1
|
Duan J, Yao Y, Xu J, Zhang A, Kong X, Lin Y, Xie J, Cheng J, Fu Y, Chen T, Li B, Yu X, Lyu X, Xiao X, Sharon A, Trushina NK, Kotta-Loizou I, Jiang D. The rules in co-infection of multiple viruses across diverse lineages in a fungal host. mBio 2025:e0026225. [PMID: 40391984 DOI: 10.1128/mbio.00262-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Viruses, ubiquitous non-cellular organisms, pose significant threats to human health and to the agricultural productivity of both livestock and crops. Emerging evidence indicates that multiple viruses can infect a single host, and viral co-infection can exert a profound influence on host physiology. However, our understanding of the prevalence of co-infection and the compatibility of phylogenetically distant viruses is still limited. In this study, we surveyed 406 field strains of the plant fungal pathogen Botrytis cinerea and identified 76 mycoviruses. Strikingly, 404 strains were co-infected with two or more viruses, with some harboring up to 25 viruses simultaneously. We discerned significant preference patterns among viruses in their host. Specifically, we identified "one-to-one" and "two-to-one" rules, wherein one or two viruses could be used to reliably predict the presence or absence of other viruses in the same host, and validated these predicted rules by using five B. cinerea strains. Furthermore, through the RNA-sequencing approach, we uncovered B. cinerea genes associated with the differences caused by different sets of co-infecting viruses. These are implicated in integral components of membrane, transmembrane transporter activity, autophagy pathways, mitophagy pathway, fatty acid biosynthetic process, sphingolipid metabolism, and glycosphingolipid biosynthesis. Our findings underscore the high prevalence of co-infection by multiple viruses in a fungal host within a population and highlight compatibility dynamics among phylogenetically diverse viruses. These insights contribute to our understanding of viral ecology and hold promise for informing strategies to manage viral diseases effectively. IMPORTANCE Viruses, pervasive threats to both humans and agriculture, often infect hosts concurrently, profoundly impacting physiology. Despite this, the prevalence and compatibility of co-infecting viruses remain poorly understood. In the study of 406 Botrytis cinerea strains, we discovered a striking phenomenon: 404 out of the 406 strains hosted multiple viruses, some with up to 25 at once. Through rigorous analysis, we unveiled distinct preference patterns among these viruses within hosts, identifying predictive co-infection rules validated by experimentation. Furthermore, we identified genes linked to these dynamics, shedding light on critical cellular processes involved in the regulation of the co-infection rules. These findings highlight the widespread nature of viral co-infection and offer insights crucial for effectively managing viral diseases.
Collapse
Affiliation(s)
- Jie Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yuduo Yao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jialing Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Anmeng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiaojing Kong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Amir Sharon
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Kagan Trushina
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Ioly Kotta-Loizou
- Department of Clinical, Pharmaceutical and Biological Science, School of Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tang J, Wang L, Fang W, Su CM, Kim J, Du Y, Yoo D. Coinfection with bacterial pathogens and genetic modification of PRRSV-2 for suppression of NF-κB and attenuation of proinflammatory responses. Virology 2025; 606:110484. [PMID: 40086205 DOI: 10.1016/j.virol.2025.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infects pulmonary alveolar macrophages and induces inflammation in the respiratory system. In swine farms, coinfection with PRRSV and bacterial pathogens is common and can result in clinically complicated outcomes, including porcine respiratory disease complex. Coinfection can cause excessive expressions of proinflammatory mediators and may lead to cytokine-storm-like syndrome. An immunological hallmark of PRRSV-2 is the bidirectional regulation of NF-κB with the nucleocapsid (N) protein identified as the NF-κB activator. We generated an NF-κB-silencing mutant PRRSV-2 by mutating the N gene to block its binding to PIAS1 [protein inhibitor of activated STAT-1 (signal transducer and activator of transcription 1)]. PIAS1 functions as an NF-κB repressor, and thus, the PIAS1-binding modified N-mutant PRRSV-2 became NF-κB activation-resistant in its phenotype. During coinfection of pigs with PRRSV-2 and Streptococcus suis, the N-mutant PRRSV-2 decreased the expression of proinflammatory cytokines and showed clinical attenuation. This review describes the coinfection of pigs with various pathogens, the generation of mutant PRRSV for NF-κB suppression, inflammatory profiles during bacterial coinfection, and the potential application of these findings to designing a new vaccine candidate for PRRSV-2.
