1
|
Penalva-Olcina R, Caprioli G, Sagratini G, Acquaticci L, Juan C, Juan-García A. Temperature-dependent neuroprotective effects of acorn flour extract in SH-SY5Y cells against gliotoxin. Toxicol Mech Methods 2025:1-9. [PMID: 40366875 DOI: 10.1080/15376516.2025.2500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/24/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Gliotoxin (GTX) is a potent mycotoxin that has been shown to induce neurotoxicity through the generation of oxidative stress and disruption of cellular signaling, leading to neuronal cell damage. The neurotoxic effects of GTX have been implicated in various neurodegenerative conditions, making the search for protective agents crucial. This study investigates the chemoprotective effects of acorn flour extract (ACFE) at different temperatures (20 °C, 60 °C, 80 °C, and 100 °C) on SH-SY5Y cells exposed to GTX using both pretreatment and simultaneous treatment strategies (direct treatment, pretreatment and simultaneous treatment). Cell viability was assessed using the MTT assay after 24 and 48 h of exposure. ACFE exhibited varying cytoprotective effects depending on the temperature and exposure conditions. Pre- treatment with 100 °C significantly increased cell viability by up to 51.6% at low GTX concentrations after 48 h; however, ACFE at 60 °C and 80 °C also demonstrated notable protective effects in pretreatment, suggesting a broader range of effective temperatures. Similarly, simultaneous treatment with ACFE (20 °C and 60 °C) enhanced cell viability by up to 124.7% at specific GTX concentrations. In general, higher extraction temperatures (80 °C and 100 °C) were associated with greater chemoprotective potential. These findings support the potential therapeutic application of ACFE in protecting against oxidative stress and neuronal damage, emphasizing the influence of extraction temperature and treatment timing on its efficacy. Further investigations are needed to explore the underlying molecular mechanisms involved in ACFE's protective effects.
Collapse
Affiliation(s)
- Raquel Penalva-Olcina
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, València, Spain
| | - Giovanni Caprioli
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino, Italy
| | - Laura Acquaticci
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino, Italy
| | - Cristina Juan
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, València, Spain
| | - Ana Juan-García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, València, Spain
| |
Collapse
|
2
|
Pombo MA, Rosli HG, Maiale S, Elliott C, Stieben ME, Romero FM, Garriz A, Ruiz OA, Idnurm A, Rossi FR. Unveiling the virulence mechanism of Leptosphaeria maculans in the Brassica napus interaction: the key role of sirodesmin PL in the induction of cell death. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1767-1783. [PMID: 39680058 DOI: 10.1093/jxb/erae498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus, leading to substantial yield losses. Sirodesmin PL, the principal toxin produced by L. maculans, has been implicated in the infection process in plants. However, the precise molecular and physiological mechanisms governing its effects remain elusive. This study investigates the changes induced by sirodesmin PL at the transcriptomic, physiological, and morphological levels in B. napus cotyledons. Sirodesmin PL treatment up-regulated genes associated with plant defense processes, including response to chitin, sulfur compound biosynthesis, toxin metabolism, oxidative stress response, and jasmonic acid/ethylene synthesis and signaling. Validation of these transcriptomic changes is evidenced by several typical defense response processes, such as the accumulation of reactive oxygen species (ROS) and callose deposition. Concomitantly, oxidized sirodesmin PL induced concentration- and exposure duration-dependent cell death. This cellular death is likely to be attributed to diminished activity of PSII and reduced number of chloroplasts per cell. In agreement, a down-regulation of genes associated with the photosynthesis process is observed following sirodesmin PL treatment. Thus, it is plausible that L. maculans exploits sirodesmin PL as a virulence factor to instigate cell death in B. napus during its necrotrophic stage, favoring the infection process.
Collapse
Affiliation(s)
- Marina A Pombo
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Hernan G Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Santiago Maiale
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Candace Elliott
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Micaela E Stieben
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Fernando M Romero
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Andrés Garriz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Oscar A Ruiz
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Franco R Rossi
- Laboratorio de Estrés Biótico y Abiótico en Plantas-Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
3
|
Kang DH, Kim J, Lee J, Kang SW. The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling. Free Radic Biol Med 2025; 229:300-311. [PMID: 39848342 DOI: 10.1016/j.freeradbiomed.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure. The ETP derivatives with small side chains are the bona fide 2-Cys peroxiredoxin (PRX) mimetics that catalyze the H2O2-reducing reaction specifically coupled to the thioredoxin/thioredoxin reductase system. In contrast, the ETP derivatives with linear chains or a heterocyclic group show H2O2-reducing activity in coupling with both thioredoxin and glutathione systems. Moreover, the ETP derivatives with bulky heterocyclic groups almost lose catalytic activity. The 2-Cys PRX mimetics regulate intracellular H2O2 levels, thereby restoring the receptor Tyr kinase signaling and cellular functions disrupted by the absence of 2-Cys PRX in vascular cells. In a rodent model, the 2-Cys PRX mimetics reverse vascular occlusion in the injured carotid arteries by inhibiting smooth muscle hyperplasia and promoting reendothelialization. Thus, this study reveals a novel chemical platform for complementing defective 2-Cys PRX enzymes in biological systems.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiran Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jiyoung Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Zhang H, Liu Z, Zheng C, Ma H, Zeng M, Yang X. Root system architecture plasticity with beneficial rhizosphere microbes: Current findings and future perspectives. Microbiol Res 2025; 292:128028. [PMID: 39740636 DOI: 10.1016/j.micres.2024.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA. Here, we summarized that microbial metabolite, primarily through auxin signaling pathways, drive root development changes. By harnessing advanced phenotyping tools, we aim to uncover more detailed mechanisms by which microbes modify RSA, providing valuable insights into strategies for optimizing nutrient uptake, bolstering food security, and enhancing resilience against climate-induced environmental stresses.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zilin Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Chang Chun 130118, China
| | - Ming Zeng
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon 33140, France
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
5
|
Rahman A, Ono K, Toyomoto T, Hanaoka K, Sawa T. Identification of Fungal Metabolite Gliotoxin as a Potent Inhibitor Against Bacterial O-Acetylserine Sulfhydrylase CysK and CysM. Int J Mol Sci 2025; 26:1106. [PMID: 39940875 PMCID: PMC11818871 DOI: 10.3390/ijms26031106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Cysteine is an essential amino acid for sustaining life, including protein synthesis, and serves as a precursor for antioxidant glutathione. Pathogenic bacteria synthesize cysteine via a two-step enzymatic process using serine as the starting material. The first step is catalyzed by serine acetyltransferase, also known as CysE, and the second by O-acetylserine sulfhydrylase (OASS), referred to as CysK or CysM. This cysteine biosynthetic pathway in bacteria differs significantly from that in mammals, making it an attractive target for the development of novel antibacterial agents. In this study, we aimed to identify OASS inhibitors. To achieve this, a high-throughput screening system was developed to analyze compounds capable of inhibiting CysK/CysM activity. Screening 168,640 compounds from a chemical library revealed that gliotoxin, a fungal metabolite, strongly inhibits both CysK and CysM. Furthermore, gliotoxin significantly suppressed the growth of Salmonella enterica serovar Typhimurium, a Gram-negative bacterium, under cystine-deficient conditions. Gliotoxin possesses a unique disulfide structure classified as epipolythiodioxopiperazine. To date, no studies have reported OASS inhibition by compounds with this structural motif, highlighting its potential for future structural optimization. The screening system developed in this study is expected to accelerate the discovery of functional CysK/CysM inhibitors, providing a foundation for novel antibacterial strategies.
Collapse
Grants
- 21H05262 Ministry of Education, Science, Sports, and Technology (MEXT), Japan
- 21H05267 Ministry of Education, Science, Sports, and Technology (MEXT), Japan
- 22K05443 Ministry of Education, Science, Sports, and Technology (MEXT), Japan
- 23K17979 Ministry of Education, Science, Sports, and Technology (MEXT), Japan
- 23K25210 Ministry of Education, Science, Sports, and Technology (MEXT), Japan
- 17fm0208029h0001 Japan Agency for Medical Research and Development (AMED), Japan
- Not applicable Association for Research on Lactic Acid Bacteria
- Not applicable Daiichi-Sankyo Foundation of Life Science
- the Scholarship Program The Chemo-Sero-Therapeutic Research Institute
- the Program for Leading Graduate Schools, HIGO (Health Life Science: Interdisciplinary and Global Oriented) Program Kumamoto University
Collapse
Affiliation(s)
- Azizur Rahman
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (A.R.); (K.O.); (T.T.)
