1
|
Ouafi M, Réguème A, Chevaliez S, Faure E, Guigon A, Bouvier-Alias M, Canva V, Hober D, Bocket L, Alidjinou EK. Longstanding, undiagnosed, highly replicative hepatitis B virus reactivation in the presence of high levels of anti-HBs antibodies. Lab Med 2025:lmaf003. [PMID: 40319465 DOI: 10.1093/labmed/lmaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION Kidney transplant recipients are among the populations at risk for Hepatitis B Virus (HBV) reactivation, and close monitoring is needed for its early detection. METHODS We describe a case of HBV reactivation in a patient who underwent kidney transplantation more than 30 years ago, with a known serological profile of past HBV infection. RESULTS Reactivation occurred as a highly replicative infection that went undiagnosed for 7 years due to negative results for HB surface antigen (HBsAg) and high levels of anti-HBs antibodies. Viral genome sequencing showed a high number of mutations in the major hydrophilic region of HBsAg that could explain such a profile. DISCUSSION This case highlights the usefulness of frequent and systematic HBV viral load testing in patients at risk of reactivation, with anti-hepatitis B core antibodies, regardless of HBsAg detection, aminotransferases, and anti-HBs antibody levels.
Collapse
Affiliation(s)
- Mahdi Ouafi
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Alexandre Réguème
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Stéphane Chevaliez
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and delta D, INSERMU955, Créteil, France
| | - Emmanuel Faure
- CHU Lille, Département de Maladies Infectieuses, Lille, France
| | - Aurélie Guigon
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Magali Bouvier-Alias
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and delta D, INSERMU955, Créteil, France
| | - Valérie Canva
- CHU Lille, Service des Maladies de l'Appareil Digestif, 59000 Lille, France
| | - Didier Hober
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | - Laurence Bocket
- Univ Lille, CHU de Lille, Laboratoire de Virologie ULR3610, 59000 Lille, France
| | | |
Collapse
|
2
|
Pondé RADA, Amorim GDSP. Exchanges in the 'a' determinant of the hepatitis B virus surface antigen revisited. Virology 2024; 599:110184. [PMID: 39127000 DOI: 10.1016/j.virol.2024.110184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
The hepatitis B virus surface antigen's (HBsAg) 'a' determinant comprises a sequence of amino acid residues located in the major hydrophilic region of the S protein, whose exchanges are closely associated with compromising the antigenicity and immunogenicity of that antigen. The HBsAg is generally present in the bloodstream of individuals with acute or chronic hepatitis B virus (HBV) infection. It is classically known as the HBV infection marker, and is therefore the first marker to be investigated in the laboratory in the clinical hypothesis of infection by this agent. One of the factors that compromises the HBsAg detection in the bloodstream by the assays adopted in serological screening in both clinical contexts is the loss of S protein antigenicity. This can occur due to mutations that emerge in the HBV genome regions that encode the S protein, especially for its immunodominant region - the 'a' determinant. These mutations can induce exchanges of amino acid residues in the S protein's primary structure, altering its tertiary structure and the antigenic conformation, which may not be recognized by anti-HBs antibodies, compromising the infection diagnosis. In addition, these exchanges can render ineffective the anti-HBs antibodies action acquired by vaccination, compromise the effectiveness of the chronically HBV infected patient's treatment, and also the HBsAg immunogenicity, by promoting its retention within the cell. In this review, the residues exchange that alter the S protein's structure is revisited, as well as the mechanisms that lead to the HBsAg antigenicity loss, and the clinical, laboratory and epidemiological consequences of this phenomenon.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância Em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| | | |
Collapse
|
3
|
Mbencho MN, Hafza N, Cao LC, Mingo VN, Achidi EA, Ghogomu SM, Velavan TP. Incidence of Occult Hepatitis B Infection (OBI) and hepatitis B genotype characterization among blood donors in Cameroon. PLoS One 2024; 19:e0312126. [PMID: 39413100 PMCID: PMC11482724 DOI: 10.1371/journal.pone.0312126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Occult hepatitis B infection (OBI) is characterized by the presence of hepatitis B virus (HBV) DNA at low levels in serum (<200 IU/mL) with a negative hepatitis B surface antigen (HBsAg) test. OBI remains a major challenge to blood safety, particularly in HBV-endemic regions like Cameroon, where HBV detection relies solely on HBsAg testing. This cross-sectional study aimed to investigate the actual incidence and genotype characteristics of OBI in Cameroonian blood donors. METHODS Between March and June 2023, samples were collected from 288 HBsAg-negative blood donors aged 18 to 55 years and analysed for antibodies against the HBV core (anti-HBc) and surface antigens (anti-HBs). Following DNA extraction from the serum samples, qualitative nested PCR and quantitative real-time PCR were used to detect HBV viral DNA and viral load respectively. For positive samples, sequencing of a fragment of the S gene was performed to identify the circulating HBV genotypes. RESULTS The findings revealed that 58% (n = 167/288) of blood donors tested positive for anti-HBc, 29% (n = 83/288) tested positive for anti-HBs, and 26% (n = 75/288) being positive for both anti-HBc and anti-HBs. Occult hepatitis was confirmed in 4.5% of the blood donors, all of whom belonged to either HBV genotypes A or E, which are predominant in Cameroon. The amino acid substitution sA184V associated with HBsAg detection failure in genotype E was observed in 70% of OBI sequences, and the HBsAg immune escape variants (sT131N and sS143L) implicated in OBI were also observed. The mutation rtN139K in the reverse transcriptase (RT) domain of the overlapping HBV polymerase (P) gene was present in 17% of OBI-positive sequences of genotype E, likely contributing to masking HBsAg secretion. CONCLUSION The results suggest a considerable risk of transfusion-transmitted HBV in this region. Therefore, to ensure blood safety, nucleic acid testing (NAT) is recommended, as relying solely on HBsAg assays is insufficient to eliminate this risk.
Collapse
Affiliation(s)
- Macqueen Ngum Mbencho
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Molecular and Cell Biology Laboratory, University of Buea, Buea, Cameroon
| | - Nourhane Hafza
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Le Chi Cao
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Parasitology, Hue University of Medicine and Pharmacy (HUMP), Hue University, Hue, Vietnam
| | | | | | | | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
4
|
Sasaki T, Kakisaka K, Miyasaka A, Nishiya M, Yanagawa N, Kuroda H, Matsumoto T, Takahashi M, Okamoto H. Spontaneous reactivation of hepatitis B virus with multiple novel mutations in an elderly patient with resolved hepatitis B virus infection. Clin J Gastroenterol 2024; 17:683-690. [PMID: 38748198 DOI: 10.1007/s12328-024-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/05/2024] [Indexed: 07/11/2024]
Abstract
Spontaneous reactivation of the Hepatitis B virus (HBV) is rare in individuals with previously resolved infections. This report presents the case of a 71 year-old Japanese woman who experienced HBV reactivation without any prior immunosuppressive therapy or chemotherapy. Before the onset of liver injury, the patient was negative for hepatitis B surface antigen (HBsAg) but positive for hepatitis B surface antibody. She subsequently developed liver injury, with the reappearance of HBsAg and HBV DNA. The patient was successfully treated with tenofovir alafenamide, and prednisolone. Full-genome sequencing of HBV revealed subgenotype B1 without hepatitis B e-negative mutations in the precore and core promoter regions and 12 amino acid alterations in the pre-S1/S, P, and X genes. Notably, the S gene mutations D144A and K160N, which alter the antigenicity of HBsAg and potentially contribute to its reactivation, were identified. This case emphasizes the importance of vigilance for spontaneous reactivation of resolved HBV, highlighting the need for comprehensive genomic analysis to understand the associated virological intricacies.
Collapse
Affiliation(s)
- Tokio Sasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan.
| | - Keisuke Kakisaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Akio Miyasaka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Masao Nishiya
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Naoki Yanagawa
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Iwate, 028-3694, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
5
|
Zou Y, Chen S, Cui Y, Zou Y. M133S mutation possibly involve in the ER stress and mitophagy pathway in maintenance hemodialysis patients with occult hepatitis B infection. Sci Rep 2024; 14:13981. [PMID: 38886481 PMCID: PMC11183135 DOI: 10.1038/s41598-024-64943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Occult hepatitis B virus infection (OBI) is characterized by the presence of HBV DNA in the absence of detectable HBsAg. OBI is an important risk factor for cirrhosis and hepatocellular carcinoma, but its pathogenesis has not been fully elucidated. Mutations in the HBV preS/S genes can lead to impaired secretion of either HBsAg or S-protein resulting in the accumulation of defective viruses or S protein in cells. In our previous work, the M133S mutation was present in the HBV S gene of maintenance hemodialysis (MHD) patients with OBI. In this study, we investigated the potential role of amino acid substitutions in S proteins in S protein production and secretion through the construction of mutant S gene plasmids, structural prediction, transcriptome sequencing analysis, and in vitro functional studies. Protein structure prediction showed that the S protein M133S mutant exhibited hydrophilic modifications, with greater aggregation and accumulation of the entire structure within the membrane phospholipid bilayer. Differential gene enrichment analysis of transcriptome sequencing data showed that differentially expressed genes were mainly concentrated in protein processing in the endoplasmic reticulum (ER). The expression of heat shock family proteins and ER chaperone molecules was significantly increased in the wild-type and mutant groups, whereas the expression of mitochondria-associated proteins was decreased. Immunofluorescence staining and protein blotting showed that the endoplasmic reticulum-associated protein PDI, the autophagy marker LC3, and the lysosome-associated protein LAMP2 co-localized with the S proteins in the wild-type and mutant strains, and their expression was increased. The mitochondria-associated TOMM20 protein was also co-expressed with the S protein, but expression was significantly reduced in the mutant. The M133S mutation in the S gene is expressed as a defective and misfolded protein that accumulates in the endoplasmic reticulum causing secretion-impaired endoplasmic reticulum stress, which in turn triggers mitochondrial autophagy and recruits lysosomes to fuse with the autophagosome, leading to mitochondrial clearance. This study preliminarily demonstrated that the mutation of M133S in the S gene can cause OBI and is associated with disease progression, providing a theoretical basis for the diagnosis and treatment of OBI.
Collapse
Affiliation(s)
- Yurong Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China
| | - Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China
| | - Yiyuan Cui
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yang Zou
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
6
|
Tepjanta P, Fujiyama K, Misaki R, Kimkong I. The N-linked glycosylation modifications in the hepatitis B surface protein impact cellular autophagy, HBV replication, and HBV secretion. PLoS One 2024; 19:e0299403. [PMID: 38489292 PMCID: PMC10942060 DOI: 10.1371/journal.pone.0299403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.
