1
|
Xin T, Liu B, Liu H, Wang Z, Li J, Chi S, Andika IB, Cao X. Identification of a novel phenuivirus with an unusual ambisense genome from the ascomycete fungus Fusarium fujikuroi. Arch Virol 2025; 170:138. [PMID: 40418232 DOI: 10.1007/s00705-025-06311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/13/2025] [Indexed: 05/27/2025]
Abstract
A novel virus, tentatively named "Fusarium fujikuroi negative-strand RNA virus 1" (FfNSRV1), was identified in a Fusarium fujikuroi strain isolated from a small brown planthopper. The FfNSRV1 genome consists of three negative-sense, single-stranded RNA segments (RNA1-3) with lengths of 6649, 1609, and 1380 nt, respectively. The viral complementary (vc) strand (positive sense) of RNA1 encodes a large protein (∼252 kDa) containing a conserved domain of the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with the highest sequence similarity (40-44% identity) to the RdRPs encoded by established members of the genus Coguvirus in the family Phenuiviridae. The RNA2 vc strand encodes a protein (∼54 kDa) showing sequence similarity (38-40% identity) to the movement protein-like (MP-L) proteins of coguviruses. The RNA3 vc strand encodes a protein (∼44 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Interestingly, the RNA2 and RNA3 segments (negative sense) each also contain an open reading frame (ORF) that overlaps with the ORF in the vc strand. The protein encoded by the RNA2 negative-strand ORF shows a low degree of sequence similarity (23-30% identity) to the MP-L proteins of unassigned phenuiviruses, and the protein encoded by the RNA3 negative-strand ORF shows a low degree of similarity (26-29% identity) to the nucleocapsid proteins of established members of the genus Bocivirus in the family Phenuiviridae. Phylogenetic analysis based on RdRP sequences showed that FfNSRV1 clustered with coguviruses, but in a separate monophyletic clade. Our results suggest that FfNSRV1 should be placed in a new genus within the family Phenuiviridae due to its unusual tripartite ambisense genome organization.
Collapse
Affiliation(s)
- Tongle Xin
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bo Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongqian Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junmin Li
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Shengqi Chi
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ida Bagus Andika
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China.
| | - Xinran Cao
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
- Yantai Academy of Agricultural Sciences, Institute of Plant Protection and Resource Environment, Yantai, China.
| |
Collapse
|
2
|
Ye T, Li H, Hai D, Zhaxi Z, Duan J, Lin Y, Xie J, Cheng J, Li B, Chen T, Yu X, Lyu X, Xiao X, Fu Y, Jiang D. A Hypovirulence-Associated Partitivirus and Re-Examination of Horizontal Gene Transfer Between Partitiviruses and Cellular Organisms. Int J Mol Sci 2025; 26:3853. [PMID: 40332509 PMCID: PMC12027680 DOI: 10.3390/ijms26083853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Previous research has unearthed the integration of the coat protein (CP) gene from alphapartitivirus into plant genomes. Nevertheless, the prevalence of this horizontal gene transfer (HGT) between partitiviruses and cellular organisms remains an enigma. In our investigation, we discovered a novel partitivirus, designated Sclerotinia sclerotiorum alphapartitivirus 1 (SsAPV1), from a hypovirulent strain of Sclerotinia sclerotiorum. Intriguingly, we traced homologs of the SsAPV1 CP to plant genomes, including Helianthus annuus. To delve deeper, we employed the CP and RNA-dependent RNA polymerase (RdRP) sequences of partitiviruses as "bait" to search the NCBI database for similar sequences. Our search unveiled a widespread occurrence of HGT between viruses from all five genera within the family Partitiviridae and other cellular organisms. Notably, numerous CP-like and RdRP-like genes were identified in the genomes of plants, protozoa, animals, fungi, and even, for the first time, in an archaeon. The majority of CP and RdRP genes were integrated into plant and insect genomes, respectively. Furthermore, we detected DNA fragments originating from the SsAPV1 RNA genome in some subcultures of virus-infected strains. It suggested that SsAPV1 RdRP may possesses reverse transcriptase activity, facilitating the integration of viral genes into cellular organism genomes, and this function requires further confirmation. Our study not only offers a hypovirulence-associated partitivirus with implications for fungal disease control but also sheds light on the extensive integration events between partitiviruses and cellular organisms and enhances our comprehension of the origins, evolution, and ecology of partitiviruses, as well as the genome evolution of cellular organisms.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Han Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Zhima Zhaxi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.Y.); (H.L.); (D.H.); (Z.Z.); (J.D.); (J.X.); (J.C.); (B.L.); (T.C.); (X.Y.); (X.L.); (X.X.)
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
| |
Collapse
|
3
|
Zhou J, Wang L, Cheng X, Liu L, Wang Q, Qi X, Peng J, Liu J, Hsiang T, Jiang Y. A novel partitivirus with four dsRNA segments causing no obvious symptoms in Aspergillus flavus. Arch Virol 2025; 170:101. [PMID: 40234273 DOI: 10.1007/s00705-025-06287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025]
Abstract
Aspergillus flavus partitivirus 2 (AfPV2) isolate XC-8 from the fungus Aspergillus flavus strain XC-8 was sequenced and analyzed. AfPV2 contains four segments, dsRNA1 to 4. dsRNA1 is 1907 bp in length with an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 565 amino acids (aa). dsRNA2 is 1936 bp in length with an ORF encoding a putative capsid protein (CP) of 508 aa. dsRNA3 is 1799 bp in length with an ORF encoding a hypothetical protein of 482 aa. dsRNA4 is 1650 bp in length with an ORF encoding a hypothetical protein of 400 aa. Phylogenetic analysis showed that AfPV2 is a member of the genus Alphapartitivirus of the family Partitiviridae. BLASTp analysis showed that AfPV2 isolate XC-8 belongs to the same species as AfPV2 isolate UniPR6, which only has two dsRNA segments (GenBank nos. MZ600060.1 and MZ600061.1). Infection by AfPV2 isolate XC-8 did not cause any obvious significant phenotypic changes in A. flavus.
Collapse
Affiliation(s)
- Jianhong Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Li Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaolan Cheng
- Dalian International Travel Health Care Centre, Port Clinic of Dalian Customs District, Dalian, 116001, China
| | - Lingling Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Jian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China
| | - Jiayu Liu
- Key Laboratory of Medical Insects, Guizhou Medical University, Guiyang, Guizhou Province, 550004, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, 550004, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Mlingo TAM, Theron J, Mokoena NB. Plasmid DNA-based reverse genetics as a platform for manufacturing of bluetongue vaccine. J Virol 2025; 99:e0013925. [PMID: 40130823 PMCID: PMC11998535 DOI: 10.1128/jvi.00139-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Control of bluetongue disease is predominantly through vaccination with licensed inactivated or live-attenuated vaccines (LAVs). Manufacturing of LAVs in endemic countries requires formulation with a high number of serotypes for effective protection. Herein, we evaluated a plasmid DNA-based reverse genetics platform for manufacturing a multivalent vaccine. The synthetic vaccine was characterized by a common BTV1 backbone, with exchange of outer capsid proteins. Recombinant South African vaccine serotypes 1, 5, and 14 were rescued by exchanging the VP2 protein on the backbone. BTV6 rescue was achieved following the exchange of VP2 and VP5 proteins. The particle sizes were comparable to commercial vaccines of respective serotypes. BTV1, BTV5, and BTV6 had distinct growth profiles compared to commercial vaccines, while BTV14 was indistinguishable. Stability and shelf-life determination under various storage conditions showed that commercial vaccines were more stable. Formulated antigens were evaluated for vaccine safety and immunogenicity in sheep. Serotyped BTV1 monovalent vaccine was safe, as no clinical signs were observed. Neutralizing antibodies (nAbs) were induced on day 14 and peaked at 32 on day 28. The multivalent synthetic vaccine containing four serotypes elicited BTV6 nAbs from day 21 with a titer of 52, which decreased to 33 by day 42. BTV1 elicited a weak immune response with a titer of 1 on day 42. No nAbs were detected against BTV5 and BTV14. This is a first report comparing reverse genetics-derived antigens with commercial vaccines. Data generated on production yields, stability, and immunogenicity demonstrated that some serotypes can be implemented as novel synthetic vaccines using this platform.IMPORTANCEVaccination is the most effective control strategy for viral diseases that affect livestock. To date, only live-attenuated and inactivated vaccines have been licensed for control of bluetongue (BT). This study demonstrated the use of reverse genetics as a possible platform for BTV vaccine production. Data generated in the study contribute toward the advancement of an alternative manufacturing platform for licensing of BT vaccines. Information on production yields and stability of synthetic vaccines in comparison to the conventional products demonstrated that optimization is required for some serotypes to fully translate the reverse genetics platform for manufacturing the BTV vaccine. The study highlighted the safety and immunogenicity of vaccines manufactured using the plasmid DNA-based reverse-genetics platform.
Collapse
MESH Headings
- Animals
- Bluetongue virus/immunology
- Bluetongue virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Sheep
- Plasmids/genetics
- Plasmids/immunology
- Bluetongue/prevention & control
- Bluetongue/immunology
- Bluetongue/virology
- Reverse Genetics/methods
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Capsid Proteins/immunology
- Capsid Proteins/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Serogroup
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Tendai A. M. Mlingo
- Onderstepoort Biological Products SOC Ltd., Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
5
|
Zheng H, Li C, Wu Y, Li X, An H, Fang S, Zhang S, Deng Q. The complete genomic sequence of Magnaporthe oryzae polymycovirus 1. Virus Genes 2025; 61:204-210. [PMID: 39641829 DOI: 10.1007/s11262-024-02126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
A novel double-stranded RNA virus, designated as "Magnaporthe oryzae polymycovirus 1" (MoPmV1), was identified in Magnaporthe oryzae strain TM02. MoPmV1 has four dsRNA fragments, ranging from 1324 to 2401 bp in length. DsRNA1, 2, and 3 of MoPmV1 each possess a single large open reading frame (ORF), whereas dsRNA4 contains two ORFs. BLASTp analysis indicated that ORF1a, encoded by dsRNA1, shows 59.2% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) of Beauveria bassiana polymycovirus 2; ORF2a, encoded by dsRNA2, shows 42.3% identity with the putative serine protease of Phaeoacremonium minimum tetramycovirus 1; ORF3a, encoded by dsRNA3, shows 40.6% identity with the methyltransferase of Aspergillus fumigatus tetramycovirus 1; ORF4a, encoded by dsRNA4, shows 41.7% identity with the proline-alanine-serine-rich (PASr) protein of Botryosphaeria dothidea virus 1, while ORF4b, encoded by dsRNA4, shows no significant similarity to any known proteins. Phylogenetic analysis of the RdRp domain indicated that MoPmV1 was grouped in a cluster with members of the genus Polymycovirus in the family Polymycoviridae. Based on these characteristics, MoPmV1 is a new member of the genus Polymycovirus in the family Polymycoviridae. This is the first report of a mycovirus of the family Polymycoviridae identified in rice blast fungus M. oryzae.
Collapse
Affiliation(s)
- Hong Zheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Cong Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yuxin Wu
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xinyi Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
6
|
Lyu R, Chen J, Tang Q, Hai D, Wu T, Xiao H, Xie J, Xiao Y. Characterization of a betaendornavirus isolated from the edible fungus Morchella sextelata. Arch Virol 2025; 170:78. [PMID: 40085276 DOI: 10.1007/s00705-025-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
A positive-sense single-stranded RNA mycovirus was isolated from Morchella sextelata strain ZY-1 and designated as "Morchella sextelata endornavirus 1" (MsEV1). The complete genome of MsEV1 was found to be 16,589 nucleotides (nt) in length and to contain a single large open reading frame (ORF) encoding the viral proteins PRK00409, transmethylase, DEXDc, helicase, and RdRP in a polyprotein of 5,477 amino acids. Phylogenetic analysis based on RdRP nucleotide sequences revealed that this endornavirus is a member of the genus Betaendornavirus in the family Endornaviridae.
