1
|
Cytolethal distending toxin: from genotoxin to a potential biomarker and anti-tumor target. World J Microbiol Biotechnol 2021; 37:150. [PMID: 34379213 DOI: 10.1007/s11274-021-03117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Cytolethal Distending Toxin (CDT) belongs to the AB toxin family and is produced by a plethora of Gram-negative bacteria. Eight human-affecting enteropathogens harbor CDT that causes irritable bowel syndrome (IBS), dysentery, chancroid, and periodontitis worldwide. They have a novel molecular mode of action as they interfere in the eukaryotic cell-cycle progression leading to G2/M arrest and apoptosis. CDT, the first bacterial genotoxin described, is encoded in a single operon possessing three proteins, CdtA, CdtB, and CdtC. CdtA and CdtC are needed for the binding of the CDT toxin complex to the cholesterol-rich lipid domains of the host cell while the CdtB is the active moiety. Sequence and 3D structural-based analysis of CdtB showed similarities with nucleases and phosphatases, it was hypothesized that CdtB exercises a biochemical function identical to both these enzymes. CDT is secreted through the outer membrane vesicles from the producing bacteria. It is internalized in the target cells via clathrin-dependent endocytosis and translocated to the host cell nucleus through the Golgi complex and ER. This study discusses the virulence role of CDT, causing pathogenicity by acting as a tri-perditious complex in the CDT-producing species with an emphasis on its potential role as a biomarker and an anti-tumor agent.
Collapse
|
2
|
Robb Huhn G, Torres-Mangual N, Clore J, Cilenti L, Frisan T, Teter K. Endocytosis of the CdtA subunit from the Haemophilus ducreyi cytolethal distending toxin. Cell Microbiol 2021; 23:e13380. [PMID: 34292647 DOI: 10.1111/cmi.13380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022]
Abstract
Many Gram-negative pathogens produce a cytolethal distending toxin (CDT) with two cell-binding subunits (CdtA + CdtC) and a catalytic CdtB subunit. After adhesion to the plasma membrane of a target cell, CDT moves by retrograde transport to endoplasmic reticulum. CdtB then enters the nucleus where it generates DNA breaks that lead to cell cycle arrest and apoptosis or senescence. CdtA anchors the CDT holotoxin to the plasma membrane and is thought to remain on the cell surface after endocytosis of the CdtB/CdtC heterodimer. Here, we re-examined the potential endocytosis and intracellular transport of CdtA from the Haemophilus ducreyi CDT. We recorded the endocytosis of holotoxin-associated CdtA with a cell-based enzyme-linked immunoabsorbent assay (CELISA) and visualised its presence in the early endosomes by confocal microscopy 10 min after CDT binding to the cell surface. Western blot analysis documented the rapid degradation of internalised CdtA. Most of internalised CdtB and CdtC were degraded as well. The rapid rate of CDT internalisation and turnover, which could explain why CdtA endocytosis was not detected in previous studies, suggests only a minor pool of cell-associated CdtB reaches the nucleus. Our work demonstrates that CDT is internalised as an intact holotoxin and identifies the endosomes as the site of CdtA dissociation from CdtB/CdtC. TAKE AWAYS: During the endocytosis of CDT, CdtA is thought to remain at the cell surface. A cell-based ELISA documented the rapid endocytosis of CdtA. CdtA was visualised in the early endosomes by confocal microscopy. Intracellular CdtA was rapidly degraded, along with most of CdtB and CdtC.
Collapse
Affiliation(s)
- G Robb Huhn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Naly Torres-Mangual
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.,Colorado State University, Fort Collins, CO, USA
| | - John Clore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Lucia Cilenti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
3
|
Cytolethal Distending Toxin Subunit B: A Review of Structure-Function Relationship. Toxins (Basel) 2019; 11:toxins11100595. [PMID: 31614800 PMCID: PMC6832162 DOI: 10.3390/toxins11100595] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial virulence factor produced by several Gram-negative pathogenic bacteria. These bacteria, found in distinct niches, cause diverse infectious diseases and produce CDTs differing in sequence and structure. CDTs have been involved in the pathogenicity of the associated bacteria by promoting persistent infection. At the host-cell level, CDTs cause cell distension, cell cycle block and DNA damage, eventually leading to cell death. All these effects are attributable to the catalytic CdtB subunit, but its exact mode of action is only beginning to be unraveled. Sequence and 3D structure analyses revealed similarities with better characterized proteins, such as nucleases or phosphatases, and it has been hypothesized that CdtB exerts a biochemical activity close to those enzymes. Here, we review the relationships that have been established between CdtB structure and function, particularly by mutation experiments on predicted key residues in different experimental systems. We discuss the relevance of these approaches and underline the importance of further study in the molecular mechanisms of CDT toxicity, particularly in the context of different pathological conditions.