Collapse
Affiliation(s)
- Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chia-Ming Su
- Department of Biochemistry and Cell Biology, School of Medicine, Boston University, Boston, MA, USA
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yijun Du
- Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Sun Q, Cheng Y, Huang Y, Li S, Li Y, Fu Q. Neferine inhibits PRRSV infection by disrupting p65 nuclear translocation. Microb Pathog 2025; 205:107648. [PMID: 40311944 DOI: 10.1016/j.micpath.2025.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), imposes substantial economic losses on the global swine industry due to its profound impact on pig health and production efficiency. The main clinical manifestations are reproductive disorders such as miscarriage, stillbirth or weak foetuses in sows, as well as severe respiratory diseases in pigs of all ages. Currently, due to the high genomic diversity, antigen heterogeneity, and antibody-dependent enhancement effects of PRRSV, vaccination strategies cannot effectively control PRRSV infection. It is also difficult to control these viral infectious diseases with antiviral drugs. In this study, we demonstrate that neferine (Nef), a natural compound derived from lotus seeds, inhibits NF-κB activation during PRRSV infection. Consequently, Nef effectively suppresses PRRSV gene expression and virion replication in the PRRSV-infected Marc-145 cell line. Further studies demonstrated that Nef attenuates the nuclear translocation of p65 triggered by PRRSV infection, consequently mitigating the excessive production of inflammatory cytokines in infected cells. This anti-inflammatory mechanism may contribute to its observed antiviral efficacy against PRRSV. As a result, we conclude that Nef may be an effective clinical treatment for the acute occurrence and transmission of PRRSV infections. Furthermore, PRRSV is thought to be responsible for an increase in proinflammatory cytokines.
Collapse
Affiliation(s)
- Qinqin Sun
- School of Animal Science and Technology, Foshan University, Foshan, PR China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, PR China
| | - Yun Cheng
- School of Animal Science and Technology, Foshan University, Foshan, PR China
| | - Yunfei Huang
- School of Animal Science and Technology, Foshan University, Foshan, PR China
| | - Shun Li
- School of Animal Science and Technology, Foshan University, Foshan, PR China
| | - Yajuan Li
- School of Animal Science and Technology, Foshan University, Foshan, PR China
| | - Qiang Fu
- School of Animal Science and Technology, Foshan University, Foshan, PR China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, PR China.
| |
Collapse
|
4
|
Shi Y, Shi K, Ma Y, Yin Y, Long F, Feng S, Mo M, He J, Wei Z. Development of a triplex crystal digital PCR for the detection of PRCoV, PRRSV, and SIV. Front Vet Sci 2025; 12:1562444. [PMID: 40230793 PMCID: PMC11995635 DOI: 10.3389/fvets.2025.1562444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), and swine influenza virus (SIV) are important pathogens of significant infectious diseases. They cause similar clinical respiratory symptoms, including fever, cough, runny nose, and respiratory distress, which makes these diseases difficult to distinguish from each other. In this study, three pairs of specific primers and TaqMan probes were designed for the conserved regions of the PRCoV S gene, PRRSV N gene, and SIV M gene, respectively. The annealing temperature, primer and probe concentrations, and reaction cycle were optimized, and a triplex crystal digital PCR (cdPCR) assay was established for the detection of PRCoV, PRRSV, and SIV. According to the test results, the assay was capable of specifically detecting PRCoV, PRRSV, and SIV, and there was no cross-reaction with other control swine viruses. Based on the Poisson distribution analysis, the limits of detection (LODs) for PRCoV, PRRSV, and SIV were 6.00, 5.75 and 6.00 copies/reaction, respectively, and the sensitivity was 26 times higher than those of the corresponding multiplex RT-qPCR. The coefficients of variation (CVs) of the intra-assay and inter-assay ranged from 0.19 to 1.84%. The assay was used to test 1,657 clinical samples, and the positivity rates of PRCoV, PRRSV, and SIV were 1.15, 12.79, and 2.05%, respectively. It showed diagnostic sensitivity and specificity of 100 and 99.82% for PRCoV, 100 and 99.24% for PRRSV, and 100 and 99.69% for SIV, respectively. These results indicated that the triplex cdPCR assay has strong specificity, high sensitivity, and excellent repeatability, which provides a valuable tool for the detection and differentiation of PRCoV, PRRSV, and SIV.