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (A.R.); (K.O.); (T.T.)
| | - Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (A.R.); (K.O.); (T.T.)
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan;
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (A.R.); (K.O.); (T.T.)
| |
Collapse
|
6
|
Roy A, Shyamal P, Shaw K, Mondal D, Khatua A, Bisai A. Total Synthesis of (+)- and (-)-Calycanthidine and Formal Synthesis of (-)-Idiospermuline via Key Pd(0)-Catalyzed Asymmetric Allylations. Org Lett 2024; 26:10803-10808. [PMID: 39636269 DOI: 10.1021/acs.orglett.4c03837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We envisioned a novel asymmetric strategy to access unsymmetrically substituted dimeric 2-oxindoles [(S,S)-8 and (R,R)-8] for the total synthesis of calycanthidine (4a). The key to success is the development of efficient Pd(0)-catalyzed asymmetric sequential allylations [via a highly enantioselective [up to 94% enantiomeric excess (ee)] and diastereoselective (up to ∼13:1) process] of unsymmetrically protected dimeric 2-oxindoles at the 3,3' position [such as (S,S)-8 and (R,R)-8]. Gratifyingly, a mixture of bis-ester (±)-10a, ester-carbonates (±)-10b and (±)-10c, and bis-carbonate 10d could afford (S,S)-8 and (R,R)-8 in highly stereoselective fashion, thereby culminating in the total synthesis of (+)-calycanthidine [ent-(4a)] and (-)-calycanthidine (4a). This effort also culminated in the formal total synthesis of idiospermuline (5).
Collapse
Affiliation(s)
- Avishek Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| | - Kundan Shaw
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Debabrata Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| | - Arindam Khatua
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh 462 066, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Kalyani, Nadia, West Bengal 741 246, India
| |
Collapse
|
7
|
Topi D, Damani Z, Babič J, Jakovac-Strajn B, Tavčar-Kalcher G. The Presence of Some Minor Aspergillus and Penicillium Unregulated Mycotoxins in Main Cereals Cultivated in Albania. Molecules 2024; 29:5292. [PMID: 39598681 PMCID: PMC11596144 DOI: 10.3390/molecules29225292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: Food and feed safety legislation does not concern all the mycotoxins generated by Penicillium and Aspergillus spp. Certain mycotoxins, including mycophenolic acid (MPA), cyclopiazonic acid (CPA), penicillic acid (PA), roquefortine C (ROQ C), and gliotoxin (GLI), are regarded as having lower toxicity levels, and hence are not included in food and feed legislation. It is obvious that xenobiotics, including mycotoxins, exert synergistic harmful health effects on human and animal when exposed through food and feed. (2) Methods: The presence of these substances in maize and wheat grown in Albania across two consecutive harvesting seasons was investigated by liquid chromatography and mass spectrometry (LC-MS/MS). (3) Results: The findings indicated the presence of these mycotoxins in maize grain but not in wheat grain. In the 2014 season, they exhibited a higher contamination incidence than in the 2015 season. The most commonly detected mycotoxin was MPA, followed by CPA and ROQ C toxin, while PA and GLI were not detected. The MPA revealed a concentration range of 72.9-3447 μg/kg, with a mean value of 1064 μg/kg. Mycophenolic acid was detected in the maize samples collected during the 2015 season. (4) Conclusions: These findings suggest that focusing the investigation only on "controlled" mycotoxins will not produce a proper risk assessment and may not adequately address the possible harmful impacts of mycotoxins on human and animal health due to mycotoxins' co-occurrence.
Collapse
Affiliation(s)
- Dritan Topi
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Blvd. Zogu 1, No. 25/1, 1016 Tirana, Albania
| | - Zamir Damani
- Department of Diagnostics and Rehabilitation, Faculty of Medical Technical Sciences, University of Medicine of Tirana, Kongresi i Manastirit Street, P.O. BOX 1000 Tirana, Albania;
| | - Janja Babič
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Breda Jakovac-Strajn
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| | - Gabrijela Tavčar-Kalcher
- Institute of Food Safety, Feed and Environment, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (J.B.); (B.J.-S.); (G.T.-K.)
| |
Collapse
|
8
|
Pierre HC, Amrine CSM, Doyle MG, Salvi A, Raja HA, Chekan JR, Huntsman AC, Fuchs JR, Liu K, Burdette JE, Pearce CJ, Oberlies NH. Verticillins: fungal epipolythiodioxopiperazine alkaloids with chemotherapeutic potential. Nat Prod Rep 2024; 41:1327-1345. [PMID: 38629495 PMCID: PMC11409914 DOI: 10.1039/d3np00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Covering: 1970 through June of 2023Verticillins are epipolythiodioxopiperazine (ETP) alkaloids, many of which possess potent, nanomolar-level cytotoxicity against a variety of cancer cell lines. Over the last decade, their in vivo activity and mode of action have been explored in detail. Notably, recent studies have indicated that these compounds may be selective inhibitors of histone methyltransferases (HMTases) that alter the epigenome and modify targets that play a crucial role in apoptosis, altering immune cell recognition, and generating reactive oxygen species. Verticillin A (1) was the first of 27 analogues reported from fungal cultures since 1970. Subsequent genome sequencing identified the biosynthetic gene cluster responsible for producing verticillins, allowing a putative pathway to be proposed. Further, molecular sequencing played a pivotal role in clarifying the taxonomic characterization of verticillin-producing fungi, suggesting that most producing strains belong to the genus Clonostachys (i.e., Bionectria), Bionectriaceae. Recent studies have explored the total synthesis of these molecules and the generation of analogues via both semisynthetic and precursor-directed biosynthetic approaches. In addition, nanoparticles have been used to deliver these molecules, which, like many natural products, possess challenging solubility profiles. This review summarizes over 50 years of chemical and biological research on this class of fungal metabolites and offers insights and suggestions on future opportunities to push these compounds into pre-clinical and clinical development.
Collapse
Affiliation(s)
- Herma C Pierre
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Chiraz Soumia M Amrine
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
- Department of Physical and Earth Sciences. Arkansas Tech University, 1701 N. Boulder Ave., Russellville, Arkansas 72801, USA
| | - Michael G Doyle
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Amrita Salvi
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, Ohio 43210, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and the Georgia Cancer Center, Medical College of Georgia, Augusta, GA 30912, USA
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, 900 S. Ashland Ave (M/C 870), Chicago, Illinois 60607, USA
| | | | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, North Carolina 27402, USA.
| |
Collapse
|
9
|
Dolan SK, Duong AT, Whiteley M. Convergent evolution in toxin detection and resistance provides evidence for conserved bacterial-fungal interactions. Proc Natl Acad Sci U S A 2024; 121:e2304382121. [PMID: 39088389 PMCID: PMC11317636 DOI: 10.1073/pnas.2304382121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
Microbes rarely exist in isolation and instead form complex polymicrobial communities. As a result, microbes have developed intricate offensive and defensive strategies that enhance their fitness in these complex communities. Thus, identifying and understanding the molecular mechanisms controlling polymicrobial interactions is critical for understanding the function of microbial communities. In this study, we show that the gram-negative opportunistic human pathogen Pseudomonas aeruginosa, which frequently causes infection alongside a plethora of other microbes including fungi, encodes a genetic network which can detect and defend against gliotoxin, a potent, disulfide-containing antimicrobial produced by the ubiquitous filamentous fungus Aspergillus fumigatus. We show that gliotoxin exposure disrupts P. aeruginosa zinc homeostasis, leading to transcriptional activation of a gene encoding a previously uncharacterized dithiol oxidase (herein named as DnoP), which detoxifies gliotoxin and structurally related toxins. Despite sharing little homology to the A. fumigatus gliotoxin resistance protein (GliT), the enzymatic mechanism of DnoP from P. aeruginosa appears to be identical that used by A. fumigatus. Thus, DnoP and its transcriptional induction by low zinc represent a rare example of both convergent evolution of toxin defense and environmental cue sensing across kingdoms. Collectively, these data provide compelling evidence that P. aeruginosa has evolved to survive exposure to an A. fumigatus disulfide-containing toxin in the natural environment.