Collapse
|
4
|
Mahtal N, Brewee C, Pichard S, Visvikis O, Cintrat JC, Barbier J, Lemichez E, Gillet D. Screening of a Drug Library Identifies Inhibitors of Cell Intoxication by CNF1. ChemMedChem 2018; 13:754-761. [PMID: 29359495 DOI: 10.1002/cmdc.201700631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a toxin produced by pathogenic strains of Escherichia coli responsible for extra-intestinal infections. CNF1 deamidates Rac1, thereby triggering its permanent activation and worsening inflammatory reactions. Activated Rac1 is prone to proteasomal degradation. There is no targeted therapy against CNF1, despite its clinical relevance. In this work we developed a fluorescent cell-based immunoassay to screen for inhibitors of CNF1-induced Rac1 degradation among 1120 mostly approved drugs. Eleven compounds were found to prevent CNF1-induced Rac1 degradation, and five also showed a protective effect against CNF1-induced multinucleation. Finally, lasalocid, monensin, bepridil, and amodiaquine protected cells from both diphtheria toxin and CNF1 challenges. These data highlight the potential for drug repurposing to fight several bacterial infections and Rac1-based diseases.
Collapse
Affiliation(s)
- Nassim Mahtal
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France.,Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Clémence Brewee
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Sylvain Pichard
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Orane Visvikis
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice, Sophia-Antipolis, Nice, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et Marquage (SCBM), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Julien Barbier
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| | - Emmanuel Lemichez
- INSERM U1065, Equipe Labellisée Ligue Contre le Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice, Sophia-Antipolis, Nice, France
| | - Daniel Gillet
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université Paris-Saclay, 91191, Gif/Yvette, France
| |
Collapse
|
5
|
Boesze-Battaglia K, Alexander D, Dlakić M, Shenker BJ. A Journey of Cytolethal Distending Toxins through Cell Membranes. Front Cell Infect Microbiol 2016; 6:81. [PMID: 27559534 PMCID: PMC4978709 DOI: 10.3389/fcimb.2016.00081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/26/2016] [Indexed: 02/06/2023] Open
Abstract
The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt.
Collapse
Affiliation(s)
| | - Desiree Alexander
- Department of Biochemistry, SDM, University of Pennsylvania Philadelphia, PA, USA
| | - Mensur Dlakić
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Bruce J Shenker
- Department of Pathology, SDM, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
6
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 PMCID: PMC11575708 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
7
|
Miller R, Wiedmann M. Dynamic Duo-The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin. Toxins (Basel) 2016; 8:E121. [PMID: 27120620 PMCID: PMC4885037 DOI: 10.3390/toxins8050121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/30/2016] [Accepted: 04/15/2016] [Indexed: 01/02/2023] Open
Abstract
The cytolethal distending toxin (CDT) is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica). The CDT produced by Salmonella (S-CDT) differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typhi, lending to its classification as the "typhoid toxin." Recently, this important virulence factor has been identified and characterized in multiple nontyphoidal Salmonella (NTS) serotypes as well. The significance of S-CDT in salmonellosis with regards to the: (i) distribution of S-CDT encoding genes among NTS serotypes, (ii) contributions to pathogenicity, (iii) regulation of S-CDT expression, and (iv) the public health implication of S-CDT as it relates to disease severity, are reviewed here.
Collapse
Affiliation(s)
- Rachel Miller
- Department of Food Science, Cornell University, Ithaca, NY 14850 USA.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14850 USA.
| |
Collapse
|
8
|
Bacterial genotoxins: The long journey to the nucleus of mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:567-75. [DOI: 10.1016/j.bbamem.2015.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023]
|
9
|
Dixon SD, Huynh MM, Tamilselvam B, Spiegelman LM, Son SB, Eshraghi A, Blanke SR, Bradley KA. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins. PLoS One 2015; 10:e0143977. [PMID: 26618479 PMCID: PMC4664275 DOI: 10.1371/journal.pone.0143977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 11/11/2015] [Indexed: 12/29/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.