Collapse
Affiliation(s)
- Yuwen Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Nanning Kedi Biotechnology Co., Ltd., Nanning, China
| | - Kaichuang Shi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yan Ma
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Meilan Mo
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Olech M, Antas M. Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus (PRCV): Epidemiology and Molecular Characteristics-An Updated Overview. Viruses 2025; 17:493. [PMID: 40284936 PMCID: PMC12031570 DOI: 10.3390/v17040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus (PRCV) are enveloped, single-stranded RNA viruses belonging to the genus Alphacoronavirus in the family Coronaviridae. PRCV, a TGEV mutant with a spike(S) gene deletion, exhibits altered tissue tropism. TGEV replicates mainly in the intestines and causes severe diarrhea and high mortality in piglets, whereas PRCV replicates mainly in the respiratory tract. PRCV causes mild or subclinical respiratory infections but may contribute to respiratory disease syndrome in pigs infected with other respiratory pathogens. As PRCV and TGEV continuously evolve, monitoring these viruses is important for disease prevention and control. In this review, we provide updated information on the prevalence and genetic characteristics of TGEV/PRCV and their phylogenetic relationships. We also discuss the impact of mutations, deletions and recombination on the virulence and tissue tropism of TGEV/PRCV and highlight the possible zoonotic potential of these viruses.
Collapse
Affiliation(s)
- Monika Olech
- Department of Research Support, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Pulawy, Poland
| | - Marta Antas
- National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Pulawy, Poland;
| |
Collapse
|
6
|
Saif LJ. A Passion for Small Things and Staying Primed: My Career in Virology and Immunology. Annu Rev Anim Biosci 2025; 13:1-24. [PMID: 39546413 DOI: 10.1146/annurev-animal-111523-101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
A love of science and animals, perseverance, and happenstance propelled my career in veterinary virology and immunology. I have focused on deadly enteric and respiratory viral infections in neonatal livestock and humans with an aim to understand their prevalence, pathogenesis, interspecies transmission, and immunity and develop vaccines. Research on animal coronaviruses (CoVs), including their broad interspecies transmission, provided a foundation to understand emerging zoonotic fatal human respiratory CoVs [severe acute respiratory syndrome, Middle East respiratory syndrome, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)] and reverse zoonosis of SARS-CoV-2 to animals. A highlight of my early research was the discovery of the gut-mammary gland-sIgA axis, documenting a common mucosal immune system. The latter remains pivotal to designing maternal vaccines for passive immunity in neonates. Our discovery and innovative cell propagation of fastidious human and animal rotaviruses and caliciviruses and their infectivity in germ-free animals has provided cell-adapted and animal disease models for ongoing virologic and immunologic investigations and vaccines. Nevertheless, besides the research discoveries, my lasting legacy remains the outstanding mentees who have enriched my science and my life.