Collapse
Affiliation(s)
- Patcharin Tepjanta
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ryo Misaki
- International Center for Biotechnology (ICBiotech), Osaka University, Osaka, Japan
| | - Ingorn Kimkong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University – Kasetsart University, Bangkok, Thailand
| |
Collapse
|
7
|
do Lago BV, Bezerra CS, Moreira DA, Parente TE, Portilho MM, Pessôa R, Sanabani SS, Villar LM. Genetic diversity of hepatitis B virus quasispecies in different biological compartments reveals distinct genotypes. Sci Rep 2023; 13:17023. [PMID: 37813888 PMCID: PMC10562391 DOI: 10.1038/s41598-023-43655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
The selection pressure imposed by the host immune system impacts hepatitis B virus (HBV) quasispecies variability. This study evaluates HBV genetic diversity in different biological fluids. Twenty paired serum, oral fluid, and DBS samples from chronic HBV carriers were analyzed using both Sanger and next generation sequencing (NGS). The mean HBV viral load in serum was 5.19 ± 4.3 log IU/mL (median 5.29, IQR 3.01-7.93). Genotype distribution was: HBV/A1 55% (11/20), A2 15% (3/20), D3 10% (2/20), F2 15% (3/20), and F4 5% (1/20). Genotype agreement between serum and oral fluid was 100% (genetic distances 0.0-0.006), while that between serum and DBS was 80% (genetic distances 0.0-0.115). Two individuals presented discordant genotypes in serum and DBS. Minor population analysis revealed a mixed population. All samples displayed mutations in polymerase and/or surface genes. Major population analysis of the polymerase pointed to positions H122 and M129 as the most polymorphic (≥ 75% variability), followed by V163 (55%) and I253 (50%). Neither Sanger nor NGS detected any antiviral primary resistance mutations in the major populations. Minor population analysis, however, demonstrated the rtM204I resistance mutation in all individuals, ranging from 2.8 to 7.5% in serum, 2.5 to 6.3% in oral fluid, and 3.6 to 7.2% in DBS. This study demonstrated that different fluids can be used to assess HBV diversity, nonetheless, genotypic differences according to biological compartments can be observed.
Collapse
Affiliation(s)
- Bárbara Vieira do Lago
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Cristianne Sousa Bezerra
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Educação, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Fortaleza, Ceará, Brazil
| | - Daniel Andrade Moreira
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thiago Estevam Parente
- Laboratório de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of Sao Paulo (UNIFESP), São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation (LIM) 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Livia Melo Villar
- Laboratório de Hepatites Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Lehmann F, Slanina H, Roderfeld M, Roeb E, Trebicka J, Ziebuhr J, Gerlich WH, Schüttler CG, Schlevogt B, Glebe D. A Novel Insertion in the Hepatitis B Virus Surface Protein Leading to Hyperglycosylation Causes Diagnostic and Immune Escape. Viruses 2023; 15:v15040838. [PMID: 37112819 PMCID: PMC10144012 DOI: 10.3390/v15040838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health threat. Mutations in the surface antigen of HBV (HBsAg) may alter its antigenicity, infectivity, and transmissibility. A patient positive for HBV DNA and detectable but low-level HBsAg in parallel with anti-HBs suggested the presence of immune and/or diagnostic escape variants. To support this hypothesis, serum-derived HBs gene sequences were amplified and cloned for sequencing, which revealed infection with exclusively non-wildtype HBV subgenotype (sgt) D3. Three distinct mutations in the antigenic loop of HBsAg that caused additional N-glycosylation were found in the variant sequences, including a previously undescribed six-nucleotide insertion. Cellular and secreted HBsAg was analyzed for N-glycosylation in Western blot after expression in human hepatoma cells. Secreted HBsAg was also subjected to four widely used, state-of-the-art diagnostic assays, which all failed to detect the hyperglycosylated insertion variant. Additionally, the recognition of mutant HBsAg by vaccine- and natural infection-induced anti-HBs antibodies was severely impaired. Taken together, these data suggest that the novel six-nucleotide insertion as well as two other previously described mutations causing hyperglycosylation in combination with immune escape mutations have a critical impact on in vitro diagnostics and likely increase the risk of breakthrough infection by evasion of vaccine-induced immunity.
Collapse
|
9
|
Thi Cam Huong N, Vu HA, Luong BA, Makram AM, Elsheikh R, Huy NT, Le Hoa PT. The Coexistence of Hepatitis B Surface Antigen and Anti-HBs in Patients With Chronic HBV Infection: Prevalence and Related Factors. GASTRO HEP ADVANCES 2023; 2:467-474. [PMID: 39132047 PMCID: PMC11307456 DOI: 10.1016/j.gastha.2023.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims The prevalence of coexistence of HBsAg and anti-HBs in chronic hepatitis B virus (HBV)-infected patients is different between studies. The mutations on the S gene were proved as the cause of this coexistence. This study determined the frequency and factors associated with coexistence of HBsAg and anti-HBs in chronic HBV-infected patients. Methods This cross-sectional study was conducted at University Medical Center at Ho Chi Minh City, Vietnam, from April 2014 to December 2020. HBeAg, HBsAg, and anti-HBs were measured by chemiluminescent immunoassay. Mutations on the HBV small S gene from amino acids 1-227 were detected using Sanger sequencing on 177 patients. Results A total of 521 chronic HBV-infected patients were enrolled, including 350 males (62.7%), 17.1% with hepatic fibrosis of ≥ F3 and 9.8% with hepatocellular carcinoma (HCC). The coexistence of HBsAg and anti-HBs was detected in 9.8%, with 17.9% among genotype C compared to 7.4% in genotype B, P = .001. The coexistence group had lower levels of HBsAg titers (P = .052). There were significantly higher rates of coexistence in the group with HCC (19.6% vs 8.7%, P = .013). The existence of point mutations on the major hydrophilic region and the "a" determinant region of HBV was more frequently detected in the HBsAg and anti-HBs coexistence group (P = .043 and P = .008, respectively). Conclusion The coexistence of HBsAg and anti-HBs was detected more frequently in the HBV genotype C group. The coexistence status was related to lower HBsAg titers, mutations on the major hydrophilic region, and/or the "a" determinant and exposed significant relation with HCC.
Collapse
Affiliation(s)
- Nguyen Thi Cam Huong
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Outpatient Department, University Medical Center, Ho Chi Minh City, Vietnam
| | - Hoang Anh Vu
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Bac An Luong
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman M. Makram
- School of Public Health, Imperial College London, London, UK
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Randa Elsheikh
- Faculty of Medicine, October 6 University, Giza, Egypt
- Deanery of Biomedical Sciences at Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Nguyen Tien Huy
- School of Global Humanities and Social Sciences, Nagasaki University, Nagasaki, Japan
| | - Pham Thi Le Hoa
- Department of Infectious Diseases, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Downs LO, Campbell C, Yonga P, Githinji G, Ansari MA, Matthews PC, Etyang AO. A systematic review of Hepatitis B virus (HBV) prevalence and genotypes in Kenya: Data to inform clinical care and health policy. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001165. [PMID: 36963057 PMCID: PMC10022289 DOI: 10.1371/journal.pgph.0001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 02/04/2023]
Abstract
The aim of this systematic review and meta-analysis is to evaluate available prevalence and viral sequencing data representing chronic hepatitis B (CHB) infection in Kenya. More than 20% of the global disease burden from CHB is in Africa, however there is minimal high quality seroprevalence data from individual countries and little viral sequencing data available to represent the continent. We undertook a systematic review of the prevalence and genetic data available for hepatitis B virus (HBV) in Kenya using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 checklist. We identified 23 studies reporting HBV prevalence and 8 studies that included HBV genetic data published in English between January 2000 and December 2021. We assessed study quality using the Joanna Briggs Institute critical appraisal checklist. Due to study heterogeneity, we divided the studies to represent low, moderate, high and very high-risk for HBV infection, identifying 8, 7, 5 and 3 studies in these groups, respectively. We calculated pooled HBV prevalence within each group and evaluated available sequencing data. Pooled HBV prevalence was 3.4% (95% CI 2.7-4.2%), 6.1% (95% CI 5.1-7.4%), 6.2% (95% CI 4.64-8.2) and 29.2% (95% CI 12.2-55.1), respectively. Study quality was overall low; only three studies detailed sample size calculation and 17/23 studies were cross sectional. Eight studies included genetic information on HBV, with two undertaking whole genome sequencing. Genotype A accounted for 92% of infections. Other genotypes included genotype D (6%), D/E recombinants (1%) or mixed populations (1%). Drug resistance mutations were reported by two studies. There is an urgent need for more high quality seroprevalence and genetic data to represent HBV in Kenya to underpin improved HBV screening, treatment and prevention in order to support progress towards elimination targets.
Collapse
Affiliation(s)
- Louise O Downs
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Headley Way, Oxford, United Kingdom
| | - Cori Campbell
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Yonga
- CA Medlynks Clinic and Laboratory, Nairobi, and Fountain Projects and Research Office, Fountain Health Care Hospital, Eldoret, Kenya
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| | - M Azim Ansari
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Division of Infection and Immunity, University College London, London, London, United Kingdom
- Department of Infectious Diseases, University College London Hospital, London, London, United Kingdom
| | | |
Collapse
|
11
|
Sun H, Chang L, Yan Y, Ji H, Jiang X, Song S, Xiao Y, Lu Z, Wang L. Naturally occurring pre-S mutations promote occult HBV infection by affecting pre-S2/S promoter activity. Antiviral Res 2022; 208:105448. [DOI: 10.1016/j.antiviral.2022.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022]
|
12
|
Dagnew M, Moges F, Tiruneh M, Million Y, Gelaw A, Adefris M, Belyhun Y, Liebert UG, Maier M. Molecular diversity of hepatitis B virus among pregnant women in Amhara National Regional State, Ethiopia. PLoS One 2022; 17:e0276687. [PMID: 36378635 PMCID: PMC9665361 DOI: 10.1371/journal.pone.0276687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background Despite the availability of effective vaccines and treatments for hepatitis B virus (HBV), it continues to be a major public health problem in sub-Saharan Africa including Ethiopia. Routine screening for HBV in pregnant women is widely recommended, but there is lack of screening for HBV during pregnancy in Ethiopia. Therefore, this study aimed to assess viral load, and genetic diversity among pregnant women in the Amhara National Regional State, Ethiopia. Materials and methods Hepatitis B surface antigen (HBsAg) testing was performed on 1846 pregnant women, 85 of who tested positive were included in this study. HBV DNA was isolated from 85 positive sera, and the partial surface/polymerase gene was amplified and sequenced. HBV genotypes, sub-genotypes, serotypes and mutations in surface genes and polymerase were studied. Results Out of 85 pregnant women`s HBsAg positive sera, 59(69.4%) had detectable viral DNA. The median viral load was 3.4 log IU/ml ranging from 2.6 to7.6 and 46 samples were successfully sequenced and genotyped. Genotypes A and D were identified in 39 (84.8%) and 7 (15.2%); respectively. All genotype A isolates were further classified into sub-genotype A1 and serotype adw2 (84.8%) whereas genotype D isolates were further classified into three sub genotypes; 2 (4.3%) D2, 1(2.2%) D4, and 4 (8.7%) D10 with serotypes ayw2 (10.9%), and ayw3 (4.3%). There were 19 (41.3%) surface gene mutations in the major hydrophilic region (MHR). Six (13.1%) of them were discovered in MHR`s `a’-determinant region. Six polymerase gene mutations (13%) were identified. Conclusion Genotype A was the predominant genotype in the Amhara National Regional State. The surface and polymerase gene mutations identified in this study may lead to immune therapy failure, diagnostics escape and drug resistance. Thus, the data generated in this study will contribute to the planning of HBV diagnosis, vaccination and treatment, and most importantly to the prevention of vertical transmission of HBV in Ethiopia. Therefore, further molecular studies on HBV are warranted and continuous surveillance is important for patient management and for the prevention and control of HBV infection in the country.