Collapse
Affiliation(s)
- Shandee D. Dixon
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Melanie M. Huynh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Batcha Tamilselvam
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Lindsey M. Spiegelman
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sophia B. Son
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Aria Eshraghi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois Urbana, Urbana, Illinois, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology. Biomolecules 2015; 5:1762-82. [PMID: 26270677 PMCID: PMC4598774 DOI: 10.3390/biom5031762] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence) or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT) family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
|
11
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
12
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
13
|
Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infect Immun 2014; 82:4034-46. [PMID: 25024364 DOI: 10.1128/iai.01980-14] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral and systemic pathogen associated with aggressive forms of periodontitis and with endocarditis. We recently demonstrated that outer membrane vesicles (OMVs) disseminated by A. actinomycetemcomitans could deliver multiple proteins, including biologically active cytolethal distending toxin (CDT), into the cytosol of HeLa cells and human gingival fibroblasts (HGF). In the present work, we have used immunoelectron and confocal microscopy analysis and fluorescently labeled vesicles to further investigate mechanisms for A. actinomycetemcomitans OMV-mediated delivery of bacterial antigens to these host cells. Our results supported that OMVs were internalized into the perinuclear region of HeLa cells and HGF. Colocalization analysis revealed that internalized OMVs colocalized with the endoplasmic reticulum and carried antigens, detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells. Consistent with OMV internalization mediating intracellular antigen exposure, the vesicles acted as strong inducers of cytoplasmic peptidoglycan sensor NOD1- and NOD2-dependent NF-κB activation in human embryonic kidney cells. Moreover, NOD1 was the main sensor of OMV-delivered peptidoglycan in myeloid THP1 cells, contributing to the overall inflammatory responses induced by the vesicles. This work reveals a role of A. actinomycetemcomitans OMVs as a trigger of innate immunity via carriage of NOD1- and NOD2-active pathogen-associated molecular patterns (PAMPs).
Collapse
|
14
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
15
|
Belibasakis GN, Bostanci N. Inflammatory and bone remodeling responses to the cytolethal distending toxins. Cells 2014; 3:236-46. [PMID: 24709959 PMCID: PMC4092851 DOI: 10.3390/cells3020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxins (CDTs) are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| |
Collapse
|
16
|
Li L, Ding C, Duan JL, Yang MF, Sun Y, Wang XQ, Xu Y. A new functional site W115 in CdtA is critical for Aggregatibacter actinomycetemcomitans cytolethal distending toxin. PLoS One 2013; 8:e65729. [PMID: 23755273 PMCID: PMC3670888 DOI: 10.1371/journal.pone.0065729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a specific pathogen of localized aggressive periodontitis, produces a cytolethal distending toxin (CDT) that arrests eukaryotic cells irreversibly in G0/G1 or G2/M phase of the cell cycle. Although structural studies show that the aromatic patch region of CdtA plays an important role in its biological activity, the functional sites of CdtA have not been firmly established. In this study, site-specific mutagenesis strategy was employed for cdtA point mutations construction so as to examine the contributions of individual amino acids to receptor binding and the biological activity of holotoxin. The binding ability was reduced in CdtAY181ABC holotoxin and the biological function of CDT was not weaken in CdtAY105ABC, CdtAY125ABC, CdtAF109ABC and CdtAS106NBC holotoxin suggesting that these sites were not critical to CDT. But the binding activity and cell cycle arrest ability of holotoxin complexes were inhibited in CdtAW115GBC. And this site did not affect the holotoxin assembly by size exclusion chromatography. Therefore, W115 might be a critical site of CdtA binding ability. These findings suggest that the functional sites of CdtA are not only in the aromatic patch region. W115, the new functional site is critical for receptor binding and cell cycle arrest, which provides potential targets for pharmacological disruption of CDT activity.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Cheng Ding
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jun-lan Duan
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mi-fang Yang
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Sun
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiao-qian Wang
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
18
|
Localization of Aggregatibacter actinomycetemcomitans cytolethal distending toxin subunits during intoxication of live cells. Infect Immun 2012; 80:2761-70. [PMID: 22645284 DOI: 10.1128/iai.00385-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytolethal distending toxin (Cdt), produced by some clinically important Gram-negative bacterial species, is related to the family of AB-type toxins. Three heterologous proteins (CdtA, CdtB, and CdtC) and a genotoxin mode of action distinguish the Cdt from others in this toxin class. Crystal structures of several species-specific Cdts have provided a basis for predicting subunit interactions and functions. In addition, empirical studies have yielded significant insights into the in vivo interactions of the Cdt subunits. However, there are still critical gaps in information about the intoxication process. In this study, a novel protein tagging technology was used to localize the subunits in Chinese hamster ovary cells (CHO-K1). A tetracysteine motif was engineered in each subunit, and in subunits with mutations in predicted functional domains, to permit detection with the fluorescein arsenical hairpin binding (FlAsH) dye Lumio green. Live-cell imaging, in conjunction with confocal microscopy, was used to capture the locations of the individual subunits in cells intoxicated, under various conditions, with hybrid heterotrimers. Using this approach, we observed the following. (i) The CdtA subunit remains on the cell surface of CHO cells in association with cholesterol-containing and cholesterol-depleted membrane. (ii) The CdtB subunit is exclusively in the cytosol and, after longer exposure times, localizes to the nucleus. (iii) The CdtC subunit is present on the cell surface and, to a greater extent, in the cytosol. These observations suggest that CdtC, but not CdtA, functions as a chaperone for CdtB entry into cells.