Collapse
Affiliation(s)
- Ruiling Lyu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Hubei Key Laboratory for the Improvement of Economic Forest Germplasm and Comprehensive Utilization of Resources, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resource, Huanggang Normal University, Huanggang, Hubei, 438000, P.R. China
| | - Junlin Chen
- Hubei Key Laboratory for the Improvement of Economic Forest Germplasm and Comprehensive Utilization of Resources, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resource, Huanggang Normal University, Huanggang, Hubei, 438000, P.R. China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, Hubei, 441057, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tun Wu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huagang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Xiao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
7
|
Zanetti FA, Fernandez I, Baquero E, Guardado-Calvo P, Ferrino-Iriarte A, Dubois S, Morel E, Alfonso V, Aguilera MO, Celayes ME, Polo LM, Suhaiman L, Galassi VV, Chiarpotti MV, Allende-Ballestero C, Rodriguez JM, Castón JR, Lijavetzky D, Taboga O, Colombo MI, Del Pópolo M, Rey FA, Delgui LR. On the role of VP3-PI3P interaction in birnavirus endosomal membrane targeting. eLife 2025; 13:RP97261. [PMID: 40047543 PMCID: PMC11884790 DOI: 10.7554/elife.97261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Birnaviruses are a group of double-stranded RNA (dsRNA) viruses infecting birds, fish, and insects. Early endosomes (EE) constitute the platform for viral replication. Here, we study the mechanism of birnaviral targeting of EE membranes. Using the Infectious Bursal Disease Virus (IBDV) as a model, we validate that the viral protein 3 (VP3) binds to phosphatidylinositol-3-phosphate (PI3P) present in EE membranes. We identify the domain of VP3 involved in PI3P-binding, named P2 and localized in the core of VP3, and establish the critical role of the arginine at position 200 (R200), conserved among all known birnaviruses. Mutating R200 abolishes viral replication. Moreover, we propose a two-stage modular mechanism for VP3 association with EE. Firstly, the carboxy-terminal region of VP3 adsorbs on the membrane, and then the VP3 core reinforces the membrane engagement by specifically binding PI3P through its P2 domain, additionally promoting PI3P accumulation.
Collapse
Affiliation(s)
- Flavia A Zanetti
- Instituto de Ciencia y Tecnología "Dr. Cesar Milstein", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Eduard Baquero
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | | | | | - Sarah Dubois
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants MaladesParisFrance
| | - Victoria Alfonso
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Milton Osmar Aguilera
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - María E Celayes
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Laila Suhaiman
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Vanesa V Galassi
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Maria V Chiarpotti
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | | | - Javier M Rodriguez
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Jose R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC)MadridSpain
| | - Diego Lijavetzky
- Instituto de Biología Agrícola de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
| | - Oscar Taboga
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - María I Colombo
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
| | - Mario Del Pópolo
- Instituto Interdisciplinario de Ciencias Básicas (ICB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)MendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, Structural Virology UnitParisFrance
| | - Laura Ruth Delgui
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo (UNCuyo), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro UniversitarioMendozaArgentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo)MendozaArgentina
| |
Collapse
|
8
|
Valusenko-Mehrkens R, Johne R, Falkenhagen A. Engineering human/simian rotavirus VP7 reassortants in the absence of UTR sequence information. Appl Microbiol Biotechnol 2025; 109:52. [PMID: 40014110 PMCID: PMC11868164 DOI: 10.1007/s00253-025-13435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Recently developed plasmid-based reverse genetics systems for rotavirus A (RVA) enable rapid engineering of reassortants carrying human RVA antigens. However, complete genome segment sequences are required for successful generation of such reassortants, and sequencing of the untranslated regions (UTRs) of field strains is often not accomplished. To address this problem, we established a system that permits the generation of reassortants using only the open reading frame (ORF) nucleotide sequence information. Plasmids containing the VP7-ORF nucleotide sequence of six human RVA field strains (genotypes G2, G5, G8, G9, G12 and G29) derived from GenBank and flanked by the UTR sequences of simian RVA strain SA11 were constructed. Using these plasmids, four VP7 (G2, G5, G9 and G12) reassortants in an SA11 backbone were successfully generated. In contrast, the G8 and G29 reassortants were not viable. BLASTp search of the G8 and G29 sequences revealed an unusual amino acid substitution in each sequence, which was not present in related field strains. Site-directed reversion of the corresponding C656T mutation in G8 led to effective rescue of reassortant virus. However, reverting the G84C mutation in G29 did not result in replicating virus. The results suggest that most human RVA VP7 UTRs can be substituted with simian RVA UTRs. However, generation of reassortants might be impeded by potential sequencing errors or intrinsic reassortment limitations. The established system could help to broaden the antigenic repertoire for rapid engineering of potential novel RVA vaccine strains. KEY POINTS: • Generation of diverse rotavirus vaccine strains is impeded by missing UTR sequences. • UTRs from SA11 can be used instead of missing UTR sequences from field strains. • Human RVA reassortants of genotypes G2, G5, G8, G9, G12 were successfully rescued.
Collapse
Affiliation(s)
- Roman Valusenko-Mehrkens
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
9
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Garrine M, Messa A, Vubil D, Nobela N, Kotloff K, Nataro JP, Nhampossa T, Acácio S, Weldegebriel G, Tate JE, Parashar U, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic analysis of DS-1-like human rotavirus A strains uncovers genetic relatedness of NSP4 gene with animal strains in Manhiça District, Southern Mozambique. Sci Rep 2024; 14:30705. [PMID: 39730435 PMCID: PMC11680989 DOI: 10.1038/s41598-024-79767-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 12/29/2024] Open
Abstract
Post rotavirus vaccine introduction in Mozambique (September 2015), we documented a decline in rotavirus-associated diarrhoea and genotypes changes in our diarrhoeal surveillance spanning 2008-2021. This study aimed to perform whole-genome sequencing of rotavirus strains from 2009 to 2012 (pre-vaccine) and 2017-2018 (post-vaccine). Rotavirus strains previously detected by conventional PCR as G2P[4], G2P[6], G3P[4], G8P[4], G8P[6], and G9P[6] from children with moderate-to-severe and less-severe diarrhoea and without diarrhoea (healthy community controls) were sequenced using Illumina MiSeq® platform and analysed using bioinformatics tools. All these G and P-type combinations exhibited DS-1-like constellation in the rest of the genome segments as, I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis revealed that strains from children with and without diarrhoea clustered together with other Mozambican and global strains. Notably, the NSP4 gene of strains G3P[4] and G8P[4] in children with diarrhoea clustered with animal strains, such as bovine and caprine, with similarity identities ranging from 89.1 to 97.0% nucleotide and 89.5-97.0% amino acids. Our findings revealed genetic similarities among rotavirus strains from children with and without diarrhoea, as well as with animal strains, reinforcing the need of implementing studies with One Health approach in our setting, to elucidate the genetic diversity of this important pathogen.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Eva D João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Karen Kotloff
- Center for Vaccine Development, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - James P Nataro
- Department of Paediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Jacqueline E Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, 30333, USA
| | - Jason M Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines and Development Program, World Health Organization (WHO), Regional Office for Africa, P.O. Box 2465, Brazzaville, Republic of Congo
| | - Pedro L Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal.
- Instituto Nacional de Saúde (INS), Marracuene, 1120, Mozambique.
- ISGlobal, Barcelona, 08036, Spain.
| |
Collapse
|
10
|
Duan J, Zhang A, Fu Y, Lin Y, Xie J, Cheng J, Chen T, Li B, Yu X, Lyu X, Jiang D. A Mycovirus Representing a Novel Lineage and a Mitovirus of Botrytis cinerea Co-Infect a Basidiomycetous Fungus, Schizophyllum commune. Viruses 2024; 16:1767. [PMID: 39599881 PMCID: PMC11598958 DOI: 10.3390/v16111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Strain IBc-114 was isolated from a gray mold lesion and was identified as the fungus Schizophyllum commune. In this strain, two mycoviruses, Schizophyllum commune RNA virus 1 (ScRV1, C_AA053475.1) and Botrytis cinerea mitovirus 9 strain IBc-114 (BcMV9/IBc-114, C_AA053476.1), were isolated and characterized. ScRV1 has flexuous filamentous particles about 20 ± 2.1 nm in diameter and 1000 ± 94.2 nm in length. The genome of ScRV1 is 7370 nt in length and contains two open reading frames (ORFs) which encode a polyprotein and a coat protein, respectively. The polyprotein has 1967 aa, including a helicase domain and an RdRp domain which has the highest identity of 28.21% with that of Entomophthora benyvirus E (EbVE). The coat protein has 241 aa which is mostly phylogenetically close to the coat proteins of Alphatetraviridae. Based on the phylogenetic analysis of ScRV1 and viruses selected, ScRV1 might represent a new family (temporarily named Mycobenyviridae) of the order Hepelivirales. The genome of BcMV9/IBc-114 that infects S. commune is 2729 nt in length and has only one ORF encoding an RdRp protein with 719 aa. BcMV9/IBc-114 has the highest identity of 98.61% with Botrytis cinerea mitovirus 9 (BcMV9) (MT089704). ScRV1, but not BcMV9/IBc-114, has certain effects on the host growth of S. commune. Furthermore, BcMV9/IBc-114 has been demonstrated to replicate in the ascomycetous fungi Botrytis cinerea and Sclerotinia sclerotiorum, and it negatively affects the growth and pathogenicity of B. cinerea, but it does not affect S. sclerotiorum. This is the first report of mycoviruses in S. commune and cross-phyla transmission of mitovirus in nature.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (A.Z.); (J.X.); (J.C.); (T.C.); (B.L.); (X.Y.); (X.L.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.F.); (Y.L.)
| |
Collapse
|
11
|
Mu T, Wang Z, Liu Z, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Alternaria tenuissima. Arch Virol 2024; 169:218. [PMID: 39379747 DOI: 10.1007/s00705-024-06145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 10/10/2024]
Abstract
In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in Alternaria tenuissima strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5' and 3' untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus Duamitovirus within the family Mitoviridae. Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus Duamitovirus. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting A. tenuissima.
Collapse
Affiliation(s)
- Tongyu Mu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhonglei Wang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhijun Liu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Herbert J, van Dijk AA. Identification of a cooperative effect between amino acids 169 and 174 in the rotavirus NSP4 double-layered particle-binding domain. J Gen Virol 2024; 105. [PMID: 39320365 DOI: 10.1099/jgv.0.002029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Segmented RNA viruses are capable of exchanging genome segments via reassortment as a means of immune evasion and to maintain viral fitness. Reassortments of single-genome segments are common among group A rotaviruses. Multiple instances of co-reassortment of two genome segments, GS6(VP6) and GS10(NSP4), have been documented in surveillance. Specifically, a division between NSP4 genotypes has been observed in the NSP4 double-layered particle (DLP)-binding domain. A previously hypothesized mechanism for this co-reassortment has been suggested to be the interaction between VP6 and NSP4 during DLP transport from viroplasms for particle maturation. In this study, we used sequence analysis, RNA secondary structure prediction, molecular dynamics and reverse genetics to form a hypothesis regarding the role of the NSP4 DLP-binding domain. Sequence analysis showed that the polarity of NSP4 DLP-binding domain amino acids 169 and 174 is clearly divided between E1 and E2 NSP4 genotypes. Viruses with E1 NSP4s had 169A/I or 169S/T with 174S. E2 NSP4s had 169R/K and 174A. RNA secondary structure prediction showed that mutation in both 545 (aa169) and 561 (aa174) causes global structure remodelling. Molecular dynamics showed that the NSP4/VP6 interaction stability is increased by mutating both aa positions 169 and 174. Using reverse genetics, we showed that an R169I mutation alone does not prevent rescue. Conversely, 174A to 174S prevented rescue, and rescue could be returned by combining 174S with 169I. When compared to rSA11 NSP4-wt, both rSA11 NSP4-R169I and rSA11 NSP4-R169I/A174S had a negligible but significant reduction in titre at specific time points. This study suggests that amino acid 174 of NSP4 may be essential in maintaining the VP6/NSP4 interaction required for DLP transport. Our results suggest that maintenance of specific polarities of amino acids at positions 169 and 174 may be required for the fitness of rotavirus field strains.
