1
|
López-Pérez M, Balasubramanian D, Campos-Lopez A, Crist C, Grant TA, Haro-Moreno JM, Zaragoza-Solas A, Almagro-Moreno S. Allelic variations and gene cluster modularity act as nonlinear bottlenecks for cholera emergence. Proc Natl Acad Sci U S A 2025; 122:e2417915122. [PMID: 40434643 DOI: 10.1073/pnas.2417915122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
The underlying factors that lead to specific strains within a species to emerge as human pathogens remain mostly enigmatic. The diarrheal disease cholera is caused by strains from a phylogenetically confined group within the Vibrio cholerae species, the pandemic cholera group (PCG), making it an ideal model system to tackle this puzzling phenomenon. Comprehensive analyses of over 1,840 V. cholerae genomes, including environmental isolates from this study, reveal that the species consists of eleven groups, with the PCG belonging to the largest and located within a lineage shared with environmental strains. This hierarchical classification provided us with a framework to unravel the ecoevolutionary dynamics of the genetic determinants associated with the emergence of toxigenic V. cholerae. Our analyses indicate that this phenomenon is largely dependent on the acquisition of unique modular gene clusters and allelic variations that confer a competitive advantage during intestinal colonization. We determined that certain PCG-associated alleles are essential for successful colonization whereas others provide a nonlinear competitive advantage, acting as a critical bottleneck that clarifies the isolated emergence of PCG. For instance, toxigenic strains encoding non-PCG alleles of a) tcpF or b) a sextuple allelic exchange mutant for genes tcpA, toxT, VC0176, VC1791, rfbT, and ompU, lose their ability to colonize the intestine. Interestingly, these alleles do not play a role in the colonization of newly established model environmental reservoirs. Our study uncovers the evolutionary roots of toxigenic V. cholerae offering a tractable approach for investigating the emergence of pathogenic clones within an environmental population.
Collapse
Affiliation(s)
- Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Division of Molecular Microbiology, Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Alicia Campos-Lopez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Cole Crist
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
| | - Trudy-Ann Grant
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
| | - Jose M Haro-Moreno
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Asier Zaragoza-Solas
- Microbial Genomics and Evolution Group, División de Microbiología, Universidad Miguel Hernández, Alicante 03550, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central, Florida, Orlando, FL, 32827
- Division of Molecular Microbiology, Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
2
|
Drebes Dörr NC, Lemopoulos A, Blokesch M. Exploring Mobile Genetic Elements in Vibrio cholerae. Genome Biol Evol 2025; 17:evaf079. [PMID: 40302206 PMCID: PMC12082036 DOI: 10.1093/gbe/evaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Members of the bacterial species Vibrio cholerae are known both as prominent constituents of marine environments and as the causative agents of cholera, a severe diarrheal disease. While strains responsible for cholera have been extensively studied over the past century, less is known about their environmental counterparts, despite their contributions to the species' pangenome. This study analyzed the genome compositions of 46 V. cholerae strains, including pandemic and nonpandemic, toxigenic, and environmental variants, to investigate the diversity of mobile genetic elements (MGEs), embedded bacterial defense systems, and phage-associated signatures. Our findings include both conserved and novel MGEs across strains, pointing to shared evolutionary pathways and ecological niches. The defensome analysis revealed a wide array of antiphage/antiplasmid mechanisms, extending well beyond the traditional CRISPR-Cas and restriction-modification systems. This underscores the dynamic arms race between V. cholerae and MGEs and suggests that nonpandemic strains may act as reservoirs for emerging defense strategies. Moreover, the study showed that MGEs are integrated into genomic hotspots, which may serve as critical platforms for the exchange of defense systems, thereby enhancing V. cholerae's adaptive capabilities against phage attacks and other invading MGEs. Overall, this research offers new insights into V. cholerae's genetic complexity and potential adaptive strategies, offering a better understanding of the differences between environmental strains and their pandemic counterparts, as well as the possible evolutionary pathways that led to the emergence of pandemic strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Sajeevan A, Ramamurthy T, Solomon AP. Vibrio cholerae virulence and its suppression through the quorum-sensing system. Crit Rev Microbiol 2025; 51:22-43. [PMID: 38441045 DOI: 10.1080/1040841x.2024.2320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/21/2023] [Accepted: 02/10/2024] [Indexed: 03/06/2024]
Abstract
Vibrio cholerae is a cholera-causing pathogen known to instigate severe contagious diarrhea that affects millions globally. Survival of vibrios depend on a combination of multicellular responses and adapt to changes that prevail in the environment. This process is achieved through a strong communication at the cellular level, the process has been recognized as quorum sensing (QS). The severity of infection is highly dependent on the QS of vibrios in the gut milieu. The quorum may exist in a low/high cell density (LCD/HCD) state to exert a positive or negative response to control the regulatory pathogenic networks. The impact of this regulation reflects on the transition of pathogenic V. cholerae from the environment to infect humans and cause outbreaks or epidemics of cholera. In this context, the review portrays various regulatory processes and associated virulent pathways, which maneuver and control LCD and HCD states for their survival in the host. Although several treatment options are existing, promotion of therapeutics by exploiting the virulence network may potentiate ineffective antibiotics to manage cholera. In addition, this approach is also useful in resource-limited settings, where the accessibility to antibiotics or conventional therapeutic options is limited.