Collapse
Affiliation(s)
- Stephen K. Dolan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Department of Genetics and Biochemistry, Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC29634
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Ashley T. Duong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30310
- Emory-Children’s Cystic Fibrosis Center, Atlanta, GA30310
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA30310
| |
Collapse
|
10
|
Zhou Y, He N, Liu Q, Li R, Yang L, Kang W, Zhang X, Xu X, Yao G, Wang P, Wang CY, Yang J, Liu Z. Structural Optimization of Marine Natural Product Pretrichodermamide B for the Treatment of Colon Cancer by Targeting the JAK/STAT3 Signaling Pathway. J Med Chem 2024; 67:10783-10794. [PMID: 38888591 DOI: 10.1021/acs.jmedchem.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Marine natural product (MNP) pretrichodermamide B (Pre B, 9) was identified as a novel STAT3 inhibitor in our previous work, while its metabolic instability hindered its further development. To address this drawback, ligand structure-based drug design was adopted leading to a series of Pre B derivatives. Among them, MNP trichodermamide B (tri B, 24) obtained by skeletal rearrangement exhibited more potent antiproliferative activity with an IC50 value of 0.12 μM against HCT116. Notably, 24 stood out with improved metabolic stability (T1/2 = 31 min) and more favorable oral bioavailability (F = 37.5%). Further studies indicated that 24 blocked JAK/STAT3 signaling in dose- and time-dependent manner. In vivo, 24 suppressed tumor growth (TGI = 65%) at a dose of 20 mg/kg in a HCT116-derived xenograft mouse model. Overall, 24 might be a promising lead compound for colon cancer and is worthy of further investigation.
Collapse
Affiliation(s)
- Yue Zhou
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Na He
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Rui Li
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Lujia Yang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wei Kang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xinxin Zhang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Xiaoyu Xu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pingyuan Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education & Qingdao Marine Biomedical Research Institute, Ocean University of China, Qingdao 266003, China
| | - Zhiqing Liu
- Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
11
|
Fan J, Wei PL, Yin WB. Formation of Bridged Disulfide in Epidithiodioxopiperazines. Chembiochem 2024; 25:e202300770. [PMID: 38116907 DOI: 10.1002/cbic.202300770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Epidithiodioxopiperazine (ETP) alkaloids, featuring a 2,5-diketopiperazine core and transannular disulfide bridge, exhibit a broad spectrum of biological activities. However, the structural complexity has prevented efficient chemical synthesis and further clinical research. In the past few decades, many achievements have been made in the biosynthesis of ETPs. Here, we discuss the biosynthetic progress and summarize them as two comprehensible metabolic principles for better understanding the complex pathways of α, α'- and α, β'-disulfide bridged ETPs. Specifically, we systematically outline the catalytic machineries to install α, α'- and α, β'-disulfide by flavin-containing oxygenases. This concept would contribute to the medical and industrial applications of ETPs.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Peng-Lin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Parak M, Asgari A, Hasani Nourian Y, Ghanei M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024; 240:107629. [PMID: 38336277 DOI: 10.1016/j.toxicon.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Biotoxins are toxic substances that originate from living organisms and are harmful to humans. Therefore, we need to know the symptoms of biotoxins poisoning to manage the damage. The purpose of this study is to establish a practical diagnostic protocol for dealing with poisoned patients exposed to biotoxins. MATERIALS AND METHODS The present study is a review study. Our studied community is articles and books matching the title of the project and relevant keywords. First, by searching the key words sign, symptom, biotoxins, relevant articles were extracted and studied from valid databases. By reviewing the studies based on the search strategy, four groups of biotoxins that were studied the most were identified. These four groups are marine biotoxins, bacterial biotoxins, fungal biotoxins and plant biotoxins. In each of these biotoxin groups, important toxins were selected and studied. RESULTS A total of 1864 articles were initially identified from the databases searched in present study. After screening titles and abstracts, 26 articles were included in the systematic review. Specifically, 7 articles were included for bacterial toxins, 9 articles for marine toxins, 5 articles for plant toxins and 5 articles for fungal toxins. CONCLUSION The symptoms of plant biotoxins poisoning may include cardiovascular, hematologic, neurologic, respiratory, renal, and gastrointestinal symptoms, while the symptoms of fungal biotoxins poisoning may include hepatic, renal, gastrointestinal, musculoskeletal, metabolic, respiratory, neurological, and cardiovascular symptoms. marine biotoxins poisoning presents with gastrointestinal and neurological symptoms, with varying incubation periods and recovery times. bacterial biotoxins exposure can lead to a wide range of clinical symptoms, with diarrhea, vomiting, and abdominal pain being the most common, and hemoglobinuria or hematuria being a sensitive and specific clinical manifestation for diagnosing ongoing HUS in children.
Collapse
Affiliation(s)
- Mohammadreza Parak
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Asgari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Goher SS, Abdrabo WS, Veerakanellore GB, Elgendy B. 2,5-Diketopiperazines (DKPs): Promising Scaffolds for Anticancer Agents. Curr Pharm Des 2024; 30:597-623. [PMID: 38343054 DOI: 10.2174/0113816128291798240201112916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/22/2024] [Indexed: 05/25/2024]
Abstract
2,5-Diketopiperazine (2,5-DKP) derivatives represent a family of secondary metabolites widely produced by bacteria, fungi, plants, animals, and marine organisms. Many natural products with DKP scaffolds exhibited various pharmacological activities such as antiviral, antifungal, antibacterial, and antitumor. 2,5-DKPs are recognized as privileged structures in medicinal chemistry, and compounds that incorporate the 2,5-DKP scaffold have been extensively investigated for their anticancer properties. This review is a thorough update on the anti-cancer activity of natural and synthesized 2,5-DKPs from 1997 to 2022. We have explored various aspects of 2,5-DKPs modifications and summarized their structure-activity relationships (SARs) to gain insight into their anticancer activities. We have also highlighted the novel approaches to enhance the specificity and pharmacokinetics of 2,5-DKP-based anticancer agents.
Collapse
Affiliation(s)
- Shaimaa S Goher
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El Sherouk City, Cairo 1183, Egypt
| | - Wessam S Abdrabo
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Giri Babu Veerakanellore
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Bahaa Elgendy
- Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Vasilchenko AS, Gurina EV, Drozdov KA, Vershinin NA, Kravchenko SV, Vasilchenko AV. Exploring the antibacterial action of gliotoxin: Does it induce oxidative stress or protein damage? Biochimie 2023; 214:86-95. [PMID: 37356563 DOI: 10.1016/j.biochi.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The study aimed to investigate the effects of gliotoxin (GTX), a secondary fungal metabolite belonging to the epipolythiodioxopiperazines class, on Gram-positive and Gram-negative bacteria. While the cytotoxic mechanism of GTX on eukaryotes is well understood, its interaction with bacteria is not yet fully comprehended. The study discovered that S. epidermidis displayed a higher uptake rate of GTX than E.coli. However, Gram-negative bacteria required higher doses of GTX than Gram-positive bacteria to experience the bactericidal effect, which occurred within 4 h for both types of bacteria. The treatment of bioluminescent sensor E.coli MG1655 pKatG-lux with GTX resulted in oxidative stress. Pre-incubation with the antioxidant Trolox did not increase the GTX inhibitory dose, however, slightly increased the bacterial growth rate comparing to GTX alone. At the same time, we found that GTX inhibitory dose was significantly increased by the pretreatment of bacteria with 2-mercaptoethanol and reduced glutathione. Using another biosensor, E. coli MG1655 pIpbA-lux, we showed that bacteria treated with GTX exhibited heat shock stress. SDS-page electrophoresis demonstrated protein aggregation under the GTX treatment. In addition, we have found that gliotoxin's action on bacteria was significantly inhibited when zinc salt was added to the growth medium.
Collapse
Affiliation(s)
- Alexey S Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.
| | - Elena V Gurina
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Konstantin A Drozdov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita A Vershinin
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey V Kravchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Anastasia V Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| |
Collapse
|
15
|
Hu P, Hu L, Chen Y, Wang F, Xiao Y, Tong Z, Li H, Xiang M, Tong Q, Zhang Y. Chaetocochin J exhibits anti-hepatocellular carcinoma effect independent of hypoxia. Bioorg Chem 2023; 139:106701. [PMID: 37393781 DOI: 10.1016/j.bioorg.2023.106701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
The most studied epipolythiodioxopiperazine (ETP) alkaloids, such as chetomin, gliotoxin and chaetocin, were reported to exert their antitumor effects through targeting HIF-1α. Chaetocochin J (CJ) is another ETP alkaloid, of which the effect and mechanism on cancer are not fully elucidated. Considering the high incidence and mortality of hepatocellular carcinoma (HCC) in China, in the present study, using HCC cell lines and tumor-bearing mice as models, we explored the anti-HCC effect and mechanism of CJ. Particularly, we investigated whether HIF-1α is related to the function of CJ. The results showed that, both under normoxic and CoCl2 induced-hypoxic conditions, CJ in low concentrations (<1 µM) inhibits the proliferation, induces G2/M phase arrest, leading to the disorder of metabolism, migration, invasion, and caspase-dependent apoptosis in HepG2 and Hep3B cells. CJ also showed anti-tumor effect on a nude xenograft mice model without significant toxicity. Moreover, we demonstrated that the key to CJ's function is mainly associate with its inhibition of PI3K/Akt/mTOR/p70S6K/4EBP1 pathway independent of hypoxia, and it also could suppress the expression of HIF-1α as well as disrupt the binding of HIF-1α/p300 and subsequently inhibits the expression of its target genes under hypoxic condition. These results demonstrated that CJ possessed a hypoxia-independent anti-HCC effects in vitro and in vivo, which was mainly attributable to its inhibition on the upstream pathways of HIF-1α.
