enteritidis strains multiplied to mean levels of approximately 102.6 CFU/mL after 6 h of incubation and 108.3 CFU/mL after 24 h. In albumen, mean levels of approximately 104.6 CFU/mL Salmonella Enteritidis were maintained through 96 h. The concentrations of the various Salmonella strains after incubation in either yolk or albumen were distributed over relatively narrow ranges of values. Significant ( P < 0.01) differences observed among individual strains suggested that maintenance of the fimbrial gene sefD may have positive genetic selection value by improving fitness to grow inside egg yolk, whereas the antibiotic resistance gene blaTEM-1 tet(A) appeared to have negative genetic selection value by decreasing fitness to survive in egg albumen.
Collapse
Affiliation(s)
- Richard K Gast
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA
| | - Jean Guard
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA
| | - Rupa Guraya
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA
| | - Aude Locatelli
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA
| |
Collapse
|
18
|
Baron F, Bonnassie S, Alabdeh M, Cochet MF, Nau F, Guérin-Dubiard C, Gautier M, Andrews SC, Jan S. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses. Front Microbiol 2017; 8:829. [PMID: 28553268 PMCID: PMC5428311 DOI: 10.3389/fmicb.2017.00829] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- Science de la Vie et de la Terre, Université de Rennes IRennes, France
| | - Mariah Alabdeh
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Marie-Françoise Cochet
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| | | | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
- INRA, UMR1253 Science et Technologie du Lait et de l'OeufRennes, France
| |
Collapse
|
19
|
Abstract
Salmonella Enteritidis (SE) is the predominant cause of the food-borne salmonellosis in humans, in part because this serotype has the unique ability to contaminate chicken eggs without causing discernible illness in the infected birds. Attempts to develop effective vaccines and eradicate SE from chickens are undermined by significant limitations in our current understanding of the genetic basis of pathogenesis of SE in this reservoir host. In this chapter, we summarize the infection kinetics and provide an overview of the current understanding of genetic factors underlying SE infection in the chicken host. We also discuss the important knowledge gaps that, if addressed, will improve our understanding of the complex biology of SE in young chickens and in egg laying hens.
Collapse
|
20
|
Green A, Pham N, Osby K, Aram A, Claudius R, Patray S, Jayasinghe SA. Are the curli proteins CsgE and CsgF intrinsically disordered? INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1130675. [PMID: 28232894 DOI: 10.1080/21690707.2015.1130675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022]
Abstract
Curli are a type of proteinaceous cell surface filament produced by enteric bacteria such as Escherichia and Salmonella that facilitate cell adhesion and invasion, bio-film formation, and environmental persistence. Curli assembly involves 6 proteins encoded by the curli specific genes A, B, C, E, F, and G. Although CsgA is the major structural component of curli, CsgE, and CsgF, are thought to play important chaperone like functions in the assembly of CsgA into curli. Given that some proteins with chaperone like function have been observed to contain disordered regions, sequence analysis and circular dichroism spectroscopy was used to investigate the possibility that structures of CsgE and CsgF were also disordered. Sequence analysis based on charge and hydrophobicity, as well as using the disorder prediction software PONDR, indicates that both proteins have significant regions of disorder. The secondary structure and unfolding, of CsgE and CsgF, analyzed using circular dichroism spectroscopy suggests that both proteins lack a well defined and stable structure. These observations support the hypothesis that the curli assembly proteins CsgE and CsgF are disordered proteins containing intrinsically disordered regions.
Collapse
Affiliation(s)
- Amanda Green
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Nguyen Pham
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Krystle Osby
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Alexander Aram
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Rochelle Claudius
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Sharon Patray
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| | - Sajith A Jayasinghe
- Department of Chemistry and Biochemistry, California State University San Marcos , San Marcos, CA, USA
| |
Collapse
|
21
|
Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914987. [PMID: 26539536 PMCID: PMC4620034 DOI: 10.1155/2015/914987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
Abstract
Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia). Experiments were conducted at combinations of 4, 15, 22, 37 and 42°C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P < 0.001) in egg yolk (0.427 log10 CFU/mL/h) compared to whole egg (0.312 log10 CFU/mL/h) and egg white (0.029 log10 CFU/mL/h). Attachment to egg shells varied by time (1 or 20 min) and temperature (4, 22 and 42°C), with S. Typhimurium isolates attaching at higher levels (P < 0.05) than S. Sofia after 1 min at 4°C and S. Typhimurium ATCC 14028 attaching at higher (P < 0.05) levels at 22°C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks.