Collapse
Affiliation(s)
- Mulat Dagnew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Virology, Institute of Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
- * E-mail:
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Moges Tiruneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yihenew Million
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aschalew Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulat Adefris
- Department of Gynecology and Obstetrics, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yeshambel Belyhun
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Virology, Institute of Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
| | - Uwe G. Liebert
- Department of Virology, Institute of Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
| | - Melanie Maier
- Department of Virology, Institute of Medical Microbiology and Virology, Leipzig University, Leipzig, Germany
| |
Collapse
|
13
|
The Investigation of HBV Pre-S/S Gene Mutations in Occult HBV Infected Blood Donors with anti-HBs Positive. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:1874435. [PMID: 35903154 PMCID: PMC9325327 DOI: 10.1155/2022/1874435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Introduction The coexistence of hepatitis B virus (HBV) and hepatitis B surface antibodies (anti-HBs) in occult hepatitis B virus infection (OBI) is a contradictory phenomenon, and the underlying mechanism is not fully understood. The characteristics of pre-S/S mutations in OBI genotypes B and C (OBIB and OBIC) in the presence or absence of anti-HBs were analyzed extensively in this study. Methodology. The amino acid substitutions of envelope proteins of 21 OBI strains, including 4 HBs (+) OBIB, 6 HBs (−) OBIB, 6 HBs (+) OBIc, and 5 HBs (−) OBIC samples, were analyzed and fully compared among groups of HBV genotypes and the presence of anti-HBs. Results The mutation rates in pre-S1, pre-S2, and S proteins of OBIC were significantly higher than wild-type HBV (wt-HBV) genotype C strains, but only the mutation rate of S protein in OBIB was significantly higher compared to wild-type HBV genotype B. The mutation rates in S protein of anti-HBs (−) OBI were higher than anti-HBs(+) OBI samples (4.40% vs. 2.43% in genotype B, P > 0.05; 6.81% vs. 3.47% in genotype C, P < 0.05). For these high-frequency substitutions in the pre-S/S region, the mutations sN40S and sK122R were found in 27.3% and 45.5% of anti-HBs (−) OBI strains, respectively. 7 substitutions were uniquely found in OBIC strains and 9 substitutions were commonly detected in OBIB and OBIC strains. Conclusions These results suggested that the mutations might occur randomly and were not selected by antibody pressure.
Collapse
|
14
|
Wu CR, Kim HJ, Sun CP, Chung CY, Lin YY, Tao MH, Kim JH, Chen DS, Chen PJ. Mapping the conformational epitope of a therapeutic monoclonal antibody against HBsAg by in vivo selection of HBV escape variants. Hepatology 2022; 76:207-219. [PMID: 34957587 DOI: 10.1002/hep.32307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B immunoglobulin (HBIG) has been routinely applied in the liver transplantation setting to block HBV reinfection of grafts. However, new monoclonal anti-HBV surface antibodies have been developed to replace HBIG. The epitopes of such monoclonal antibodies may affect the emergence of escape variants and deserve study. APPROACH AND RESULTS The conformational epitope of sLenvervimab, a surrogate form of Lenvervimab, which is a monoclonal anti-HBsAg antibody currently under phase 3 trial, was investigated by selecting escape mutants from a human liver chimeric mouse. HBV-infected chimeric mice treated with sLenvervimab monotherapy showed an initial decline in circulating HBsAg levels, followed by a quick rebound in 1 month. Sequencing of circulating or liver HBV DNA revealed emerging variants, with replacement of amino acid E164 or T140, two residues widely separated in HBsAg. E164 HBV variants strongly resisted sLenvervimab neutralization in cell culture infection, and the T140 variant moderately resisted sLenvervimab neutralization. Natural HBV variants with amino-acid replacements adjacent to E164 were constructed and examined for sLenvervimab neutralization effects. Variants with K160 replacement also resisted neutralization. These data revealed the conformational epitope of sLenvervimab. CONCLUSIONS Selection of antibody-escape HBV variants in human chimeric mice works efficiently. Analysis of such emerging variants helps to identify anchor amino-acid residues of the conformational epitope that are difficult to discover by conventional approaches.
Collapse
Affiliation(s)
- Chang-Ru Wu
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Hyun-Jin Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Cheng-Pu Sun
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Chen-Yen Chung
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.)
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R.O.C.)
| | - Jung-Hwan Kim
- Mogam Institute for Biomedical Research, Yongin-Si, Gyunggi-Do, Korea
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| | - Pei-Jer Chen
- Graduate Institute of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (R.O.C.).,Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.).,Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan (R.O.C.)
| |
Collapse
|
15
|
Research Progress on the Mechanism of Persistent Low-Level HBsAg Expression in the Serum of Patients with Chronic HBV Infection. J Immunol Res 2022; 2022:1372705. [PMID: 35465353 PMCID: PMC9020929 DOI: 10.1155/2022/1372705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Among HBV-infected persons, there is a group of people with hepatitis B surface antigen (HBsAg) showing persistently low levels of expression. The production of low-level HBsAg does not mean a good outcome of chronic HBV infection. Patients still have virus replication and sustained liver damage, and they have the potential to transmit the infection. This risk poses a challenge to clinical diagnosis and blood transfusion safety and is a major concern of experts. However, the mechanism behind persistent low-level HBsAg expression in serum is not completely clear, and complete virus clearance by the host is vital. In this review, we summarize the research progress on the mechanism behind low-level expression of HBsAg in patients with chronic HBV infection in recent years.
Collapse
|
16
|
Wang H, Liao F, Xie J, Gao W, Wang M, Huang J, Xu R, Liao Q, Shan Z, Zheng Y, Rong X, Li C, Fu Y. E2 Site Mutations in S Protein Strongly Affect Hepatitis B Surface Antigen Detection in the Occult Hepatitis B Virus. Front Microbiol 2021; 12:664833. [PMID: 34867835 PMCID: PMC8635997 DOI: 10.3389/fmicb.2021.664833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
The mechanism of occult hepatitis B infection (OBI) has not yet been fully clarified. Our previous research found that novel OBI-related mutation within S protein, E2G, could cause the hepatitis B surface antigen (HBsAg) secretion impairment, which resulted in intracellular accumulation in OBI of genotype B. Here, to further explore the role of E2 site mutations in the occurrence of OBI, we analyzed these site mutations among 119 OBI strains identified from blood donors. Meanwhile, 109 wild-type HBV strains (HBsAg positive/HBV DNA positive) were used as control group. Furthermore, to verify the E2 site mutations, two conservative 1.3-fold full-gene expression vectors of HBV genotype B and C (pHBV1.3B and pHBV1.3C) were constructed. Then, the E2 mutant plasmids on the basis of pHBV1.3B or pHBV1.3C were constructed and transfected into HepG2 cells, respectively. The extracellular and intracellular HBsAg were analyzed by electrochemical luminescence and cellular immunohistochemistry. The structural characteristics of S proteins with or without E2 mutations were analyzed using relevant bioinformatics software. E2 mutations (E2G/A/V/D) existed in 21.8% (26/119) of OBIs, while no E2 mutations were found in the control group. E2G/A/V/D mutations could strongly affect extracellular and intracellular level of HBsAg (p < 0.05). Notably, unlike E2G in genotype B that could cause HBsAg intracellular accumulation and secretion decrease (p < 0.05), E2G in genotype C could lead to a very significant HBsAg decrease both extracellularly (0.46% vs. pHBV1.3C) and intracellularly (11.2% vs. pHBV1.3C) (p < 0.05). Meanwhile, for E2G/A mutations, the relative intracellular HBsAg (110.7-338.3% vs. extracellular) and its fluorescence intensity (1.5-2.4-fold vs. with genotype-matched pHBV1.3B/C) were significantly higher (p < 0.05). Furthermore, N-terminal signal peptides, with a typical cleavage site for peptidase at positions 27 and 28, were exclusively detected in S proteins with secretion-defective mutants (E2G/A). Our findings suggest that: (1) E2G/A/V/D mutations were confirmed to significantly influence the detection of HBsAg, (2) the underlying mechanism of OBI caused by E2G mutation is quite different between genotype B and genotype C, and (3) E2G/A could produce a N-terminal truncated S protein, which might attribute to the HBsAg secretion impairment in the OBIs.
Collapse
Affiliation(s)
- Hao Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Junmo Xie
- Guangzhou Blood Center, Guangzhou, China
| | - Wenbo Gao
- Guangzhou Blood Center, Guangzhou, China
| | - Min Wang
- Guangzhou Blood Center, Guangzhou, China
| | | | - Ru Xu
- Guangzhou Blood Center, Guangzhou, China
| | - Qiao Liao
- Guangzhou Blood Center, Guangzhou, China
| | | | | | - Xia Rong
- Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
17
|
Analysis of the Physicochemical Properties, Replication and Pathophysiology of a Massively Glycosylated Hepatitis B Virus HBsAg Escape Mutant. Viruses 2021; 13:v13112328. [PMID: 34835134 PMCID: PMC8622389 DOI: 10.3390/v13112328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mutations in HBsAg, the surface antigen of the hepatitis B virus (HBV), might affect the serum HBV DNA level of HBV-infected patients, since the reverse transcriptase (RT) domain of HBV polymerase overlaps with the HBsAg-coding region. We previously identified a diagnostic escape mutant (W3S) HBV that produces massively glycosylated HBsAg. In this study, we constructed an HBV-producing vector that expresses W3S HBs (pHB-W3S) along with a wild-type HBV-producing plasmid (pHB-WT) in order to analyze the physicochemical properties, replication, and antiviral drug response of the mutant. Transfection of either pHB-WT or W3S into HepG2 cells yielded similar CsCl density profiles and eAg expression, as did transfection of a glycosylation defective mutant, pHB-W3S (N146G), in which a glycosylation site at the 146aa asparagine (N) site of HBs was mutated to glycine (G). Virion secretion, however, seemed to be severely impaired in cases of pHB-W3S and pHB-W3S (N146G), compared with pHB-WT, as determined by qPCR and Southern blot analysis. Furthermore, inhibition of glycosylation using tunicamycinTM on wild-type HBV production also reduced the virion secretion. These results suggested that the HBV core and Dane particle could be formed either by massively glycosylated or glycosylation-defective HBsAg, but reduced and/or almost completely blocked the virion secretion efficiency, indicating that balanced glycosylation of HBsAg is required for efficient release of HBV, and mutations inducing an imbalanced glycosylation of HBs would cause the virion to become stuck in the cells, which might be associated with various pathogeneses due to HBV infection.
Collapse
|
18
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
19
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
20
|
Konopleva MV, Belenikin MS, Shanko AV, Bazhenov AI, Kiryanov SA, Tupoleva TA, Sokolova MV, Pronin AV, Semenenko TA, Suslov AP. Detection of S-HBsAg Mutations in Patients with Hematologic Malignancies. Diagnostics (Basel) 2021; 11:diagnostics11060969. [PMID: 34072185 PMCID: PMC8228241 DOI: 10.3390/diagnostics11060969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Multiple studies of hepatitis B virus (HBV) genetic variability and its relationship with the disease pathogenesis are currently ongoing, stemming from growing evidence of the clinical significance of HBV mutations. It is becoming increasingly evident that patients with hematologic malignancies may be particularly prone to a higher frequency of such mutations. The present report is the first extensive study of the prevalence of escape mutations in S-HBsAg, performed using isolates from 59 patients from hospital hematology departments with diagnoses of leukemia (n = 32), lymphoma (n = 20), multiple myeloma (n = 3), and non-tumor blood diseases (n = 4). The isolates were serologically examined for the presence of HBV markers and sequenced using either next-generation sequencing (NGS) or Sanger sequencing. Occult hepatitis B was found in 5.1% of cases. Genetic analysis of the region corresponding to S-HBsAg demonstrated an exceptionally high mutation frequency in patients with leukemias (93.4%) and lymphomas (85.0%), along with the prominent mutation heterogeneity. Additionally, more than 15 mutations in one sample were found in patients with leukemias (6.3% of cases) and lymphomas (5.0% of cases). Most of the mutations were clinically significant. The study analyzes the mutation profile of HBV in different oncohematological diseases and the frequency of individual mutations. The data strongly suggest that the NGS method, capable of detecting minor populations of HBV mutations, provides a diagnostic advantage, lays the foundation for the development of screening methods, and allows for the study of the virological and pathogenetic aspects of hepatitis B.