Collapse
Affiliation(s)
- Ping Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Linzhen Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Yizhan Chen
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fuqian Wang
- Department of Pharmacy, Wuhan No.1 Hospital, 215 Zhongshan Road, Wuhan 430022, Hubei, China; Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, Hubei, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhou Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Centre of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Hua Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji-Rongcheng Center for Biomedicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
16
|
Kurita D, Sato H, Miyamoto K, Uchiyama M. Mechanistic Investigation of the Degradation Pathways of α-β/α-α Bridged Epipolythiodioxopiperazines (ETPs). J Org Chem 2023; 88:12797-12801. [PMID: 37574909 DOI: 10.1021/acs.joc.3c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) make up a class of biologically active fungal metabolites with a transannular disulfide bridge. In this work, we used DFT calculations to examine in detail the degradation (desulfurization) pathways of α-β/α-α bridged ETPs. The chemical stability of ETPs is influenced by the type of sulfur bridge, the structural features, and the storage conditions. Our results suggest appropriate protection of the phenolic OH of ETPs would improve various pharmaceutically relevant properties, including bioavailability.
Collapse
Affiliation(s)
- Daiki Kurita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hajime Sato
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
17
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
18
|
Bahadoor A, Robinson KA, Loewen MC, Demissie ZA. Clonostachys rosea 'omics profiling: identification of putative metabolite-gene associations mediating its in vitro antagonism against Fusarium graminearum. BMC Genomics 2023; 24:352. [PMID: 37365507 DOI: 10.1186/s12864-023-09463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Clonostachys rosea is an established biocontrol agent. Selected strains have either mycoparasitic activity against known pathogens (e.g. Fusarium species) and/or plant growth promoting activity on various crops. Here we report outcomes from a comparative 'omics analysis leveraging a temporal variation in the in vitro antagonistic activities of C. rosea strains ACM941 and 88-710, toward understanding the molecular mechanisms underpinning mycoparasitism. RESULTS Transcriptomic data highlighted specialized metabolism and membrane transport related genes as being significantly upregulated in ACM941 compared to 88-710 at a time point when the ACM941 strain had higher in vitro antagonistic activity than 88-710. In addition, high molecular weight specialized metabolites were differentially secreted by ACM941, with accumulation patterns of some metabolites matching the growth inhibition differences displayed by the exometabolites of the two strains. In an attempt to identify statistically relevant relationships between upregulated genes and differentially secreted metabolites, transcript and metabolomic abundance data were associated using IntLIM (Integration through Linear Modeling). Of several testable candidate associations, a putative C. rosea epidithiodiketopiperazine (ETP) gene cluster was identified as a prime candidate based on both co-regulation analysis and transcriptomic-metabolomic data association. CONCLUSIONS Although remaining to be validated functionally, these results suggest that a data integration approach may be useful for identification of potential biomarkers underlying functional divergence in C. rosea strains.
Collapse
Affiliation(s)
- Adilah Bahadoor
- Metrology Research Center, National Research Council Canada, 1200 Montreal Rd, Ottawa, ON, K1A 0R6, Canada
| | - Kelly A Robinson
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada
| | - Michele C Loewen
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada.
| | - Zerihun A Demissie
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Shahbazi Nia S, Hossain MA, Ji G, Jonnalagadda SK, Obeng S, Rahman MA, Sifat AE, Nozohouri S, Blackwell C, Patel D, Thompson J, Runyon S, Hiranita T, McCurdy CR, McMahon L, Abbruscato TJ, Trippier PC, Neugebauer V, German NA. Studies on diketopiperazine and dipeptide analogs as opioid receptor ligands. Eur J Med Chem 2023; 254:115309. [PMID: 37054561 PMCID: PMC10634475 DOI: 10.1016/j.ejmech.2023.115309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Using the structure of gliotoxin as a starting point, we have prepared two different chemotypes with selective affinity to the kappa opioid receptor (KOR). Using medicinal chemistry approaches and structure-activity relationship (SAR) studies, structural features required for the observed affinity were identified, and advanced molecules with favorable Multiparameter Optimization (MPO) and Ligand Lipophilicity (LLE) profiles were prepared. Using the Thermal Place Preference Test (TPPT), we have shown that compound2 blocks the antinociceptive effect of U50488, a known KOR agonist. Multiple reports suggest that modulation of KOR signaling is a promising therapeutic strategy in treating neuropathic pain (NP). As a proof-of-concept study, we tested compound 2 in a rat model of NP and recorded its ability to modulate sensory and emotional pain-related behaviors. Observed in vitro and in vivo results suggest that these ligands can be used to develop compounds with potential application as pain therapeutics.
Collapse
Affiliation(s)
- Siavash Shahbazi Nia
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Sravan K Jonnalagadda
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Samuel Obeng
- Department of Pharmaceutical, Social and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL, 35229, USA
| | - Md Ashrafur Rahman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Collin Blackwell
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Office of Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Jon Thompson
- Veterinary School of Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | - Scott Runyon
- Reserach Triangle Institute, Research Triangle Park, Durham, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Lance McMahon
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
20
|
Chen H, Zhao R, Ge M, Sun Y, Li Y, Shan L. Gliotoxin, a natural product with ferroptosis inducing properties. Bioorg Chem 2023; 133:106415. [PMID: 36801787 DOI: 10.1016/j.bioorg.2023.106415] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
As one of the mycotoxins produced by Aspergillus fumigatus, gliotoxin has a variety of pharmacological effects, such as anti-tumor, antibacterial, immunosuppressive. Antitumor drugs induce tumor cell death in several forms, including apoptosis, autophagy, necrosis and ferroptosis. Ferroptosis is a recently identified unique form of programmed cell death characterized by iron-dependent accumulation of lethal lipid peroxides, which induces cell death. A large amount of preclinical evidence suggests that ferroptosis inducers may enhance the sensitivity of chemotherapy and the induction of ferroptosis may be an effective therapeutic strategy to prevent acquired drug resistance. In our study, gliotoxin was characterized as a ferroptosis inducer and showed strong anti-tumor activity with IC50 of 0.24 μM and 0.45 μM in H1975 and MCF-7 cells at 72 h, respectively. Gliotoxin may provide a new natural template for the designing of ferroptosis inducers.
Collapse
Affiliation(s)
- Huabin Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiyun Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Sun
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaru Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lihong Shan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, Zhengzhou 450001 China.
| |
Collapse
|
21
|
Albini F, Bormann S, Gerschel P, Ludwig VA, Neumann W. Dithiolopyrrolones are Prochelators that are Activated by Glutathione. Chemistry 2023; 29:e202202567. [PMID: 36214647 PMCID: PMC10099403 DOI: 10.1002/chem.202202567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/06/2022]
Abstract
Dithiolopyrrolones (DTPs), such as holomycin, are natural products that hold promise as scaffolds for antibiotics as they exhibit inhibitory activity against antibiotic-resistant pathogens. They consist of a unique bicyclic core containing a disulfide that is crucial for their biological activity. Herein, we establish the DTPs as prochelators. We show that the disulfides are reduced at cellular gluathione levels. This activates the drugs and initiates interactions with targets, particularly metal coordination. In addition, we report an expedient synthesis for the DTPs thiolutin and aureothricin, providing facile access to important natural DTPs and derivatives thereof.