Collapse
|
22
|
Baron F, Nau F, Guérin-Dubiard C, Bonnassie S, Gautier M, Andrews SC, Jan S. Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen. Food Microbiol 2015; 53:82-93. [PMID: 26678134 DOI: 10.1016/j.fm.2015.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/23/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Salmonella enterica serovar Enteritidis is the prevalent egg-product-related food-borne pathogen. The egg-contamination capacity of S. Enteritidis includes its exceptional survival capability within the harsh conditions provided by egg white. Egg white proteins, such as lysozyme and ovotransferrin, are well known to play important roles in defence against bacterial invaders. Indeed, several additional minor proteins and peptides have recently been found to play known or potential roles in protection against bacterial contamination. However, although such antibacterial proteins are well studied, little is known about their efficacy under the environmental conditions prevalent in egg white. Thus, the influence of factors such as temperature, alkalinity, nutrient restriction, viscosity and cooperative interactions on the activities of antibacterial proteins in egg white remains unclear. This review critically assesses the available evidence on the antimicrobial components of egg white. In addition, mechanisms employed by S. Enteritidis to resist egg white exposure are also considered along with various genetic studies that have shed light upon egg white resistance systems. We also consider how multiple, antibacterial proteins operate in association with specific environmental factors within egg white to generate a lethal protective cocktail that preserves sterility.
Collapse
Affiliation(s)
- Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Sylvie Bonnassie
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; Université de Rennes I, 2 rue du Thabor, Rennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| | - Simon C Andrews
- School of Biological Sciences, Knight Building, University of Reading, Reading RG6 6AJ, UK
| | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France
| |
Collapse
|
23
|
Lublin A, Maler I, Mechani S, Pinto R, Sela-Saldinger S. Survival of Salmonella enterica serovar infantis on and within stored table eggs. J Food Prot 2015; 78:287-92. [PMID: 25710143 DOI: 10.4315/0362-028x.jfp-14-066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Contaminated table eggs are considered a primary source of foodborne salmonellosis globally. Recently, a single clone of Salmonella enterica serovar Infantis emerged in Israel and became the predominant serovar isolated in poultry. This clone is currently the most prevalent strain in poultry and is the leading cause of salmonellosis in humans. Because little is known regarding the potential transmission of this strain from contaminated eggs to humans, the objective of this study was to evaluate the ability of Salmonella Infantis to survive on the eggshell or within the egg during cold storage or at room temperature. Salmonella cells (5.7 log CFU per egg) were inoculated on the surface of 120 intact eggs or injected into the egg yolk (3.7 log CFU per egg) of another 120 eggs. Half of the eggs were stored at 5.5 ± 0.3°C and half at room temperature (25.5 ± 0.1°C) for up to 10 weeks. At both temperatures, the number of Salmonella cells on the shell declined by 2 log up to 4 weeks and remained constant thereafter. Yolk-inoculated Salmonella counts at cold storage declined by 1 log up to 4 weeks and remained constant, while room-temperature storage supported the growth of the pathogen to a level of 8 log CFU/ml of total egg content, as early as 4 weeks postinoculation. Examination of egg content following surface inoculation revealed the presence of Salmonella in a portion of the eggs at both temperatures up to 10 weeks, suggesting that this strain can also penetrate through the shell and survive within the egg. These findings imply that Salmonella enterica serovar Infantis is capable of survival both on the exterior and interior of table eggs and even multiply inside the egg at room temperature. Our findings support the need for prompt refrigeration to prevent Salmonella multiplication during storage of eggs at room temperature.
Collapse
Affiliation(s)
- Avishai Lublin
- Division of Avian and Fish Diseases, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | - Ilana Maler
- The Laboratory of Food Microbiology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - Sara Mechani
- Division of Avian and Fish Diseases, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - Riky Pinto
- Department of Food Quality and Safety, Institute of Postharvest Technology and Food Science, Volcani Center, Agricultural Research Organization, P.O. Box 6, Bet Dagan 50250, Israel
| | - Shlomo Sela-Saldinger
- Department of Food Quality and Safety, Institute of Postharvest Technology and Food Science, Volcani Center, Agricultural Research Organization, P.O. Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
24
|
Aya Castañeda MDR, Sarnacki SH, Noto Llana M, López Guerra AG, Giacomodonato MN, Cerquetti MC. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Int J Food Microbiol 2015; 193:15-22. [DOI: 10.1016/j.ijfoodmicro.2014.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/04/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
|
25
|
Raspoet R, Shearer N, Appia-Ayme C, Haesebrouck F, Ducatelle R, Thompson A, Van Immerseel F. A genome-wide screen identifies Salmonella Enteritidis lipopolysaccharide biosynthesis and the HtrA heat shock protein as crucial factors involved in egg white persistence at chicken body temperature. Poult Sci 2014; 93:1263-9. [PMID: 24795321 DOI: 10.3382/ps.2013-03711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation of the egg within the chicken oviduct, and it has developed strategies to withstand the antimicrobial properties of egg white to survive in this hostile environment. The mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be complex. To address this issue, a microarray-based transposon library screen was performed to identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body temperature. The majority of identified genes belonged to the lipopolysaccharide biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at chicken body temperature.