Collapse
Affiliation(s)
- Linda J Saif
- Center for Food Animal Health, Animal Sciences Department, Ohio Agricultural Research and Development Center, College of Food, Agriculture and Environmental Sciences, and Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA;
| |
Collapse
|
7
|
Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int J Mol Sci 2025; 26:407. [PMID: 39796262 PMCID: PMC11721917 DOI: 10.3390/ijms26010407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.
Collapse
Affiliation(s)
- Pauline Pöpperl
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Melanie Stoff
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| |
Collapse
|
8
|
Bedsted AE, Goecke NB, Hjulsager CK, Ryt-Hansen P, Larsen KC, Rasmussen TB, Bøtner A, Larsen LE, Belsham GJ. High-throughput screening for respiratory pathogens within pigs in Denmark; analysis of circulating porcine respiratory coronaviruses and their association with other pathogens. Virus Res 2024; 350:199501. [PMID: 39566828 PMCID: PMC11629333 DOI: 10.1016/j.virusres.2024.199501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Porcine respiratory coronavirus (PRCV) typically causes subclinical or mild respiratory infections in pigs, but may lead to more severe disease with other factors. PRCV infection in Denmark was initially detected in 1984, but data are lacking about its current prevalence and diversity. Antibodies against PRCV were detected in about 75 % of recent pig sera from Denmark. In addition, pig nasal swab samples were screened for PRCV and 12 other respiratory pathogens using a high-throughput RT-qPCR system. All targeted pathogens were detected but at different prevalences. Significant associations were found between the presence of PRCV and certain other pathogens. From PRCV positive samples, partial spike gene sequences and complete nucleocapsid coding sequences were determined. In phylogenetic analyses, these PRCVs clustered with earlier European PRCVs and were distinct from transmissible gastroenteritis virus. We conclude that PRCV is widespread within the pig population in Denmark. Further studies on the significance of PRCV are warranted.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Nicole B Goecke
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Charlotte K Hjulsager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5 2300 Copenhagen, Denmark
| | - Pia Ryt-Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Kasama Chusang Larsen
- Center for Diagnostics, Department of Health Technology, Technical University of Denmark, Henrik Dams Allé 202 2800 Kgs. Lyngby, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5 2300 Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Lars E Larsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88 1870 Frederiksberg, Denmark.
| |
Collapse
|
9
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
10
|
Li S, Lu Y, Yang S, Wang C, Yang J, Huang X, Chen G, Shao Y, Li M, Yu H, Fu Y, Liu G. Porcine lung tissue slices: a culture model for PRCV infection and innate immune response investigations. AMB Express 2024; 14:57. [PMID: 38753111 PMCID: PMC11098997 DOI: 10.1186/s13568-024-01717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Caiying Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Guohui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yongheng Shao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Maolin Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Haoyuan Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
11
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
12
|
Su CM, Kim J, Tang J, Hung YF, Zuckermann FA, Husmann R, Roady P, Kim J, Lee YM, Yoo D. A clinically attenuated double-mutant of porcine reproductive and respiratory syndrome virus-2 that does not prompt overexpression of proinflammatory cytokines during co-infection with a secondary pathogen. PLoS Pathog 2024; 20:e1012128. [PMID: 38547254 PMCID: PMC11003694 DOI: 10.1371/journal.ppat.1012128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1β (nsp1β) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1β as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1β gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-β expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Federico A. Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Patrick Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
13
|