Collapse
Affiliation(s)
- Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Disease, Kolkata, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Vizzarro G, Lemopoulos A, Adams DW, Blokesch M. Vibrio cholerae pathogenicity island 2 encodes two distinct types of restriction systems. J Bacteriol 2024; 206:e0014524. [PMID: 39133004 PMCID: PMC11411939 DOI: 10.1128/jb.00145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
In response to predation by bacteriophages and invasion by other mobile genetic elements such as plasmids, bacteria have evolved specialized defense systems that are often clustered together on genomic islands. The O1 El Tor strains of Vibrio cholerae responsible for the ongoing seventh cholera pandemic (7PET) contain a characteristic set of genomic islands involved in host colonization and disease, many of which contain defense systems. Notably, Vibrio pathogenicity island 2 contains several characterized defense systems as well as a putative type I restriction-modification (T1RM) system, which, interestingly, is interrupted by two genes of unknown function. Here, we demonstrate that the T1RM system is active, methylates the host genomes of a representative set of 7PET strains, and identify a specific recognition sequence that targets non-methylated plasmids for restriction. We go on to show that the two genes embedded within the T1RM system encode a novel two-protein modification-dependent restriction system related to the GmrSD family of type IV restriction enzymes. Indeed, we show that this system has potent anti-phage activity against diverse members of the Tevenvirinae, a subfamily of bacteriophages with hypermodified genomes. Taken together, these results expand our understanding of how this highly conserved genomic island contributes to the defense of pandemic V. cholerae against foreign DNA. IMPORTANCE Defense systems are immunity systems that allow bacteria to counter the threat posed by bacteriophages and other mobile genetic elements. Although these systems are numerous and highly diverse, the most common types are restriction enzymes that can specifically recognize and degrade non-self DNA. Here, we show that the Vibrio pathogenicity island 2, present in the pathogen Vibrio cholerae, encodes two types of restriction systems that use distinct mechanisms to sense non-self DNA. The first system is a classical Type I restriction-modification system, and the second is a novel modification-dependent type IV restriction system that recognizes hypermodified cytosines. Interestingly, these systems are embedded within each other, suggesting that they are complementary to each other by targeting both modified and non-modified phages.
Collapse
Affiliation(s)
- Grazia Vizzarro
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David William Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
5
|
Zhang Q, Alter T, Fleischmann S. Non-O1/Non-O139 Vibrio cholerae-An Underestimated Foodborne Pathogen? An Overview of Its Virulence Genes and Regulatory Systems Involved in Pathogenesis. Microorganisms 2024; 12:818. [PMID: 38674762 PMCID: PMC11052320 DOI: 10.3390/microorganisms12040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the number of foodborne infections with non-O1 and non-O139 Vibrio cholerae (NOVC) has increased worldwide. These have ranged from sporadic infection cases to localized outbreaks. The majority of case reports describe self-limiting gastroenteritis. However, severe gastroenteritis and even cholera-like symptoms have also been described. All reported diarrheal cases can be traced back to the consumption of contaminated seafood. As climate change alters the habitats and distribution patterns of aquatic bacteria, there is a possibility that the number of infections and outbreaks caused by Vibrio spp. will further increase, especially in countries where raw or undercooked seafood is consumed or clean drinking water is lacking. Against this background, this review article focuses on a possible infection pathway and how NOVC can survive in the human host after oral ingestion, colonize intestinal epithelial cells, express virulence factors causing diarrhea, and is excreted by the human host to return to the environment.
Collapse
Affiliation(s)
| | | | - Susanne Fleischmann
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 69, 14163 Berlin, Germany; (Q.Z.); (T.A.)
| |
Collapse
|
6
|
Wang P, Du X, Zhao Y, Wang W, Cai T, Tang K, Wang X. Combining CRISPR/Cas9 and natural excision for the precise and complete removal of mobile genetic elements in bacteria. Appl Environ Microbiol 2024; 90:e0009524. [PMID: 38497640 PMCID: PMC11022536 DOI: 10.1128/aem.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Horizontal gene transfer, facilitated by mobile genetic elements (MGEs), is an adaptive evolutionary process that contributes to the evolution of bacterial populations and infectious diseases. A variety of MGEs not only can integrate into the bacterial genome but also can survive or even replicate like plasmids in the cytoplasm, thus requiring precise and complete removal for studying their strategies in benefiting host cells. Existing methods for MGE removal, such as homologous recombination-based deletion and excisionase-based methods, have limitations in effectively eliminating certain MGEs. To overcome these limitations, we developed the Cas9-NE method, which combines the CRISPR/Cas9 system with the natural excision of MGEs. In this approach, a specialized single guide RNA (sgRNA) element is designed with a 20-nucleotide region that pairs with the MGE sequence. This sgRNA is expressed from a plasmid that also carries the Cas9 gene. By utilizing the Cas9-NE method, both the integrative and circular forms of MGEs can be precisely and completely eliminated through Cas9 cleavage, generating MGE-removed cells. We have successfully applied the Cas9-NE method to remove four representative MGEs, including plasmids, prophages, and genomic islands, from Vibrio strains. This new approach not only enables various investigations on MGEs but also has significant implications for the rapid generation of strains for commercial purposes.IMPORTANCEMobile genetic elements (MGEs) are of utmost importance for bacterial adaptation and pathogenicity, existing in various forms and multiple copies within bacterial cells. Integrated MGEs play dual roles in bacterial hosts, enhancing the fitness of the host by delivering cargo genes and potentially modifying the bacterial genome through the integration/excision process. This process can lead to alterations in promoters or coding sequences or even gene disruptions at integration sites, influencing the physiological functions of host bacteria. Here, we developed a new approach called Cas9-NE, allowing them to maintain the natural sequence changes associated with MGE excision. Cas9-NE allows the one-step removal of integrated and circular MGEs, addressing the challenge of eliminating various MGE forms efficiently. This approach simplifies MGE elimination in bacteria, expediting research on MGEs.