Collapse
Affiliation(s)
- R Raspoet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
Pang Y, Zhang Y, Wang H, Jin J, Piao J, Piao J, Liu Q, Li W. Reduction of Salmonella enteritidis number after infections by immunization of liposome-associated recombinant SefA. Avian Dis 2013; 57:627-33. [PMID: 24283128 DOI: 10.1637/10427-101812-reg.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In order to generate Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) fimbriae, SEF14, the sefA gene, which encodes the main subunit of the SEF14 fimbrial protein, was amplified from Salmonella Enteritidis by polymerase chain reaction (PCR) and subcloned into a prokaryotic expression vector pET-28a(+) to yield pET-28a(+)-sefA. The recombinant SefA (rSefA) protein was highly expressed and purified by nickel-affinity chromatography. Liposome-associated rSefA was prepared for oral immunization to seek protective efficacy for intestinal infection with Salmonella Enteritidis. The titers of the IgG and IgA in the intestinal mucus were 1:256 and 1:512, respectively. Moreover, the titers of IgG and IgA in the sera were 1:256 and 1:128, respectively. Two weeks after the booster immunization, the chickens were challenged orally with 2 x 10(6) colony-forming units (CFUs) of live Salmonella Enteritidis, and fecal samples were examined for bacterial excretion from the intestinal tract. Significantly less fecal excretion of bacteria was observed in immunized chickens for 4 wk after challenge. The numbers of bacteria in the intestinal contents (cecum and rectum) were also significantly reduced in immunized chickens, in contrast with the unimmunized controls. Oral immunization with liposome-associated rSefA therefore elicits both systemic and mucosal antibody responses and results in reduced bacterial colonization in the intestinal tract and reduced excretion of Salmonella Enteritidis in the feces.
Collapse
Affiliation(s)
- Yue Pang
- Institute of Immunology, College of Life Science and Technology, Dalian University, 10-Xuefu Avenue, Dalian Economical and Technological Development Zone, Liaoning 116622, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
RNA sequencing reveals differences between the global transcriptomes of Salmonella enterica serovar enteritidis strains with high and low pathogenicities. Appl Environ Microbiol 2013; 80:896-906. [PMID: 24271167 DOI: 10.1128/aem.02740-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis.
Collapse
|
28
|
Meng X, Meng X, Zhu C, Wang H, Wang J, Nie J, Hardwidge PR, Zhu G. The RNA chaperone Hfq regulates expression of fimbrial-related genes and virulence of Salmonella enterica serovar Enteritidis. FEMS Microbiol Lett 2013; 346:90-6. [PMID: 23808344 DOI: 10.1111/1574-6968.12206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/17/2013] [Accepted: 06/21/2013] [Indexed: 11/30/2022] Open
Abstract
Salmonella Enteritidis is an intracellular pathogen that causes enteritis and systemic disease in humans and other animals. The RNA chaperone protein Hfq mediates the binding of small noncoding RNAs to target mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we constructed an hfq deletion mutant in S. Enteritidis SE50336 and analyzed the expression of major fimbrial subunits sefA, bcfA, fimA, safA, stbA, sthA, csgA, csgD, and pegA using quantitative real-time PCR. The gene expression of sefA increased about 14-fold in the hfq mutant, as compared with its expression in the wild-type strain. The expression of fimA and pegA did not change significantly, while the expression of the other fimbrial genes was significantly down-regulated in the hfq mutant. The ability of SE50336Δhfq adhering to Caco-2 cells was also reduced as compared with wild-type adherence. The virulence of the hfq mutant was significantly reduced in a 1-day-old chicken model of S. Enteritidis disease, as determined by quantifying the lethal dose 50% of the bacterial strains. We conclude that Hfq critically contributes to S. Enteritidis virulence, likely partially affected by regulating fimbrial gene expression.
Collapse
Affiliation(s)
- Xia Meng
- Ministry of Education Key Lab for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Wu C, Lim JY, Fuller GG, Cegelski L. Disruption of Escherichia coli amyloid-integrated biofilm formation at the air-liquid interface by a polysorbate surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:920-926. [PMID: 23259693 PMCID: PMC3557966 DOI: 10.1021/la304710k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Functional amyloid fibers termed curli contribute to bacterial adhesion and biofilm formation in Escherichia coli . We discovered that the nonionic surfactant Tween 20 inhibits biofilm formation by uropathogenic E. coli at the air-liquid interface, referred to as pellicle formation, and at the solid-liquid interface. At Tween 20 concentrations near and above the critical micelle concentration, the interfacial viscoelastic modulus is reduced to zero as cellular aggregates at the air-liquid interface are locally disconnected and eventually eliminated. Tween 20 does not inhibit the production of curli but prevents curli-integrated film formation. Our results support a model in which the hydrophobic curli fibers associated with bacteria near the air-liquid interface require access to the gas phase to formed strong physical entanglements and to form a network that can support shear stress.