Rawal G, Zhang J, Halbur PG, Gauger PC, Wang C, Opriessnig T. Experimental Infection of Pigs with a Traditional or a Variant Porcine Respiratory Coronavirus (PRCV) Strain and Impact on Subsequent Influenza A Infection. Pathogens 2023; 12:1031. [PMID: 37623991 PMCID: PMC10459072 DOI: 10.3390/pathogens12081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV) pathogenicity in pigs has been characterized using traditional PRCV isolates; however, information is lacking on pathogenicity of currently circulating PRCV isolates. Recently, a contemporary US PRCV variant was isolated. The infection dynamics of that strain (PRCV-var) and a traditional PRCV strain (PRCV-trad) were compared. In brief, 4-week-old pigs were divided into three groups with five pigs each. The pigs were inoculated with PRCV-trad or PRCV-var, or left uninfected. Nasal swabs were collected daily, and all pigs were necropsied at day (D) 3. PRCV nasal shedding was significantly higher in PRCV-var pigs compared to PRCV-trad pigs. To investigate the impact of trad and var PRCVs on subsequent infection with influenza A virus (IAV), four additional groups of five pigs were used: PRCV-trad-IAV (PRCV-trad at D0, co-infected with IAV at D5), PRCV-var-IAV, and IAV positive and negative controls. Significantly higher mean PRCV antibody titers and a significantly higher area under the curve (AUC) for PRCV shedding were observed in PRCV-var compared to PRCV-trad-pigs at D10. There was no impact on IAV infection. In conclusion, a 2020 PRCV variant isolate was similar in pathogenicity but more transmissible compared to a traditional 1989 isolate. These findings raise concerns about virus evolution towards more highly pathogenic and transmissible strains and the need to monitor such viruses.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Chong Wang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (P.G.H.); (P.C.G.); (C.W.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
14
|
Lagumdzic E, Pernold CPS, Ertl R, Palmieri N, Stadler M, Sawyer S, Stas MR, Kreutzmann H, Rümenapf T, Ladinig A, Saalmüller A. Gene expression of peripheral blood mononuclear cells and CD8 + T cells from gilts after PRRSV infection. Front Immunol 2023; 14:1159970. [PMID: 37409113 PMCID: PMC10318438 DOI: 10.3389/fimmu.2023.1159970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus, which emerged in Europe and U.S.A. in the late 1980s and has since caused huge economic losses. Infection with PRRSV causes mild to severe respiratory and reproductive clinical symptoms in pigs. Alteration of the host immune response by PRRSV is associated with the increased susceptibility to secondary viral and bacterial infections resulting in more serious and chronic disease. However, the expression profiles underlying innate and adaptive immune responses to PRRSV infection are yet to be further elucidated. In this study, we investigated gene expression profiles of PBMCs and CD8+ T cells after PRRSV AUT15-33 infection. We identified the highest number of differentially expressed genes in PBMCs and CD8+ T cells at 7 dpi and 21 dpi, respectively. The gene expression profile of PBMCs from infected animals was dominated by a strong innate immune response at 7 dpi which persisted through 14 dpi and 21 dpi and was accompanied by involvement of adaptive immunity. The gene expression pattern of CD8+ T cells showed a strong adaptive immune response to PRRSV, leading to the formation of highly differentiated CD8+ T cells starting from 14 dpi. The hallmark of the CD8+ T-cell response was the increased expression of effector and cytolytic genes (PRF1, GZMA, GZMB, GZMK, KLRK1, KLRD1, FASL, NKG7), with the highest levels observed at 21 dpi. Temporal clustering analysis of DEGs of PBMCs and CD8+ T cells from PRRSV-infected animals revealed three and four clusters, respectively, suggesting tight transcriptional regulation of both the innate and the adaptive immune response to PRRSV. The main cluster of PBMCs was related to the innate immune response to PRRSV, while the main clusters of CD8+ T cells represented the initial transformation and differentiation of these cells in response to the PRRSV infection. Together, we provided extensive transcriptomics data explaining gene signatures of the immune response of PBMCs and CD8+ T cells after PRRSV infection. Additionally, our study provides potential biomarker targets useful for vaccine and therapeutics development.