Collapse
Affiliation(s)
- Francesca Albini
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Stefan Bormann
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Philipp Gerschel
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Veza A Ludwig
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Wilma Neumann
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr-University Bochum, 44780, Bochum, Germany
| |
Collapse
|
22
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
23
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
24
|
De Las Heras M, Lacasta D, Reséndiz RA, Rivas A, Garzianda A, de Miguel R, Ruiz H, Castells E, González V, Ferrer LM. Chronic pithomycotoxicosis associated with obstructive rhinopathy in sheep. Vet Pathol 2022; 59:950-959. [PMID: 35787065 DOI: 10.1177/03009858221109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pithomycotoxicosis (facial eczema) is a seasonal hepatogenous photosensitization of sheep caused by the ingestion of sporidesmin contained in the spores of the fungus Pithomyces chartarum. We describe 4 cases of obstructive rhinopathy associated with chronic pithomycotoxicosis naturally occurring in the north of Spain. Sheep were 5 to 7 years old and Latxa breed. A detailed clinical study was conducted together with computerized tomography examination and completed by necropsy and histopathology. All sheep developed a permanent narrowing of the nasal lumen close to the nostrils causing inspiratory dyspnea and snoring. Computerized tomography demonstrated a significant increase of soft tissue in the rostral nasal cavity. Elevated gamma-glutamyl transferase, alanine aminotransferase, and lipase were noted on serum biochemistry. At necropsy, liver atrophy and fibrosis associated with chronic pithomycotoxicosis was identified in 3 of the sheep. All sheep had whitish elevations and rough surfaces on the alar folds and areas adjacent to the nasal surfaces. Histopathologic assessments, which included histochemical and immunohistochemical techniques, of the nasal lesions identified moderate to severe arteriosclerosis in 21.5% to 61.9% of the small arteries evaluated with surrounding fibrosis and edema. No changes associated with hypersensitivity reactions were found. These lesions were similar to the ones described in blood vessels of the liver in chronic pithomycotoxicosis and in our cases. The results of this study suggest a direct action of the sporidesmin on the rostral nasal cavity. Further studies are needed to analyze the impact of the sporidesmin on the sheep nasal mucosa.
Collapse
Affiliation(s)
| | | | | | - Ane Rivas
- Veterinary Practitioner, Basque Country, Spain
| | | | | | | | | | - Vicente González
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | | |
Collapse
|
25
|
Zhao P, Liu H, Wu Q, Meng Q, Qu K, Yin X, Wang M, Zhao X, Qi J, Meng Y, Xia X, Zhang L. Investigation of chetomin as a lead compound and its biosynthetic pathway. Appl Microbiol Biotechnol 2022; 106:3093-3102. [PMID: 35471617 DOI: 10.1007/s00253-022-11925-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/02/2022]
Abstract
Chaetomium fungi produce a diversity of bioactive compounds. Chaetomium cochliodes SD-280 possesses 91 secondary metabolite gene clusters and exhibits strong antibacterial activity. One of the active compounds responsible for that activity, chetomin, has a minimum inhibitory concentration (MIC) for anti-methicillin-resistant Staphylococcus aureus (MRSA) of 0.05 μg/mL (vancomycin: 0.625 μg/mL). This study demonstrated that the addition of glutathione (GSH) can enhance chetomin yield dramatically, increasing its production 15.43-fold. Following genome sequencing, cluster prediction, and transcriptome and proteome analyses of the fungus were carried out. Furthermore, a relatively complete chetomin biosynthetic gene cluster was proposed, and the coding sequences were acquired. In the cluster of GSH-treated cells, proteome analysis revealed two up-regulated proteins that are critical enzymes for chetomin biosynthesis. One of these enzymes, a nonribosomal peptide synthetase (NRPS), was heterologously expressed in Aspergillus nidulans, and one of its metabolites was determined to be an intermediate in the chetomin biosynthetic pathway. We present here, to our knowledge, the first experimental evidence that chetomin exhibits strong bioactivity against MRSA. Our work also provides extensive insights into the biosynthetic pathway of chetomin, in particular identifying two key enzymes (glutathione S-transferase (CheG) and NRPS (CheP)) that substantially up-regulate chetomin. These mechanistic insights into chetomin biosynthesis will provide the foundation for further investigation into the anti-pathogenic properties and applications of chetomin. KEY POINTS: • Chetomin exhibits strong anti-MRSA activity with MIC of 0.05 μg/mL. • Addition of glutathione improved the yield of chetomin by 15.43-fold. • CheG and CheP involved in the chetomin biosynthesis were revealed for the first time.
Collapse
Affiliation(s)
- Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Hairong Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Qinghua Wu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Qingzhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Kunyu Qu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xiangxiang Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Jun Qi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China.
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, Shandong Province, China. .,State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| |
Collapse
|
26
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
27
|
Shevkar C, Pradhan P, Armarkar A, Pandey K, Kalia K, Paranagama P, Kate AS. Exploration of Potent Cytotoxic Molecules from Fungi in Recent Past to Discover Plausible Anticancer Scaffolds. Chem Biodivers 2022; 19:e202100976. [PMID: 35315213 DOI: 10.1002/cbdv.202100976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/10/2022]
Abstract
Fungi are known to produce diverse scaffolds possessing unique biological activities, however, to date, no molecule discovered from a fungal source has reached the market as an anti-cancer drug. Every year number of cytotoxic molecules of fungal origin are getting published and critical analysis of those compounds is necessary to identify the potent ones. A review mentioning the best cytotoxic fungal metabolites and their status in the drug development was published in 2014. In this report, we have included 176 cytotoxic molecules isolated from fungi after 2014 and categorized them according to their potencies such as IC50 values below 1 μM, 1-5 μM, and 5-10 μM. The emphasis was given to those 42 molecules which have shown IC50 less than 1 μM and discussed to a great extent. This review shall provide potent scaffolds of fungal origin which can be given priority in the development as a drug candidate for cancer therapeutics.
Collapse
Affiliation(s)
- Chaitrali Shevkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Pranali Pradhan
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Ashwini Armarkar
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Komal Pandey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| | - Priyani Paranagama
- Department of Chemistry, University of Kelaniya, Dalugama, Kelaniya, 11600, Sri Lanka
| | - Abhijeet S Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, 382355, India
| |
Collapse
|
28
|
Redrado S, Esteban P, Domingo MP, Lopez C, Rezusta A, Ramirez-Labrada A, Arias M, Pardo J, Galvez EM. Integration of In Silico and In Vitro Analysis of Gliotoxin Production Reveals a Narrow Range of Producing Fungal Species. J Fungi (Basel) 2022; 8:jof8040361. [PMID: 35448592 PMCID: PMC9030297 DOI: 10.3390/jof8040361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Gliotoxin is a fungal secondary metabolite with impact on health and agriculture since it might act as virulence factor and contaminate human and animal food. Homologous gliotoxin (GT) gene clusters are spread across a number of fungal species although if they produce GT or other related epipolythiodioxopiperazines (ETPs) remains obscure. Using bioinformatic tools, we have identified homologous gli gene clusters similar to the A. fumigatus GT gene cluster in several fungal species. In silico study led to in vitro confirmation of GT and Bisdethiobis(methylthio)gliotoxin (bmGT) production in fungal strain cultures by HPLC detection. Despite we selected most similar homologous gli gene cluster in 20 different species, GT and bmGT were only detected in section Fumigati species and in a Trichoderma virens Q strain. Our results suggest that in silico gli homology analyses in different fungal strains to predict GT production might be only informative when accompanied by analysis about mycotoxin production in cell cultures.
Collapse
Affiliation(s)
- Sergio Redrado
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
| | - Patricia Esteban
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | | | - Concepción Lopez
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Antonio Rezusta
- Department of Microbiology, Hospital Universitario Miguel Servet, IIS Aragón, 50009 Zaragoza, Spain; (C.L.); (A.R.)
| | - Ariel Ramirez-Labrada
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Maykel Arias
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
| | - Julián Pardo
- Biomedical Research Centre of Aragon (CIBA), Fundacion Instituto de Investigacion Sanitaria Aragon (IIS Aragon), 50009 Zaragoza, Spain; (P.E.); (A.R.-L.); (M.A.); (J.P.)
- Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon I+D Foundation (ARAID), 50018 Zaragoza, Spain
| | - Eva M. Galvez
- Instituto de Carboquımica ICB-CSIC, 50018 Zaragoza, Spain; (S.R.); (M.P.D.)