Collapse
Affiliation(s)
- Jayme Herbert
- University of the Free State, Bloemfontein, South Africa
- Deltamune PTY (LTD), Pretoria, South Africa
| | | |
Collapse
|
13
|
Jia J, Liang H, Cheng L, Xia J, Chen X, Zhang B, Mu F. Complete genome sequence of a novel mitovirus isolated from the phytopathogenic fungus Alternaria alternata causing apple leaf blotch. Arch Virol 2024; 169:174. [PMID: 39107506 DOI: 10.1007/s00705-024-06106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024]
Abstract
In this study, a novel mitovirus, tentatively designated as "Alternaria alternata mitovirus 2" (AaMV2), was isolated from the fungus Alternaria alternata f. sp. mali causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus Duamitovirus within the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus in A. alternata.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hanyang Liang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
14
|
Yang Z, He Y, Li S, Meng J, Li N, Wang J. Isolation and Genomic Characterization of Kadipiro Virus from Mosquitoes in Yunnan, China. Vector Borne Zoonotic Dis 2024; 24:532-539. [PMID: 38683642 DOI: 10.1089/vbz.2023.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Coconstruction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan, China
| |
Collapse
|
15
|
Cao X, Liu B, Wang Z, Pang T, Sun L, Kondo H, Li J, Andika IB, Chi S. Identification of a novel member of the genus Laulavirus (family Phenuiviridae) from the entomopathogenic ascomycete fungus Cordyceps javanica. Arch Virol 2024; 169:166. [PMID: 38995418 DOI: 10.1007/s00705-024-06069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024]
Abstract
The virus family Phenuiviridae (order Hareavirales, comprising segmented negative-sense single stranded RNA viruses) has highly diverse members that are known to infect animals, plants, protozoans, and fungi. In this study, we identified a novel phenuivirus infecting a strain of the entomopathogenic fungus Cordyceps javanica isolated from a small brown plant hopper (Laodelphax striatellus), and this virus was tentatively named "Cordyceps javanica negative-strand RNA virus 1" (CjNRSV1). The CjNRSV1 genome consists of three negative-sense single stranded RNA segments (RNA1-3) with lengths of 7252, 2401, and 1117 nt, respectively. The 3'- and 5'-terminal regions of the RNA1, 2, and 3 segments have identical sequences, and the termini of the RNA segments are complementary to each other, reflecting a common characteristic of viruses in the order Hareavirales. RNA1 encodes a large protein (∼274 kDa) containing a conserved domain for the bunyavirus RNA-dependent RNA polymerase (RdRP) superfamily, with 57-80% identity to the RdRP encoded by phenuiviruses in the genus Laulavirus. RNA2 encodes a protein (∼79 kDa) showing sequence similarity (47-63% identity) to the movement protein (MP, a plant viral cell-to-cell movement protein)-like protein (MP-L) encoded by RNA2 of laulaviruses. RNA3 encodes a protein (∼28 kDa) with a conserved domain of the phenuivirid nucleocapsid protein superfamily. Phylogenetic analysis using the RdRPs of various phenuiviruses and other unclassified phenuiviruses showed CjNRSV1 to be grouped with established members of the genus Laulavirus. Our results suggest that CjNRSV1 is a novel fungus-infecting member of the genus Laulavirus in the family Phenuiviridae.
Collapse
Affiliation(s)
- Xinran Cao
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
- Shouguang International Vegetable Sci-Tech Fair Management Service Center, Shouguang, 262700, China
| | - Bo Liu
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ziqi Wang
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, 712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Junmin Li
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
- Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Shengqi Chi
- College of Plant Health and Medicine, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
16
|
Mlingo TAM, Beeton-Kempen N, Nthangeni MB, Theron J, Mokoena NB. Genome sequences of the 15 bluetongue virus vaccine strains incorporated in the South African live-attenuated vaccine. Microbiol Resour Announc 2024; 13:e0022324. [PMID: 38771059 PMCID: PMC11237729 DOI: 10.1128/mra.00223-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
Bluetongue disease in endemic areas is predominantly controlled through vaccination with live-attenuated vaccines. Sequencing of the original master seed viruses used in the production of Onderstepoort Biological Products vaccine was conducted. Nucleotide identities of 82.97%-100% were obtained for all sequences when compared to South African reference strains.
Collapse
Affiliation(s)
- Tendai A M Mlingo
- Department of Biochemistry, Genetics, and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Research and Development-Virology, Onderstepoort Biological Products, Pretoria, South Africa
| | | | - M Bethuel Nthangeni
- Research and Development-Virology, Onderstepoort Biological Products, Pretoria, South Africa
| | - Jacques Theron
- Department of Biochemistry, Genetics, and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Nobalanda B Mokoena
- Research and Development-Virology, Onderstepoort Biological Products, Pretoria, South Africa
| |
Collapse
|
17
|
Strydom A, Segone N, Coertze R, Barron N, Strydom M, O’Neill HG. Phylogenetic Analyses of Rotavirus A, B and C Detected on a Porcine Farm in South Africa. Viruses 2024; 16:934. [PMID: 38932226 PMCID: PMC11209240 DOI: 10.3390/v16060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period. Whole genomes were determined by sequencing using Illumina MiSeq without prior genome amplification. Fifteen RVA genomes, one RVB genome and a partial RVC genome were identified. Phylogenetic analyses of the RVA data suggested circulation of one dominant strain (G5-P[6]/P[13]/P[23]-I5-R1-C1-M1-A8-N1-T7-E1-H1), typical of South African porcine strains, although not closely related to previously detected South African porcine strains. Reassortment with three VP4-encoding P genotypes was detected. The study also reports the first complete RVB genome (G14-P[5]-I13-R4-C4-M4-A10-T4-E4-H7) from Africa. The partial RVC (G6-P[5]-IX-R1-C1-MX-A9-N6-T6-EX-H7) strain also grouped with porcine strains. The study shows the continued circulation of an RVA strain, with a high reassortment rate of the VP4-encoding segment, on the porcine farm. Furthermore, incidents of RVB and RVC on this farm emphasize the complex epidemiology of rotavirus in pigs.
Collapse
Affiliation(s)
- Amy Strydom
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | - Neo Segone
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | - Roelof Coertze
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
- Department of Infectious Diseases, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Göteborg, Sweden
| | - Nikita Barron
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| | | | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa; (A.S.); (N.S.); (R.C.); (N.B.)
| |
Collapse
|
18
|
Yu D, Wang Q, Song W, Kang Y, Lei Y, Wang Z, Chen Y, Huai D, Wang X, Liao B, Yan L. Characterization of Two Novel Single-Stranded RNA Viruses from Agroathelia rolfsii, the Causal Agent of Peanut Stem Rot. Viruses 2024; 16:854. [PMID: 38932147 PMCID: PMC11209298 DOI: 10.3390/v16060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Peanut stem rot is a soil-borne disease caused by Agroathelia rolfsii. It occurs widely and seriously affects the peanut yield in most peanut-producing areas. The mycoviruses that induce the hypovirulence of some plant pathogenic fungi are potential resources for the biological control of fungal diseases in plants. Thus far, few mycoviruses have been found in A. rolfsii. In this study, two mitoviruses, namely, Agroathelia rolfsii mitovirus 1 (ArMV1) and Agroathelia rolfsii mitovirus 2 (ArMV2), were identified from the weakly virulent A. rolfsii strain GP3-1, and they were also found in other A. rolfsii isolates. High amounts of ArMV1 and ArMV2in the mycelium could reduce the virulence of A. rolfsii strains. This is the first report on the existence of mitoviruses in A. rolfsii. The results of this study may provide insights into the classification and evolution of mitoviruses in A. rolfsii and enable the exploration of the use of mycoviruses as biocontrol agents for the control of peanut stem rot.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Boshou Liao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| | - Liying Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agricultural and Rural Affairs, Wuhan 430062, China; (D.Y.); (Q.W.); (W.S.); (Y.K.); (Y.L.); (Z.W.); (Y.C.); (D.H.); (X.W.)
| |
Collapse
|
19
|
Jia J, Nan L, Song Z, Chen X, Xia J, Cheng L, Zhang B, Mu F. Cross-species transmission of a novel bisegmented orfanplasmovirus in the phytopathogenic fungus Exserohilum rostratum. Front Microbiol 2024; 15:1409677. [PMID: 38846572 PMCID: PMC11153860 DOI: 10.3389/fmicb.2024.1409677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Mycoviruses have been found in various fungal species across different taxonomic groups, while no viruses have been reported yet in the fungus Exserohilum rostratum. In this study, a novel orfanplasmovirus, namely Exserohilum rostratum orfanplasmovirus 1 (ErOrfV1), was identified in the Exserohilum rostratum strain JZ1 from maize leaf. The complete genome of ErOrfV1 consists of two positive single-stranded RNA segments, encoding an RNA-dependent RNA polymerase and a hypothetical protein with unknown function, respectively. Phylogenetic analysis revealed that ErOrfV1 clusters with other orfanplasmoviruses, forming a distinct phyletic clade. A new family, Orfanplasmoviridae, is proposed to encompass this newly discovered ErOrfV1 and its associated orfanplasmoviruses. ErOrfV1 exhibits effective vertical transmission through conidia, as evidenced by its 100% presence in over 200 single conidium isolates. Moreover, it can be horizontally transmitted to Exserohilum turcicum. Additionally, the infection of ErOrfV1 is cryptic in E. turcicum because there were no significant differences in mycelial growth rate and colony morphology between ErOrfV1-infected and ErOrfV1-free strains. This study represents the inaugural report of a mycovirus in E. rostratum, as well as the first documentation of the biological and transmission characteristics of orfanplasmovirus. These discoveries significantly contribute to our understanding of orfanplasmovirus.
Collapse
Affiliation(s)
- Jichun Jia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Linjie Nan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Zehao Song
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Xu Chen
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Jinsheng Xia
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Lihong Cheng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| | - Fan Mu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong, Shanxi, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, Shanxi, China
| |
Collapse
|
20
|
Hua H, Zhang X, Yao Y, Wu X. Complete genome sequence of a novel mitovirus identified in the phytopathogenic fungus Fusarium oxysporum f. sp. melonis strain T-SD3. Arch Virol 2024; 169:126. [PMID: 38753067 DOI: 10.1007/s00705-024-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
A novel mitovirus was identified in Fusarium oxysporum f. sp. melonis strain T-SD3 and designated as "Fusarium oxysporum mitovirus 3" (FoMV3). The virus was isolated from diseased muskmelon plants with the typical symptom of fusarium wilt. The complete genome of FoMV3 is 2269 nt in length with a predicted AU content of 61.40% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a polypeptide of 679 amino acids (aa) containing a conserved RNA-dependent RNA polymerase (RdRp) domain with a molecular mass of 77.39 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5'-untranslated region (UTR) and 3'-UTR of FoMV3 were predicted to fold into stem-loop structures. BLASTp analysis revealed that the RdRp of FoMV3 shared the highest aa sequence identity (83.85%) with that of Fusarium asiaticum mitovirus 5 (FaMV5, a member of the family Mitoviridae) infecting F. asiaticum, the causal agent of wheat fusarium head blight. Phylogenetic analysis further suggested that FoMV3 is a new member of the genus Unuamitovirus within the family Mitoviridae. This is the first report of a new mitovirus associated with F. oxysporum f. sp. melonis.