Collapse
Affiliation(s)
- Maria V. Konopleva
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | - Maxim S. Belenikin
- Laboratory of Molecular Medical Diagnostics, Moscow Institute of Physics and Technology, State University, 141701 Dolgoprudny, Russia;
| | - Andrei V. Shanko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | - Alexey I. Bazhenov
- State Budget Institution “Research Institute of Emergency Medicine Named After N.V. Sklifosovsky” of the Moscow Department of Healthcare, 129010 Moscow, Russia;
| | - Sergei A. Kiryanov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | | | - Maria V. Sokolova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | - Alexander V. Pronin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | - Tatyana A. Semenenko
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
| | - Anatoly P. Suslov
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named After Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia; (M.V.K.); (A.V.S.); (S.A.K.); (M.V.S.); (A.V.P.); (T.A.S.)
- Correspondence:
| |
Collapse
|
21
|
Jiang X, Chang L, Yan Y, Wang L. Paradoxical HBsAg and anti-HBs coexistence among Chronic HBV Infections: Causes and Consequences. Int J Biol Sci 2021; 17:1125-1137. [PMID: 33867835 PMCID: PMC8040313 DOI: 10.7150/ijbs.55724] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B surface antigen (HBsAg) and Hepatitis B surface antibody (anti-HBs) were reported simultaneously among Hepatitis B virus (HBV) infections. HBsAg is a specific indicator of acute or chronic HBV infections, while anti-HBs is a protective antibody reflecting the recovery and immunity of hosts. HBsAg and anti-HBs coexist during seroconversion and then form immune complex, which is rare detected in clinical cases. However, with the promotion of vaccination and the application of various antiviral drugs, along with the rapid development of medical technology, the coexistence of HBsAg and anti-HBs has become more prevalent. Mutations in the viral genomes, immune status and genetic factors of hosts may contribute to the coexistence. Novel HBsAg assays, with higher sensitivity and ability to detect mutations or immune complexes, can also yield HBsAg/anti-HBs coexistence. The discovery of coexistence has shattered the idea of traditional serological patterns and raised questions about the effectiveness of vaccines. Worth noting is that HBsAg/anti-HBs double positivity is strongly associated with progressive liver diseases, especially hepatocellular carcinoma. In conclusion, viral mutations, host factors, and methodology impacts can all lead to the coexistence of HBsAg and anti-HBs. This coexistence is not an indicator of improvement, as an increased risk of adverse clinical outcomes still exists.
Collapse
Affiliation(s)
- Xinyi Jiang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Lunan Wang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, P.R. China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
22
|
Ouaguia L, Dufeu-Duchesne T, Leroy V, Decaens T, Reiser JB, Sosa Cuevas E, Durantel D, Valladeau-Guilemond J, Bendriss-Vermare N, Chaperot L, Aspord C. Hepatitis B virus exploits C-type lectin receptors to hijack cDC1s, cDC2s and pDCs. Clin Transl Immunology 2020; 9:e1208. [PMID: 33312564 PMCID: PMC7723857 DOI: 10.1002/cti2.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Objectives C‐type lectin receptors (CLRs) are key receptors used by DCs to orchestrate responses to pathogens. During infections, the glycan–lectin interactions shape the virus–host interplay and viruses can subvert the function of CLRs to escape antiviral immunity. Recognition of virus/viral components and uptake by CLRs together with subsequent signalling cascades are crucial in initiating and shaping antiviral immunity, and decisive in the outcome of infection. Yet, the interaction of hepatitis B virus (HBV) with CLRs remains largely unknown. As HBV hijacks DC subsets and viral antigens harbour glycan motifs, we hypothesised that HBV may subvert DCs through CLR binding. Methods We investigated here the pattern of CLR expression on BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s from both blood and liver of HBV‐infected patients and explored the ability of HBsAg to bind DC subsets through specific CLRs. Results We highlighted for the first time that the CLR repertoire of circulating and intrahepatic cDC2s, cDC1s and pDCs was perturbed in patients with chronic HBV infection and that some CLR expression levels correlated with plasma HBsAg and HBV DNA levels. We also identified candidate CLR responsible for HBsAg binding to cDCs (CD367/DCIR/CLEC4A, CD32/FcɣRIIA) and pDCs (CD369/DECTIN1/CLEC7A, CD336/NKp44) and demonstrated that HBsAg inhibited DC functions in a CLR‐ and glycosylation‐dependent manner. Conclusion HBV may exploit CLR pathways to hijack DC subsets and escape from immune control. Such advances bring insights into the mechanisms by which HBV subverts immunity and pave the way for developing innovative therapeutic strategies to restore an efficient immune control of the infection by manipulating the viral glycan–lectin axis.
Collapse
Affiliation(s)
- Laurissa Ouaguia
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - Tania Dufeu-Duchesne
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France
| | - Vincent Leroy
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France.,Université Grenoble Alpes Grenoble France
| | - Thomas Decaens
- Hepato-Gastroenterology Unit CHU Grenoble Alpes Grenoble France.,Institute for Advanced Biosciences Research Center Inserm U1209/CNRS 5309/UGA Analytic Immunology of Chronic Pathologies La Tronche France.,Université Grenoble Alpes Grenoble France
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale CNRS CEA Université Grenoble Alpes Grenoble France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - David Durantel
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Jenny Valladeau-Guilemond
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Nathalie Bendriss-Vermare
- INSERM 1052 CNRS 5286 Centre Léon Bérard Centre de Recherche en Cancérologie de Lyon Université Lyon Université Claude Bernard Lyon 1 Lyon France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Immunobiology and Immunotherapy in Chronic Diseases Inserm U 1209 CNRS UMR 5309 Université Grenoble Alpes Grenoble France.,R&D Laboratory Etablissement Français du Sang Auvergne-Rhône-Alpes Grenoble France
| |
Collapse
|
23
|
Repurposing of Antazoline Hydrochloride as an Inhibitor of Hepatitis B Virus DNA Secretion. Virol Sin 2020; 36:501-509. [PMID: 33165771 DOI: 10.1007/s12250-020-00306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022] Open
Abstract
Hepatitis B virus (HBV) belongs to Hepadnaviridae family and mainly infects hepatocytes, which can cause acute or chronic hepatitis. Currently, two types of antiviral drugs are approved for chronic infection clinically: interferons and nucleos(t)ide analogues. However, the clinical cure for chronic infection is still rare, and it is a huge challenge for all researchers to develop high-efficiency, safe, non-tolerant, and low-toxicity anti-HBV drugs. Antazoline hydrochloride is a first-generation antihistamine with anticholinergic properties, and it is commonly used to relieve nasal congestion and in eye drops. Recently, an in vitro high-throughput evaluation system was constructed to screen nearly 800 compounds from the Food and Drug Administration (FDA)-approved Drug Library. We found that arbidol hydrochloride and antazoline hydrochloride can effectively reduce HBV DNA in the extracellular supernatant in a dose-dependent manner, with EC50 of 4.321 μmol/L and 2.910 μmol/L in HepAD38 cells, respectively. Moreover, the antiviral effects and potential mechanism of action of antazoline hydrochloride were studied in different HBV replication systems. The results indicate that antazoline hydrochloride also has a significant inhibitory effect on HBV DNA in the extracellular supernatant of Huh7 cells, with an EC50 of 2.349 μmol/L. These findings provide new ideas for screening and research related to HBV agents.
Collapse
|
24
|
Yan H, Zhong M, Yang J, Guo J, Yu J, Yang Y, Ma Z, Zhao B, Zhang Y, Wang J, Wu C, Dittmer U, Yang D, Lu M, Zhang E, Yan H. TLR5 activation in hepatocytes alleviates the functional suppression of intrahepatic CD8 + T cells. Immunology 2020; 161:325-344. [PMID: 32852795 DOI: 10.1111/imm.13251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is an immune-privileged organ with a tolerogenic environment for maintaining liver homeostasis. This hepatic tolerance limits the intrahepatic CD8+ T-cell response for eliminating infections. The tolerant microenvironment in the liver is orchestrated by liver-specific immunoregulatory cells that can be functionally regulated by pathogen-associated molecular patterns (PAMPs). Here, we report that flagellin, a key PAMP of gut bacteria, modulates the intrahepatic CD8+ T-cell response by activating the TLR5 signalling pathway of hepatocytes. We found that mice treated with Salmonella-derived recombinant flagellin (SF) by hydrodynamic injection had a significantly elevated IFN-γ production by the intrahepatic lymphocytes in 7 days after injection. This was correlated with a reduced immune suppressive effect of primary mouse hepatocytes (PMHs) in comparison with that of PMHs from mock-injected control mice. In vitro co-culture of SF-treated PMHs with splenocytes revealed that hepatocyte-induced immune suppression is alleviated through activation of the TLR5 but not the NLRC4 signalling pathway, leading to improved activation and function of CD8+ T cells during anti-CD3 stimulation or antigen-specific activation. In an acute HBV replication mouse model established by co-administration of SF together with an HBV-replicating plasmid by hydrodynamic injection, SF significantly enhanced the intrahepatic HBV-specific CD8+ T-cell response against HBV surface antigen. Our results clearly showed that flagellin plays a role in modulating the intrahepatic CD8+ T-cell response by activating the TLR5 pathway in PMHs, which suggests a potential role for gut bacteria in regulating liver immunity.
Collapse
Affiliation(s)
- Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiabao Guo
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
25
|
Jeong GU, Ahn BY, Jung J, Kim H, Kim TH, Kim W, Lee A, Lee K, Kim JH. A recombinant human immunoglobulin with coherent avidity to hepatitis B virus surface antigens of various viral genotypes and clinical mutants. PLoS One 2020; 15:e0236704. [PMID: 32790777 PMCID: PMC7425877 DOI: 10.1371/journal.pone.0236704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/12/2020] [Indexed: 12/26/2022] Open
Abstract
The hepatitis B virus (HBV) envelope is composed of a lipid bilayer and three glycoproteins, referred to as the large (L), middle (M), and small (S) hepatitis B virus surface antigens (HBsAg). S protein constitutes the major portion of the viral envelope and an even greater proportion of subviral particles (SVP) that circulate in the blood. Recombinant S proteins are currently used as a preventive vaccine, while plasma fractions isolated from vaccinated people, referred to as hepatitis B immune globulin (HBIG), are used for short-term prophylaxis. Here, we characterized a recombinant human IgG1 type anti-S antibody named Lenvervimab regarding its binding property to a variety of cloned S antigens. Immunochemical data showed an overall consistent avidity of the antibody to S antigens of most viral genotypes distributed worldwide. Further, antibody binding was not affected by the mutations in the antigenic ‘a’ determinant found in many clinical variants, including the immune escape mutant G145R. In addition, mutations in the S gene sequence that confer drug resistance to the viral polymerase did not interfere with the antibody binding. These results support for a preventive use of the antibody against HBV infection.