Collapse
Affiliation(s)
- Cynthia Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Ji Youn Lim
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Gerald G. Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
30
|
Yang X, Thornburg T, Suo Z, Jun S, Robison A, Li J, Lim T, Cao L, Hoyt T, Avci R, Pascual DW. Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012; 7:e46828. [PMID: 23056473 PMCID: PMC3463563 DOI: 10.1371/journal.pone.0046828] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC's adjuvant effect and conferred robust protection against wild-type Salmonella challenge.
Collapse
Affiliation(s)
- Xinghong Yang
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, Montana, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Transposon mutagenesis of Salmonella enterica serovar Enteritidis identifies genes that contribute to invasiveness in human and chicken cells and survival in egg albumen. Infect Immun 2012; 80:4203-15. [PMID: 22988017 DOI: 10.1128/iai.00790-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is an important food-borne pathogen, and chickens are a primary reservoir of human infection. While most knowledge about Salmonella pathogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis is known to have pathobiology specific to chickens that impacts epidemiology in humans. Therefore, more information is needed about S. Enteritidis pathobiology in comparison to that of S. Typhimurium. We used transposon mutagenesis to identify S. Enteritidis virulence genes by assay of invasiveness in human intestinal epithelial (Caco-2) cells and chicken liver (LMH) cells and survival within chicken (HD-11) macrophages as a surrogate marker for virulence. A total of 4,330 transposon insertion mutants of an invasive G1 Nal(r) strain were screened using Caco-2 cells. This led to the identification of attenuating mutations in a total of 33 different loci, many of which include genes previously known to contribute to enteric infection (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-4, SPI-5, CS54, fliH, fljB, csgB, spvR, and rfbMN) in S. Enteritidis and other Salmonella serovars. Several genes or genomic islands that have not been reported previously (e.g., SPI-14, ksgA, SEN0034, SEN2278, and SEN3503) or that are absent in S. Typhimurium or in most other Salmonella serovars (e.g., pegD, SEN1152, SEN1393, and SEN1966) were also identified. Most mutants with reduced Caco-2 cell invasiveness also showed significantly reduced invasiveness in chicken liver cells and impaired survival in chicken macrophages and in egg albumen. Consequently, these genes may play an important role during infection of the chicken host and also contribute to successful egg contamination by S. Enteritidis.
Collapse
|
32
|
Zgair AK, Chhibber S. Immunological and biological relationship among flagellin of Pseudomonas aeruginosa, Burkholderia cepacia, and Stenotrophomonas maltophilia. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712030174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Abstract
Salmonella Typhimurium has been reported to contaminate egg production across the world, but where Salmonella Enteritidis is endemic it is this latter serovar that dominates egg-borne salmonellosis. However, Salmonella Typhimurium is a major food-borne pathogen so it is important to understand how it can impact the microbiological safety of eggs and what serovar-specific control strategies may be appropriate in the future as control over Salmonella Enteritidis continues to improve. To that end, the present review examines the published literature on Salmonella Typhimurium in laying hens and eggs, with particular reference to comparative studies examining different serovars. Experimentally Salmonella Enteritidis is more often isolated from egg contents and seems to adhere better to reproductive tract mucosa, whilst Salmonella Typhimurium appears to provoke a more intense tissue pathology and immune response, and flock infections are more transient. However, it is observed in many cases that the present body of evidence does not identify clear differences between specific behaviours of the serovars Typhimurium and Enteritidis, whether in laying hens, in their eggs, or in the laying environment. It is concluded that further long-term experimental and natural infection studies are needed in order to generate a clearer picture.
Collapse
Affiliation(s)
- A D Wales
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | | |
Collapse
|
34
|
Zgair AK, Chhibber S. Adhesion of Stenotrophomonas maltophilia to mouse tracheal mucus is mediated through flagella. J Med Microbiol 2011; 60:1032-1037. [PMID: 21415208 DOI: 10.1099/jmm.0.026377-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adhesion of Stenotrophomonas maltophilia, an opportunistic pathogen, to different surfaces has been reported in the literature. However, its ability to adhere to mucus and the involvement of different bacterial appendages in this process has not been elucidated. In this study, bacterial adhesion to mouse tracheal mucus as well as the role of flagella in the adhesion process were investigated using clinical isolates of S. maltophilia. All the clinical isolates adhered to mouse tracheal mucus to varying degrees, showing isolate-to-isolate variation. Isolate Sm2 was selected to study the kinetics of bacterial adhesion to mouse tracheal mucus. The process of bacterial adhesion started after 30 min of incubation, and significant adhesion was detected after 1 h. Bacteria pre-treated with S. maltophilia anti-flagellin antibody were used to determine the role of flagellin in bacterial adhesion. The attachment of S. maltophilia flagellin preparation to mucus was assessed by enzyme immunoassay. Pre-treatment of the bacteria with anti-flagellin antibody resulted in a significant decrease in adhesion to mucus and this decrease was antibody concentration dependent. A similar observation was made when pure flagellin was allowed to interact with mucus. Pre-treatment of mouse tracheal mucus with flagellin led to a significant decrease in bacterial adhesion at concentrations of 40 and 80 µg ml⁻¹ (P<0.05). The ability of S. maltophilia to adhere to mucus was also reduced when mechanically deflagellated bacteria were checked for this property (P<0.005). It was concluded that S. maltophilia has the ability to adhere to mouse tracheal mucus and that flagella play an important role in this process. However, further studies using genetically defined mutants lacking flagella are needed to support this observation.