- Correspondence:
| |
Collapse
|
29
|
Villarino M, Rodríguez-Pires S, Requena E, Melgarejo P, De Cal A, Espeso EA. A Secondary Metabolism Pathway Involved in the Production of a Putative Toxin Is Expressed at Early Stage of Monilinia laxa Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:818483. [PMID: 35401637 PMCID: PMC8988988 DOI: 10.3389/fpls.2022.818483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The necrotrophic pathogenic fungus Monilinia laxa causes brown rot disease on stone fruit generating significant yield losses. So far, a limited number of pathogenesis-related virulence factors, such as cell wall degrading enzymes and potential phytotoxins, have been described in Monilinia spp. Using RNA-sequencing data from highly virulent M. laxa ML8L strain at early stages of the infection process (6, 14, 24, and 48 h post-inoculation, hpi) on nectarine and the Pathogen-Host-Interactions (PHI) database, we selected a number of genes for further study and ranked them according to their transcription levels. We identified a class of genes highly expressed at 6 hpi and that their expression decreased to almost undetectable levels at 14 to 48 hpi. Among these genes we found Monilinia__061040 encoding a non-ribosomal peptide synthase (NRPS). Monilinia__061040 together with other five co-regulated genes, forms a secondary metabolism cluster potentially involved in the production of epipolythiodioxopiperazine (ETP) toxin. Quantitative-PCR data confirmed previous RNA sequencing results from the virulent ML8L strain. Interestingly, in a less virulent M. laxa ML5L strain the expression levels of this pathway were reduced compared to the ML8L strain during nectarine infection. In vitro experiments showed that liquid medium containing peach extract mimicked the results observed using nectarines. In fact, upregulation of the NRPS coding gene was also observed in minimal medium suggesting the existence of a fruit-independent mechanism of regulation for this putative toxin biosynthetic pathway that is also downregulated in the less virulent strain. These results emphasize the role of this secondary metabolism pathway during the early stage of brown rot disease development and show alternative models to study the induction of virulence genes in this fungus.
Collapse
Affiliation(s)
- Maria Villarino
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Silvia Rodríguez-Pires
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Elena Requena
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Paloma Melgarejo
- Dirección General de Producciones y Mercados Agrarios, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - Antonieta De Cal
- Grupo Hongos Fitopatógenos, Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Eduardo A. Espeso
- Laboratorio de Biología Celular de Aspergillus, Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas Margarita Salas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
30
|
Vicente I, Baroncelli R, Hermosa R, Monte E, Vannacci G, Sarrocco S. Role and genetic basis of specialised secondary metabolites in Trichoderma ecophysiology. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Yin L, Chen X, Chen Q, Wei D, Hu XY, Jia AQ. Diketopiperazine Modulates Arabidopsis thaliana Root System Architecture by Promoting Interactions of Auxin Receptor TIR1 and IAA7/17 Proteins. PLANT & CELL PHYSIOLOGY 2022; 63:57-69. [PMID: 34534338 DOI: 10.1093/pcp/pcab142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/25/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Plants can detect the quorum sensing (QS) signaling molecules of microorganisms, such as amino acids, fat derivatives and diketopiperazines (DKPs), thus allowing the exchange information to promote plant growth and development. Here, we evaluated the effects of 12 synthesized DKPs on Arabidopsis thaliana roots and studied their underlying mechanisms of action. Results showed that, as QS signal molecules, the DKPs promoted lateral root development and root hair formation in A.thaliana to differing degrees. The DKPs enhanced the polar transport of the plant hormone auxin from the shoot to root and triggered the auxin-responsive protein IAA7/17 to decrease the auxin response factor, leading to the accumulation of auxin at the root tip and accelerated root growth. In addition, the DKPs induced the development of lateral roots and root hair in the A. thaliana root system architecture via interference with auxin receptor transporter inhibitor response protein 1 (TIR1). A series of TIR1 sites that potentially interact with DKPs were also predicted using molecular docking analysis. Mutations of these sites inhibited the phosphorylation of TIR1 after DKP treatment, thereby inhibiting lateral root formation, especially TIR1-1 site. This study identified several DKP signal molecules in the QS system that can promote the expression of auxin response factors ARF7/19 via interactions of TIR1 and IAA7/17 proteins, thus promoting plant growth and development.
Collapse
Affiliation(s)
- Lujun Yin
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University, Haikou 571157, China
| | - Xiaodong Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200000, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210000, China
| | - Qi Chen
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Xiang-Yang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200000, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, Hainan University, Haikou 571157, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210000, China
| |
Collapse
|
32
|
Industrially Important Genes from Trichoderma. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
González Y, de los Santos-Villalobos S, Castro-Longoria E. Trichoderma Secondary Metabolites Involved in Microbial Inhibition. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Wang J, Chen M, Wang M, Zhao W, Zhang C, Liu X, Cai M, Qiu Y, Zhang T, Zhou H, Zhao W, Si S, Shao R. The novel ER stress inducer Sec C triggers apoptosis by sulfating ER cysteine residues and degrading YAP via ER stress in pancreatic cancer cells. Acta Pharm Sin B 2022; 12:210-227. [PMID: 35127381 PMCID: PMC8800039 DOI: 10.1016/j.apsb.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is one of the most lethal malignancies. Although gemcitabine (GEM) is a standard treatment for PAAD, resistance limits its application and therapy. Secoemestrin C (Sec C) is a natural compound from the endophytic fungus Emericella, and its anticancer activity has not been investigated since it was isolated. Our research is the first to indicate that Sec C is a broad-spectrum anticancer agent and could exhibit potently similar anticancer activity both in GEM-resistant and GEM-sensitive PAAD cells. Interestingly, Sec C exerted a rapid growth-inhibiting effect (80% death at 6 h), which might be beneficial for patients who need rapid tumor shrinkage before surgery. Liquid chromatography/mass spectrometry and N-acetyl-l-cysteine (NAC) reverse assays show that Sec C sulfates cysteines to disrupt disulfide-bonds formation in endoplasmic reticulum (ER) proteins to cause protein misfolding, leading to ER stress and disorder of lipid biosynthesis. Microarray data and subsequent assays show that ER stress-mediated ER-associated degradation (ERAD) ubiquitinates and downregulates YAP to enhance ER stress via destruction complex (YAP-Axin-GSK-βTrCP), which also elucidates a unique degrading style for YAP. Potent anticancer activity in GEM-resistant cells and low toxicity make Sec C a promising anti-PAAD candidate.
Collapse
Affiliation(s)
| | | | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Conghui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhan Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Sarrocco S, Vicente I, Staropoli A, Vinale F. Genes Involved in the Secondary Metabolism of Trichoderma and the Biochemistry of These Compounds. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Staszczak M. Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System. Int J Mol Sci 2021; 22:13309. [PMID: 34948102 PMCID: PMC8707610 DOI: 10.3390/ijms222413309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is the major non-lysosomal pathway responsible for regulated degradation of intracellular proteins in eukaryotes. As the principal proteolytic pathway in the cytosol and the nucleus, the UPS serves two main functions: the quality control function (i.e., removal of damaged, misfolded, and functionally incompetent proteins) and a major regulatory function (i.e., targeted degradation of a variety of short-lived regulatory proteins involved in cell cycle control, signal transduction cascades, and regulation of gene expression and metabolic pathways). Aberrations in the UPS are implicated in numerous human pathologies such as cancer, neurodegenerative disorders, autoimmunity, inflammation, or infectious diseases. Therefore, the UPS has become an attractive target for drug discovery and development. For the past two decades, much research has been focused on identifying and developing compounds that target specific components of the UPS. Considerable effort has been devoted to the development of both second-generation proteasome inhibitors and inhibitors of ubiquitinating/deubiquitinating enzymes. With the feature of unique structure and bioactivity, secondary metabolites (natural products) serve as the lead compounds in the development of new therapeutic drugs. This review, for the first time, summarizes fungal secondary metabolites found to act as inhibitors of the UPS components.
Collapse
Affiliation(s)
- Magdalena Staszczak
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
37
|
Hai Y, Wei MY, Wang CY, Gu YC, Shao CL. The intriguing chemistry and biology of sulfur-containing natural products from marine microorganisms (1987-2020). MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:488-518. [PMID: 37073258 PMCID: PMC10077240 DOI: 10.1007/s42995-021-00101-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 05/03/2023]
Abstract
Natural products derived from marine microorganisms have received great attention as a potential resource of new compound entities for drug discovery. The unique marine environment brings us a large group of sulfur-containing natural products with abundant biological functionality including antitumor, antibiotic, anti-inflammatory and antiviral activities. We reviewed all the 484 sulfur-containing natural products (non-sulfated) isolated from marine microorganisms, of which 59.9% are thioethers, 29.8% are thiazole/thiazoline-containing compounds and 10.3% are sulfoxides, sulfones, thioesters and many others. A selection of 133 compounds was further discussed on their structure-activity relationships, mechanisms of action, biosynthesis, and druggability. This is the first systematic review on sulfur-containing natural products from marine microorganisms conducted from January 1987, when the first one was reported, to December 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00101-2.