Collapse
Affiliation(s)
- Huihui Hua
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xinyi Zhang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Yilin Yao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
21
|
Valusenko-Mehrkens R, Schilling-Loeffler K, Johne R, Falkenhagen A. VP4 Mutation Boosts Replication of Recombinant Human/Simian Rotavirus in Cell Culture. Viruses 2024; 16:565. [PMID: 38675907 PMCID: PMC11054354 DOI: 10.3390/v16040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Rotavirus A (RVA) is the leading cause of diarrhea requiring hospitalization in children and causes over 100,000 annual deaths in Sub-Saharan Africa. In order to generate next-generation vaccines against African RVA genotypes, a reverse genetics system based on a simian rotavirus strain was utilized here to exchange the antigenic capsid proteins VP4, VP7 and VP6 with those of African human rotavirus field strains. One VP4/VP7/VP6 (genotypes G9-P[6]-I2) triple-reassortant was successfully rescued, but it replicated poorly in the first cell culture passages. However, the viral titer was enhanced upon further passaging. Whole genome sequencing of the passaged virus revealed a single point mutation (A797G), resulting in an amino acid exchange (E263G) in VP4. After introducing this mutation into the VP4-encoding plasmid, a VP4 mono-reassortant as well as the VP4/VP7/VP6 triple-reassortant replicated to high titers already in the first cell culture passage. However, the introduction of the same mutation into the VP4 of other human RVA strains did not improve the rescue of those reassortants, indicating strain specificity. The results show that specific point mutations in VP4 can substantially improve the rescue and replication of recombinant RVA reassortants in cell culture, which may be useful for the development of novel vaccine strains.
Collapse
Affiliation(s)
| | | | | | - Alexander Falkenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (R.V.-M.); (K.S.-L.); (R.J.)
| |
Collapse
|
22
|
Hua H, Zhang X, Xia J, Wu X. A Novel Strain of Fusarium oxysporum Virus 1 Isolated from Fusarium oxysporum f. sp. niveum Strain X-GS16 Influences Phenotypes of F. oxysporum Strain HB-TS-YT-1 hyg. J Fungi (Basel) 2024; 10:252. [PMID: 38667923 PMCID: PMC11050907 DOI: 10.3390/jof10040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
A novel strain of Fusarium oxysporum virus 1 (FoV1) was identified from the Fusarium oxysporum f. sp. niveum strain X-GS16 and designated as Fusarium oxysporum virus 1-FON (FoV1-FON). The full genome of FoV1-FON is 2902 bp in length and contains two non-overlapping open reading frames (ORFs), ORF1 and ORF2, encoding a protein with an unknown function (containing a typical -1 slippery motif G_GAU_UUU at the 3'-end) and a putative RNA-dependent RNA polymerase (RdRp), respectively. BLASTx search against the National Center for the Biotechnology Information (NCBI) non-redundant database showed that FoV1-FON had the highest identity (97.46%) with FoV1. Phylogenetic analysis further confirmed that FoV1-FON clustered with FoV1 in the proposed genus Unirnavirus. FoV1-FON could vertically transmit via spores. Moreover, FoV1-FON was transmitted horizontally from the F. oxysporum f. sp. niveum strain X-GS16 to the F. oxysporum strain HB-TS-YT-1hyg. This resulted in the acquisition of the F. oxysporum strain HB-TS-YT-1hyg-V carrying FoV1-FON. No significant differences were observed in the sporulation and dry weight of mycelial biomass between HB-TS-YT-1hyg and HB-TS-YT-1hyg-V. FoV1-FON infection significantly increased the mycelial growth of HB-TS-YT-1hyg, but decreased its virulence to potato tubers and sensitivity to difenoconazole, prochloraz, and pydiflumetofen. To our knowledge, this is the first report of hypovirulence and reduced sensitivity to difenoconazole, prochloraz, and pydiflumetofen in F. oxysporum due to FoV1-FON infection.
Collapse
Affiliation(s)
| | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (H.H.); (X.Z.); (J.X.)
| |
Collapse
|
23
|
He Y, Meng J, Li N, Li Z, Wang D, Kou M, Yang Z, Li Y, Zhang L, Wang J. Isolation of Epizootic Hemorrhagic Disease Virus Serotype 10 from Culicoides tainanus and Associated Infections in Livestock in Yunnan, China. Viruses 2024; 16:175. [PMID: 38399951 PMCID: PMC10892452 DOI: 10.3390/v16020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.
Collapse
Affiliation(s)
- Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhao Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Dongmei Wang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Meiling Kou
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| | - Yunhui Li
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Laxi Zhang
- Jiangcheng County Animal Disease Prevention and Control Center, Jiangcheng 665900, China; (Z.L.); (D.W.); (Y.L.); (L.Z.)
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China; (Y.H.); (J.M.); (N.L.); (M.K.); (Z.Y.)
| |
Collapse
|
24
|
Li Y, Huang X, Zhou G, Ye A, Deng Y, Shi L, Zhang R. Characterization of a novel endornavirus isolated from the phytopathogenic fungus Rhizoctonia solani. Arch Virol 2024; 169:15. [PMID: 38163823 DOI: 10.1007/s00705-023-05915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/19/2023] [Indexed: 01/03/2024]
Abstract
Rhizoctonia solani endornavirus 8 (RsEV8) was isolated from strain XY175 of Rhizoctonia solani AG-1 IA. The full-length genome of RsEV8 is 16,147 nucleotides (nt) in length and contains a single open reading frame that encodes a large polyprotein of 5227 amino acids. The polyprotein contains four conserved domains: viral methyltransferase, putative DEAH box helicase, viral helicase, and RNA-dependent RNA polymerase (RdRp). RsEV8 has a shorter 3'-UTR (58 nt) and a longer 5'-UTR (404 nt). A multiple sequence alignment indicated that the RdRp of RsEV8 possesses eight typical RdRp motifs. According to a BLASTp analysis, RsEV8 shares 39.31% sequence identity with Rhizoctonia cerealis endornavirus-1084-7. Phylogenetic analysis demonstrated that RsEV8 clusters with members of the genus Betaendornavirus.
Collapse
Affiliation(s)
- Yangyi Li
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Xingxue Huang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Guolin Zhou
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Anhua Ye
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Yaohua Deng
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Lingfang Shi
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China
| | - Runhua Zhang
- Institute of Vegetable Research, Wuhan Academy of Agricultural Sciences, Wuhan, 430045, Hubei, China.
| |
Collapse
|
25
|
Ye L, Shi X, He Y, Chen J, Xu Q, Shafik K, Fu L, Yin Y, Kotta-Loizou I, Xu W. A novel botybirnavirus with a unique satellite dsRNA causes latent infection in Didymella theifolia isolated from tea plants. Microbiol Spectr 2023; 11:e0003323. [PMID: 37962342 PMCID: PMC10714997 DOI: 10.1128/spectrum.00033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE A novel botybirnavirus, infecting the tea plant pathogen Didymella theifolia and tentatively named Didymella theifolia botybirnavirus 1 (DtBRV1), together with an additional double-stranded RNA (dsRNA), was characterized. DtBRV1 comprises two dsRNAs (1 and 2) encapsidated in isometric virions, while dsRNA3 is a satellite. The satellite represents a unique specimen since it contains a duplicated region and has high similarity to the two botybirnavirus dsRNAs, supporting the notion that it most likely originated from a deficient genomic component. The biological characteristics of DtBRV1 were further determined. With their unique molecular traits, DtBRV1 and its related dsRNA expand our understanding of virus diversity, taxonomy, and evolution.
Collapse
Affiliation(s)
- Liangchao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xinyu Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yunqiang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jiao Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Qingeng Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Lanning Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yumeng Yin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
26
|
Sun A, Zhao L, Sun Y, Chen Y, Li C, Dong W, Yang G. Horizontal and Vertical Transmission of a Mycovirus Closely Related to the Partitivirus RhsV717 That Confers Hypovirulence in Rhizoctonia solani. Viruses 2023; 15:2088. [PMID: 37896865 PMCID: PMC10611285 DOI: 10.3390/v15102088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Rhizoctonia solani virus717 (RhsV717) was isolated from the Rhizoctonia solani (R. solani) AG-2 strain Rhs717. This study isolated a virus designated as Rhizoctonia solani partitivirus BS-5 (RsPV-BS5) from the R. solani AG-3 strain BS-5, the causal agent of tobacco target spot disease. The virus was identified as a strain of RhsV717. Transmission electron microscopy (TEM) images showed that RsPV-BS5 had virus particles with a diameter of approximately 40 nm. Importantly, it can be horizontally transmitted through hyphal anastomosis and vertically transmitted via sexual basidiospores. Furthermore, this study demonstrated that RsPV-BS5 infection significantly impedes mycelial growth and induces hypovirulence in tobacco leaves. Thus, RsPV-BS5 presents a promising avenue for biocontrolling tobacco target spot disease. Transcriptome analysis unveiled differential expression of four genes related to cell wall-degrading enzymes between two isogenic strains, 06-2-15V and 06-2-15. These findings shed light on the molecular mechanism through which RsPV-BS5 reduces host pathogenicity.
Collapse
Affiliation(s)
- Aili Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650000, China
| | - Lianjing Zhao
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yang Sun
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Yingrui Chen
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Chengyun Li
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Wenhan Dong
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; (A.S.); (L.Z.); (Y.S.); (Y.C.); (C.L.)
| |
Collapse
|
27
|
Van Schalkwyk A, Coetzee P, Ebersohn K, Von Teichman B, Venter E. Widespread Reassortment Contributes to Antigenic Shift in Bluetongue Viruses from South Africa. Viruses 2023; 15:1611. [PMID: 37515297 PMCID: PMC10383083 DOI: 10.3390/v15071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Bluetongue (BT), a viral disease of ruminants, is endemic throughout South Africa, where outbreaks of different serotypes occur. The predominant serotypes can differ annually due to herd immunity provided by annual vaccinations using a live attenuated vaccine (LAV). This has led to both wild-type and vaccine strains co-circulating in the field, potentially leading to novel viral strains due to reassortment and recombination. Little is known about the molecular evolution of the virus in the field in South Africa. The purpose of this study was to investigate the genetic diversity of field strains of BTV in South Africa and to provide an initial assessment of the evolutionary processes shaping BTV genetic diversity in the field. Complete genomes of 35 field viruses belonging to 11 serotypes, collected from different regions of the country between 2011 and 2017, were sequenced. The sequences were phylogenetically analysed in relation to all the BTV sequences available from GenBank, including the LAVs and reference strains, resulting in the analyses and reassortment detection of 305 BTVs. Phylogenomic analysis indicated a geographical selection of the genome segments, irrespective of the serotype. Based on the initial assessment of the current genomic clades that circulate in South Africa, the selection for specific clades is prevalent in directing genome segment reassortment, which seems to exclude the vaccine strains and in multiple cases involves Segment-2 resulting in antigenic shift.