Collapse
Affiliation(s)
- Gi Uk Jeong
- Department of Life Science, Korea University, Seoul, Korea
| | - Byung-Yoon Ahn
- Department of Life Science, Korea University, Seoul, Korea
- * E-mail: (BYA); (JHK)
| | - Jaesung Jung
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Hyunjin Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Tae-Hee Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Woohyun Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Ara Lee
- Mogam Institute for Biomedical Research, Youngin, Korea
| | - Kyuhyun Lee
- Development Division PL Unit, GC Pharma Corp., Youngin, Korea
| | - Jung-Hwan Kim
- Mogam Institute for Biomedical Research, Youngin, Korea
- * E-mail: (BYA); (JHK)
| |
Collapse
|
26
|
Khodadad N, Seyedian SS, Moattari A, Biparva Haghighi S, Pirmoradi R, Abbasi S, Makvandi M. In silico functional and structural characterization of hepatitis B virus PreS/S-gene in Iranian patients infected with chronic hepatitis B virus genotype D. Heliyon 2020; 6:e04332. [PMID: 32695898 PMCID: PMC7365991 DOI: 10.1016/j.heliyon.2020.e04332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Chronic hepatitis B (CHB) virus infection is the most prevalent chronic liver disease and has become a serious threat to human health. In this study, we attempted to specify and predict several properties including physicochemical, mutation sites, B-cell epitopes, phosphorylation sites, N-link, O-link glycosylation sites, and protein structures of S protein isolated from Ahvaz. Materials and methods Initially, hepatitis B virus DNA (HBV DNA) was extracted from five sera samples of untreated chronic hepatitis B patients. The full-length HBV genomes were amplified and then cloned in pTZ57 R/T vector. The full sequences of HBV were registered in the GenBank with accessions numbers (MK355500), (MK355501) and (MK693107-9). PROTSCALE, Expasy's ProtParam, immuneepitope, ABCpred, BcePred, Bepipred, Algpred, VaxiJen, SCRATCH, DiANNA, plus a number of online analytical processing tools were used to analyse and predict the preS/S gene of genotype D sequences. The present study is the first analytical research on samples obtained from Ahvaz. Results We found major hydrophilic region (MHR) mutations at "a" determining region that included K122R, N131T, F134Y, P142L, and T126N mutations. Moreover, Ahvaz sequences revealed four sites (4, 112, 166, and 309) in the preS/S gene for N-glycosylation that could possibly be a potential target for anti-HBV therapy. Conclusion In the present study, mutations were identified at positions T113S and N131T within the MHR region of S protein; these mutations can potentially decrease the effect of hepatitis B vaccination in vaccine recipients.
Collapse
Affiliation(s)
- Nastaran Khodadad
- Infectious and Tropical Disease Research Center, Health Research Institute, and Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Saeed Seyedian
- Alimentary Tract Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Biparva Haghighi
- Department of General Courses, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Pirmoradi
- Infectious and Tropical Disease Research Center, Health Research Institute, and Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Manoochehr Makvandi
- Infectious and Tropical Disease Research Center, Health Research Institute, and Department of Virology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
27
|
N-Glycosylation and N-Glycan Processing in HBV Biology and Pathogenesis. Cells 2020; 9:cells9061404. [PMID: 32512942 PMCID: PMC7349502 DOI: 10.3390/cells9061404] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) glycobiology has been an area of intensive research in the last decades and continues to be an attractive topic due to the multiple roles that N-glycosylation in particular plays in the virus life-cycle and its interaction with the host that are still being discovered. The three HBV envelope glycoproteins, small (S), medium (M) and large (L) share a very peculiar N-glycosylation pattern, which distinctly regulates their folding, degradation, assembly, intracellular trafficking and antigenic properties. In addition, recent findings indicate important roles of N-linked oligosaccharides in viral pathogenesis and evasion of the immune system surveillance. This review focuses on N-glycosylation’s contribution to HBV infection and disease, with implications for development of improved vaccines and antiviral therapies.
Collapse
|
28
|
Salpini R, Piermatteo L, Battisti A, Colagrossi L, Aragri M, Yu La Rosa K, Bertoli A, Saccomandi P, Lichtner M, Marignani M, Maylin S, Delaugerre C, Morisco F, Coppola N, Marrone A, Iapadre N, Cerva C, Aquaro S, Angelico M, Sarmati L, Andreoni M, Verheyen J, Ceccherini-Silberstein F, Levrero M, Perno CF, Belloni L, Svicher V. A Hyper-Glycosylation of HBV Surface Antigen Correlates with HBsAg-Negativity at Immunosuppression-Driven HBV Reactivation in Vivo and Hinders HBsAg Recognition in Vitro. Viruses 2020; 12:251. [PMID: 32102257 PMCID: PMC7077195 DOI: 10.3390/v12020251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Immune-suppression driven Hepatitis B Virus (HBV)-reactivation poses serious concerns since it occurs in several clinical settings and can result in severe forms of hepatitis. Previous studies showed that HBV strains, circulating in patients with HBV-reactivation, are characterized by an enrichment of immune-escape mutations in HBV surface antigen (HBsAg). Here, we focused on specific immune-escape mutations associated with the acquisition of N-linked glycosylation sites in HBsAg (NLGSs). In particular, we investigated profiles of NLGSs in 47 patients with immunosuppression-driven HBV-reactivation and we evaluated their impact on HBsAg-antigenicity and HBV-replication in vitro. At HBV-reactivation, despite a median serum HBV-DNA of 6.7 [5.3-8.0] logIU/mL, 23.4% of patients remained HBsAg-negative. HBsAg-negativity at HBV-reactivation correlated with the presence of >1 additional NLGSs (p < 0.001). These NLGSs are located in the major hydrophilic region of HBsAg (known to be the target of antibodies) and resulted from the single mutation T115N, T117N, T123N, N114ins, and from the triple mutant S113N+T131N+M133T. In vitro, NLGSs strongly alter HBsAg antigenic properties and recognition by antibodies used in assays for HBsAg-quantification without affecting HBsAg-secretion and other parameters of HBV-replication. In conclusion, additional NLGSs correlate with HBsAg-negativity despite HBV-reactivation, and hamper HBsAg-antigenicity in vitro, supporting the role of NGSs in immune-escape and the importance of HBV-DNA for a proper diagnosis of HBV-reactivation.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Arianna Battisti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Luna Colagrossi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Marianna Aragri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Katia Yu La Rosa
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Patrizia Saccomandi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Miriam Lichtner
- Public Health and Infectious Disease Department, Sapienza University, 00185 Rome, Italy;
| | - Massimo Marignani
- Department of Gastroenterology, S.Andrea Hospital, 00189 Rome, Italy;
| | - Sarah Maylin
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Constance Delaugerre
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, 80138 Naples, Italy;
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, 80138 Naples, Italy;
| | - Aldo Marrone
- Internal Medicine and Hepatology Unit, Second University of Naples, 80138 Naples, Italy;
| | - Nerio Iapadre
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Carlotta Cerva
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mario Angelico
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Massimo Andreoni
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Jens Verheyen
- Institute of Virology, University-Hospital, University Duisburg-Essen, 47057 Essen, Germany;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Massimo Levrero
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- INSERM U1052-Cancer Research Center of Lyon (CRCL), University of Lyon, UMR_S1052, 69008 Lyon, France
| | - Carlo Federico Perno
- Department of Oncology and Haemato-oncology, University of Milan, 20122 Milan, Italy;
| | - Laura Belloni
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- Center for Life NanoSciences (CLNS), IIT-Sapienza, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| |
Collapse
|
29
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expr Purif 2019; 167:105526. [PMID: 31689499 DOI: 10.1016/j.pep.2019.105526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/20/2023]
Abstract
The E2 envelope protein is the main protective antigen of classical swine fever virus (CSFV). Importantly, gram-positive enhancer matrix (GEM) particles can work as an immunostimulant and/or carrier system to improve the immune effect of antigens. In this study, the artificially designed E2-Spy was expressed and glycosylated in Pichia pastoris, and subsequently conjugated with SpyCatcher-PA which was expressed in Escherichia coli. The conjugated E2-Spy-PA was displayed on the surface of GEM particles, generating the E2-Spy-PA-GEM complex. Blocking ELISA analysis and neutralization assays showed that both E2-Spy and E2-Spy-PA-GEM complexes induced high levels of anti-CSFV antibodies in mice. Furthermore, statistical analyses indicated that the E2-Spy-PA-GEM complex exhibited enhanced immunogenicity compared with E2-Spy alone.
Collapse
|
31
|
Wu C, Li B, Zhang X, Zhao K, Chen Y, Yuan Y, Liu Y, Chen R, Xu D, Chen X, Lu M. Complementation of Wild-Type and Drug-Resistant Hepatitis B Virus Genomes to Maintain Viral Replication and Rescue Virion Production under Nucleos(t)ide Analogs. Virol Sin 2019; 34:377-385. [PMID: 31218588 DOI: 10.1007/s12250-019-00143-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
As the open reading frames of hepatitis B virus (HBV) genomes are overlapping, resistance mutations (MTs) in HBV polymerase may result in stop codon MTs in hepatitis B surface proteins, which are usually detected as a mixed population with wild-type (WT) HBV. The question was raised how the coexistence of nucleos(t)ide analogs (NAs) resistance MTs and WT sequences affects HBV replication. In the present study, HBV genomes with frequently detected reverse transcriptase (RT)/surface truncation MTs, rtA181T/sW172*, rtV191I/sW182* and rtM204I/sW196*, were phenotypically characterized alone or together with their WT counterparts in different ratios by transient transfection in the absence or presence of NAs. In the absence of NAs, RT/surface truncation MTs impaired the expression and secretion of HBV surface proteins, and had a dose-dependent negative effect on WT HBV virion secretion. However, in the presence of NAs, coexistence of MTs with WT maintained viral replication, and the presence of WT was able to rescue the production of MT HBV virions. Our findings reveal that complementation of WT and MT HBV genomes is highly effective under drug treatment.