Collapse
Affiliation(s)
- Pengxia Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shantou, China
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zhao
- University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Tongxuan Cai
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, China, Guangzhou
- China, Southern Marine Science and Engineering Guangdong LaboratoryGuangzhou
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Balasubramanian D, López-Pérez M, Almagro-Moreno S. Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:127-147. [PMID: 36792874 DOI: 10.1007/978-3-031-22997-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cholera is a severe diarrheal disease caused by the aquatic bacterium Vibrio cholerae. Interestingly, to date, only one major clade has emerged to cause pandemic disease in humans: the clade that encompasses the strains from the O1 and O139 serogroups. In this chapter, we provide a comprehensive perspective on the virulence factors and mobile genetic elements (MGEs) associated with the emergence of pandemic V. cholerae strains and highlight novel findings such as specific genomic background or interactions between MGEs that explain their confined distribution. Finally, we discuss pandemic cholera dynamics contextualizing them within the evolution of the bacterium.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
| | - Mario López-Pérez
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
8
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
9
|
Kaisar MH, Bhuiyan MS, Akter A, Saleem D, Iyer AS, Dash P, Hakim A, Chowdhury F, Khan AI, Calderwood SB, Harris JB, Ryan ET, Qadri F, Charles RC, Bhuiyan TR. Vibrio cholerae Sialidase-Specific Immune Responses Are Associated with Protection against Cholera. mSphere 2021; 6:e01232-20. [PMID: 33910997 PMCID: PMC8092141 DOI: 10.1128/msphere.01232-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cholera remains a major public health problem in resource-limited countries. Vaccination is an important strategy to prevent cholera, but currently available vaccines provide only 3 to 5 years of protection. Understanding immune responses to cholera antigens in naturally infected individuals may elucidate which of these are key to longer-term protection seen following infection. We recently identified Vibrio cholerae O1 sialidase, a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells, as immunogenic following infection in two recent high-throughput screens. Here, we present systemic, mucosal, and memory immune responses to sialidase in cholera index cases and evaluated whether systemic responses to sialidase correlated with protection using a cohort of household contacts. Overall, we found age-related differences in antisialidase immune response following cholera. Adults developed significant plasma anti-sialidase IgA, IgG, and IgM responses following infection, whereas older children (≥5 years) developed both IgG and IgM responses, and younger children only developed IgM responses. Neither older children nor younger children had a rise in IgA responses over the convalescent phase of infection (day 7/day 30). On evaluation of mucosal responses and memory B-cell responses to sialidase, we found adults developed IgA antibody-secreting cell (ASC) and memory B-cell responses. Finally, in household contacts, the presence of serum anti-sialidase IgA, IgG, and IgM antibodies at enrollment was associated with a decrease in the risk of subsequent infection. These data show cholera patients develop age-related immune responses against sialidase and suggest that immune responses that target sialidase may contribute to protective immunity against cholera.IMPORTANCE Cholera infection can result in severe dehydration that may lead to death within a short period of time if not treated immediately. Vaccination is an important strategy to prevent the disease. Oral cholera vaccines provide 3 to 5 years of protection, with 60% protective efficacy, while natural infection provides longer-term protection than vaccination. Understanding the immune responses after natural infection is important to better understand immune responses to antigens that mediate longer-term protection. Sialidase is a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells. We show here that patients with cholera develop systemic, mucosal, and memory B-cell immune responses to the sialidase antigen of Vibrio cholerae O1 and that plasma responses targeting this antigen correlate with protection.
Collapse
Affiliation(s)
- M Hasanul Kaisar
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammed Saruar Bhuiyan
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Danial Saleem
- College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Anita S Iyer
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Pinki Dash
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
10
|
Smirnova NI, Kritsky AA, Alkhova JV, Agafonova EY, Shchelkanova EY, Badanin DV, Kutyrev VV. Genomic Variability of Pathogenicity Islands in Nontoxigenic Strains of Vibrio cholerae O1 Biotype El Tor. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sialic acid acquisition in bacteria-one substrate, many transporters. Biochem Soc Trans 2017; 44:760-5. [PMID: 27284039 DOI: 10.1042/bst20160056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/17/2022]
Abstract
The sialic acids are a family of 9-carbon sugar acids found predominantly on the cell-surface glycans of humans and other animals within the Deuterostomes and are also used in the biology of a wide range of bacteria that often live in association with these animals. For many bacteria sialic acids are simply a convenient source of food, whereas for some pathogens they are also used in immune evasion strategies. Many bacteria that use sialic acids derive them from the environment and so are dependent on sialic acid uptake. In this mini-review I will describe the discovery and characterization of bacterial sialic acids transporters, revealing that they have evolved multiple times across multiple diverse families of transporters, including the ATP-binding cassette (ABC), tripartite ATP-independent periplasmic (TRAP), major facilitator superfamily (MFS) and sodium solute symporter (SSS) transporter families. In addition there is evidence for protein-mediated transport of sialic acids across the outer membrane of Gram negative bacteria, which can be coupled to periplasmic processing of different sialic acids to the most common form, β-D-N-acetylneuraminic acid (Neu5Ac) that is most frequently taken up into the cell.
Collapse
|
12
|
Takemura T, Murase K, Maruyama F, Tran TL, Ota A, Nakagawa I, Nguyen DT, Ngo TC, Nguyen TH, Tokizawa A, Morita M, Ohnishi M, Nguyen BM, Yamashiro T. Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam. INFECTION GENETICS AND EVOLUTION 2017. [PMID: 28642158 DOI: 10.1016/j.meegid.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholera epidemics have been recorded periodically in Vietnam during the seventh cholera pandemic. Since cholera is a water-borne disease, systematic monitoring of environmental waters for Vibrio cholerae presence is important for predicting and preventing cholera epidemics. We conducted monitoring, isolation, and genetic characterization of V. cholerae strains in Nam Dinh province of Northern Vietnam from Jul 2013 to Feb 2015. In this study, four V. cholerae O1 strains were detected and isolated from 110 analyzed water samples (3.6%); however, none of them carried the cholera toxin gene, ctxA, in their genomes. Whole genome sequencing and phylogenetic analysis revealed that the four O1 isolates were separated into two independent clusters, and one of them diverged from a common ancestor with pandemic strains. The analysis of pathogenicity islands (CTX prophage, VPI-I, VPI-II, VSP-I, and VSP-II) indicated that one strain (VNND_2014Jun_6SS) harbored an unknown prophage-like sequence with high homology to vibriophage KSF-1 phi and VCY phi, identified from Bangladesh and the USA, respectively, while the other three strains carried tcpA gene with a distinct sequence demonstrating a separate clonal lineage. These results suggest that the aquatic environment can harbor highly divergent V. cholera strains and serve as a reservoir for multiple V. cholerae virulence-associated genes which may be exchanged via mobile genetic elements. Therefore, continuous monitoring and genetic characterization of V. cholerae strains in the environment should contribute to the early detection of the sources of infection and prevention of cholera outbreaks as well as to understanding the natural ecology and evolution of V. cholerae.
Collapse
Affiliation(s)
- Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kazunori Murase
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Fumito Maruyama
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Thi Luong Tran
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Atsushi Ota
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Ichiro Nakagawa
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Dong Tu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tu Cuong Ngo
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Thi Hang Nguyen
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Asako Tokizawa
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Binh Minh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tetsu Yamashiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan; Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
13
|
Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells. mBio 2016; 7:mBio.02021-16. [PMID: 27999163 PMCID: PMC5181778 DOI: 10.1128/mbio.02021-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs) generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT) or lipopolysaccharide (LPS). Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera. Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts.