Collapse
Affiliation(s)
- Emil Lagumdzic
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Clara P. S. Pernold
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Nicola Palmieri
- University Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Spencer Sawyer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Melissa R. Stas
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kreutzmann
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
15
|
Wang S, Xu M, Yang K, Zhang Y, Li S, Tang YD, Wang J, Leng C, An T, Cai X. Streptococcus suis contributes to inguinal lymph node lesions in piglets after highly pathogenic porcine reproductive and respiratory syndrome virus infection. Front Microbiol 2023; 14:1159590. [PMID: 37180243 PMCID: PMC10172469 DOI: 10.3389/fmicb.2023.1159590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The swine pathogens porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis have both been reported to cause damage to the immune organs. Inguinal lymph node (ILN) injury has been reported in PRRSV-infected pigs with secondary S. suis infection, but not much is known about the mechanism. In this study, secondary S. suis infection after highly pathogenic (HP)-PRRSV infection caused more severe clinical symptoms, mortality, and ILN lesions. Histopathological lesions were seen in ILNs with a marked decrease in lymphocyte numbers. Terminal deoxynucleotidyl transferase (TdT)-mediated de-oxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assays revealed that HP-PRRSV strain HuN4 alone induced ILN apoptosis, but dual-infection with S. suis strain BM0806 induced greater levels of apoptosis. Besides, we found that some HP-PRRSV-infected cells underwent apoptosis. Furthermore, anti-caspase-3 antibody staining confirmed that ILN apoptosis was mainly induced by a caspase-dependent pathway. Pyroptosis was also observed in HP-PRRSV-infected cells, and there was more pyroptosis in piglets infected with HP-PRRSV alone compared with those with secondary S. suis infection, and HP-PRRSV-infected cells underwent pyroptosis. Altogether, this is the first report to identify pyroptosis in ILNs and which signaling pathway is related to ILN apoptosis in single or dual-infected piglets. These results contribute to a better understanding of the pathogenic mechanisms during secondary S. suis infection.
Collapse
Affiliation(s)
- Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
- *Correspondence: Shujie Wang,
| | - Min Xu
- Sinopharm Animal Health Corporation Ltd., Wuhan, China
| | - Kongbin Yang
- Neurosurgery Department, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinliang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-Reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Xuehui Cai,
| |
Collapse
|
16
|
Khoury O, Clouse C, McSwain MK, Applegate J, Kock ND, Atala A, Murphy SV. Ferret acute lung injury model induced by repeated nebulized lipopolysaccharide administration. Physiol Rep 2022; 10:e15400. [PMID: 36268626 PMCID: PMC9585421 DOI: 10.14814/phy2.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 06/16/2023] Open
Abstract
Inflammatory lung diseases affect millions of people worldwide. These diseases are caused by a number of factors such as pneumonia, sepsis, trauma, and inhalation of toxins. Pulmonary function testing (PFT) is a valuable functional methodology for better understanding mechanisms of lung disease, measuring disease progression, clinical diagnosis, and evaluating therapeutic interventions. Animal models of inflammatory lung diseases are needed that accurately recapitulate disease manifestations observed in human patients and provide an accurate prediction of clinical outcomes using clinically relevant pulmonary disease parameters. In this study, we evaluated a ferret lung inflammation model that closely represents multiple clinical manifestations of acute lung inflammation and injury observed in human patients. Lipopolysaccharide (LPS) from Pseudomonas aeruginosa was nebulized into ferrets for 7 repeated daily doses. Repeated exposure to nebulized LPS resulted in a restrictive pulmonary injury characterized using Buxco forced maneuver PFT system custom developed for ferrets. This is the first study to report repeated forced maneuver PFT in ferrets, establishing lung function measurements pre- and post-injury in live animals. Bronchoalveolar lavage and histological analysis confirmed that LPS exposure elicited pulmonary neutrophilic inflammation and structural damage to the alveoli. We believe this ferret model of lung inflammation, with clinically relevant disease manifestations and parameters for functional evaluation, is a useful pre-clinical model for understanding human inflammatory lung disease and for the evaluation of potential therapies.