Collapse
|
19
|
Jentsch H, Cachovan G, Guentsch A, Eickholz P, Pfister W, Eick S. Characterization of Aggregatibacter actinomycetemcomitans strains in periodontitis patients in Germany. Clin Oral Investig 2012; 16:1589-97. [DOI: 10.1007/s00784-012-0672-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 01/02/2012] [Indexed: 11/30/2022]
|
20
|
Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infect Immun 2011; 80:31-42. [PMID: 22025516 DOI: 10.1128/iai.06069-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in aggressive forms of periodontitis. Similarly to several other Gram-negative species, this organism produces and excretes a cytolethal distending toxin (CDT), a genotoxin associated with cell distention, G2 cell cycle arrest, and/or apoptosis in many mammalian cell types. In this study, we have identified A. actinomycetemcomitans outer membrane vesicles (OMVs) as a vehicle for simultaneous delivery of multiple proteins, including CDT, into human cells. The OMV proteins were internalized in both HeLa cells and human gingival fibroblasts (HGF) via a mechanism of OMV fusion with lipid rafts in the plasma membrane. The active toxin unit, CdtB, was localized inside the nucleus of the intoxicated cells, whereas OmpA and proteins detected using an antibody specific to whole A. actinomycetemcomitans serotype a cells had a perinuclear distribution. In accordance with a tight association of CdtB with OMVs, vesicles isolated from A. actinomycetemcomitans strain D7SS (serotype a), in contrast to OMVs from a D7SS cdtABC mutant, induced a cytolethal distending effect on HeLa and HGF cells, indicating that OMV-associated CDT was biologically active. Association of CDT with OMVs was also observed in A. actinomycetemcomitans isolates belonging to serotypes b and c, indicating that OMV-mediated release of CDT may be conserved in A. actinomycetemcomitans. Although the role of A. actinomycetemcomitans OMVs in periodontal disease has not yet been elucidated, our present data suggest that OMVs could deliver biologically active CDT and additional virulence factors into susceptible cells of the periodontium.
Collapse
|
21
|
Li S, Tang Y, Zhang J, Guo X, Shen H. 3A4, a new potential target for B and myeloid lineage leukemias. J Drug Target 2011; 19:797-804. [PMID: 21504388 DOI: 10.3109/1061186x.2011.572973] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antibody-targeting therapy has drawn great interests to the hematologists and oncologists. Many antibodies have been studied for their potential targeting for hematopoietic malignancies. A few have been proved to be very effective for patients with these diseases. However, more antibodies are needed for clinical use. CD45 and its isoforms may convey clinical potential in terms of targeting therapy. Zhejiang Children's Hospital (ZCH)-6-3A4 (3A4), a novel antibody that can recognize an isoform of CD45 has been found to react with restricted cell components in hematopoietic system, which may have the potential for targeting therapy. Herein, we conducted an in vitro study of our newly prepared antibody 3A4 using various cellular and immunocytological methods. The results showed that the antibody 3A4 (murine IgG1κ) was a new clone of anti-CD45RA. It could block the binding to an epitope of CD45RA recognized by a standard anti-CD45RA antibody (Clone name L48). The reactivity of the 3A4 to both fresh leukemia cells from patients and well-defined leukemia cell lines was largely similar to those of L48, but the former recognized more leukemia cells than the latter. Cytometric analysis after papain treatment showed that the internalization rate of the 3A4 antibody to the target cells was as high as 71.3% after incubation at 37°C for 4 h, which was significantly higher than that of L48 (20.4%). The norcantharidin (NCTD)-conjugated immunotoxin (NCTD-3A4) was generated using an active ester method. The targeting inhibition rate on KG1a was as high as 61.10% after 96 h incubation in a dose-dependent manner, which was significantly higher than that (3.56%, P < 0.01) with 3A4-negative Nalm-6 cells. In conclusion, our new anti-CD45RA antibody 3A4 is probably a new target molecule of leukemia cells and holds a targeting therapeutic potential for hematopoietic malignancies, which warrants further development of this agent.