Collapse
Affiliation(s)
- Yang Hai
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, The Ministry of Education of China, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
38
|
Rangel LI, Hamilton O, de Jonge R, Bolton MD. Fungal social influencers: secondary metabolites as a platform for shaping the plant-associated community. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:632-645. [PMID: 34510609 DOI: 10.1111/tpj.15490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Fungal secondary metabolites (FSMs) are capable of manipulating plant community dynamics by inhibiting or facilitating the establishment of co-habitating organisms. Although production of FSMs is not crucial for survival of the producer, their absence can indirectly impair growth and/or niche competition of these fungi on the plant. The presence of FSMs with no obvious consequence on the fitness of the producer leaves questions regarding ecological impact. This review investigates how fungi employ FSMs as a platform to mediate fungal-fungal, fungal-bacterial and fungal-animal interactions associated with the plant community. We discuss how the biological function of FSMs may indirectly benefit the producer by altering the dynamics of surrounding organisms. We introduce several instances where FSMs influence antagonistic- or alliance-driven interactions. Part of our aim is to decipher the meaning of the FSM 'language' as it is widely noted to impact the surrounding community. Here, we highlight the contribution of FSMs to plant-associated interaction networks that affect the host either broadly or in ways that may have previously been unclear.
Collapse
Affiliation(s)
- Lorena I Rangel
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
| | - Olivia Hamilton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Ronnie de Jonge
- Department of Plant-Microbe Interactions, Utrecht University, Utrecht, The Netherlands
| | - Melvin D Bolton
- Northern Crop Science Laboratory, US Dept. Agriculture, Fargo, ND, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
39
|
Kang S, Lumactud R, Li N, Bell TH, Kim HS, Park SY, Lee YH. Harnessing Chemical Ecology for Environment-Friendly Crop Protection. PHYTOPATHOLOGY 2021; 111:1697-1710. [PMID: 33908803 DOI: 10.1094/phyto-01-21-0035-rvw] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy reliance on synthetic pesticides for crop protection has become increasingly unsustainable, calling for robust alternative strategies that do not degrade the environment and vital ecosystem services. There are numerous reports of successful disease control by various microbes used in small-scale trials. However, inconsistent efficacy has hampered their large-scale application. A better understanding of how beneficial microbes interact with plants, other microbes, and the environment and which factors affect disease control efficacy is crucial to deploy microbial agents as effective and reliable pesticide alternatives. Diverse metabolites produced by plants and microbes participate in pathogenesis and defense, regulate the growth and development of themselves and neighboring organisms, help maintain cellular homeostasis under various environmental conditions, and affect the assembly and activity of plant and soil microbiomes. However, research on the metabolites associated with plant health-related processes, except antibiotics, has not received adequate attention. This review highlights several classes of metabolites known or suspected to affect plant health, focusing on those associated with biocontrol and belowground plant-microbe and microbe-microbe interactions. The review also describes how new insights from systematic explorations of the diversity and mechanism of action of bioactive metabolites can be harnessed to develop novel crop protection strategies.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Rhea Lumactud
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ningxiao Li
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A
| | - Sook-Young Park
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
40
|
Wang W, Yu Y, Keller NP, Wang P. Presence, Mode of Action, and Application of Pathway Specific Transcription Factors in Aspergillus Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22168709. [PMID: 34445420 PMCID: PMC8395729 DOI: 10.3390/ijms22168709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Fungal secondary metabolites are renowned toxins as well as valuable sources of antibiotics, cholesterol-lowering drugs, and immunosuppressants; hence, great efforts were levied to understand how these compounds are genetically regulated. The genes encoding for the enzymes required for synthesizing secondary metabolites are arranged in biosynthetic gene clusters (BGCs). Often, BGCs contain a pathway specific transcription factor (PSTF), a valuable tool in shutting down or turning up production of the BGC product. In this review, we present an in-depth view of PSTFs by examining over 40 characterized BGCs in the well-studied fungal species Aspergillus nidulans and Aspergillus fumigatus. Herein, we find BGC size is a predictor for presence of PSTFs, consider the number and the relative location of PSTF in regard to the cluster(s) regulated, discuss the function and the evolution of PSTFs, and present application strategies for pathway specific activation of cryptic BGCs.
Collapse
Affiliation(s)
- Wenjie Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuchao Yu
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Correspondence: (N.P.K.); (P.W.)
| | - Pinmei Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China; (W.W.); (Y.Y.)
- Correspondence: (N.P.K.); (P.W.)
| |
Collapse
|
41
|
Boysen JM, Saeed N, Hillmann F. Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus. Beilstein J Org Chem 2021; 17:1814-1827. [PMID: 34394757 PMCID: PMC8336654 DOI: 10.3762/bjoc.17.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.
Collapse
Affiliation(s)
- Jana M Boysen
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
42
|
Andersson (AMA, Salo J, Mikkola R, Marik T, Kredics L, Kurnitski J, Salonen H. Melinacidin-Producing Acrostalagmus luteoalbus, a Major Constituent of Mixed Mycobiota Contaminating Insulation Material in an Outdoor Wall. Pathogens 2021; 10:pathogens10070843. [PMID: 34357993 PMCID: PMC8308789 DOI: 10.3390/pathogens10070843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Occupants may complain about indoor air quality in closed spaces where the officially approved standard methods for indoor air quality risk assessment fail to reveal the cause of the problem. This study describes a rare genus not previously detected in Finnish buildings, Acrostalagmus, and its species A. luteoalbus as the major constituents of the mixed microbiota in the wet cork liner from an outdoor wall. Representatives of the genus were also present in the settled dust in offices where occupants suffered from symptoms related to the indoor air. One strain, POB8, was identified as A. luteoalbus by ITS sequencing. The strain produced the immunosuppressive and cytotoxic melinacidins II, III, and IV, as evidenced by mass spectrometry analysis. In addition, the classical toxigenic species indicating water damage, mycoparasitic Trichoderma, Aspergillus section Versicolores, Aspergillus section Circumdati, Aspergillus section Nigri, and Chaetomium spp., were detected in the wet outdoor wall and settled dust from the problematic rooms. The offices exhibited no visible signs of microbial growth, and the airborne load of microbial conidia was too low to explain the reported symptoms. In conclusion, we suggest the possible migration of microbial bioactive metabolites from the wet outdoor wall into indoor spaces as a plausible explanation for the reported complaints.
Collapse
Affiliation(s)
- (Aino) Maria A. Andersson
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- Correspondence: ; Tel.: +358-405508934
| | - Johanna Salo
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
43
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Strukturelle und mechanistische Einblicke in die Bildung der C‐S‐Bindungen in Gliotoxin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kirstin Scherlach
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
| | - Wolfgang Kuttenlochner
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Daniel H. Scharf
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Abteilung Mikrobiologie und Kinderkrankenhaus Zhejiang Universität Fakultät für Medizin Hangzhou 310058 Zhejiang V.R. China
| | - Axel A. Brakhage
- Abteilung Molekulare und Angewandte Mikrobiologie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Christian Hertweck
- Abteilung Biomolekulare Chemie Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie (HKI) Beutenbergstraße 11a 07745 Jena Deutschland
- Fakultät für Biowissenschaften Friedrich Schiller Universität Jena 07743 Jena Deutschland
| | - Michael Groll
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| | - Eva M. Huber
- Technische Universität München Zentrum für Proteinforschung (CPA) Ernst-Otto-Fischer-Straße 8 85747 Garching Deutschland
| |
Collapse
|
44
|
Urquhart AS, Elliott CE, Zeng W, Idnurm A. Constitutive expression of transcription factor SirZ blocks pathogenicity in Leptosphaeria maculans independently of sirodesmin production. PLoS One 2021; 16:e0252333. [PMID: 34111151 PMCID: PMC8191991 DOI: 10.1371/journal.pone.0252333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus Leptosphaeria maculans in vitro, has been linked to disease on Brassica species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the sir gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on Brassica napus. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the L. maculans asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the sirZ gene encoding the transcription factor that coordinates the regulation of the other genes in the sir cluster. The sirZ over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, sirP and sirG, required for specific steps in the sirodesmin biosynthesis pathway, in the sirZ over-expression background resulted in strains that were unable to synthesize sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress sirZ during disease may provide new strategies for the control of blackleg disease.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Applied BioSciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Candace E. Elliott
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Biosecurity Operations Division, Department of Agriculture, Water and the Environment, Post Entry Quarantine, Mickleham, Victoria, Australia
| | - Wei Zeng
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Van Moll L, De Smet J, Cos P, Van Campenhout L. Microbial symbionts of insects as a source of new antimicrobials: a review. Crit Rev Microbiol 2021; 47:562-579. [PMID: 34032192 DOI: 10.1080/1040841x.2021.1907302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To stop the antimicrobial resistance crisis, there is an urgent need for increased investment in antimicrobial research and development. Currently, many researchers are focussing on insects and their microbiota in the search for new antimicrobials. This review summarizes recent literature dedicated to the antimicrobial screening of insect symbionts and/or their metabolites to uncover their value in early drug discovery. We summarize the main steps in the methodology used to isolate and identify active insect symbionts and have noted substantial variation among these studies. There is a clear trend in isolating insect Streptomyces bacteria, but a broad range of other symbionts has been found to be active as well. The microbiota of many insect genera and orders remains untargeted so far, which leaves much room for future research. The antimicrobial screening of insect symbionts has led to the discovery of a diverse array of new active biomolecules, mainly peptides, and polyketides. Here, we discuss 15 of these symbiont-produced compounds and their antimicrobial profile. Cyphomycin, isolated from a Streptomyces symbiont of a Cyphomyrmex fungus-growing ant, seems to be the most promising insect symbiont-derived antimicrobial so far. Overall, insect microbiota appears to be a promising search area to discover new antimicrobial drug candidates.