Collapse
|
14
|
Abstract
Similar to other genera and species of bacteria, whole genomic sequencing has revolutionized how we think about and address questions of basic Vibrio biology. In this review we examined 36 completely sequenced and annotated members of the Vibrionaceae family, encompassing 12 different species of the genera Vibrio, Aliivibrio, and Photobacterium. We reconstructed the phylogenetic relationships among representatives of this group of bacteria by using three housekeeping genes and 16S rRNA sequences. With an evolutionary framework in place, we describe the occurrence and distribution of primary and alternative sigma factors, global regulators present in all bacteria. Among Vibrio we show that the number and function of many of these sigma factors differs from species to species. We also describe the role of the Vibrio-specific regulator ToxRS in fitness and survival. Examination of the biochemical capabilities was and still is the foundation of classifying and identifying new Vibrio species. Using comparative genomics, we examine the distribution of carbon utilization patterns among Vibrio species as a possible marker for understanding bacteria-host interactions. Finally, we discuss the significant role that horizontal gene transfer, specifically, the distribution and structure of integrons, has played in Vibrio evolution.
Collapse
|
15
|
Host-Derived Sialic Acids Are an Important Nutrient Source Required for Optimal Bacterial Fitness In Vivo. mBio 2016; 7:e02237-15. [PMID: 27073099 PMCID: PMC4959520 DOI: 10.1128/mbio.02237-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge facing bacterial intestinal pathogens is competition for nutrient sources with the host microbiota. Vibrio cholerae is an intestinal pathogen that causes cholera, which affects millions each year; however, our knowledge of its nutritional requirements in the intestinal milieu is limited. In this study, we demonstrated that V. cholerae can grow efficiently on intestinal mucus and its component sialic acids and that a tripartite ATP-independent periplasmic SiaPQM strain, transporter-deficient mutant NC1777, was attenuated for colonization using a streptomycin-pretreated adult mouse model. In in vivo competition assays, NC1777 was significantly outcompeted for up to 3 days postinfection. NC1777 was also significantly outcompeted in in vitro competition assays in M9 minimal medium supplemented with intestinal mucus, indicating that sialic acid uptake is essential for fitness. Phylogenetic analyses demonstrated that the ability to utilize sialic acid was distributed among 452 bacterial species from eight phyla. The majority of species belonged to four phyla, Actinobacteria (members of Actinobacillus, Corynebacterium, Mycoplasma, and Streptomyces), Bacteroidetes (mainly Bacteroides, Capnocytophaga, and Prevotella), Firmicutes (members of Streptococcus, Staphylococcus, Clostridium, and Lactobacillus), and Proteobacteria (including Escherichia, Shigella, Salmonella, Citrobacter, Haemophilus, Klebsiella, Pasteurella, Photobacterium, Vibrio, and Yersinia species), mostly commensals and/or pathogens. Overall, our data demonstrate that the ability to take up host-derived sugars and sialic acid specifically allows V. cholerae a competitive advantage in intestinal colonization and that this is a trait that is sporadic in its occurrence and phylogenetic distribution and ancestral in some genera but horizontally acquired in others. Sialic acids are nine carbon amino sugars that are abundant on all mucous surfaces. The deadly human pathogen Vibrio cholerae contains the genes required for scavenging, transport, and catabolism of sialic acid. We determined that the V. cholerae SiaPQM transporter is essential for sialic acid transport and that this trait allows the bacterium to outcompete noncatabolizers in vivo. We also showed that the ability to take up and catabolize sialic acid is prevalent among both commensals and pathogens that colonize the oral cavity and the respiratory, intestinal, and urogenital tracts. Phylogenetic analysis determined that the sialic acid catabolism phenotype is ancestral in some genera such as Yersinia, Streptococcus, and Staphylococcus and is acquired by horizontal gene transfer in others such as Vibrio, Aeromonas, and Klebsiella. The data demonstrate that this trait has evolved multiple times in different lineages, indicating the importance of specialized metabolism to niche expansion.
Collapse
|
16
|
Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015; 198:766-76. [PMID: 26668266 DOI: 10.1128/jb.00704-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.
Collapse
|
17
|
Khouadja S, Suffredini E, Baccouche B, Croci L, Bakhrouf A. Occurrence of virulence genes among Vibrio cholerae and Vibrio parahaemolyticus strains from treated wastewaters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:6935-6945. [PMID: 25023745 DOI: 10.1007/s10661-014-3900-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Pathogenic Vibrio species are an important cause of foodborne illnesses. The aim of this study was to describe the occurrence of potentially pathogenic Vibrio species in the final effluents of a wastewater treatment plant and the risk that they may pose to public health. During the 1-year monitoring, a total of 43 Vibrio strains were isolated: 23 Vibrio alginolyticus, 1 Vibrio cholerae, 4 Vibrio vulnificus, and 15 Vibrio parahaemolyticus. The PCR investigation of V. parahaemolyticus and V. cholerae virulence genes (tlh, trh, tdh, toxR, toxS, toxRS, toxT, zot, ctxAB, tcp, ace, vpi, nanH) revealed the presence of some of these genes in a significant number of strains. Intraspecies variability and genetic relationships among the environmental isolates were analyzed by random amplified polymorphic DNA-PCR (RAPD-PCR). We report the results of the first isolation and characterization of an environmental V. cholerae non-O1 non-O139 and of a toxigenic V. parahaemolyticus strain in Tunisia. We suggest that non-pathogenic Vibrio might represent a marine reservoir of virulence genes that can be transmitted between strains by horizontal transfer.
Collapse
Affiliation(s)
- Sadok Khouadja
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Département de Microbiologie, Faculté de Pharmacie, Rue Avicenne, 5000, Monastir, Tunisia,
| | | | | | | | | |
Collapse
|
18
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
19
|
Smith KF, Schmidt V, Rosen GE, Amaral-Zettler L. Microbial diversity and potential pathogens in ornamental fish aquarium water. PLoS One 2012; 7:e39971. [PMID: 22970112 PMCID: PMC3435374 DOI: 10.1371/journal.pone.0039971] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/05/2012] [Indexed: 12/12/2022] Open
Abstract
Ornamental fishes are among the most popular and fastest growing categories of pets in the United States (U.S.). The global scope and scale of the ornamental fish trade and growing popularity of pet fish in the U.S. are strong indicators of the myriad economic and social benefits the pet industry provides. Relatively little is known about the microbial communities associated with these ornamental fishes or the aquarium water in which they are transported and housed. Using conventional molecular approaches and next generation high-throughput amplicon sequencing of 16S ribosomal RNA gene hypervariable regions, we characterized the bacterial community of aquarium water containing common goldfish (Carassius auratus) and Chinese algae eaters (Gyrinocheilus aymonieri) purchased from seven pet/aquarium shops in Rhode Island and identified the presence of potential pathogens. Our survey identified a total of 30 phyla, the most common being Proteobacteria (52%), Bacteroidetes (18%) and Planctomycetes (6%), with the top four phyla representing >80% of all sequences. Sequences from our water samples were most closely related to eleven bacterial species that have the potential to cause disease in fishes, humans and other species: Coxiella burnetii, Flavobacterium columnare, Legionella birminghamensis, L. pneumophila, Vibrio cholerae, V. mimicus. V. vulnificus, Aeromonas schubertii, A. veronii, A. hydrophila and Plesiomonas shigelloides. Our results, combined with evidence from the literature, suggest aquarium tank water harboring ornamental fish are an understudied source for novel microbial communities and pathogens that pose potential risks to the pet industry, fishes in trade, humans and other species.