Collapse
Affiliation(s)
- Sisi Li
- Division of Hematology-Oncology, and Zhejiang Key Laboratory for Neonatal Disease, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | | | | | | | | |
Collapse
|
22
|
Guerra L, Cortes-Bratti X, Guidi R, Frisan T. The biology of the cytolethal distending toxins. Toxins (Basel) 2011; 3:172-90. [PMID: 22069704 PMCID: PMC3202825 DOI: 10.3390/toxins3030172] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/14/2011] [Accepted: 02/22/2011] [Indexed: 12/11/2022] Open
Abstract
The cytolethal distending toxins (CDTs), produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B(2) toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered.
Collapse
Affiliation(s)
- Lina Guerra
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden, Box 285, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
23
|
Eshraghi A, Maldonado-Arocho FJ, Gargi A, Cardwell MM, Prouty MG, Blanke SR, Bradley KA. Cytolethal distending toxin family members are differentially affected by alterations in host glycans and membrane cholesterol. J Biol Chem 2010; 285:18199-207. [PMID: 20385557 DOI: 10.1074/jbc.m110.112912] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytolethal distending toxins (CDTs) are tripartite protein exotoxins produced by a diverse group of pathogenic Gram-negative bacteria. Based on their ability to induce DNA damage, cell cycle arrest, and apoptosis of cultured cells, CDTs are proposed to enhance virulence by blocking cellular division and/or directly killing epithelial and immune cells. Despite the widespread distribution of CDTs among several important human pathogens, our understanding of how these toxins interact with host cells is limited. Here we demonstrate that CDTs from Haemophilus ducreyi, Aggregatibacter actinomycetemcomitans, Escherichia coli, and Campylobacter jejuni differ in their abilities to intoxicate host cells with defined defects in host factors previously implicated in CDT binding, including glycoproteins, and glycosphingolipids. The absence of cell surface sialic acid sensitized cells to intoxication by three of the four CDTs tested. Surprisingly, fucosylated N-linked glycans and glycolipids, previously implicated in CDT-host interactions, were not required for intoxication by any of the CDTs tested. Finally, altering host-cellular cholesterol, also previously implicated in CDT binding, affected intoxication by only a subset of CDTs tested. The findings presented here provide insight into the molecular and cellular basis of CDT-host interactions.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Li S, Tang Y. Accurate Determination of Internalization for Target Binding Antibody Using Papain Digestion and Flow Cytometry. Hybridoma (Larchmt) 2010; 29:133-9. [PMID: 20443705 DOI: 10.1089/hyb.2009.0071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sisi Li
- Division of Hematology-Oncology, and Zhejiang Key Laboratory for Neonatal Disease, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Yongmin Tang
- Division of Hematology-Oncology, and Zhejiang Key Laboratory for Neonatal Disease, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, P.R. China
| |
Collapse
|
25
|
Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces apoptosis in nonproliferating macrophages by a phosphatase-independent mechanism. Infect Immun 2009; 77:3161-9. [PMID: 19470743 DOI: 10.1128/iai.01227-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans strains that express cytolethal distending toxin (Cdt) are associated with localized aggressive periodontitis. However, the in vivo targets of Cdt in the human oral cavity have not been firmly established. Here, we demonstrate that A. actinomycetemcomitans Cdt kills proliferating and nonproliferating U937 monocytic cells at a comparable specific activity, approximately 1.5-fold lower than that against the Cdt-hypersensitive Jurkat T-cell line. Cdt functioned both as a DNase and a phosphatidylinositol 3-phosphate (PIP(3)) phosphatase, and these activities were distinguished by site-specific mutagenesis of the active site residues of CdtB. Using these mutants, we determined that the DNase activity of CdtB is required for cell cycle arrest and caspase-dependent induction of apoptosis in proliferating U937 cells. In contrast, Cdt holotoxin induced apoptosis by a mechanism independent of caspase- and apoptosis-inducing factor in nonproliferating U937 cells. Furthermore, apoptosis of nonproliferating U937 cells was unaffected by the Cdt mutant possessing reduced phosphatase activity or by the addition of a specific PIP(3) phosphatase inhibitor, suggesting that the induction of apoptosis is independent of phosphatase activity. These results indicate that Cdt intoxication of proliferating and nonproliferating U937 cells occurs by distinct mechanisms and suggest that macrophages may also be potential in vivo targets of Cdt.