Collapse
Affiliation(s)
- Ayaid Khadem Zgair
- Department of Microbiology, BMS Block, Panjab University, Chandigarh 160014, India
| | - Sanjay Chhibber
- Department of Microbiology, BMS Block, Panjab University, Chandigarh 160014, India
| |
Collapse
|
35
|
Zhang W, Zheng JX, Xu GY. Toward better control of Salmonella contamination by taking advantage of the egg's self-defense system: a review. J Food Sci 2011; 76:R76-81. [PMID: 21535852 DOI: 10.1111/j.1750-3841.2011.02053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Egg-associated salmonellosis is a major problem for food safety. It can be caused by vertical transmission (transovarian transmission) in hens and horizontal transmission though penetration. Despite a series of physical and chemical defense mechanisms naturally found in eggs, they cannot provide complete protection for them. Environmental hygiene, bacteria vectors such as birds, rodent, flies, and beetles along with feed and water contamination are the most frequently reported causes of Salmonella colonization in hens, and finally to eggs. In addition, inappropriate egg handling will cause eggs to lose their self-protection ability, thus resulting in the survival and multiplication of Salmonella in an egg's contents, which contributes to the horizontal dissemination. The routes of Salmonella contamination were discussed, and the effectiveness and shortcomings of different decontamination methods were evaluated in this review. Various studies on egg storage indicated that the low-temperature storage without temperature fluctuation was beneficial for the control of Salmonella. This review, based on an understanding of the stages of Salmonella transmission and an egg's self-protection mechanisms, highlights a comprehensive strategy toward Salmonella control in a process from egg production and handling to human consumption.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | | | | |
Collapse
|
36
|
Zgair AK, Chhibber S. Immunoassay method to check the flagellin mediated binding of Stenotrophomonas maltophilia to polystyrene. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Shah DH, Zhou X, Addwebi T, Davis MA, Orfe L, Call DR, Guard J, Besser TE. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. MICROBIOLOGY-SGM 2011; 157:1428-1445. [PMID: 21292746 DOI: 10.1099/mic.0.044461-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.
Collapse
Affiliation(s)
- Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Xiaohui Zhou
- WSU-Zoonoses Unit, Washington State University, Pullman, WA 99164, USA.,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Tarek Addwebi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Margaret A Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lisa Orfe
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| | - Jean Guard
- Egg Quality and Safety Research Unit, Agriculture Research Service, United States Department of Agriculture, Athens, GA 30605, USA
| | - Thomas E Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
38
|
Gast R, Jones D, Anderson K, Guraya R, Guard J, Holt P. In vitro penetration of Salmonella Enteritidis through yolk membranes of eggs from 6 genetically distinct commercial lines of laying hens. Poult Sci 2010; 89:1732-6. [DOI: 10.3382/ps.2009-00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Chia T, Goulter R, McMeekin T, Dykes G, Fegan N. Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiol 2009; 26:853-9. [DOI: 10.1016/j.fm.2009.05.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 05/13/2009] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
|
40
|
Sillankorva S, Pleteneva E, Shaburova O, Santos S, Carvalho C, Azeredo J, Krylov V. Salmonella Enteritidis bacteriophage candidates for phage therapy of poultry. J Appl Microbiol 2009; 108:1175-86. [PMID: 19796092 DOI: 10.1111/j.1365-2672.2009.04549.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Salmonella is a worldwide foodborne pathogen causing acute enteric infections in humans. In the recent years, the use of bacteriophages has been suggested as a possible tool to combat this zoonotic pathogen in poultry farms. This work aims to isolate and perform comparative studies of a group of phages active against a collection of specific Salmonella Enteritidis strains from Portugal and England. Also, suitable phage candidates for therapy of poultry will be selected. METHODS AND RESULTS The Salm. Enteritidis strains studied were shown to have a significantly high occurrence of defective (cryptic) prophages; however, no live phages were found in the strains. Bacteriophages isolated from different environments lysed all except one of the tested Salm. Enteritidis strains. The bacteriophages studied were divided into different groups according to their genetic homology, RFLP profiles and phenotypic features, and most of them showed no DNA homology with the bacterial hosts. The bacteriophage lytic efficacy proved to be highly dependent on the propagation host strain. CONCLUSIONS Despite the evidences shown in this work that the Salm. Enteritidis strains used did not produce viable phages, we have confirmed that some phages, when grown on particular hosts, behaved as complexes of phages. This is most likely because of the presence of inactive phage-related genomes (or their parts) in the bacterial strains which are capable of being reactivated or which can recombine with lytic phages. Furthermore, changes of the bacterial hosts used for maintenance of phages must be avoided as these can drastically modify the parameters of the phage preparations, including host range and lytic activity. SIGNIFICANCE AND IMPACT OF THE STUDY This work shows that the optimal host and growth conditions must be carefully studied and selected for the production of each bacteriophage candidate for animal therapy.