Collapse
Affiliation(s)
- Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.,State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Baolin Li
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany
| | - Xiaoyong Zhang
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany
| | - Kaitao Zhao
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingshan Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifei Yuan
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Rongjuan Chen
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Dongping Xu
- Institute of Infectious Diseases and Liver Failure Research Center, Beijing 302 Hospital, Beijing, 100039, China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, 45122, Essen, Germany.
| |
Collapse
|
32
|
Mijočević H, Karimzadeh H, Seebach J, Usman Z, Al-Mahtab M, Bazinet M, Vaillant A, Roggendorf M. Variants of hepatitis B virus surface antigen observed during therapy with nucleic acid polymer REP 2139-Ca have no influence on treatment outcome and its detection by diagnostic assays. J Viral Hepat 2019; 26:485-495. [PMID: 30450662 DOI: 10.1111/jvh.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
The treatment of patients suffering from HBeAg-positive chronic hepatitis B with REP 2139-Ca resulted in potent reductions in HBsAg and HBV DNA, seroconversion to anti-HBs and the establishment of functional control of infection. In this cohort of 12 patients, we investigated whether differences between HBsAg sequences might explain the lack of response to REP 2139-Ca observed in 3 of 12 patients. We also assessed if the reduction or complete loss of HBsAg in serum observed during therapy were caused by mutations in the "a" determinant preventing the detection of HBsAg by standard diagnostic assays. The complete pre-S/S open reading frame (ORF) was sequenced and pre-S1, pre-S2 and S amino acid sequences were analysed. We found no major differences between pre-S1, pre-S2 and S sequences in responders and nonresponders correlated with low reduction in HBsAg. In addition, we found no mutations in the "a" determinant that would significantly affect the reactivity of HBsAg in diagnostic assays. These results demonstrate that the amino acid sequence of complete pre-S/S ORF has no direct influence on response to REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Judith Seebach
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Zainab Usman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Mamun Al-Mahtab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
33
|
Torres MC, Civetta E, D'amico C, Barbini L. Hepatitis B virus in Mar del Plata, Argentina: Genomic characterization and evolutionary analysis of subgenotype F1b. J Med Virol 2019; 91:791-802. [PMID: 30570771 DOI: 10.1002/jmv.25383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/14/2018] [Indexed: 11/07/2022]
Abstract
The aim is to describe the molecular epidemiology and perform a genomic characterization of hepatitis B virus (HBV) circulating in Mar del Plata and to identify the origin and diversification patterns of the most prevalent genotype. The S gene and the region encompassing the X gene, basal core promoter (BCP), and precore (preC) was analyzed in 56 samples. They were genotyped as: 80% F1b, 9% A2, 7% D3, and 2% D1. A recombinant F4/D2 genome was detected. The double substitution G1764A/A1762T at the BCP (reduced HBeAg expression) was found in 20% F1b, 2% A2, 2% D1, and 2% D3 samples. A unique D3 presented the G1896A substitution at the preC (HBeAg negative phenotype). A 13% of the samples showed mutations at the HBsAg "a" immunodeterminant (escape from neutralizing antibodies). Mutations at the polymerase (antiviral resistance) were found in 52% of the samples. Coalescent analysis of subgenotype F1b, the most prevalent in the city, showed that viral diversification in Mar del Plata started by year 2000. F1b was the most prevalent genotype detected, being a characteristic of actual HBV infections in Mar del Plata. Local HBV exhibit clinically relevant mutations, but a minority of them was shown to be associated to potential vaccination escape or antiviral resistance. Nevertheless, further studies are needed to determine whether any of these mutants could pose a threat to prevention, diagnosis, or treatment.
Collapse
Affiliation(s)
| | - Elida Civetta
- Unidad de Hepatología y Alcoholismo, HIGA Dr. O. Alende, Mar del Plata, Argentina
| | - Claudia D'amico
- Centro de Especialidades Médicas Ambulatorias, Unidad de Hepatología, Mar del Plata, Argentina
| | - Luciana Barbini
- Departamento de Química, FCEyN, UNMdP, Buenos Aires, Argentina
| |
Collapse
|
34
|
Brenner N, Mentzer AJ, Butt J, Braband KL, Michel A, Jeffery K, Klenerman P, Gärtner B, Schnitzler P, Hill A, Taylor G, Demontis MA, Guy E, Hadfield SJ, Almond R, Allen N, Pawlita M, Waterboer T. Validation of Multiplex Serology for human hepatitis viruses B and C, human T-lymphotropic virus 1 and Toxoplasma gondii. PLoS One 2019; 14:e0210407. [PMID: 30615688 PMCID: PMC6322760 DOI: 10.1371/journal.pone.0210407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023] Open
Abstract
Multiplex Serology is a high-throughput technology developed to simultaneously measure specific serum antibodies against multiple pathogens in one reaction vessel. Serological assays for hepatitis B (HBV) and C (HCV) viruses, human T-lymphotropic virus 1 (HTLV-1) and the protozoan parasite Toxoplasma gondii (T. gondii) were developed and validated against established reference assays. For each pathogen, between 3 and 5 specific antigens were recombinantly expressed as GST-tag fusion proteins in Escherichia coli and tested in Monoplex Serology, i.e. assays restricted to the antigens from one particular pathogen. For each of the four pathogen-specific Monoplex assays, overall seropositivity was defined using two pathogen-specific antigens. In the case of HBV Monoplex Serology, the detection of past natural HBV infection was validated based on two independent reference panels resulting in sensitivities of 92.3% and 93.0%, and specificities of 100% in both panels. Validation of HCV and HTLV-1 Monoplex Serology resulted in sensitivities of 98.0% and 95.0%, and specificities of 96.2% and 100.0%, respectively. The Monoplex Serology assay for T. gondii was validated with a sensitivity of 91.2% and specificity of 92.0%. The developed Monoplex Serology assays largely retained their characteristics when they were included in a multiplex panel (i.e. Multiplex Serology), containing additional antigens from a broad range of other pathogens. Thus HBV, HCV, HTLV-1 and T. gondii Monoplex Serology assays can efficiently be incorporated into Multiplex Serology panels tailored for application in seroepidemiological studies.
Collapse
Affiliation(s)
- Nicole Brenner
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alexander J. Mentzer
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Julia Butt
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin L. Braband
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Michel
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katie Jeffery
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Paul Klenerman
- Department of Microbiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Barbara Gärtner
- Institut für Medizinische Mikrobiologie und Hygiene, Universität des Saarlands, Homburg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Adrian Hill
- The Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Taylor
- Molecular Diagnostic Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Maria A. Demontis
- Molecular Diagnostic Unit, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Edward Guy
- Toxoplasma Reference Unit, Public Health Wales Microbiology, Swansea, United Kingdom
| | - Stephen J. Hadfield
- Toxoplasma Reference Unit, Public Health Wales Microbiology, Swansea, United Kingdom
| | | | - Naomi Allen
- UK Biobank, Stockport, United Kingdom
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Michael Pawlita
- Molecular Diagnostics of Oncogenic Infections Division, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Infections and Cancer Epidemiology, Infection, Inflammation and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
35
|
Deng L, Cao L, Chen Y, Chen J, Hu X, Chen X, Wu C, Zhou Y. Hepatitis B surface antigen with N-terminal addition of mCherry can assemble into functional subviral particles. Future Virol 2018. [DOI: 10.2217/fvl-2018-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To label HBsAg with the mCherry protein without impairing its functionality. Materials & methods: A vector expressing mCherry–HBsAg fusion protein was constructed and transfected into Huh7 cell lines. The expression, secretion and subcellular localization of HBsAg was detected by western blotting, ELISA and immunofluorescence staining, respectively. Then the assembly of subviral particles was evaluated by sucrose density gradient centrifugation, dot blotting and electron microscopic assay. Results: mCherry–HBsAg fusion protein can be expressed and secreted in a similar manner to HBsAg. More importantly, mCherry–HBsAg fusion protein can self-assemble into spherical subviral-like particles. Conclusion: mCherry could be introduced into HBsAg without affecting its biological characters including expression, secretion and assembly.
Collapse
Affiliation(s)
- Liu Deng
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Liang Cao
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
- Department of Microbiology & Immunology, Feinberg School of Medicine, NU, Chicago, IL, USA
| | - Yingshan Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
36
|
Molecular Characterization of Near Full-Length Genomes of Hepatitis B Virus Isolated from Predominantly HIV Infected Individuals in Botswana. Genes (Basel) 2018; 9:genes9090453. [PMID: 30205537 PMCID: PMC6162474 DOI: 10.3390/genes9090453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization plans to eliminate hepatitis B and C Infections by 2030. Therefore, there is a need to study and understand hepatitis B virus (HBV) epidemiology and viral evolution further, including evaluating occult (HBsAg-negative) HBV infection (OBI), given that such infections are frequently undiagnosed and rarely treated. We aimed to molecularly characterize HBV genomes from 108 individuals co-infected with human immunodeficiency virus (HIV) and chronic hepatitis B (CHB) or OBI identified from previous HIV studies conducted in Botswana from 2009 to 2012. Full-length (3.2 kb) and nearly full-length (~3 kb) genomes were amplified by nested polymerase chain reaction (PCR). Sequences from OBI participants were compared to sequences from CHB participants and GenBank references to identify OBI-unique mutations. HBV genomes from 50 (25 CHB and 25 OBI) individuals were successfully genotyped. Among OBI participants, subgenotype A1 was identified in 12 (48%), D3 in 12 (48%), and E in 1 (4%). A similar genotype distribution was observed in CHB participants. Whole HBV genome sequences from Botswana, representing OBI and CHB, were compared for the first time. There were 43 OBI-unique mutations, of which 26 were novel. Future studies using larger sample sizes and functional analysis of OBI-unique mutations are warranted.
Collapse
|
37
|
Kang Y, Li F, Guo H, Yang S, Zhang Y, Zhu H, Wang J, Mao R, Qin Y, Xu J, Chen X, Wu C, Zhang J. Amino acid substitutions Q129N and T131N/M133T in hepatitis B surface antigen (HBsAg) interfere with the immunogenicity of the corresponding HBsAg or viral replication ability. Virus Res 2018; 257:33-39. [PMID: 30179704 DOI: 10.1016/j.virusres.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Variants of hepatitis B surface antigen (HBsAg) influenced its antigenicity and immunogenicity. In our study, we aim to investigate biological significance of amino acid (aa) substitutions in HBsAg, Q129 N and T131 N/M133 T, for glycosylation, antigenicity and immunogenicity of variant HBsAg (vtHBsAg) and viral replication. Expression plasmids of vtHBsAg with aa substitutions Q129 L, T123 N, Q129 N and T131 N/M133 T were constructed. Immunofluorescence (IF) staining and Western blot were simultaneously utilized to examine expression of vtHBsAg proteins in Huh7 cells transfected with vtHBsAg constructs. vtHBsAg of Q129 N and T131 N/M133 T created new N-glycosylation and displayed perinuclear distribution by IF staining with the anti-HA. Antigenicity of vtHBsAg of Q129 N and T131 N/M133 T was reduced compared with wild type (wt) HBsAg. In addition, we discovered impaired ability to induce anti-HBs responses against wtHBsAg in mice immunized with plasmids pHBsAg- Q129 N and T131 N/M133 T. Even so, efficient protective response toward wild type HBV can be primed by the two vtHBsAgs in mice. Further, we discovered that vtHBsAg with Q129 N distinctly impaired HBV replication capacity, but vtHBsAg with T131 N/M133 T had no impact on viral replication. Thus, we conclude that vtHBsAg with Q129 N or T131 N/M133 T creates new N-glycosylation and interferes with both the antigenicity and immunogenicity of vtHBsAg. And vtHBsAg with Q129 N impaired HBV replication ability.
Collapse
Affiliation(s)
- Yaoyue Kang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Hongying Guo
- Department of Hepatitis Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Sisi Yang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jinyu Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Richeng Mao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yanli Qin
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jie Xu
- Department of Infectious Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwen Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Chunchen Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Key laboratory of Medical Molecular Virology of the Ministries of Education and Health (MOH&MOE), Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Wu CC, Chen YS, Cao L, Chen XW, Lu MJ. Hepatitis B virus infection: Defective surface antigen expression and pathogenesis. World J Gastroenterol 2018; 24:3488-3499. [PMID: 30131655 PMCID: PMC6102499 DOI: 10.3748/wjg.v24.i31.3488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.