Collapse
|
26
|
DiRienzo JM, Cao L, Volgina A, Bandelac G, Korostoff J. Functional and structural characterization of chimeras of a bacterial genotoxin and human type I DNAse. FEMS Microbiol Lett 2008; 291:222-31. [PMID: 19087203 DOI: 10.1111/j.1574-6968.2008.01457.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chimeras composed of the cdtB gene of a novel bacterial genotoxin and the human type I DNAse I gene were constructed and their products characterized relative to the biochemical and enzymatic properties of the native proteins. The product of a cdtB/DNAse I chimera formed a heterotrimer with the CdtA and CdtC subunits of the genotoxin, and targeted mutations increased the specific activity of the hybrid protein. Expression of active chimeric gene products established that the CdtB protein is an atypical divalent cation-dependent endonuclease and demonstrated the potential for genetically engineering a new class of therapeutic agent for inhibiting the proliferation of cancer cells.
Collapse
Affiliation(s)
- Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| | | | | | | | | |
Collapse
|
27
|
Guerra L, Nemec KN, Massey S, Tatulian SA, Thelestam M, Frisan T, Teter K. A novel mode of translocation for cytolethal distending toxin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:489-95. [PMID: 19118582 DOI: 10.1016/j.bbamcr.2008.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/10/2008] [Accepted: 11/20/2008] [Indexed: 01/04/2023]
Abstract
Thermal instability in the toxin catalytic subunit may be a common property of toxins that exit the endoplasmic reticulum (ER) by exploiting the mechanism of ER-associated degradation (ERAD). The Haemophilus ducreyi cytolethal distending toxin (HdCDT) does not utilize ERAD to exit the ER, so we predicted the structural properties of its catalytic subunit (HdCdtB) would differ from other ER-translocating toxins. Here, we document the heat-stable properties of HdCdtB which distinguish it from other ER-translocating toxins. Cell-based assays further suggested that HdCdtB does not unfold before exiting the ER and that it may move directly from the ER lumen to the nucleoplasm. These observations suggest a novel mode of ER exit for HdCdtB.
Collapse
Affiliation(s)
- Lina Guerra
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Role of aromatic amino acids in receptor binding activity and subunit assembly of the cytolethal distending toxin of Aggregatibacter actinomycetemcomitans. Infect Immun 2008; 76:2812-21. [PMID: 18426882 DOI: 10.1128/iai.00126-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The periodontal pathogen Aggregatibacter actinomycetemcomitans produces a cytolethal distending toxin (Cdt) that inhibits the proliferation of oral epithelial cells. Structural models suggest that the CdtA and CdtC subunits of the Cdt heterotrimer form two putative lectin domains with a central groove. A region of CdtA rich in heterocyclic amino acids (aromatic patch) appears to play an important role in receptor recognition. In this study site-specific mutagenesis was used to assess the contributions of aromatic amino acids (tyrosine and phenylalanine) to receptor binding and CdtA-CdtC assembly. Predominant surface-exposed aromatic residues that are adjacent to the aromatic patch region in CdtA or are near the groove located at the junction of CdtA and CdtC were studied. Separately replacing residues Y105, Y140, Y188, and Y189 with alanine in CdtA resulted in differential effects on binding related to residue position within the aromatic region. The data indicate that an extensive receptor binding domain extends from the groove across the entire face of CdtA that is oriented 180 degrees from the CdtB subunit. Replacement of residue Y105 in CdtA and residues Y61 and F141 in CdtC, which are located in or at the periphery of the groove, inhibited toxin assembly. Taken together, these results, along with the lack of an aromatic amino acid-rich region in CdtC similar to that in CdtA, suggest that binding of the heterotoxin to its cell surface receptor is mediated predominantly by the CdtA subunit. These findings are important for developing strategies designed to block the activity of this prominent virulence factor.