Collapse
Affiliation(s)
- S Sillankorva
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
41
|
Stevens MP, Humphrey TJ, Maskell DJ. Molecular insights into farm animal and zoonotic Salmonella infections. Philos Trans R Soc Lond B Biol Sci 2009; 364:2709-23. [PMID: 19687040 PMCID: PMC2865095 DOI: 10.1098/rstb.2009.0094] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Infections may present in a variety of ways, from asymptomatic colonization to inflammatory diarrhoea or typhoid fever depending on serovar- and host-specific factors. Human diarrhoeal infections are frequently acquired via the food chain and farm environment by virtue of the ability of selected non-typhoidal serovars to colonize the intestines of food-producing animals and contaminate the avian reproductive tract and egg. Colonization of reservoir hosts often occurs in the absence of clinical symptoms; however, some S. enterica serovars threaten animal health owing to their ability to cause acute enteritis or translocate from the intestines to other organs causing fever, septicaemia and abortion. Despite the availability of complete genome sequences of isolates representing several serovars, the molecular mechanisms underlying Salmonella colonization, pathogenesis and transmission in reservoir hosts remain ill-defined. Here we review current knowledge of the bacterial factors influencing colonization of food-producing animals by Salmonella and the basis of host range, differential virulence and zoonotic potential.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | |
Collapse
|
42
|
The role of stj fimbrial operon in the intestinal persistence of Salmonella Typhimurium in mice. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0170-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Dong T, Schellhorn HE. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 2009; 10:349. [PMID: 19650909 PMCID: PMC2907692 DOI: 10.1186/1471-2164-10-349] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/03/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RpoS is a conserved stress regulator that plays a critical role in survival under stress conditions in Escherichia coli and other gamma-proteobacteria. RpoS is also involved in virulence of many pathogens including Salmonella and Vibrio species. Though well characterized in non-pathogenic E. coli K12 strains, the effect of RpoS on transcriptome expression has not been examined in pathogenic isolates. E. coli O157:H7 is a serious human enteropathogen, possessing a genome 20% larger than that of E. coli K12, and many of the additional genes are required for virulence. The genomic difference may result in substantial changes in RpoS-regulated gene expression. To test this, we compared the transcriptional profile of wild type and rpoS mutants of the E. coli O157:H7 EDL933 type strain. RESULTS The rpoS mutation had a pronounced effect on gene expression in stationary phase, and more than 1,000 genes were differentially expressed (twofold, P<0.05). By contrast, we found 11 genes expressed differently in exponential phase. Western blot analysis revealed that, as expected, RpoS level was low in exponential phase and substantially increased in stationary phase. The defect in rpoS resulted in impaired expression of genes responsible for stress response (e.g., gadA, katE and osmY), arginine degradation (astCADBE), putrescine degradation (puuABCD), fatty acid oxidation (fadBA and fadE), and virulence (ler, espI and cesF). For EDL933-specific genes on O-islands, we found 50 genes expressed higher in wild type EDL933 and 49 genes expressed higher in the rpoS mutants. The protein levels of Tir and EspA, two LEE-encoded virulence factors, were elevated in the rpoS mutants under LEE induction conditions. CONCLUSION Our results show that RpoS has a profound effect on global gene expression in the pathogenic strain O157:H7 EDL933, and the identified RpoS regulon, including many EDL933-specific genes, differs substantially from that of laboratory K12 strains.