Collapse
Affiliation(s)
- Katherine F. Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Victor Schmidt
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Gail E. Rosen
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
- Columbia University Center for Infection and Immunity, Mailman School of Public Health, New York, New York, United States of America
| | - Linda Amaral-Zettler
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Department of Geological Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
20
|
Gennari M, Ghidini V, Caburlotto G, Lleo MM. Virulence genes and pathogenicity islands in environmentalVibriostrains nonpathogenic to humans. FEMS Microbiol Ecol 2012; 82:563-73. [DOI: 10.1111/j.1574-6941.2012.01427.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/23/2012] [Accepted: 05/27/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Micol Gennari
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Valentina Ghidini
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Greta Caburlotto
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| | - Maria M. Lleo
- Dipartimento di Patologia e Diagnostica; Sezione di Microbiologia; Università di Verona; Verona; Italy
| |
Collapse
|
21
|
Chowdhury N, Norris J, McAlister E, Lau SYK, Thomas GH, Boyd EF. The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. MICROBIOLOGY-SGM 2012; 158:2158-2167. [PMID: 22556361 DOI: 10.1099/mic.0.059659-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sialic acids are nine-carbon amino sugars that are present on all mucous membranes and are often used by bacteria as nutrients. In pathogenic Vibrio the genes for sialic acid catabolism (SAC) are known to be important for host colonization, yet the route for sialic acid uptake is not proven. Vibrio cholerae contains a tripartite ATP-independent periplasmic (TRAP) transporter, SiaPQM (VC1777-VC1779), encoded by genes within the Vibrio pathogenicity island-2 (VPI-2), which are adjacent to the SAC genes nanA, nanE and nanK. We demonstrate a correlation of the occurrence of VPI-2 and the ability of Vibrio to grow on the common sialic acid N-acetylneuraminic acid (Neu5Ac), and that a V. cholerae N16961 mutant defective in vc1777, encoding the large membrane protein component of the TRAP transporter, SiaM, is unable to grow on Neu5Ac as the sole carbon source. Using the genome context and known structures of the SiaP protein component of the TRAP transporter, we define a subfamily of Neu5Ac-specific TRAP transporters, of which the vc1777-vc1779 genes are the only representatives in V. cholerae. A recent report has suggested that an entirely different TRAP transporter (VC1927-VC1929) is the Neu5Ac transporter in V. cholerae. Bioinformatics and genomic analysis suggest strongly that this is a C(4)-dicarboxylate-specific TRAP transporter, and indeed disruption of vc1929 results in a defect in growth on C(4)-dicarboxylates but not Neu5Ac. Together these data demonstrate unequivocally that the siaPQM-encoded TRAP transporter within VPI-2 is the sole sialic acid transporter in V. cholerae.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Jessica Norris
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Erin McAlister
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - S Y Kathy Lau
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York YO10 5YW, UK
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Sialic acid catabolism and transport gene clusters are lineage specific in Vibrio vulnificus. Appl Environ Microbiol 2012; 78:3407-15. [PMID: 22344665 DOI: 10.1128/aem.07395-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialic or nonulosonic acids are nine-carbon alpha ketosugars that are present in all vertebrate mucous membranes. Among bacteria, the ability to catabolize sialic acid as a carbon source is present mainly in pathogenic and commensal species of animals. Previously, it was shown that several Vibrio species carry homologues of the genes required for sialic acid transport and catabolism, which are genetically linked. In Vibrio cholerae on chromosome I, these genes are carried on the Vibrio pathogenicity island-2 region, which is confined to pathogenic isolates. We found that among the three sequenced Vibrio vulnificus clinical strains, these genes are present on chromosome II and are not associated with a pathogenicity island. To determine whether the sialic acid transport (SAT) and catabolism (SAC) region is universally present within V. vulnificus, we examined 67 natural isolates whose phylogenetic relationships are known. We found that the region was present predominantly among lineage I of V. vulnificus, which is comprised mainly of clinical isolates. We demonstrate that the isolates that contain this region can catabolize sialic acid as a sole carbon source. Two putative transporters are genetically linked to the region in V. vulnificus, the tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM and a component of an ATP-binding cassette (ABC) transporter. We constructed an in-frame deletion mutation in siaM, a component of the TRAP transporter, and demonstrate that this transporter is essential for sialic acid uptake in this species. Expression analysis of the SAT and SAC genes indicates that sialic acid is an inducer of expression. Overall, our study demonstrates that the ability to catabolize and transport sialic acid is predominately lineage specific in V. vulnificus and that the TRAP transporter is essential for sialic acid uptake.
Collapse
|
23
|
Mulligan C, Leech AP, Kelly DJ, Thomas GH. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. J Biol Chem 2011; 287:3598-608. [PMID: 22167185 DOI: 10.1074/jbc.m111.281030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are widespread in bacteria but poorly characterized. They contain three subunits, a small membrane protein, a large membrane protein, and a substrate-binding protein (SBP). Although the function of the SBP is well established, the membrane components have only been studied in detail for the sialic acid TRAP transporter SiaPQM from Haemophilus influenzae, where the membrane proteins are genetically fused. Herein, we report the first in vitro characterization of a truly tripartite TRAP transporter, the SiaPQM system (VC1777-1779) from the human pathogen Vibrio cholerae. The active reconstituted transporter catalyzes unidirectional Na(+)-dependent sialic acid uptake having similar biochemical features to the orthologous system in H. influenzae. However, using this tripartite transporter, we demonstrate the tight association of the small, SiaQ, and large, SiaM, membrane proteins that form a 1:1 complex. Using reconstituted proteoliposomes containing particular combinations of the three subunits, we demonstrate biochemically that all three subunits are likely to be essential to form a functional TRAP transporter.