Collapse
Affiliation(s)
- Antoinette Van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Karen Ebersohn
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | | | - Estelle Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
- School of Public Health, Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville 4811, Australia
| |
Collapse
|
28
|
Wu Z, Tian X, Liu X, Zhou J, Yu W, Qi X, Peng J, Hsiang T, Wang Q, Wu N, Jiang Y. Complete genome sequence of a novel chrysovirus infecting Aspergillus terreus. Arch Virol 2023; 168:209. [PMID: 37474811 DOI: 10.1007/s00705-023-05839-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
A double-stranded RNA (dsRNA) mycovirus was obtained from Aspergillus terreus strain HJ3-26 and designated "Aspergillus terreus chrysovirus 1" (AtCV1). It consists of four dsRNA segments (dsRNA1-4) with lengths of 3612 bp, 3132 bp, 3153 bp, and 3144 bp, respectively. Sequence analysis showed that dsRNA1 encodes an RNA-dependent RNA polymerase (RdRp), dsRNA2 encodes a capsid protein, and both dsRNA3 and dsRNA4 encode hypothetical proteins. Phylogenetic analysis of the RdRp suggested that AtCV1 is a member of a new species of the genus Alphachrysovirus in the family Chrysoviridae. This is the first chrysovirus obtained from A. terreus.
Collapse
Affiliation(s)
- Zunqiu Wu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
- National experimental demonstration center of basic medicine (Guizhou Medical University, 550025, Guiyang, Guizhou Province, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Jianhong Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Biology and Engineering, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph), N1G 2W1, Guelph, ON, Canada
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China
| | - Ning Wu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China.
- National experimental demonstration center of basic medicine (Guizhou Medical University, 550025, Guiyang, Guizhou Province, China.
| | - Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University), 550004, Guiyang, Guizhou Province, China.
| |
Collapse
|
29
|
Jia J, Chen X, Wang X, Liu X, Zhang N, Zhang B, Chang Y, Mu F. Molecular characterization of a novel ambiguivirus isolated from the phytopathogenic fungus Setosphaeria turcica. Arch Virol 2023; 168:199. [PMID: 37400663 DOI: 10.1007/s00705-023-05829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023]
Abstract
In this study, a novel single-stranded RNA virus was isolated from the plant-pathogenic fungus Setosphaeria turcica strain TG2, and the virus was named "Setosphaeria turcica ambiguivirus 2" (StAV2). The complete nucleotide sequence of the StAV2 genome was determined using RT-PCR and RLM-RACE. The StAV2 genome comprises 3,000 nucleotides with a G+C content of 57.77%. StAV2 contains two in-frame open reading frames (ORFs) with the potential to produce an ORF1-ORF2 fusion protein via a stop codon readthrough mechanism. ORF1 encodes a hypothetical protein (HP) of unknown function. The ORF2-encoded protein shows a high degree of sequence similarity to the RNA-dependent RNA polymerases (RdRps) of ambiguiviruses. BLASTp searches showed that the StAV2 HP and RdRp share the highest amino acid sequence identity (46.38% and 69.23%, respectively) with the corresponding proteins of a virus identified as "Riboviria sp." isolated from a soil sample. Multiple sequence alignments and phylogenetic analysis based on the amino acid sequences of the RdRp revealed that StAV2 is a new member of the proposed family "Ambiguiviridae".
Collapse
Affiliation(s)
- Jichun Jia
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Chen
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xue Wang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xu Liu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Nuo Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yindong Chang
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Fan Mu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
30
|
Zheng Y, Chen M, Li X, Dai F, Gao Z, Deng Q, Fang S, Zhang S, Pan S. Four distinct isolates of a novel polymycovirus identified in Setosphaeria turcica. Arch Virol 2023; 168:189. [PMID: 37351692 DOI: 10.1007/s00705-023-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Isolation and analysis of double-stranded RNA (dsRNA) from the phytopathogenic fungus Setosphaeria turcica f. sp. zeae revealed the presence of a new double-stranded RNA (dsRNA) virus, tentatively named "Setosphaeria turcica polymycovirus 2" (StPmV2). The genome of StPmV2 consists of five segments (dsRNA1-5), ranging in size from 965 bp to 2462 bp. Each dsRNA contains one open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) with conserved terminal sequences. The putative protein encoded by dsRNA1 shows 64.52% amino acid sequence identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Cladosporium cladosporioides virus 1, which belongs to the family Polymycoviridae. dsRNAs 2-4 encode the putative coat protein, methyltransferase (MTR), and proline-alanine-serine-rich protein (PASrp), respectively, and dsRNA5 encodes a protein of unknown function. Phylogenetic analysis based on the RdRp protein indicated that StPmV2 clustered with members of the family Polymycoviridae and is therefore a new mycovirus belonging to the genus Polymycovirus in the family Polymycoviridae. In addition, three other distinct isolates of StPmV2 were identified: one isolated from S. turcica f. sp. zeae and two from S. turcica f. sp. sorghi. To our knowledge, this is the first report of a polymycovirus infecting both S. turcica f. sp. zeae and S. turcica f. sp. sorghi.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Miaomiao Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Xiquan Li
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China
| | - Zhongnan Gao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, China.
| | - Shouhui Pan
- Anshun Branch of Guizhou Tobacco Company, Anshun, 561000, China.
| |
Collapse
|
31
|
Liu C, Jiang X, Tan Z, Wang R, Shang Q, Li H, Xu S, Aranda MA, Wu B. An Outstandingly Rare Occurrence of Mycoviruses in Soil Strains of the Plant-Beneficial Fungi from the Genus Trichoderma and a Novel Polymycoviridae Isolate. Microbiol Spectr 2023; 11:e0522822. [PMID: 37022156 PMCID: PMC10269472 DOI: 10.1128/spectrum.05228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/31/2023] [Indexed: 04/07/2023] Open
Abstract
In fungi, viral infections frequently remain cryptic causing little or no phenotypic changes. It can indicate either a long history of coevolution or a strong immune system of the host. Some fungi are outstandingly ubiquitous and can be recovered from a great diversity of habitats. However, the role of viral infection in the emergence of environmental opportunistic species is not known. The genus of filamentous and mycoparasitic fungi Trichoderma (Hypocreales, Ascomycota) consists of more than 400 species, which mainly occur on dead wood, other fungi, or as endo- and epiphytes. However, some species are environmental opportunists because they are cosmopolitan, can establish in a diversity of habitats, and can also become pests on mushroom farms and infect immunocompromised humans. In this study, we investigated the library of 163 Trichoderma strains isolated from grassland soils in Inner Mongolia, China, and found only four strains with signs of the mycoviral nucleic acids, including a strain of T. barbatum infected with a novel strain of the Polymycoviridae and named and characterized here as Trichoderma barbatum polymycovirus 1 (TbPMV1). Phylogenetic analysis suggested that TbPMV1 was evolutionarily distinct from the Polymycoviridae isolated either from Eurotialean fungi or from the order Magnaportales. Although the Polymycoviridae viruses were also known from Hypocrealean Beauveria bassiana, the phylogeny of TbPMV1 did not reflect the phylogeny of the host. Our analysis lays the groundwork for further in-depth characterization of TbPMV1 and the role of mycoviruses in the emergence of environmental opportunism in Trichoderma. IMPORTANCE Although viruses infect all organisms, our knowledge of some groups of eukaryotes remains limited. For instance, the diversity of viruses infecting fungi-mycoviruses-is largely unknown. However, the knowledge of viruses associated with industrially relevant and plant-beneficial fungi, such as Trichoderma spp. (Hypocreales, Ascomycota), may shed light on the stability of their phenotypes and the expression of beneficial traits. In this study, we screened the library of soilborne Trichoderma strains because these isolates may be developed into bioeffectors for plant protection and sustainable agriculture. Notably, the diversity of endophytic viruses in soil Trichoderma was outstandingly low. Only 2% of 163 strains contained traces of dsRNA viruses, including the new Trichoderma barbatum polymycovirus 1 (TbPMV1) characterized in this study. TbPMV1 is the first mycovirus found in Trichoderma. Our results indicate that the limited data prevent the in-depth study of the evolutionary relationship between soilborne fungi and is worth further investigation.
Collapse
Affiliation(s)
- Chenchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiliang Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaoyan Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Hongrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Shujin Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin, China
| | - Miguel A. Aranda
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Murcia, Spain
| | - Beilei Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Manjate F, João ED, Mwangi P, Chirinda P, Mogotsi M, Messa A, Garrine M, Vubil D, Nobela N, Nhampossa T, Acácio S, Tate JE, Parashar U, Weldegebriel G, Mwenda JM, Alonso PL, Cunha C, Nyaga M, Mandomando I. Genomic characterization of the rotavirus G3P[8] strain in vaccinated children, reveals possible reassortment events between human and animal strains in Manhiça District, Mozambique. Front Microbiol 2023; 14:1193094. [PMID: 37342557 PMCID: PMC10277737 DOI: 10.3389/fmicb.2023.1193094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 06/23/2023] Open
Abstract
Mozambique introduced the rotavirus vaccine (Rotarix®; GlaxoSmithKline Biologicals, Rixensart, Belgium) in 2015, and since then, the Centro de Investigação em Saúde de Manhiça has been monitoring its impact on rotavirus-associated diarrhea and the trend of circulating strains, where G3P[8] was reported as the predominant strain after the vaccine introduction. Genotype G3 is among the most commonly detected Rotavirus strains in humans and animals, and herein, we report on the whole genome constellation of G3P[8] detected in two children (aged 18 months old) hospitalized with moderate-to-severe diarrhea at the Manhiça District Hospital. The two strains had a typical Wa-like genome constellation (I1-R1-C1-M1-A1-N1-T1-E1-H1) and shared 100% nucleotide (nt) and amino acid (aa) identities in 10 gene segments, except for VP6. Phylogenetic analysis demonstrated that genome segments encoding VP7, VP6, VP1, NSP3, and NSP4 of the two strains clustered most closely with porcine, bovine, and equine strains with identities ranging from 86.9-99.9% nt and 97.2-100% aa. Moreover, they consistently formed distinct clusters with some G1P[8], G3P[8], G9P[8], G12P[6], and G12P[8] strains circulating from 2012 to 2019 in Africa (Mozambique, Kenya, Rwanda, and Malawi) and Asia (Japan, China, and India) in genome segments encoding six proteins (VP2, VP3, NSP1-NSP2, NSP5/6). The identification of segments exhibiting the closest relationships with animal strains shows significant diversity of rotavirus and suggests the possible occurrence of reassortment events between human and animal strains. This demonstrates the importance of applying next-generation sequencing to monitor and understand the evolutionary changes of strains and evaluate the impact of vaccines on strain diversity.