Collapse
Affiliation(s)
- Oula Khoury
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Cara Clouse
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Malcolm K. McSwain
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Jeffrey Applegate
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Nancy D. Kock
- Department of Pathology/Comparative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Anthony Atala
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
17
|
Huang X, Wu W, Tian X, Hou X, Cui X, Xiao Y, Jiao Q, Zhou P, Liu L, Shi W, Chen L, Sun Y, Yang Y, Chen J, Zhang G, Liu J, Holmes EC, Cai X, An T, Shi M. A total infectome approach to understand the etiology of infectious disease in pigs. MICROBIOME 2022; 10:73. [PMID: 35538563 PMCID: PMC9086151 DOI: 10.1186/s40168-022-01265-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The global pork industry is continuously affected by infectious diseases that can result in large-scale mortality, trade restrictions, and major reductions in production. Nevertheless, the cause of many infectious diseases in pigs remains unclear, largely because commonly used diagnostic tools fail to capture the full diversity of potential pathogens and because pathogen co-infection is common. RESULTS We used a meta-transcriptomic approach to systematically characterize the pathogens in 136 clinical cases representing different disease syndromes in pigs, as well as in 12 non-diseased controls. This enabled us to simultaneously determine the diversity, abundance, genomic information, and detailed epidemiological history of a wide range of potential pathogens. We identified 34 species of RNA viruses, nine species of DNA viruses, seven species of bacteria, and three species of fungi, including two novel divergent members of the genus Pneumocystis. While most of these pathogens were only apparent in diseased animals or were at higher abundance in diseased animals than in healthy animals, others were present in healthy controls, suggesting opportunistic infections. Importantly, most of the cases examined here were characterized by co-infection with more than two species of viral, bacterial, or fungal pathogens, some with highly correlated occurrence and abundance levels. Examination of clinical signs and necropsy results in the context of relevant pathogens revealed that a multiple-pathogen model was better associated with the data than a single-pathogen model was. CONCLUSIONS Our data demonstrate that most of the pig diseases examined were better explained by the presence of multiple rather than single pathogens and that infection with one pathogen can facilitate infection or increase the prevalence/abundance of another. Consequently, it is generally preferable to consider the cause of a disease based on a panel of co-infecting pathogens rather than on individual infectious agents. Video abstract.
Collapse
Affiliation(s)
- Xinyi Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weichen Wu
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiaoxiao Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Hou
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xingyang Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qiulin Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liqiang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weilin Shi
- Harbin Weike Biotechnology Development Company, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yue Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongbo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinling Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
18
|
Mapping the Key Residues within the Porcine Reproductive and Respiratory Syndrome Virus nsp1α Replicase Protein Required for Degradation of Swine Leukocyte Antigen Class I Molecules. Viruses 2022; 14:v14040690. [PMID: 35458420 PMCID: PMC9030574 DOI: 10.3390/v14040690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
The nonstructural protein 1α (nsp1α) of the porcine reproductive and respiratory syndrome virus (PRRSV) has been shown to target swine leukocyte antigen class I (SLA-I) for degradation, but the molecular details remain unclear. In this report, we further mapped the critical residues within nsp1α by site-directed mutagenesis. We identified a cluster of residues (i.e., Phe17, Ile81, Phe82, Arg86, Thr88, Gly90, Asn91, Phe94, Arg97, Thr160, and Asn161) necessary for this function. Interestingly, they are all located in a structurally relatively concentrated region. Further analysis by reverse genetics led to the generation of two viable viral mutants, namely, nsp1α-G90A and nsp1α-T160A. Compared to WT, nsp1α-G90A failed to co-localize with either chain of SLA-I within infected cells, whereas nsp1α-T160A exhibited a partial co-localization relationship. Consequently, the mutant nsp1α-G90A exhibited an impaired ability to downregulate SLA-I in infected macrophages as demonstrated by Western blot, indirect immunofluorescence, and flow cytometry analysis. Consistently, the ubiquitination level of SLA-I was significantly reduced in the conditions of both infection and transfection. Together, our results provide further insights into the mechanism underlying PRRSV subversion of host immunity and have important implications in vaccine development.