Collapse
Affiliation(s)
- Christopher Mulligan
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | |
Collapse
|
24
|
Du P, Yang Y, Wang H, Liu D, Gao GF, Chen C. A large scale comparative genomic analysis reveals insertion sites for newly acquired genomic islands in bacterial genomes. BMC Microbiol 2011; 11:135. [PMID: 21672261 PMCID: PMC3148964 DOI: 10.1186/1471-2180-11-135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 06/15/2011] [Indexed: 01/15/2023] Open
Abstract
Background Bacterial virulence enhancement and drug resistance are major threats to public health worldwide. Interestingly, newly acquired genomic islands (GIs) from horizontal transfer between different bacteria strains were found in Vibrio cholerae, Streptococcus suis, and Mycobacterium tuberculosis, which caused outbreak of epidemic diseases in recently years. Results Using a large-scale comparative genomic analysis of 1088 complete genomes from all available bacteria (1009) and Archaea (79), we found that newly acquired GIs are often anchored around switch sites of GC-skew (sGCS). After calculating correlations between relative genomic distances of genomic islands to sGCSs and the evolutionary distances of the genomic islands themselves, we found that newly acquired genomic islands are closer to sGCSs than the old ones, indicating that regions around sGCSs are hotspots for genomic island insertion. Conclusions Based on our results, we believe that genomic regions near sGCSs are hotspots for horizontal transfer of genomic islands, which may significantly affect key properties of epidemic disease-causing pathogens, such as virulence and adaption to new environments.
Collapse
Affiliation(s)
- Pengcheng Du
- National Institute for Communicable Disease Control and Prevention, Center for Disease Control and Prevention/State Key Laboratory for Infectious Disease Prevention and Control, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
25
|
Mulligan C, Fischer M, Thomas GH. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. FEMS Microbiol Rev 2011; 35:68-86. [PMID: 20584082 DOI: 10.1111/j.1574-6976.2010.00236.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The tripartite ATP-independent periplasmic (TRAP) transporters are the best-studied family of substrate-binding protein (SBP)-dependent secondary transporters and are ubiquitous in prokaryotes, but absent from eukaryotes. They are comprised of an SBP of the DctP or TAXI families and two integral membrane proteins of unequal sizes that form the DctQ and DctM protein families, respectively. The SBP component has a structure comprised of two domains connected by a hinge that closes upon substrate binding. In DctP-TRAP transporters, substrate binding is mediated through a conserved and specific arginine/carboxylate interaction in the SBP. While the SBP component has now been relatively well characterized, the membrane components of TRAP transporters are still poorly understood both in terms of their structure and function. We review the expanding repertoire of substrates and physiological roles for experimentally characterized TRAP transporters in bacteria and discuss mechanistic aspects of these transporters using data primarily from the sialic acid-specific TRAP transporter SiaPQM from Haemophilus influenzae, which suggest that TRAP transporters are high-affinity, Na(+)-dependent unidirectional secondary transporters.
Collapse
|
26
|
Adams EL, Almagro-Moreno S, Boyd EF. An atomic force microscopy method for the detection of binding forces between bacteria and a lipid bilayer containing higher order gangliosides. J Microbiol Methods 2010; 84:352-4. [PMID: 21192989 DOI: 10.1016/j.mimet.2010.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
We developed an atomic force microscopy (AFM) method to determine the binding forces between a model cell wall plasma membrane and Vibrio cholerae. V. cholerae cells were covalently attached to AFM probes and forces were determined against a lipid bilayer containing sialic acid (N-acetylneuraminic acid) molecules as well as several control surfaces.
Collapse
Affiliation(s)
- Elizabeth L Adams
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| | | | | |
Collapse
|
27
|
Almagro-Moreno S, Napolitano MG, Boyd EF. Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA. BMC Microbiol 2010; 10:306. [PMID: 21118541 PMCID: PMC3014918 DOI: 10.1186/1471-2180-10-306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vibrio Pathogenicity Island-2 (VPI-2) is a 57 kb region present in choleragenic V. cholerae isolates that is required for growth on sialic acid as a sole carbon source. V. cholerae non-O1/O139 pathogenic strains also contain VPI-2, which in addition to sialic acid catabolism genes also encodes a type 3 secretion system in these strains. VPI-2 integrates into chromosome 1 at a tRNA-serine site and encodes an integrase intV2 (VC1758) that belongs to the tyrosine recombinase family. IntV2 is required for VPI-2 excision from chromosome 1, which occurs at very low levels, and formation of a non-replicative circular intermediate. RESULTS We determined the conditions and the factors that affect excision of VPI-2 in V. cholerae N16961. We demonstrate that excision from chromosome 1 is induced at low temperature and after sublethal UV-light irradiation treatment. In addition, after UV-light irradiation compared to untreated cells, cells showed increased expression of three genes, intV2 (VC1758), and two putative recombination directionality factors (RDFs), vefA (VC1785) and vefB (VC1809) encoded within VPI-2. We demonstrate that along with IntV2, the RDF VefA is essential for excision. We constructed a knockout mutant of vefA in V. cholerae N16961, and found that no excision of VPI-2 occurred, indicating that a functional vefA gene is required for excision. Deletion of the second RDF encoded by vefB did not result in a loss of excision. Among Vibrio species in the genome database, we identified 27 putative RDFs within regions that also encoded IntV2 homologues. Within each species the RDFs and their cognate IntV2 proteins were associated with different island regions suggesting that this pairing is widespread. CONCLUSIONS We demonstrate that excision of VPI-2 is induced under some environmental stress conditions and we show for the first time that an RDF encoded within a pathogenicity island in V. cholerae is required for excision of the region.