Collapse
MESH Headings
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Disease Progression
- Genome, Viral/genetics
- Hepatitis B Surface Antigens/genetics
- Hepatitis B Surface Antigens/immunology
- Hepatitis B Surface Antigens/metabolism
- Hepatitis B virus/genetics
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/pathology
- Hepatitis B, Chronic/prevention & control
- Hepatitis B, Chronic/virology
- Humans
- Liver/immunology
- Liver/pathology
- Liver/virology
- Liver Failure, Acute/immunology
- Liver Failure, Acute/pathology
- Liver Failure, Acute/prevention & control
- Liver Failure, Acute/virology
- Mutation
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Chun-Chen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Ying-Shan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Liang Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
- Department of Microbiology and Immunology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, United States
| | - Xin-Wen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, Hubei Province, China
| | - Meng-Ji Lu
- Institute of Virology, University Hospital of Essen, Essen 45122, Germany
| |
Collapse
|
39
|
Anderson M, Choga WT, Moyo S, Bell TG, Mbangiwa T, Phinius BB, Bhebhe L, Sebunya TK, Makhema J, Marlink R, Kramvis A, Essex M, Musonda RM, Blackard JT, Gaseitsiwe S. In Silico Analysis of Hepatitis B Virus Occult Associated Mutations in Botswana Using a Novel Algorithm. Genes (Basel) 2018; 9:genes9090420. [PMID: 30134551 PMCID: PMC6162659 DOI: 10.3390/genes9090420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B infections (OBI) represent a reservoir of undiagnosed and untreated hepatitis B virus (HBV), hence the need to identify mutations that lead to this phenotype. Functionally characterizing these mutations by in vitro studies is time-consuming and expensive. To bridge this gap, in silico approaches, which predict the effect of amino acid (aa) variants on HBV protein function, are necessary. We developed an algorithm for determining the relevance of OBI-associated mutations using in silico approaches. A 3 kb fragment of subgenotypes A1 and D3 from 24 chronic HBV-infected (CHB) and 24 OBI participants was analyzed. To develop and validate the algorithm, the effects of 68 previously characterized occult-associated mutations were determined using three computational tools: PolyPhen2, SNAP2, and PROVEAN. The percentage of deleterious mutations (with impact on protein function) predicted were 52 (76.5%) by PolyPhen2, 55 (80.9%) by SNAP2, and 65 (95.6%) by PROVEAN. At least two tools correctly predicted 59 (86.8%) mutations as deleterious. To identify OBI-associated mutations exclusive to Botswana, study sequences were compared to CHB sequences from GenBank. Of the 43 OBI-associated mutations identified, 26 (60.5%) were predicted by at least two tools to have an impact on protein function. To our knowledge, this is the first study to use in silico approaches to determine the impact of OBI-associated mutations, thereby identifying potential candidates for functional analysis to facilitate mechanistic studies of the OBI phenotype.
Collapse
Affiliation(s)
- Motswedi Anderson
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Trevor Graham Bell
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Tshepiso Mbangiwa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Faculty of Allied Health Sciences, University of Botswana, Gaborone, Botswana.
| | - Bonolo B Phinius
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Lynette Bhebhe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
| | - Theresa K Sebunya
- Faculty of Science, Department of Biological Sciences, University of Botswana, Gaborone, Botswana.
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Richard Marlink
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Rutgers Global Health Institute, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit (HVDRU), Faculty of Health Sciences, Department of Internal Medicine, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | | | - Jason T Blackard
- College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Lumley SF, McNaughton AL, Klenerman P, Lythgoe KA, Matthews PC. Hepatitis B Virus Adaptation to the CD8+ T Cell Response: Consequences for Host and Pathogen. Front Immunol 2018; 9:1561. [PMID: 30061882 PMCID: PMC6054973 DOI: 10.3389/fimmu.2018.01561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic viral hepatitis infections are a major public health concern, with an estimated 290 million individuals infected with hepatitis B virus (HBV) globally. This virus has been a passenger in human populations for >30,000 years, and remains highly prevalent in some settings. In order for this endemic pathogen to persist, viral adaptation to host immune responses is pre-requisite. Here, we focus on the interplay between HBV infection and the CD8+ T cell response. We present the evidence that CD8+ T cells play an important role in control of chronic HBV infection and that the selective pressure imposed on HBV through evasion of these immune responses can potentially influence viral diversity, chronicity, and the outcome of infection, and highlight where there are gaps in current knowledge. Understanding the nature and mechanisms of HBV evolution and persistence could shed light on differential disease outcomes, including cirrhosis and hepatocellular carcinoma, and help reach the goal of global HBV elimination by guiding the design of new strategies, including vaccines and therapeutics.
Collapse
Affiliation(s)
- Sheila F. Lumley
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Anna L. McNaughton
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Philippa C. Matthews
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford BRC, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
41
|
Bi X, Tong S. Impact of immune escape mutations and N-linked glycosylation on the secretion of hepatitis B virus virions and subviral particles: Role of the small envelope protein. Virology 2018; 518:358-368. [PMID: 29604477 DOI: 10.1016/j.virol.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) expresses three co-terminal envelope proteins: large (L), middle (M), and small (S), with the S protein driving the secretion of both virions and subviral particles. Virion secretion requires N-linked glycosylation at N146 in the S domain but can be impaired by immune escape mutations. An M133T mutation creating a novel glycosylation site at N131could rescue virion secretion of N146Q mutant (loss of original glycosylation site) and immune escape mutants such as G145R. Here we demonstrate that other novel N-linked glycosylation sites could rescue virion secretion of the G145R and N146Q mutants to variable extents. Both G145R and N146Q mutations impaired virion secretion through the S protein. The M133T mutation restored virion secretion through the S protein, and could work in trans. Impaired virion secretion was not necessarily associated with a similar block in the secretion of subviral particles.
Collapse
Affiliation(s)
- Xiaohui Bi
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shuping Tong
- Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Liver Research Center, Rhode Island Hospital, Warren Alpert School of Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
42
|
Ambachew H, Zheng M, Pappoe F, Shen J, Xu Y. Genotyping and sero-virological characterization of hepatitis B virus (HBV) in blood donors, Southern Ethiopia. PLoS One 2018; 13:e0193177. [PMID: 29462187 PMCID: PMC5819820 DOI: 10.1371/journal.pone.0193177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) prevalence is highest in Sub-Saharan Africa including Ethiopia. HBV genotypes have distinct geographic distributions and play a role in course of infection and treatment management. However, in Ethiopia there is paucity of information about distribution of HBV genotypes. This study was done to determine genotype, mutation and sero-virological profiles of HBV isolates in Southern Ethiopia. Cross-sectional, laboratory based study was conducted on 103HBsAg sero-positive samples from a total of 2,237 screened blood donors. HBV serological markers and biochemical assays were done. Serum viral load was measured using quantitative real-time PCR. Partial HBV S-gene was amplified with nested PCR and sequenced. Bioinformatics tools were utilized to determine genotypes, serotypes and mutations. Of 103 HBsAg reactive serum samples, 14.6% and 70.9% were sero-positive for HBeAg and HBeAb, respectively. Ninety-eight samples gave detectable viral load with a median of 3.46(2.62-4.82) log IU/ml. HBeAg sero-positive donors carried elevated levels of viral load. Eighty five isolates were successfully amplified, sequenced and genotyped into 58 (68.2%) genotype A (HBV/A) and 27 (31.8%) genotype D (HBV/D). HBV serotypes found were adw2 (74.1%), ayw2 (24.7%), and ayw3 (1.2%). In twenty-four (28.2%) samples mutations in the major hydrophilic region (MHR) were observed. Donors infected with HBV/A had higher viral load and more frequent MHR mutation than HBV/D infected donors. This study illustrated distribution of HBV genotype A and D among blood donors in southern Ethiopia. It also demonstrated occurrence HBV variants that may influence clinical aspects of HBV infection. The study contributes in narrowing the existing gap of HBV molecular study in Ethiopia.
Collapse
Affiliation(s)
- Henock Ambachew
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Faustina Pappoe
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
43
|
Productive HBV infection of well-differentiated, hNTCP-expressing human hepatoma-derived (Huh7) cells. Virol Sin 2017; 32:465-475. [PMID: 28971350 PMCID: PMC6702241 DOI: 10.1007/s12250-017-3983-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
Feasible and effective cell models for hepatitis B virus (HBV) infection are required for investigating the complete lifecycle of this virus, including the early steps of viral entry. Resistance to dimethyl sulfoxide/polyethylene glycol (DMSO/PEG), hNTCP expression, and a differentiated state are the limiting factors for successful HBV infection models. In the present study, we used a hepatoma cell line (Huh7DhNTCP) to overcome these limiting factors so that it exhibits excellent susceptibility to HBV infection. To achieve this goal, different hepatoma cell lines were tested with 2.5% DMSO / 4% PEG8000, and one resistant cell line (Huh7D) was used to construct a stable hNTCP-expressing cell line (Huh7DhNTCP) using a recombinant lentivirus system. Then, the morphological characteristics and differentiation molecular markers of Huh7DhNTCP cells with or without DMSO treatment were characterized. Finally, the susceptibility of Huh7DhNTCP cells to HBV infection was assessed. Our results showed that Huh7D cells were resistant to 2.5% DMSO / 4% PEG8000, whereas the others were not. Huh7DhNTCP cells were established to express a high level of hNTCP compared to liver extracts, and Huh7DhNTCP cells rapidly transformed into a non-dividing, well-differentiated polarized phenotype under DMSO treatment. Huh7DhNTCP cells fully supported the entire lifecycle of HBV infection. This cell culture system will be useful for the analysis of host-virus interactions, which should facilitate the discovery of antiviral drugs and vaccines.
Collapse
|
44
|
Additional N-glycosylation mutation in the major hydrophilic region of hepatitis B virus S gene is a risk indicator for hepatocellular carcinoma occurrence in patients with coexistence of HBsAg/anti-HBs. Oncotarget 2017; 8:61719-61730. [PMID: 28977899 PMCID: PMC5617459 DOI: 10.18632/oncotarget.18682] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
The study aimed to determine the association of additional N-glycosylation mutations in the major hydrophilic region (MHR) of hepatitis B virus (HBV) S gene with hepatocellular carcinoma (HCC) occurrence in HBsAg/anti-HBs coexistent patients. A total of 288 HBsAg/anti-HBs coexistent patients and 490 single HBsAg-positive patients were enrolled, including 193 with HCC, 433 with chronic hepatitis B (CHB), and 152 with acute-on-chronic liver failure (ACLF). The HBV S genes were amplified from serum and sequenced. The frequency of additional N-glycosylation mutations was significantly higher in HCC patients (12.37%) than in CHB patients (4.39%) and ACLF patients (2.63%). The frequency escalated by an order of single HBsAg-positive non-HCC (1.61%), single HBsAg-positive HCC (5.98%), HBsAg/anti-HBs coexistent non-HCC (8.01%), and HBsAg/anti-HBs coexistent HCC (22.36%). Twelve kinds of mutations/mutation patterns were detected, five of which have not been reported. Multivariate analysis showed that age > 40 years [OR, 3.005; 95% CI, 1.177−7.674; P = 0.021], alpha-fetoprotein > 10 ng/mL [OR, 4.718; 95% CI, 2.406−9.251; P <0.001], cirrhosis [OR, 6.844; 95% CI, 2.773−16.891, P < 0.001], Hepatitis B e antigen negativity [OR, 2.218; 95% CI, 4.335, P = 0.020], and additional N-glycosylation mutation [OR, 2.831; 95% CI, 1.157−6.929; P = 0.023] were independent risk factors for HCC in HBsAg/anti-HBs coexistent patients. Dynamical analysis showed that the additional N-glycosylation mutations existed 1-4 years prior to HCC occurrence in eight of 18 patients observed. In conclusion, the dditional N-glycosylation mutations together with HBsAg/anti-HBs coexistence might serve as a predictive indicator for HCC occurrence in chronic HBV-infected patients.