Collapse
|
29
|
Affiliation(s)
- Denis F Kinane
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
30
|
Smith JL, Bayles DO. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 2007; 32:227-48. [PMID: 17123907 DOI: 10.1080/10408410601023557] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytolethal distending toxin (CDT) is a bacterial toxin that initiates a eukaryotic cell cycle block at the G2 stage prior to mitosis. CDT is produced by a number of bacterial pathogens including: Campylobacter species, Escherichia coli, Salmonella enterica serovar Typhi, Shigella dystenteriae, enterohepatic Helicobacter species, Actinobacillus actinomycetemcomitans (the cause of aggressive periodontitis), and Haemophilus ducreyi (the cause of chancroid). The functional toxin is composed of three proteins; CdtB potentiates a cascade leading to cell cycle block, and CdtA and CdtC function as dimeric subunits, which bind CdtB and delivers it to the mammalian cell interior. Once inside the cell, CdtB enters the nucleus and exhibits a DNase I-like activity that results in DNA double-strand breaks. The eukaryotic cell responds to the DNA double-strand breaks by initiating a regulatory cascade that results in cell cycle arrest, cellular distension, and cell death. Mutations in CdtABC that cause any of the three subunits to lose function prevent the bacterial cell from inducing cytotoxicity. The result of CDT activity can differ somewhat depending on the eukaryotic cell types affected. Epithelial cells, endothelial cells, and keratinocytes undergo G2 cell cycle arrest, cellular distension, and death; fibroblasts undergo G1 and G2 arrest, cellular distension, and death; and immune cells undergo G2 arrest followed by apoptosis. CDT contributes to pathogenesis by inhibiting both cellular and humoral immunity via apoptosis of immune response cells, and by generating necrosis of epithelial-type cells and fibroblasts involved in the repair of lesions produced by pathogens resulting in slow healing and production of disease symptoms. Thus, CDT may function as a virulence factor in pathogens that produce the toxin.
Collapse
Affiliation(s)
- James L Smith
- Microbial Food Safety Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19083, USA.
| | | |
Collapse
|
31
|
Cao L, Volgina A, Korostoff J, DiRienzo JM. Role of intrachain disulfides in the activities of the CdtA and CdtC subunits of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Infect Immun 2006; 74:4990-5002. [PMID: 16926390 PMCID: PMC1594843 DOI: 10.1128/iai.00697-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytolethal distending toxin (Cdt) of Actinobacillus actinomycetemcomitans is an atypical A-B-type toxin consisting of a heterotrimer composed of the cdtA, cdtB, and cdtC gene products. The CdtA and CdtC subunits form two heterogeneous ricin-like lectin domains which bind the holotoxin to the target cell. Point mutations were used to study CdtC structure and function. One (mutC216(F97C)) of eight single-amino-acid replacement mutants identified yielded a gene product that failed to form biologically active holotoxin. Based on the possibility that the F97C mutation destabilized a predicted disulfide, targeted mutagenesis was used to examine the contribution of each of four cysteine residues, in two predicted disulfides (C96/C107 and C135/C149), to CdtC activities. Cysteine replacement mutations in two predicted disulfides (C136/C149 and C178/C197) in CdtA were also characterized. Flow cytometry and CHO cell proliferation assays showed that changing either C96 or C149 in CdtC to alanine abolished the biological activity of holotoxin complexes. However, replacing C107 or C135 in CdtC and any of the four cysteines in CdtA with alanine or serine resulted in only partial or no loss of holotoxin activity. Changes in the biological activities of the mutant holotoxins correlated with altered subunit binding. In contrast to elimination of the B chain of ricin, the elimination of intrachain disulfides in CdtC and CdtA by genetic replacement of cysteines destabilizes these subunit proteins but not to the extent that cytotoxicity is lost. Reduction of the wild-type holotoxin did not affect cytotoxicity, and the reduced form of wild-type CdtA exhibited a statistically significant increase in binding to ligand. A diminished role for intrachain disulfides in stabilizing CdtA and CdtC may have clinical relevance for the A. actinomycetemcomitans Cdt. The cdt gene products secreted by this pathogen assemble and bind to target cells in periodontally involved sites, which are decidedly reduced environments in the human oral cavity.