Collapse
|
28
|
Sialic acid catabolism confers a competitive advantage to pathogenic vibrio cholerae in the mouse intestine. Infect Immun 2009; 77:3807-16. [PMID: 19564383 DOI: 10.1128/iai.00279-09] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sialic acids comprise a family of nine-carbon ketosugars that are ubiquitous on mammalian mucous membranes. However, sialic acids have a limited distribution among Bacteria and are confined mainly to pathogenic and commensal species. Vibrio pathogenicity island 2 (VPI-2), a 57-kb region found exclusively among pathogenic strains of Vibrio cholerae, contains a cluster of genes (nan-nag) putatively involved in the scavenging (nanH), transport (dctPQM), and catabolism (nanA, nanE, nanK, and nagA) of sialic acid. The capacity to utilize sialic acid as a carbon and energy source might confer an advantage to V. cholerae in the mucus-rich environment of the gut, where sialic acid availability is extensive. In this study, we show that V. cholerae can utilize sialic acid as a sole carbon source. We demonstrate that the genes involved in the utilization of sialic acid are located within the nan-nag region of VPI-2 by complementation of Escherichia coli mutants and gene knockouts in V. cholerae N16961. We show that nanH, dctP, nanA, and nanK are highly expressed in V. cholerae grown on sialic acid. By using the infant mouse model of infection, we show that V. cholerae DeltananA strain SAM1776 is defective in early intestinal colonization stages. In addition, SAM1776 shows a decrease in the competitive index in colonization-competition assays comparing the mutant strain with both O1 El Tor and classical strains. Our data indicate an important relationship between the catabolism of sialic acid and bacterial pathogenesis, stressing the relevance of the utilization of the resources found in the host's environment.
Collapse
|
29
|
Boyd EF, Almagro-Moreno S, Parent MA. Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 2009; 17:47-53. [PMID: 19162481 DOI: 10.1016/j.tim.2008.11.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 11/13/2008] [Accepted: 11/20/2008] [Indexed: 11/16/2022]
Abstract
Acquisition of genomic islands plays a central part in bacterial evolution as a mechanism of diversification and adaptation. Genomic islands are non-self-mobilizing integrative and excisive elements that encode diverse functional characteristics but all contain a recombination module comprised of an integrase, associated attachment sites and, in some cases, a recombination directionality factor. Here, we discuss how a group of related genomic islands are evolutionarily ancient elements unrelated to plasmids, phages, integrons and integrative conjugative elements. In addition, we explore the diversity of genomic islands and their insertion sites among Gram-negative bacteria and discuss why they integrate at a limited number of tRNA genes.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | |
Collapse
|
30
|
Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 2007; 190:636-47. [PMID: 17993521 DOI: 10.1128/jb.00562-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vibrio pathogenicity island-2 (VPI-2) is a 57-kb region integrated at a transfer RNA (tRNA)-serine locus that encompasses VC1758 to VC1809 on the V. cholerae N16961 genome and is present in pandemic isolates. VPI-2 encodes a P4-like integrase, a restriction modification system, a Mu phage-like region, and a sialic acid metabolism region, as well as neuraminidase (VC1784), which is a glycosylhydrolase known to release sialic acid from sialoglycoconjugates to unmask GM1 gangliosides, the receptor for cholera toxin. We examined the tRNA-serine locus among the sequenced V. cholerae genomes and identified five variant VPI-2 regions, four of which retained the sialometabolism region. Three variant VPI-2 regions contained a type three secretion system. By using an inverse nested PCR approach, we found that the VPI-2 region can form an extrachromosomal circular intermediate (CI) molecule after precise excision from its tRNA-serine attachment site. We constructed a knockout mutant of VC1758 (int) with V. cholerae strain N16961 and found that no excision PCR product was produced, indicating that a functional cognate, VPI-2 integrase, is required for excision. The Vibrio seventh pandemic island-I (VSP-I) and VSP-II regions are present in V. cholerae O1 El Tor and O139 serogroup isolates. Novel regions are present at the VSP-I insertion site in strain MZO-3 and at the VSP-II insertion site in strain 623-39. VSP-II is a 27-kb region that integrates at a tRNA-methionine locus, is flanked by direct repeats, and encodes a P4-like integrase. We show that VSP-II can excise and form a CI and that the cognate VSP-II integrase is required for excision. Interestingly, VSP-I is not inserted at a tRNA locus and does encode a XerDC-like recombinase, but similar to VPI-2 and VSP-II, VSP-I does excise from the genome to form a CI. These results show that all three pathogenicity islands can excise from the chromosome, which is likely a first step in their horizontal transfer.
Collapse
|
31
|
Miller MC, Keymer DP, Avelar A, Boehm AB, Schoolnik GK. Detection and transformation of genome segments that differ within a coastal population of Vibrio cholerae strains. Appl Environ Microbiol 2007; 73:3695-704. [PMID: 17449699 PMCID: PMC1932674 DOI: 10.1128/aem.02735-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is an autochthonous member of diverse aquatic ecosystems around the globe. Collectively, the genomes of environmental V. cholerae strains comprise a large repository of encoded functions which can be acquired by individual V. cholerae lineages through uptake and recombination. To characterize the genomic diversity of environmental V. cholerae, we used comparative genome hybridization to study 41 environmental strains isolated from diverse habitats along the central California coast, a region free of endemic cholera. These data were used to classify genes of the epidemic V. cholerae O1 sequenced strain N16961 as conserved, variably present, or absent from the isolates. For the most part, absent genes were restricted to large mobile elements and have known functions in pathogenesis. Conversely, genes present in some, but not all, California isolates were in smaller contiguous clusters and were less likely to be near genes with functions in DNA mobility. Two such clusters of variable genes encoding different selectable metabolic phenotypes (mannose and diglucosamine utilization) were transformed into the genomes of environmental isolates by chitin-dependent competence, indicating that this mechanism of general genetic exchange is conserved among V. cholerae. The transformed DNA had an average size of 22.7 kbp, demonstrating that natural competence can mediate the movement of large chromosome fragments. Thus, whether variable genes arise through the acquisition of new sequences by horizontal gene transfer or by the loss of preexisting DNA though deletion, natural transformation provides a mechanism by which V. cholerae clones can gain access to the V. cholerae pan-genome.
Collapse
Affiliation(s)
- Michael C Miller
- Department of Medicine, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | | | |
Collapse
|
32
|
Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF. The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 2006; 4:697-704. [PMID: 16894340 DOI: 10.1038/nrmicro1476] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Vibrionaceae show a wide range of niche specialization, from free-living forms to those attached to biotic and abiotic surfaces, from symbionts to pathogens and from estuarine inhabitants to deep-sea piezophiles. The existence of complete genome sequences for closely related species from varied aquatic niches makes this group an excellent case study for genome comparison.