Collapse
Affiliation(s)
- Tao Dong
- Department of Biology Life Sciences Building, Rm, 433, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4K1, Canada.
| | | |
Collapse
|
44
|
Carter AJ, Adams MR, Woodward MJ, La Ragione RM. Control strategies forSalmonellacolonisation of poultry: the probiotic perspective. ACTA ACUST UNITED AC 2009. [DOI: 10.1616/1476-2137.15682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Botteldoorn N, Van Coillie E, Goris J, Werbrouck H, Piessens V, Godard C, Scheldeman P, Herman L, Heyndrickx M. Limited genetic diversity and gene expression differences between egg- and non-egg-related Salmonella Enteritidis strains. Zoonoses Public Health 2009; 57:345-57. [PMID: 19486501 DOI: 10.1111/j.1863-2378.2008.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salmonella Enteritidis strains of egg- and non-egg-related origin were characterized molecularly to find markers correlated with the egg-contaminating property of Salmonella Enteritidis. Isolates were examined by random amplified polymorphic DNA (RAPD), plasmid profiling and phage typing. Furthermore, the presence of 30 virulence genes was tested by PCR. In genetic fingerprinting and gene content, only small differences between the strains were found and no correlation was observed with the origin (egg-related versus non-egg-related). A major RADP group was present in both egg- and non-egg-related strains, but other smaller RAPD groups were present as well in both categories of strains. Phage types PT4 and PT21 were predominant. Differential mRNA expression levels of fimA and agfA under conditions of growth simulating the conditions during egg formation were determined by real-time RT-PCR. Although differences in fimA and agfA expression levels were observed between the strains, these could not be correlated with the origin of the strains (egg-related versus non-egg-related). The highest expression levels of agfA and fimA were only found in two non-egg-related strains, which seemed to be correlated with the presence of a 93 kb plasmid instead of the 60 kb virulence plasmid. Our results seem to indicate only a limited role for at least type I fimbriae (encoded by fim operon) in egg contamination by Salmonella Enteritidis.
Collapse
Affiliation(s)
- N Botteldoorn
- Flemish Government, Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Unit, Melle, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Gast R, Humphrey TJ, Van Immerseel F. Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiol Rev 2009; 33:718-38. [PMID: 19207743 DOI: 10.1111/j.1574-6976.2008.00161.x] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Salmonella Enteritidis (SE) has been the major cause of the food-borne salmonellosis pandemic in humans over the last 20 years, during which contaminated hen's eggs were the most important vehicle of the infection. Eggs can be contaminated on the outer shell surface and internally. Internal contamination can be the result of penetration through the eggshell or by direct contamination of egg contents before oviposition, originating from infection of the reproductive organs. Once inside the egg, the bacteria need to cope with antimicrobial factors in the albumen and vitelline membrane before migration to the yolk can occur. It would seem that serotype Enteritidis has intrinsic characteristics that allow an epidemiological association with hen eggs that are still undefined. There are indications that SE survives the attacks with the help of antimicrobial molecules during the formation of the egg in the hen's oviduct and inside the egg. This appears to require a unique combination of genes encoding for improved cell wall protection and repairing cellular and molecular damage, among others.
Collapse
Affiliation(s)
- Inne Gantois
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Research Group Veterinary Public Health and Zoonoses, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Clayton DJ, Bowen AJ, Hulme SD, Buckley AM, Deacon VL, Thomson NR, Barrow PA, Morgan E, Jones MA, Watson M, Stevens MP. Analysis of the role of 13 major fimbrial subunits in colonisation of the chicken intestines by Salmonella enterica serovar Enteritidis reveals a role for a novel locus. BMC Microbiol 2008; 8:228. [PMID: 19091138 PMCID: PMC2644700 DOI: 10.1186/1471-2180-8-228] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/18/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Salmonella enterica is a facultative intracellular pathogen of worldwide importance. Over 2,500 serovars exist and infections in humans and animals may produce a spectrum of symptoms from enteritis to typhoid depending on serovar- and host-specific factors. S. Enteritidis is the most prevalent non-typhoidal serovar isolated from humans with acute diarrhoeal illness in many countries. Human infections are frequently associated with direct or indirect contact with contaminated poultry meat or eggs owing to the ability of the organism to persist in the avian intestinal and reproductive tract. The molecular mechanisms underlying colonisation of poultry by S. Enteritidis are ill-defined. Targeted and genome-wide mutagenesis of S. Typhimurium has revealed conserved and host-specific roles for selected fimbriae in intestinal colonisation of different hosts. Here we report the first systematic analysis of each chromosomally-encoded major fimbrial subunit of S. Enteritidis in intestinal colonisation of chickens. RESULTS The repertoire, organisation and sequence of the fimbrial operons within members of S. enterica were compared. No single fimbrial locus could be correlated with the differential virulence and host range of serovars by comparison of available genome sequences. Fimbrial operons were highly conserved among serovars in respect of gene number, order and sequence, with the exception of safA. Thirteen predicted major fimbrial subunit genes were separately inactivated by lambda Red recombinase-mediated linear recombination followed by P22/int transduction. The magnitude and duration of intestinal colonisation by mutant and parent strains was measured after oral inoculation of out-bred chickens. Whilst the majority of S. Enteritidis major fimbrial subunit genes played no significant role in colonisation of the avian intestines, mutations affecting pegA in two different S. Enteritidis strains produced statistically significant attenuation. Plasmid-mediated trans-complementation partially restored the colonisation phenotype. CONCLUSION We describe the fimbrial gene repertoire of the predominant non-typhoidal S. enterica serovar affecting humans and the role played by each predicted major fimbrial subunit in intestinal colonisation of the primary reservoir. Our data support a role for PegA in the colonisation of poultry by S. Enteritidis and aid the design of improved vaccines.