Collapse
Affiliation(s)
- Filomena Manjate
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Eva D. João
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Percina Chirinda
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Milton Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Augusto Messa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marcelino Garrine
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Delfino Vubil
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Nélio Nobela
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Tacilta Nhampossa
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Sozinho Acácio
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Umesh Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Goitom Weldegebriel
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Jason M. Mwenda
- African Rotavirus Surveillance Network, Immunization, Vaccines, and Development Program, Regional Office for Africa, World Health Organization, Brazzaville, Democratic Republic of Congo
| | - Pedro L. Alonso
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Celso Cunha
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Inácio Mandomando
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Instituto Nacional de Saúde, Ministério da Saúde, Marracuene, Mozambique
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Yang Z, He Y, Meng J, Li N, Wang J. Full-genome characterisation of a putative novel serotype of Yonaguni orbivirus isolated from cattle in Yunnan province, China. Virus Genes 2023; 59:223-233. [PMID: 36441333 DOI: 10.1007/s11262-022-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022]
Abstract
In July 2019, a novel viral strain (JH2019C603) was isolated from sentinel cattle in Jinghong City, in the subtropical region of Yunnan Province, China. The virus replicated and caused cytopathological effects in both Aedes albopictus (C6/36) and Baby Hamster Syrian Kidney (BHK-21) cells. Agarose gel electrophoresis analysis revealed a viral genome comprised of 10 segments of double-stranded RNA, with a 1-2-2-1-1-1-1-1 migration pattern. Complete genome sequences of the JH2019C603 virus were determined through full-length cDNA amplification. Phylogenetic analysis based on the amino acid (aa) sequences of RNA-dependent RNA Polymerase (Pol), Major subcore (T2) and Major core-surface (T13) showed that JH2019C603 clustered with Yonaguni orbivirus (YONOV) from Japan, with aa identities relative to YONOV of 97.7% (Pol), 99.0% (T2) and 98.5% (T13). However, phylogenetic analysis based on the aa sequences of the outer capsid protein one and two (OC1 and OC2) showed that JH2019C603 formed an independent branch in the phylogenetic tree, and its aa identity with YONOV was only 55.4% (OC1) and 80.8% (OC2), respectively. Compared with the prototype of YONOV, a notable sequence deletion was observed in the 3' non-coding region of NS1, with the NS1 of JH2019C603 encoded within segment 7 (Seg-7), in contrast to YONOV, which contains NS1 in Seg-6. These results indicate that JH2019C603 belongs to the YONOV lineage and might be a novel serotype or a highly variant strain of YONOV. These findings will facilitate the identification of new isolates and clarify their geographical distribution, epidemiology, genetic diversity and possible disease associations.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan Province, China.
| |
Collapse
|
34
|
Zheng Y, Yin S, Zhao Y, Li S, Lu Z, Li Z, Deng Q, Li Z, Zhang S, Fang S. Molecular and biological characteristics of a novel chrysovirus infecting the fungus phytopathogenic Setosphaeria turcica f.sp. sorghi. Virus Res 2023; 325:199037. [PMID: 36596382 DOI: 10.1016/j.virusres.2022.199037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
A new double-stranded RNA (dsRNA) virus has been identified in the filamentous fungus Setosphaeria turcica f.sp. sorghi, whose genome consists of four segments (dsRNA1-4). Each dsRNA carries single open reading frame (ORF) flanked by 5' and 3' untranslated regions (UTRs) containing strictly conserved termini. The putative protein encoded by dsRNA1 showed 80.50% identity to the RNA-dependent RNA polymerase (RdRp) of the most closely related virus, Alternaria alternata chrysovirus 1 (AaCV1), belonging to the Chrysoviridae. dsRNA2 encodes the putative coat protein, while dsRNA3 and dsRNA4 respectively encode the hypothetical proteins of unknown functions. Phylogenetic analysis based on the RdRp protein indicated the virus clustered with members of the genus Betachrysovirus in the family Chrysoviridae. Based on the dsRNA profile, amino acid sequence comparisons, and phylogenetic analyses, the mycovirus is thought to be a new member of the family Chrysoviridae and designated as Setosphaeria turcica chrysovirus 1 (StCV1). Moreover, obvious differences were observed in the colony, mycelial and spore morphology between StCV1-infected and virus-cured strains of S. turcica f.sp. sorghi. StCV1 infection strongly reduced colony growth rate, spore production ability and virulence on host fungus. To our knowledge, this is the first report about mycovirus infecting S. turcica f.sp. sorghi and also the first chrysovirus infecting S. turcica.
Collapse
Affiliation(s)
- Yun Zheng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Shuangshuang Yin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Yinxiao Zhao
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Siyu Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhou Lu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zikuo Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Qingchao Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China
| | - Zhanbiao Li
- MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China; MARA Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shouguo Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
35
|
Ye T, Lu Z, Li H, Duan J, Hai D, Lin Y, Xie J, Cheng J, Li B, Chen T, Fu Y, Jiang D. Characterization of a Fungal Virus Representing a Novel Genus in the Family Alphaflexiviridae. Viruses 2023; 15:339. [PMID: 36851552 PMCID: PMC9967154 DOI: 10.3390/v15020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Sclerotinia sclerotiorum is an ascomycetous fungus and hosts various mycoviruses. In this study, a novel fungal alphaflexivirus with a special genomic structure, named Sclerotinia sclerotiorum alphaflexivirus 1 (SsAFV1), was cloned from a hypovirulent strain, AHS31. Strain AHS31 was also co-infected with two botourmiaviruses and two mitoviruses. The complete genome of SsAFV1 comprised 6939 bases with four open reading frames (ORFs), a conserved 5'-untranslated region (UTR), and a poly(A) tail in the 3' terminal; the ORF1 and ORF3 encoded a replicase and a coat protein (CP), respectively, while the function of the proteins encoded by ORF2 and ORF4 was unknown. The virion of SsAFV1 was flexuous filamentous 480-510 nm in length and 9-10 nm in diameter. The results of the alignment and the phylogenetic analysis showed that SsAFV1 is related to allexivirus and botrexvirus, such as Garlic virus X of the genus Allexivirus and Botrytis virus X of the genus Botrevirus, both with 44% amino-acid (aa) identity of replicase. Thus, SsAFV1 is a novel virus and a new genus, Sclerotexvirus, is proposed to accommodate this novel alphaflexivirus.
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongbo Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Du Hai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
36
|
Zhao Y, Du H, Liu Y, Zhong R, Guan Z, Wang G, Zhang Y, Wei C, Wang M, Wan X, Zang R, Wen C, Meng H. Molecular characterization of a novel victorivirus isolated from the phytopathogenic fungus Phaeobotryon rhois. Arch Virol 2023; 168:15. [PMID: 36593368 DOI: 10.1007/s00705-022-05678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 01/03/2023]
Abstract
Phaeobotryon rhois is an important pathogenic fungus that causes dieback and canker disease of woody hosts. A novel mycovirus, tentatively named "Phaeobotryon rhois victorivirus 1" (PrVV1), was identified in P. rhois strain SX8-4. The PrVV1 has a double-stranded RNA (dsRNA) genome that is 5,224 base pairs long and contains two open reading frames (ORF1 and ORF2), which overlap at a AUGA sequence. ORF1 encodes a polypeptide of 786 amino acids (aa) that contains the conserved coat protein (CP) domain of victoriviruses, while ORF2, encodes a large polypeptide of 826 aa that contains the conserved RNA-dependent RNA polymerase (RdRp) domain of victoriviruses. Our analysis of genomic structure, homology, and phylogeny indicated that PrVV1 is a novel member of the genus Victorivirus in the family Totiviridae. This is the first report of the complete genome sequence of a victorivirus that infects P. rhois.
Collapse
Affiliation(s)
- Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyuan Liu
- Yinchuan City Center for Disease Control and Prevention, Yinchuan, China
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ganlin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenxing Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinru Wan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Haoguang Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
37
|
Vijayraghavan S, Kozmin SG, Xi W, McCusker JH. A novel narnavirus is widespread in Saccharomyces cerevisiae and impacts multiple host phenotypes. G3 (BETHESDA, MD.) 2022; 13:6957440. [PMID: 36560866 PMCID: PMC9911063 DOI: 10.1093/g3journal/jkac337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
RNA viruses are a widespread, biologically diverse group that includes the narnaviridiae, a family of unencapsidated RNA viruses containing a single ORF that encodes an RNA-dependent RNA polymerase. In the yeast Saccharomyces cerevisiae, the 20S and 23S RNA viruses are well-studied members of the narnaviridiae, which are present at low intracellular copy numbers, unless induced by stress or unfavorable growth conditions, and are not known to affect host fitness. In this study, we describe a new S. cerevisiae narnavirus that we designate as N1199. We show that N1199 is uniquely present as a double-stranded RNA at a high level relative to other known members of this family in 1 strain background, YJM1199, and is present as a single-stranded RNA at lower levels in 98 of the remaining 100-genomes strains. Furthermore, we see a strong association between the presence of high level N1199 and host phenotype defects, including greatly reduced sporulation efficiency and growth on multiple carbon sources. Finally, we describe associations between N1199 abundance and host phenotype defects, including autophagy.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Present address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA
| | - Wen Xi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA
| | - John H McCusker
- Corresponding author: Department of Molecular Genetics and Microbiology, Duke University Medical Center, 561 Research Drive 3020, Jones Bldg. Room 239, Durham, NC 27710, USA.
| |
Collapse
|
38
|
Jiang Y, Tian X, Liu X, Yang B, Wang N, Wang Q, Yu W, Qi X, Peng J, Hsiang T. Complete genome sequence of a novel chrysovirus infecting Talaromyces neofusisporus. Arch Virol 2022; 167:2789-2793. [PMID: 36156748 DOI: 10.1007/s00705-022-05582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus was isolated from Talaromyces neofusisporus isolate HJ1-6 and named "Talaromyces neofusisporus chrysovirus 1" (TnCV1). It was found to consist of four dsRNA segments (TnCV1-1, TnCV1-2, TnCV1-3, and TnCV1-4) with lengths of 3595 bp, 3063 bp, 3054 bp, and 2876 bp, respectively. Sequence analysis showed that TnCV1-1 contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) of 1136 amino acids (aa), TnCV1-2 contains an ORF encoding a hypothetical protein of 906 aa, TnCV1-3 contains an ORF encoding a putative capsid protein (CP) of 938 aa, and TnCV1-4 contains an ORF encoding a hypothetical protein of 849 aa. The 5' and 3' untranslated regions (UTRs) of TnCV1-1, TnCV1-2, TnCV1-3, and TnCV1-4 showed a high degree of sequence similarity to each other. Phylogenetic analysis based on RdRp sequences suggested that TnCV1 is a new member of the genus Alphachrysovirus in the family Chrysoviridae. This is the first chrysovirus isolated from T. neofusisporus.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China. .,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China.
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Nianxue Wang
- Department of Biology, School of Basic Medical Sciences, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Ministry of Education, 550004, Guiyang, China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Jian Peng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, 550004, Guiyang, Guizhou Province, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, N1G 2W1, Guelph, ON, Canada
| |
Collapse
|
39
|
Zhang X, Li S, Ma Z, Cai Q, Zhou T, Wu X. Complete genome sequence of a novel mitovirus isolated from the fungus Fusarium equiseti causing potato dry rot. Arch Virol 2022; 167:2777-2781. [PMID: 36178543 DOI: 10.1007/s00705-022-05578-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/14/2022] [Indexed: 12/14/2022]
Abstract
In this study, a novel mitovirus was isolated from the fungus Fusarium equiseti causing potato dry rot and tentatively designated as "Fusarium equiseti mitovirus 1" (FeMV1). The full-length genome sequence of FeMV1 consists of 2,459 nucleotides with a predicted A + U content of 69.5%. Using the mold mitochondrial genetic code, an open reading frame (ORF) of 725 amino acids (aa) was predicted to encode an RNA-dependent RNA polymerase (RdRp). The RdRp protein contains six conserved motifs, with the highly conserved GDD in motif IV, and the 5'-untranslated region (UTR) and 3'-UTR of FeMV1 have the potential to fold into stem-loop secondary structures and a panhandle structure, both of which are typical characteristics of members of the family Mitoviridae. Results of a BLASTp search showed that the RdRp aa sequence of FeMV1 shared the highest sequence similarity with that of Fusarium poae mitovirus 2 (FpMV2) (76.84% identity, E-value = 0.0). Phylogenetic analysis based on the complete aa sequence of RdRp further suggested that FeMV1 is a new member of the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus associated with F. equiseti.