Collapse
Affiliation(s)
- F Jerry Reen
- F. Jerry Reen and Salvador Almagro Moreno are at the Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
33
|
Hurley CC, Quirke A, Reen FJ, Boyd EF. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates. BMC Genomics 2006; 7:104. [PMID: 16672049 PMCID: PMC1464126 DOI: 10.1186/1471-2164-7-104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 05/03/2006] [Indexed: 11/23/2022] Open
Abstract
Background Vibrio parahaemolyticus is an aquatic, halophilic, Gram-negative bacterium, first discovered in 1950 in Japan during a food-poisoning outbreak. Infections resulting from consumption of V. parahaemolyticus have increased globally in the last 10 years leading to the bacterium's classification as a newly emerging pathogen. In 1996 the first appearance of a pandemic V. parahaemolyticus clone occurred, a new O3:K6 serotype strain that has now been identified worldwide as a major cause of seafood-borne gastroenteritis. Results We examined the sequenced genome of V. parahaemolyticus RIMD2210633, an O3:K6 serotype strain isolated in Japan in 1996, by bioinformatic analyses to uncover genomic islands (GIs) that may play a role in the emergence and pathogenesis of pandemic strains. We identified 7 regions ranging in size from 10 kb to 81 kb that had the characteristics of GIs such as aberrant base composition compared to the core genome, presence of phage-like integrases, flanked by direct repeats and the absence of these regions from closely related species. Molecular analysis of worldwide clinical isolates of V. parahaemolyticus recovered over the last 33 years demonstrated that a 24 kb region named V. parahaemolyticus island-1 (VPaI-1) encompassing ORFs VP0380 to VP0403 is only present in new O3:K6 and related strains recovered after 1995. We investigated the presence of 3 additional regions, VPaI-4 (VP2131 to VP2144), VPaI-5 (VP2900 to VP2910) and VPaI-6 (VPA1254 to VPA1270) by PCR assays and Southern blot analyses among the same set of V. parahaemolyticus isolates. These 3 VPaI regions also gave similar distribution patterns amongst the 41 strains examined. Conclusion The 4 VPaI regions examined may represent DNA acquired by the pandemic group of V. parahaemolyticus isolates that increased their fitness either in the aquatic environment or in their ability to infect humans.
Collapse
Affiliation(s)
- Catherine C Hurley
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - AnneMarie Quirke
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - F Jerry Reen
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - E Fidelma Boyd
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| |
Collapse
|
34
|
Quirke AM, Reen FJ, Claesson MJ, Boyd EF. Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. ACTA ACUST UNITED AC 2006; 22:905-10. [PMID: 16443635 DOI: 10.1093/bioinformatics/btl015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Genomic islands (GIs) are large chromosomal regions present in a subset of bacterial strains that increase the fitness of the organism under specific conditions. We compared the complete genome sequences of two Vibrio vulnificus strains YJ016 and CMCP6 and identified 14 regions (ranging in size from 14 to 117 kb), which had the characteristics of GIs. Bioinformatic analysis of these 14 GI regions identified the presence of phage-like integrase genes, aberrant GC content and genome signature (dinucleotide frequency) within each GI compared with the core genome indicating that these regions were acquired from an anomalous source. We examined the distribution of the nine GIs from strain YJ016 among 27 V. vulnificus isolates and found that most GIs were absent from the majority of these isolates. The chromosomal insertion sites of three GIs were adjacent to tRNA sites, which contained novel horizontally acquired DNA in all six available sequenced Vibrionaceae genomes. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A M Quirke
- Department of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | | | | | | |
Collapse
|
35
|
Figueiredo SCDA, Neves-Borges AC, Coelho A. The neuraminidase gene is present in the non-toxigenic Vibrio cholerae Amazonia strain: a different allele in comparison to the pandemic strains. Mem Inst Oswaldo Cruz 2005; 100:563-9. [PMID: 16302067 DOI: 10.1590/s0074-02762005000600010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuraminidase gene, nanH, is present in the O1, non-toxigenic Vibrio cholerae Amazonia strain. Its location has been assigned to a 150 kb NotI DNA fragment, with the use of pulsed-field gel electrophoresis and DNA hybridization. This NotI fragment is positioned inside 630 kb SfiI and 1900 kb I-CeuI fragments of chromosome 1. Association of the pathogenicity island VPI-2, carrying nanH and other genes, with toxigenic strains has been described by other authors. The presence of nanH in a non-toxigenic strain is an exception to this rule. The Amazonia strain nanH was sequenced (Genbank accession No. AY825932) and compared to available V. cholerae sequences. The sequence is different from those of pandemic strains, with 72 nucleotide substitutions. This is the first description of an O1 strain with a different nanH allele. The most variable domain of the Amazonia NanH is the second lectin wing, comprising 13 out of 17 amino acid substitutions. Based on the presence of nanH in the same region of the genome, and similarity of the adjacent sequences to VPI-2 sequences, it is proposed that the pathogenicity island VPI-2 is present in this strain.
Collapse
|
36
|
Severi E, Randle G, Kivlin P, Whitfield K, Young R, Moxon R, Kelly D, Hood D, Thomas GH. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Mol Microbiol 2005; 58:1173-85. [PMID: 16262798 DOI: 10.1111/j.1365-2958.2005.04901.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sialylation of the lipopolysaccharide (LPS) is an important mechanism used by the human pathogen Haemophilus influenzae to evade the innate immune response of the host. We have demonstrated that N-acetylneuraminic acid (Neu5Ac or sialic acid) uptake in H. influenzae is essential for the subsequent modification of the LPS and that this uptake is mediated through a single transport system which is a member of the tripartite ATP-independent periplasmic (TRAP) transporter family. Disruption of either the siaP (HI0146) or siaQM (HI0147) genes, that encode the two subunits of this transporter, results in a complete loss of uptake of [14C]-Neu5Ac. Mutant strains lack sialylated glycoforms in their LPS and are more sensitive to killing by human serum than the parent strain. The SiaP protein has been purified and demonstrated to bind a stoichiometric amount of Neu5Ac by electrospray mass spectrometry. This binding was of high affinity with a Kd of approximately 0.1 microM as determined by protein fluorescence. The inactivation of the SiaPQM TRAP transporter also results in decreased growth of H. influenzae in a chemically defined medium containing Neu5Ac, supporting an additional nutritional role of sialic acid in H. influenzae physiology.
Collapse
|