Collapse
Affiliation(s)
- Laurence Van Moll
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium.,Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Paul Cos
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems (M2S), KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Hwang JY, Chung B, Kwon OS, Park SC, Cho E, Oh DC, Shin J, Oh KB. Inhibitory Effects of Epipolythiodioxopiperazine Fungal Metabolites on Isocitrate Lyase in the Glyoxylate Cycle of Candida albicans. Mar Drugs 2021; 19:md19060295. [PMID: 34067454 PMCID: PMC8224697 DOI: 10.3390/md19060295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Four epipolythiodioxopiperazine fungal metabolites (1-4) isolated from the sponge-derived Aspergillus quadrilineatus FJJ093 were evaluated for their capacity to inhibit isocitrate lyase (ICL) in the glyoxylate cycle of Candida albicans. The structures of these compounds were elucidated using spectroscopic techniques and comparisons with previously reported data. We found secoemestrin C (1) (an epitetrathiodioxopiperazine derivative) to be a potent ICL inhibitor, with an inhibitory concentration of 4.77 ± 0.08 μM. Phenotypic analyses of ICL-deletion mutants via growth assays with acetate as the sole carbon source demonstrated that secoemestrin C (1) inhibited C. albicans ICL. Semi-quantitative reverse-transcription polymerase chain reaction analyses indicated that secoemestrin C (1) inhibits ICL mRNA expression in C. albicans under C2-assimilating conditions.
Collapse
Affiliation(s)
- Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.-Y.H.); (O.-S.K.); (S.C.P.); (D.-C.O.)
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (E.C.)
| | - Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.-Y.H.); (O.-S.K.); (S.C.P.); (D.-C.O.)
| | - Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.-Y.H.); (O.-S.K.); (S.C.P.); (D.-C.O.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (E.C.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.-Y.H.); (O.-S.K.); (S.C.P.); (D.-C.O.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (J.-Y.H.); (O.-S.K.); (S.C.P.); (D.-C.O.)
- Correspondence: (J.S.); (K.-B.O.); Tel.: +82-2-880-2484 (J.S.); +82-2-880-4646 (K.-B.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (E.C.)
- Correspondence: (J.S.); (K.-B.O.); Tel.: +82-2-880-2484 (J.S.); +82-2-880-4646 (K.-B.O.)
| |
Collapse
|
47
|
Scherlach K, Kuttenlochner W, Scharf DH, Brakhage AA, Hertweck C, Groll M, Huber EM. Structural and Mechanistic Insights into C-S Bond Formation in Gliotoxin. Angew Chem Int Ed Engl 2021; 60:14188-14194. [PMID: 33909314 PMCID: PMC8251611 DOI: 10.1002/anie.202104372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 12/01/2022]
Abstract
Glutathione‐S‐transferases (GSTs) usually detoxify xenobiotics. The human pathogenic fungus Aspergillus fumigatus however uses the exceptional GST GliG to incorporate two sulfur atoms into its virulence factor gliotoxin. Because these sulfurs are essential for biological activity, glutathionylation is a key step of gliotoxin biosynthesis. Yet, the mechanism of carbon−sulfur linkage formation from a bis‐hydroxylated precursor is unresolved. Here, we report structures of GliG with glutathione (GSH) and its reaction product cyclo[‐l‐Phe‐l‐Ser]‐bis‐glutathione, which has been purified from a genetically modified A. fumigatus strain. The structures argue for stepwise processing of first the Phe and second the Ser moiety. Enzyme‐mediated dehydration of the substrate activates GSH and a helix dipole stabilizes the resulting anion via a water molecule for the nucleophilic attack. Activity assays with mutants validate the interactions of GliG with the ligands and enrich our knowledge about enzymatic C−S bond formation in gliotoxin and epipolythiodioxopiperazine (ETP) natural compounds in general.
Collapse
Affiliation(s)
- Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Wolfgang Kuttenlochner
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Daniel H Scharf
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Department of Microbiology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, P.R. China
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael Groll
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| | - Eva M Huber
- Technical University of Munich, Center for Protein Assemblies, Ernst-Otto-Fischer-Strasse 8, 85747, Garching, Germany
| |
Collapse
|
48
|
Mohamed AF, Abuamara TMM, Amer ME, Ei-Moselhy LE, Gomah TA, Matar ER, Shebl RI, Desouky SE, Abu-Elghait M. Genetic and Histopathological Alterations in Caco-2 and HuH-7 Cells Treated with Secondary Metabolites of Marine fungi. J Gastrointest Cancer 2021; 53:480-495. [PMID: 33974218 DOI: 10.1007/s12029-021-00640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2021] [Indexed: 11/26/2022]
Abstract
The present work aimed to study the activity of naturally derived fungal secondary metabolites as anticancer agents concerning their cytotoxicity, apoptotic, genetic, and histopathological profile. It was noticed that Aspergillus terreus, Aspergillus flavus, and Aspergillus fumigatus induced variable toxic potential that was cell type, secondary metabolite type, and concentration dependent. Human colonic adenocarcinoma cells (Caco-2) showed less sensitivity than hepatocyte-derived cellular carcinoma cells (HuH-7), and in turn, the half-maximal inhibitory concentration (IC50) was variable. Also, the apoptotic potential of Aspergillus species-derived fungal secondary metabolites was proven via detection of up-regulated pro-apoptotic genes and down-regulation of anti-apoptotic genes. The expression level was cell type dependent. Concurrently, apoptotic profile was accompanied with cellular DNA accumulation at the G2/M phase, as well as an elevation in Pre-G1 phase but not during G0/G1 and S phases. Also, there were characteristic apoptotic features of treated cells presented as abnormal intra-nuclear eosinophilic structures, dead cells with mixed euchromatin and heterochromatin, ruptured cell membranes, apoptotic cells with irregular cellular and nuclear membranes, as well as peripheral chromatin condensation. It can be concluded that Aspergillus secondary metabolites are promising agents that can be used as supplementary agents to the currently applied anti-cancer drug regimen.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- The International center for training and advanced researches (ICTAR -Egypt), Cairo, Egypt
| | - Tamer M M Abuamara
- Histology department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology department, Faculty of medicine, Al-Azhar University, Damietta, Egypt
| | - Laila E Ei-Moselhy
- Histology department, Faculty of medicine (girls), Al-Azhar University, Damietta, Egypt
| | | | - Emadeldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Said E Desouky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar Uniersity, 11847, Nasr City, Cairo, Egypt
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar Uniersity, 11847, Nasr City, Cairo, Egypt.
| |
Collapse
|
49
|
Understanding the fundamental role of virulence determinants to combat Aspergillus fumigatus infections: exploring beyond cell wall. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Gluck-Thaler E, Haridas S, Binder M, Grigoriev IV, Crous PW, Spatafora JW, Bushley K, Slot JC. The Architecture of Metabolism Maximizes Biosynthetic Diversity in the Largest Class of Fungi. Mol Biol Evol 2021; 37:2838-2856. [PMID: 32421770 PMCID: PMC7530617 DOI: 10.1093/molbev/msaa122] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Plant Pathology, The Ohio State University, Columbus, OH.,Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Sajeet Haridas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA.,Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA
| | - Pedro W Crous
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Joseph W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Kathryn Bushley
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH
| |
Collapse
|