Collapse
Affiliation(s)
- Xiaofang Zhang
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Zhihao Ma
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, 100193, Beijing, People's Republic of China.
| |
Collapse
|
40
|
Wang Y, Ong J, Ng OW, Songkasupa T, Koh EY, Wong JPS, Puangjinda K, Fernandez CJ, Huangfu T, Ng LC, Chang SF, Yap HH. Development of Differentiating Infected from Vaccinated Animals (DIVA) Real-Time PCR for African Horse Sickness Virus Serotype 1. Emerg Infect Dis 2022; 28:2446-2454. [PMID: 36417933 PMCID: PMC9707579 DOI: 10.3201/eid2812.220594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
African horse sickness (AHS) is a highly infectious and often fatal disease caused by 9 serotypes of the orbivirus African horse sickness virus (AHSV). In March 2020, an AHS outbreak was reported in Thailand in which AHSV serotype 1 was identified as the causative agent. Trivalent live attenuated vaccines serotype 1, 3, and 4 were used in a targeted vaccination campaign within a 50-km radius surrounding the infected cases, which promptly controlled the spread of the disease. However, AHS-like symptoms in vaccinated horses required laboratory diagnostic methods to differentiate infected horses from vaccinated horses, especially for postvaccination surveillance. We describe a real-time reverse transcription PCR-based assay for rapid characterization of the affecting field strain. The development and validation of this assay should imbue confidence in differentiating AHS-vaccinated horses from nonvaccinated horses. This method should be applied to determining the epidemiology of AHSV in future outbreaks.
Collapse
|
41
|
Kartali T, Zsindely N, Nyilasi I, Németh O, Sávai GN, Kocsubé S, Lipinszki Z, Patai R, Spisák K, Nagy G, Bodai L, Vágvölgyi C, Papp T. Molecular Characterization of Novel Mycoviruses in Seven Umbelopsis Strains. Viruses 2022; 14:v14112343. [PMID: 36366438 PMCID: PMC9694724 DOI: 10.3390/v14112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 02/01/2023] Open
Abstract
The presence of viruses is less explored in Mucoromycota as compared to other fungal groups such as Ascomycota and Basidiomycota. Recently, more and more mycoviruses are identified from the early-diverging lineages of fungi. We have determined the genome of 11 novel dsRNA viruses in seven different Umbelopsis strains with next-generation sequencing (NGS). The identified viruses were named Umbelopsis ramanniana virus 5 (UrV5), 6a (UrV6a); 6b (UrV6b); 7 (UrV7); 8a (UrV8a); 8b (UrV8b); Umbelopsis gibberispora virus 1 (UgV1); 2 (UgV2) and Umbelopsis dimorpha virus 1a (UdV1a), 1b (UdV1b) and 2 (UdV2). All the newly identified viruses contain two open reading frames (ORFs), which putatively encode the coat protein (CP) and the RNA-dependent RNA polymerase (RdRp), respectively. Based on the phylogeny inferred from the RdRp sequences, eight viruses (UrV7, UrV8a, UrV8b, UgV1, UgV2, UdV1a, UdV1b and UdV2) belong to the genus Totivirus, while UrV5, UrV6a and UrV6b are placed into a yet unclassified but well-defined Totiviridae-related group. In UrV5, UgV1, UgV2, UrV8b, UdV1a, UdV2 and UdV1b, ORF2 is predicted to be translated as a fusion protein via a rare +1 (or -2) ribosomal frameshift, which is not characteristic to most members of the Totivirus genus. Virus particles 31 to 32 nm in diameter could be detected in the examined fungal strains by transmission electron microscopy. Through the identification and characterization of new viruses of Mucoromycota fungi, we can gain insight into the diversity of mycoviruses, as well as into their phylogeny and genome organization.
Collapse
Affiliation(s)
- Tünde Kartali
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence: (T.K.); (T.P.)
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Ildikó Nyilasi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Orsolya Németh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Gergő Norbert Sávai
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Zoltán Lipinszki
- MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), 6726 Szeged, Hungary
| | - Roland Patai
- Neuronal Plasticity Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
| | - Krisztina Spisák
- Neuronal Plasticity Research Group, Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, 6722 Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
| | - Tamás Papp
- ELKH-SZTE Fungal Pathogenicity Mechanisms Research Group, University of Szeged, 6726 Szeged, Hungary
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, 6726 Szeged, Hungary
- Correspondence: (T.K.); (T.P.)
| |
Collapse
|
42
|
Wang R, Liu C, Jiang X, Tan Z, Li H, Xu S, Zhang S, Shang Q, Deising HB, Behrens SE, Wu B. The Newly Identified Trichoderma harzianum Partitivirus (ThPV2) Does Not Diminish Spore Production and Biocontrol Activity of Its Host. Viruses 2022; 14:1532. [PMID: 35891512 PMCID: PMC9317543 DOI: 10.3390/v14071532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.
Collapse
Affiliation(s)
- Rongqun Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Chenchen Liu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Xiliang Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Zhaoyan Tan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Hongrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shujin Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
- College of Horticulture and Landscapes, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuaihu Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| | - Qiaoxia Shang
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China;
| | - Holger B. Deising
- Institute for Agricultural and Nutritional Sciences, Section Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Beilei Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Rd., Haidian District, Beijing 100193, China; (R.W.); (C.L.); (X.J.); (Z.T.); (H.L.); (S.X.); (S.Z.)
| |
Collapse
|
43
|
Li Y, Li S, Liang Z, Cai Q, Zhou T, Zhao C, Wu X. RNA-seq Analysis of Rhizoctonia solani AG-4HGI Strain BJ-1H Infected by a New Viral Strain of Rhizoctonia solani Partitivirus 2 Reveals a Potential Mechanism for Hypovirulence. PHYTOPATHOLOGY 2022; 112:1373-1385. [PMID: 34965159 DOI: 10.1094/phyto-08-21-0349-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rhizoctonia solani partitivirus 2 (RsPV2), in the genus Alphapartitivirus, confers hypovirulence on R. solani AG-1-IA, the causal agent of rice sheath blight. In this study, a new strain of RsPV2 obtained from R. solani AG-4HGI strain BJ-1H, the causal agent of black scurf on potato, wasidentified and designated as Rhizoctonia solani partitivirus 2 strain BJ-1H (RsPV2-BJ). An RNA sequencing analysis of strain BJ-1H and the virus RsPV2-BJ-free strain BJ-1H-VF derived from strain BJ-1H was conducted to investigate the potential molecular mechanism of hypovirulence induced by RsPV2-BJ. In total, 14,319 unigenes were obtained, and 1,341 unigenes were identified as differentially expressed genes (DEGs), with 570 DEGs being down-regulated and 771 being up-regulated. Notably, several up-regulated DEGs were annotated to cell wall degrading enzymes, including β-1,3-glucanases. Strain BJ-1H exhibited increased expression of β-1,3-glucanase after RsPV2-BJ infection, suggesting that cell wall autolysis activity in R. solani AG-4HGI strain BJ-1H might be promoted by RsPV2-BJ, inducing hypovirulence in its host fungus R. solani AG-4HGI. To the best of our knowledge, this is the first report on the potential mechanism of hypovirulence induced by a mycovirus in R. solani.
Collapse
Affiliation(s)
- Yuting Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Siwei Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Zhijian Liang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Qingnian Cai
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Tao Zhou
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Can Zhao
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
- College of Horticulture, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
44
|
Jiang Y, Yang B, Liu X, Tian X, Wang Q, Wang B, Zhang Q, Yu W, Qi X, Jiang Y, Hsiang T. A Satellite dsRNA Attenuates the Induction of Helper Virus-Mediated Symptoms in Aspergillus flavus. Front Microbiol 2022; 13:895844. [PMID: 35711767 PMCID: PMC9195127 DOI: 10.3389/fmicb.2022.895844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus flavus is an important fungal pathogen of animals and plants. Previously, we reported a novel partitivirus, Aspergillus flavus partitivirus 1 (AfPV1), infecting A. flavus. In this study, we obtained a small double-stranded (ds) RNA segment (734 bp), which is a satellite RNA of the helper virus, AfPV1. The presence of AfPV1 altered the colony morphology, decreased the number of conidiophores, created significantly larger vacuoles, and caused more sensitivity to osmotic, oxidative, and UV stresses in A. flavus, but the small RNA segment could attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus. Moreover, AfPV1 infection reduced the pathogenicity of A. flavus in corn (Zea mays), honeycomb moth (Galleria mellonella), mice (Mus musculus), and the adhesion of conidia to host epithelial cells, and increased conidial death by macrophages. However, the small RNA segment could also attenuate the above symptoms caused by the helper virus AfPV1 in A. flavus, perhaps by reducing the genomic accumulation of the helper virus AfPV1 in A. flavus. We used this model to investigate transcriptional genes regulated by AfPV1 and the small RNA segment in A. flavus, and their role in generating different phenotypes. We found that the pathways of the genes regulated by AfPV1 in its host were similar to those of retroviral viruses. Therefore, some pathways may be of benefit to non-retroviral viral integration or endogenization into the genomes of its host. Moreover, some potential antiviral substances were also found in A. flavus using this system.
Collapse
Affiliation(s)
- Yinhui Jiang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiang Liu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xun Tian
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qinrong Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Qifang Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
Mwangi PN, Page NA, Seheri ML, Mphahlele MJ, Nadan S, Esona MD, Kumwenda B, Kamng'ona AW, Donato CM, Steele DA, Ndze VN, Dennis FE, Jere KC, Nyaga MM. Evolutionary changes between pre- and post-vaccine South African group A G2P[4] rotavirus strains, 2003-2017. Microb Genom 2022; 8. [PMID: 35446251 PMCID: PMC9453071 DOI: 10.1099/mgen.0.000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transient upsurge of G2P[4] group A rotavirus (RVA) after Rotarix vaccine introduction in several countries has been a matter of concern. To gain insight into the diversity and evolution of G2P[4] strains in South Africa pre- and post-RVA vaccination introduction, whole-genome sequencing was performed for RVA positive faecal specimens collected between 2003 and 2017 and samples previously sequenced were obtained from GenBank (n=103; 56 pre- and 47 post-vaccine). Pre-vaccine G2 sequences predominantly clustered within sub-lineage IVa-1. In contrast, post-vaccine G2 sequences clustered mainly within sub-lineage IVa-3, whereby a radical amino acid (AA) substitution, S15F, was observed between the two sub-lineages. Pre-vaccine P[4] sequences predominantly segregated within sub-lineage IVa while post-vaccine sequences clustered mostly within sub-lineage IVb, with a radical AA substitution R162G. Both S15F and R162G occurred outside recognised antigenic sites. The AA residue at position 15 is found within the signal sequence domain of Viral Protein 7 (VP7) involved in translocation of VP7 into endoplasmic reticulum during infection process. The 162 AA residue lies within the hemagglutination domain of Viral Protein 4 (VP4) engaged in interaction with sialic acid-containing structure during attachment to the target cell. Free energy change analysis on VP7 indicated accumulation of stable point mutations in both antigenic and non-antigenic regions. The segregation of South African G2P[4] strains into pre- and post-vaccination sub-lineages is likely due to erstwhile hypothesized stepwise lineage/sub-lineage evolution of G2P[4] strains rather than RVA vaccine introduction. Our findings reinforce the need for continuous whole-genome RVA surveillance and investigation of contribution of AA substitutions in understanding the dynamic G2P[4] epidemiology.