Collapse
|
45
|
Zhao K, Wu C, Yao Y, Cao L, Zhang Z, Yuan Y, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Lu M, Chen X. Ceruloplasmin inhibits the production of extracellular hepatitis B virions by targeting its middle surface protein. J Gen Virol 2017; 98:1410-1421. [PMID: 28678687 DOI: 10.1099/jgv.0.000794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ceruloplasmin (CP) is mainly synthesized by hepatocytes and plays an essential role in iron metabolism. Previous reports have shown that CP levels correlate negatively with disease progression in patients with chronic hepatitis B. However, the function of CP in the hepatitis B virus (HBV) life cycle and the mechanism underlying the above correlation remain unclear. Here, we report that CP can selectively inhibit the production of extracellular HBV virions without altering intracellular viral replication. HBV expression can also downregulate the expression of CP. Knockdown of CP using small interfering RNA significantly increased the level of extracellular HBV virions in both Huh7 and HepG2.2.15 cells, while overexpression of CP decreased this level. Mechanistically, CP could specifically interact with the HBV middle surface protein (MHB). Using an HBV replication-competent clone unable to express MHBs, we demonstrated that the overexpression of CP did not affect the production of extracellular HBV virions in the absence of MHBs. Furthermore, introduction of an MHB expression construct could rescue the impairment in virion production caused by CP. Taken together, our results suggest that CP may be an important host factor that targets MHBs during the envelopment and/or release of virions.
Collapse
Affiliation(s)
- Kaitao Zhao
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Chunchen Wu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yongxuan Yao
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Liang Cao
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Zhenhua Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230022, PR China
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei 230022, PR China
| | - Yifei Yuan
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yun Wang
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Rongjuan Pei
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Jizheng Chen
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xue Hu
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yuan Zhou
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Xinwen Chen
- University of Chinese Academy of Sciences, Beijing, PR China
- State Key Lab of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
46
|
Zhou TC, Li X, Li L, Li XF, Zhang L, Wei J. Evolution of full-length genomes of HBV quasispecies in sera of patients with a coexistence of HBsAg and anti-HBs antibodies. Sci Rep 2017; 7:661. [PMID: 28386078 PMCID: PMC5428874 DOI: 10.1038/s41598-017-00694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Although the evolutionary changes of viral quasispecies are correlated to the pathological status of a disease, little is known in the coexistence of hepatitis B surface antigen (HBsAg) and antibodies to these antigens (anti-HBs). To examine evolutionary changes in hepatitis B virus (HBV) and their relationship to the coexistence of HBsAg and anti-HBs antibodies, HBV genomes in patients with a coexistence of HBsAg and anti-HBs antibodies (experimental group) and HBsAg positive without anti-HBs (control group) were assessed. Our results showed that quasispecies diversity was significantly higher in the experimental group for large HBsAg (LHBsAg), middle HBsAg (MHBsAg), and HBsAg genes. LHBsAg harbored dN/dS values eight times higher in the experimental group; however, the mean dN/dS ratios in genes HbxAg, Pol and PreC/C of the experimental patients had an opposite trend. Phylogenetic trees in the experimental group were more complex than the control group. More positive selection sites, mutations and deletions were observed in the experimental group in specific regions. Furthermore, several amino acid variants in epitopes were potentially associated with the immune evasion. In conclusion, cumulative evolutionary changes in HBV genome that facilitate immune evasion provide insights into the genetic mechanism of a coexistence of HBsAg and anti-HBs antibodies.
Collapse
Affiliation(s)
- Tai-Cheng Zhou
- Central lab, Liver disease research center, the second people's hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Xiao Li
- Central lab, Liver disease research center, the second people's hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Long Li
- Central lab, Liver disease research center, the second people's hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Xiao-Fei Li
- Clinical laboratory, the third people's hospital of Kunming City, Kunming, Yunnan Province, China
| | - Liang Zhang
- Central lab, Liver disease research center, the second people's hospital of Yunnan Province, Kunming, Yunnan Province, China.
| | - Jia Wei
- Central lab, Liver disease research center, the second people's hospital of Yunnan Province, Kunming, Yunnan Province, China.
| |
Collapse
|
47
|
Hossain MG, Ueda K. Investigation of a Novel Hepatitis B Virus Surface Antigen (HBsAg) Escape Mutant Affecting Immunogenicity. PLoS One 2017; 12:e0167871. [PMID: 28045894 PMCID: PMC5207502 DOI: 10.1371/journal.pone.0167871] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Mutation in the hepatitis B virus surface antigen (HBsAg) may affect the efficiency of diagnostic immunoassays or success of vaccinations using HBsAg. Thus, antigenicity and immunogenicity analyses of the mutated HBsAg are necessary to develop novel diagnostic tools and efficient vaccinations. Here, the in vitro antigenicity of three wild-type HBsAg open reading frames (ORFs) (adr4, W1S [subtype adr] and W3S [subtype adr]) isolated from clinically infected patients and nineteen synthesized single/double/multiple amino acid-substituted mutants were tested with commercial ELISA kits. Immunofluorescence staining of transfected cells and Western blot analysis confirmed that these ORFs were expressed at comparable levels in HEK-293 cells. W1S and adr4 were clearly detected, whereas W3S could not be detected. Using the same commercial immunoassay kit, we found that the single mutants, K120P and D123T, were marginally reactive, whereas W3S-aW1S and the double mutant, K120P/D123T, exhibited antigenicity roughly equivalent to the wild-type wako1S. On the other hand, the single mutants of W1S, P120K and T123D, significantly impaired the reactivity, while W1S-aW3S and the double mutant of W1S, P120K/T123D, resulted in a complete loss of antigenicity. In addition, ELISA revealed reduced HBs antigenicity of two mutants, W1S N146G and W1S Q129R/G145R. These commercial ELISA-based antigenic reactivities of HBsAg were also strongly correlated with the predicted Ai alterations of affected amino acids due to the specific mutation. In conclusion, this study showed for the first time that lysine (K120) and aspartate (D123) simultaneously affected HBsAg antigenicity, leading to diagnostic failure. These findings will improve diagnostic assays and vaccine development.
Collapse
Affiliation(s)
- Md. Golzar Hossain
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiji Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
48
|
Golsaz-Shirazi F, Mohammadi H, Amiri MM, Khoshnoodi J, Kardar GA, Jeddi-Tehrani M, Shokri F. Localization of immunodominant epitopes within the "a" determinant of hepatitis B surface antigen using monoclonal antibodies. Arch Virol 2016; 161:2765-72. [PMID: 27439498 DOI: 10.1007/s00705-016-2980-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/10/2016] [Indexed: 01/15/2023]
Abstract
The common "a" determinant is the major immunodominant region of hepatitis B surface antigen (HBsAg) shared by all serotypes and genotypes of hepatitis B virus (HBV). Antibodies against this region are thought to confer protection against HBV and are essential for viral clearance. Mutations within the "a" determinant may lead to conformational changes in this region, which can affect the binding of neutralizing antibodies. There is an increasing concern about identification and control of mutant viruses which is possible by comprehensive structural investigation of the epitopes located within this region. Anti-HBs monoclonal antibodies (mAbs) against different epitopes of HBsAg are a promising tool to meet this goal. In the present study, 19 anti-HBs mAbs were employed to map epitopes localized within the "a" determinant, using a panel of recombinant mutant HBsAgs. The topology of the epitopes was analyzed by competitive enzyme-linked immunosorbent assay (ELISA). Our results indicate that all of the mAbs seem to recognize epitopes within or in the vicinity of the "a" determinant of HBsAg. Different patterns of binding with mutant forms were observed with different mAbs. Amino acid substitutions at positions 123, 126, 129, 144, and 145 dramatically reduced the reactivity of antibodies with HBsAg. The T123N mutation had the largest impact on antibody binding to HBsAg. The reactivity pattern of our panel of mAbs with mutant forms of HBsAg could have important clinical implications for immunoscreening, diagnosis of HBV infection, design of a new generation of recombinant HB vaccines, and immunoprophylaxis of HBV infection as an alternative to therapy with hepatitis B immune globulin (HBIG).
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran.,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran
| | - Jalal Khoshnoodi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, PO Box 6446-14155, Tehran, Iran. .,Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Shahid Beheshti University, Evin, PO Box 19835-1177, Tehran, Iran.
| |
Collapse
|
49
|
Osiowy C, Kowalec K, Giles E. Discordant diagnostic results due to a hepatitis B virus T123A HBsAg mutant. Diagn Microbiol Infect Dis 2016; 85:328-333. [DOI: 10.1016/j.diagmicrobio.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
|
50
|
Aragri M, Alteri C, Battisti A, Di Carlo D, Minichini C, Sagnelli C, Bellocchi MC, Pisaturo MA, Starace M, Armenia D, Carioti L, Pollicita M, Salpini R, Sagnelli E, Perno CF, Coppola N, Svicher V. Multiple Hepatitis B Virus (HBV) Quasispecies and Immune-Escape Mutations Are Present in HBV Surface Antigen and Reverse Transcriptase of Patients With Acute Hepatitis B. J Infect Dis 2016; 213:1897-1905. [PMID: 26908731 DOI: 10.1093/infdis/jiw049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/28/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study characterizes and defines the clinical value of hepatitis B virus (HBV) quasispecies with reverse transcriptase and HBV surface antigen (HBsAg) heterogeneity in patients with acute HBV infection. METHODS Sixty-two patients with acute HBV infection (44 with genotype D infection and 18 with genotype A infection) were enrolled from 2000 to 2010. Plasma samples obtained at the time of the first examination were analyzed by ultradeep pyrosequencing. The extent of HBsAg amino acid variability was measured by Shannon entropy. RESULTS Median alanine aminotransferase and serum HBV DNA levels were 2544 U/L (interquartile range, 1938-3078 U/L) and 5.88 log10 IU/mL (interquartile range, 4.47-7.37 log10 IU/mL), respectively. Although most patients serologically resolved acute HBV infection, only 54.1% developed antibody to HBsAg (anti-HBs). A viral population with ≥1 immune-escape mutation was found in 53.2% of patients (intrapatient prevalence range, 0.16%-100%). Notably, by Shannon entropy, higher genetic variability at HBsAg amino acid positions 130, 133, and 157 significantly correlated with no production of anti-HBs in individuals infected with genotype D (P < .05). Stop codons were detected in 19.3% of patients (intrapatient prevalence range, 1.6%-47.5%) and occurred at 11 HBsAg amino acid positions, including 172 and 182, which are known to increase the oncogenic potential of HBV.Finally, ≥1 drug resistance mutation was detected in 8.1% of patients (intrapatient prevalence range, 0.11%-47.5% for primary mutations and 10.5%-99.9% for compensatory mutations). CONCLUSIONS Acute HBV infection is characterized by complex array of viral quasispecies with reduced antigenicity/immunogenicity and enhanced oncogenic potential. These viral variants may induce difficult-to-treat HBV forms; favor HBV reactivation upon iatrogenic immunosuppression, even years after infection; and potentially affect the efficacy of the current HBV vaccination strategy.
Collapse
Affiliation(s)
- Marianna Aragri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Arianna Battisti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Domenico Di Carlo
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Carmine Minichini
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Caterina Sagnelli
- Department of Clinical and Experimental Medicine and Surgery, Second University of Naples, Italy
| | | | - Maria Antonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Mario Starace
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Daniele Armenia
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Luca Carioti
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Michela Pollicita
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Romina Salpini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, Caserta
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome
| |
Collapse
|