Collapse
Affiliation(s)
- Debra J Clayton
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Alison J Bowen
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Scott D Hulme
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Anthony M Buckley
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Victoria L Deacon
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Paul A Barrow
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Eirwen Morgan
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Michael A Jones
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Michael Watson
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| | - Mark P Stevens
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, RG20 7NN, UK
| |
Collapse
|
48
|
Gantois I, Ducatelle R, Pasmans F, Haesebrouck F, Van Immerseel F. The Salmonella Enteritidis lipopolysaccharide biosynthesis gene rfbH is required for survival in egg albumen. Zoonoses Public Health 2008; 56:145-9. [PMID: 18990194 DOI: 10.1111/j.1863-2378.2008.01195.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Salmonella Enteritidis is still a major cause of human food borne infections and can be associated with the consumption of meat and chicken eggs. It is the world's most common cause of salmonellosis in part because it has the ability to colonize the oviduct and contaminate eggs. It was shown that when stored at room temperature, S. Enteritidis bacteria can multiply extensively in contaminated eggs. Using the in vivo expression technology, it was shown that the rfbH gene, involved in lipopolysaccharide O-antigen synthesis, is transcriptionally induced during growth in whole eggs at room temperature. A S. Enteritidis DeltarfbH strain was unable to multiply in eggs at room temperature and did not survive in egg white at 42 degrees C. The attenuation was most likely caused by an increased susceptibility of the DeltarfbH mutant to yet undefined antibacterial components of the egg albumen.
Collapse
Affiliation(s)
- I Gantois
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
49
|
Dyer JG, Sriranganathan N, Nickerson SC, Elvinger F. Curli production and genetic relationships among Escherichia coli from cases of bovine mastitis. J Dairy Sci 2008; 90:193-201. [PMID: 17183087 DOI: 10.3168/jds.s0022-0302(07)72620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Curli are adhesive surface structures produced by some Escherichia coli and Salmonella strains that bind host proteins and activate inflammatory mediators. In this study, 61 E. coli isolates from 36 clinical cases of bovine mastitis were characterized using enterobacterial repetitive intergenic consensus-PCR and screened for their ability to produce curli. Effect of curli production on case recovery, based on a return to precase milk yield, was investigated for a subset of 43 isolates from 20 quarters of 19 cows. Thirty-five (57%) of 61 isolates were curli positive. Fifty-eight of the 61 isolates clustered into 2 clonal groups at 52% genetic similarity. Genetically diverse E. coli isolates were simultaneously cultured from individual cases. Twenty-three isolates from 13 cows were clustered in clonal group I, of which 5 cases (38%) were curli positive; 35 isolates from 22 cows were clustered in clonal group II, of which 15 cases (68%) were curli positive. No association was found between genetic similarity and phenotypic curli expression of isolates from cows with clinical E. coli mastitis cases. Phenotypic curli expression in isolates did not affect recovery of cows' milk yield to premastitis production levels.
Collapse
Affiliation(s)
- J G Dyer
- Department of Large Animal Clinical Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
50
|
Salmonella enterica serovar Enteritidis genes induced during oviduct colonization and egg contamination in laying hens. Appl Environ Microbiol 2008; 74:6616-22. [PMID: 18776023 DOI: 10.1128/aem.01087-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is the predominant serovar associated with salmonellosis worldwide, which is in part due to its ability to contaminate the internal contents of the hen's egg. It has been shown that S. enterica serovar Enteritidis has an unusual tropism for the avian reproductive tract and an ability to persist in the oviduct and ovary. Factors allowing S. enterica serovar Enteritidis strains to contaminate eggs could be a specific interaction with the oviduct tissue, leading to persisting oviduct colonization. In vivo expression technology, a promoter-trap strategy, was used to identify genes expressed during oviduct colonization and egg contamination with S. enterica serovar Enteritidis. A total of 25 clones with in vivo-induced promoters were isolated from the oviduct tissue and from laid eggs. Among the 25 clones, 7 were isolated from both the oviducts and the eggs. DNA sequencing of the cloned promoters revealed that genes involved in amino acid and nucleic acid metabolism, motility, cell wall integrity, and stress responses were highly expressed in the reproductive tract tissues of laying hens.
Collapse
|