Collapse
Affiliation(s)
- Peter N Mwangi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Nicola A Page
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa.,Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, Pretoria, South Africa
| | - Mapaseka L Seheri
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - M Jeffrey Mphahlele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa.,Office of the Deputy Vice Chancellor for Research and Innovation, North-West University, Potchefstroom 2351, South Africa.,South African Medical Research Council, Pretoria 0001, South Africa
| | - Sandrama Nadan
- Centre for Enteric Disease, National Institute for Communicable Diseases, Private Bag X4, Sandringham, 2131, Johannesburg, South Africa
| | - Mathew D Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Benjamin Kumwenda
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Arox W Kamng'ona
- Department of Biomedical Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre 3, Malawi
| | - Celeste M Donato
- Department of Medical Laboratory Sciences, School of Life Sciences and Applied Health Professions, Kamuzu University of Health Sciences, Private Bag 360, Chichiri, Blantyre3, Malawi.,Enteric Diseases Group, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Melboune 3052, Australia.,Department of Paediatrics, the University of Melbourne, Parkville 3010, Australia
| | - Duncan A Steele
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Valantine N Ndze
- Faculty of Health Sciences, University of Buea, P.O Box 63 Buea, Cameroon
| | - Francis E Dennis
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O Box LG581, Legon, Ghana
| | - Khuzwayo C Jere
- Center for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, L697BE, Liverpool, UK.,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre 312225, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
46
|
Complete genome sequence of a novel victorivirus infecting Aspergillus niger. Arch Virol 2022; 167:1475-1479. [PMID: 35449474 DOI: 10.1007/s00705-022-05441-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/04/2022] [Indexed: 11/02/2022]
Abstract
Aspergillus niger is an important filamentous phytopathogenic fungus with a broad host range. A novel double-stranded (ds) RNA mycovirus, named Aspergillus niger victorivirus 1 (AnV1), isolated from A. niger strain baiyun3.23-4, was sequenced and analyzed. The AnV1 genome is 5317 nucleotides long with a GC content of 56%. AnV1 contains two open reading frames (ORF1 and 2), overlapping at a tetranucleotide sequence (AUGA). ORF1 encodes a putative capsid protein (CP) of 778 amino acids (aa), while ORF2 potentially encodes a putative RNA-dependent RNA polymerase (RdRp) of 826 aa. Phylogenetic analysis indicated that AnV1 is a new member of the genus Victorivirus in the family Totiviridae. As far as we know, this is the first report of the complete genome sequence of a victorivirus infecting A. niger.
Collapse
|
47
|
Abstract
RNA viruses usually have linear genomes and are encapsidated by their own capsids. Here, we newly identified four mycoviruses and two previously reported mycoviruses (a fungal reovirus and a botybirnavirus) in the hypovirulent strain SCH941 of Sclerotinia sclerotiorum. One of the newly discovered mycoviruses, Sclerotinia sclerotiorum yadokarivirus 1 (SsYkV1), with a nonsegmented positive-sense single-stranded RNA (+ssRNA) genome, was molecularly characterized. SsYkV1 is 5,256 nucleotides (nt) in length, excluding the poly(A) structure, and has a large open reading frame that putatively encodes a polyprotein with the RNA-dependent RNA polymerase (RdRp) domain and a 2A-like motif. SsYkV1 was phylogenetically positioned into the family Yadokariviridae and was most closely related to Rosellinia necatrix yadokarivirus 2 (RnYkV2), with 40.55% identity (78% coverage). Although SsYkV1 does not encode its own capsid protein, the RNA and RdRp of SsYkV1 are trans-encapsidated in virions of Sclerotinia sclerotiorum botybirnavirus 3 (SsBV3), a bisegmented double-stranded RNA (dsRNA) mycovirus within the genus Botybirnavirus. In this way, SsYkV1 likely replicates inside the heterocapsid comprised of the SsBV3 capsid protein, like a dsRNA virus. SsYkV1 has a limited impact on the biological features of S. sclerotiorum. This study represents an example of a yadokarivirus trans-encapsidated by an unrelated dsRNA virus, which greatly deepens our knowledge and understanding of the unique life cycles of RNA viruses. IMPORTANCE RNA viruses typically encase their linear genomes in their own capsids. However, a capsidless +ssRNA virus (RnYkV1) highjacks the capsid of a nonsegmented dsRNA virus for the trans-encapsidation of its own RNA and RdRp. RnYkV1 belongs to the family Yadokariviridae, which already contains more than a dozen mycoviruses. However, it is unknown whether other yadokariviruses except RnYkV1 are also hosted by a heterocapsid, although dsRNA viruses with capsid proteins were detected in fungi harboring yadokarivirus. It is noteworthy that almost all presumed partner dsRNA viruses of yadokariviruses belong to the order Ghabrivirales (most probably a totivirus or toti-like virus). Here, we found a capsidless +ssRNA mycovirus, SsYkV1, from hypovirulent strain SCH941 of S. sclerotiorum, and the RNA and RdRp of this mycovirus are trans-encapsidated in virions of a bisegmented dsRNA virus within the free-floating genus Botybirnavirus. Our results greatly expand our knowledge of the unique life cycles of RNA viruses.
Collapse
|
48
|
Abstract
Rhabdoviruses are ubiquitous and diverse viruses that propagate owing to bidirectional interactions with their vertebrate, arthropod, and plant hosts, and some of them could pose global health or agricultural threats. However, rhabdoviruses have rarely been reported in fungi. Here, two newly identified fungal rhabdoviruses, Rhizoctonia solani rhabdovirus 1 (RsRhV1) and RsRhV2, were discovered and molecularly characterized from the phytopathogenic fungus Rhizoctonia solani. The genomic organizations of RsRhV1 and RsRhV2 are 11,716 and 11,496 nucleotides (nt) in length, respectively, and consist of five open reading frames (ORFs) (ORFs I to V). ORF I, ORF IV, and ORF V encode the viral nucleocapsid (N), glycoprotein (G), and RNA polymerase (L), respectively. The putative protein encoded by ORF III has a lower level of identity with the matrix protein of rhabdoviruses. ORF II encodes a hypothetical protein with unknown function. Phylogenetic trees based on multiple alignments of N, L, and G proteins revealed that RsRhV1 and RsRhV2 are new members of the family Rhabdoviridae, but they form an independent evolutionary branch significantly distinct from other known nonfungal rhabdoviruses, suggesting that they represent a novel viral evolutionary lineage within Rhabdoviridae. Compared to strains lacking rhabdoviruses, strains harboring RsRhV2 and RsRhV1 showed hypervirulence, suggesting that RsRhV1 and RsRhV2 might be associated with the virulence of R. solani. Taken together, this study enriches our understanding of the diversity and host range of rhabdoviruses. IMPORTANCE Mycoviruses have been attracting an increasing amount of attention due to their impact on important medical, agricultural, and industrial fungi. Rhabdoviruses are prevalent across a wide spectrum of hosts, from plants to invertebrates and vertebrates. This study molecularly characterized two novel rhabdoviruses from four Rhizoctonia solani strains, based on their genomic structures, transcription strategy, phylogenetic relationships, and biological impact on their host. Our study makes a significant contribution to the literature because it not only enriches the mycovirus database but also expands the known host range of rhabdoviruses. It also offers insight into the evolutionary linkage between animal viruses and mycoviruses and the transmission of viruses from one host to another. Our study will also help expand the contemporary knowledge of the classification of rhabdoviruses, as well as providing a new model to study rhabdovirus-host interactions, which will benefit the agriculture and medical areas of human welfare.
Collapse
|
49
|
Abdoulaye AH, Jia J, Abbas A, Hai D, Cheng J, Fu Y, Lin Y, Jiang D, Xie J. Fusarivirus accessory helicases present an evolutionary link for viruses infecting plants and fungi. Virol Sin 2022; 37:427-436. [PMID: 35314402 PMCID: PMC9243621 DOI: 10.1016/j.virs.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
A significant number of mycoviruses have been identified that are related to plant viruses, but their evolutionary relationships are largely unexplored. A fusarivirus, Rhizoctonia solani fusarivirus 4 (RsFV4), was identified in phytopathogenic fungus Rhizoctonia solani (R. solani) strain XY74 co-infected by an alphaendornavirus. RsFV4 had a genome of 10,833 nt (excluding the poly-A tail), and consisted of four non-overlapping open reading frames (ORFs). ORF1 encodes an 825 aa protein containing a conserved helicase domain (Hel1). ORF3 encodes 1550 aa protein with two conserved domains, namely an RNA-dependent RNA polymerase (RdRp) and another helicase (Hel2). The ORF2 and ORF4 likely encode two hypothetical proteins (520 and 542 aa) with unknown functions. The phylogenetic analysis based on Hel2 and RdRp suggest that RsFV4 was positioned within the fusarivirus group, but formed an independent branch with three previously reported fusariviruses of R. solani. Notably, the Hel1 and its relatives were phylogenetically closer to helicases of potyviruses and hypoviruses than fusariviruses, suggesting fusarivirus Hel1 formed an evolutionary link between these three virus groups. This finding provides evidence of the occurrence of a horizontal gene transfer or recombination event between mycoviruses and plant viruses or between mycoviruses. Our findings are likely to enhance the understanding of virus evolution and diversity. Rhizoctonia solani strain XY74 hosts two mycoviruses, fusarivirus (RsFV4) and endornavirus (RsAEV1). RsFV4 consists of four ORFs and is evolutionarily associated to fusariviruses. Two ORFs of RsFV4 encode two helicases belonging to superfamly II. The accessory helicase of RsFV4 and its relatives are phylogenetically related to mycoviruses and plant viruses.
Collapse
|
50
|
Luo X, Jiang D, Xie J, Jia J, Duan J, Cheng J, Fu Y, Chen T, Yu X, Li B, Lin Y. Genome Characterization and Phylogenetic Analysis of a Novel Endornavirus That Infects Fungal Pathogen Sclerotinia sclerotiorum. Viruses 2022; 14:456. [PMID: 35336865 PMCID: PMC8953294 DOI: 10.3390/v14030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endornaviruses are capsidless linear (+) ssRNA viruses in the family Endornaviridae. In this study, Scelrotinia sclerotiorum endornavirus 11 (SsEV11), a novel endornavirus infecting hypovirulent Sclerotinia sclerotiorum strain XY79, was identified and cloned using virome sequencing analysis and rapid amplification of cDNA ends (RACE) techniques. The full-length genome of SsEV11 is 11906 nt in length with a large ORF, which encodes a large polyprotein of 3928 amino acid residues, containing a viral methyltransferase domain, a cysteine-rich region, a putative DEADc, a viral helicase domain, and an RNA-dependent RNA polymerase (RdRp) 2 domain. The 5' and 3' untranslated regions (UTR) are 31 nt and 90 nt, respectively. According to the BLAST result of the nucleotide sequence, SsEV11 shows the highest identity (45%) with Sclerotinia minor endornavirus 1 (SmEV1). Phylogenetic analysis based on amino acid sequence of RdRp demonstrated that SsEV11 clusters to endornavirus and has a close relationship with Betaendornavirus. Phylogenetic analysis based on the sequence of endornaviral RdRp domain indicated that there were three large clusters in the phylogenetic tree. Combining the results of alignment analysis, Cluster I at least has five subclusters including typical members of Alphaendornavirus and many unclassified endornaviruses that isolated from fungi, oomycetes, algae, and insects; Cluster II also has five subclusters including typical members of Betaendornavirus, SsEV11, and other unclassified viruses that infected fungi; Cluster III includes many endorna-like viruses that infect nematodes, mites, and insects. Viruses in Cluster I and Cluster II are close to each other and relatively distant to those in Cluster III. Our study characterized a novel betaendornavirus, SsEV11, infected fungal pathogen S. sclerotiorum, and suggested that notable phylogenetic diverse exists in endornaviruses. In addition, at least, one novel genus, Gammaendornavirus, should be established to accommodate those endorna-like viruses in Cluster III.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jichun Jia
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
| | - Jie Duan
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Jiasen Cheng
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (D.J.); (J.X.); (J.J.); (T.C.)
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Xiao Yu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Bo Li
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.D.); (J.C.); (Y.F.); (X.Y.); (B.L.)
| |
Collapse
|