Collapse
Affiliation(s)
- Linsen Cao
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, 240 South 40th Street, Philadelphia, PA 19104-6030, USA
| | | | | | | |
Collapse
|
32
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
33
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
34
|
Cao L, Volgina A, Huang CM, Korostoff J, DiRienzo JM. Characterization of point mutations in the cdtA gene of the cytolethal distending toxin of Actinobacillus actinomycetemcomitans. Mol Microbiol 2006; 58:1303-21. [PMID: 16313618 PMCID: PMC1435350 DOI: 10.1111/j.1365-2958.2005.04905.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Cdt is a family of gram-negative bacterial toxins that typically arrest eukaryotic cells in the G0/G1 or G2/M phase of the cell cycle. The toxin is a heterotrimer composed of the cdtA, cdtB and cdtC gene products. Although it has been shown that the CdtA protein subunit binds to cells in culture and in an enzyme-linked immunosorbent assay (CELISA) the precise mechanisms by which CdtA interacts with CdtB and CdtC has not yet been clarified. In this study we employed a random mutagenesis strategy to construct a library of point mutations in cdtA to assess the contribution of individual amino acids to binding activity and to the ability of the subunit to form biologically active holotoxin. Single unique amino acid substitutions in seven CdtA mutants resulted in reduced binding of the purified recombinant protein to Chinese hamster ovary cells and loss of binding to the fucose-containing glycoprotein, thyroglobulin. These mutations clustered at the 5'- and 3'-ends of the cdtA gene resulting in amino acid substitutions that resided outside of the aromatic patch region and a conserved region in CdtA homologues. Three of the amino acid substitutions, at positions S165N (mutA81), T41A (mutA121) and C178W (mutA221) resulted in gene products that formed holotoxin complexes that exhibited a 60% reduction (mutA81) or loss (mutA121, mutA221) of proliferation inhibition. A similar pattern was observed when these mutant holotoxins were tested for their ability to induce cell cycle arrest and to convert supercoiled DNA to relaxed and linear forms in vitro. The mutations in mutA81 and mutA221 disrupted holotoxin formation. The positions of the amino acid substitutions were mapped in the Haemophilus ducreyi Cdt crystal structure providing some insight into structure and function.
Collapse
Affiliation(s)
- Linsen Cao
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA
| | | | | | | | | |
Collapse
|
35
|
Nesic D, Stebbins CE. Mechanisms of assembly and cellular interactions for the bacterial genotoxin CDT. PLoS Pathog 2005; 1:e28. [PMID: 16304609 PMCID: PMC1287909 DOI: 10.1371/journal.ppat.0010028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 10/12/2005] [Indexed: 01/30/2023] Open
Abstract
Many bacterial pathogens that cause different illnesses employ the cytolethal distending toxin (CDT) to induce host cell DNA damage, leading to cell cycle arrest or apoptosis. CDT is a tripartite holotoxin that consists of a DNase I family nuclease (CdtB) bound to two ricin-like lectin domains (CdtA and CdtC). Through the use of structure-based mutagenesis, biochemical and cellular toxicity assays, we have examined several key structural elements of the CdtA and CdtC subunits for their importance to toxin assembly, cell surface binding, and activity. CdtA and CdtC possess N- and C-terminal nonglobular polypeptides that extensively interact with each other and CdtB, and we have determined the contribution of each to toxin stability and activity. We have also functionally characterized two key binding elements of the holotoxin revealed from its crystal structure. One is an aromatic cluster in CdtA, and the other is a long and deep groove that is formed at the interface of CdtA and CdtC. We demonstrate that mutations of the aromatic patch or groove residues impair toxin binding to HeLa cells and that cell surface binding is tightly correlated with intoxication of cultured cells. These results establish several structure-based hypotheses for the assembly and function of this toxin family. The cytolethal distending toxin is used by many bacteria to damage the DNA of infected organisms. This DNA damage prevents cells from dividing and eventually leads to cell death, which raises the possibility that this genomic damage may be a contributing factor to carcinogenesis. The cytolethal distending toxin is composed of three proteins that form a tightly associated complex. After secretion by the bacterium, two proteins in this complex adhere to the cell surface and achieve the delivery of the third protein into the cell, where it causes DNA lesions. This report examines how this toxin is assembled and how it adheres to host cell surfaces. A set of molecular features on the toxin is shown to be critical for this cell adherence and for the ability of the cytolethal distending toxin to inhibit cell division. These results tie together for the first time aspects of the molecular structure of the cytolethal distending toxin and its ability to adhere to host cell surfaces, contributing to mechanistic understanding of the activity of this genotoxin.
Collapse
Affiliation(s)
- Dragana Nesic
- Laboratory of Structural Microbiology, The Rockefeller University, New York, New York, United States of America
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, The Rockefeller University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|