Collapse
|
19
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
20
|
Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E. Porcine Respiratory Coronavirus as a Model for Acute Respiratory Coronavirus Disease. Front Immunol 2022; 13:867707. [PMID: 35418984 PMCID: PMC8995773 DOI: 10.3389/fimmu.2022.867707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
In the light of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, we have developed a porcine respiratory coronavirus (PRCV) model for in depth mechanistic evaluation of the pathogenesis, virology and immune responses of this important family of viruses. Pigs are a large animal with similar physiology and immunology to humans and are a natural host for PRCV. Four PRCV strains were investigated and shown to induce different degrees of lung pathology. Importantly, although all four strains replicated equally well in porcine cell lines in vitro and in the upper respiratory tract in vivo, PRCV strains causing more severe lung pathology were also able to replicate in ex vivo tracheal organ cultures as well as in vivo in the trachea and lung. The time course of infection of PRCV 135, which caused the most severe pulmonary pathology, was investigated. Virus was shed from the upper respiratory tract until day 10 post infection, with infection of the respiratory mucosa, as well as olfactory and sustentacular cells, providing an excellent model to study upper respiratory tract disease in addition to the commonly known lower respiratory tract disease from PRCV. Infected animals made antibody and T cell responses that cross reacted with the four PRCV strains and Transmissible Gastroenteritis Virus. The antibody response was reproduced in vitro in organ cultures. Comparison of mechanisms of infection and immune control in pigs infected with PRCVs of differing pathogenicity with human data from SARS-CoV-2 infection and from our in vitro organ cultures, will enable key events in coronavirus infection and disease pathogenesis to be identified.
Collapse
Affiliation(s)
- Sarah Keep
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Fabian Z X Lean
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Albert Fones
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | | | | - Eleni Vatzia
- The Pirbright Institute, Pirbright, United Kingdom
| | - Noemi Polo
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Isobel Webb
- The Pirbright Institute, Pirbright, United Kingdom
| | - Adam Mcnee
- The Pirbright Institute, Pirbright, United Kingdom
| | - Basu Paudyal
- The Pirbright Institute, Pirbright, United Kingdom
| | - Nazia Thakur
- The Pirbright Institute, Pirbright, United Kingdom
| | - Alejandro Nunez
- Department of Pathology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, Galway, Ireland
| | - Helena Maier
- The Pirbright Institute, Pirbright, United Kingdom
| | - John Hammond
- The Pirbright Institute, Pirbright, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, United Kingdom
| | - Ryan Waters
- The Pirbright Institute, Pirbright, United Kingdom
| | | | - Toby Tuthill
- The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Britton
- The Pirbright Institute, Pirbright, United Kingdom
| | | | | |
Collapse
|
21
|
Sarli G, D’Annunzio G, Gobbo F, Benazzi C, Ostanello F. The Role of Pathology in the Diagnosis of Swine Respiratory Disease. Vet Sci 2021; 8:vetsci8110256. [PMID: 34822629 PMCID: PMC8618091 DOI: 10.3390/vetsci8110256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022] Open
Abstract
The definition “porcine respiratory disease complex” (PRDC) is used to indicate the current approach for presenting respiratory pathology in modern pig farming. PRDC includes pneumonias with variable pictures, mixed with both aerogenous and hematogenous forms with variable etiology, often multimicrobial, and influenced by environmental and management factors. The notion that many etiological agents of swine respiratory pathology are ubiquitous in the airways is commonly understood; however, their isolation or identification is not always associable with the current pathology. In this complex context, lung lesions registered at slaughterhouse or during necropsy, and supplemented by histological investigations, must be considered as powerful tools for assigning a prominent role to etiologic agents. In recent years, the goal of colocalizing causative agents with the lesions they produce has been frequently applied, and valid examples in routine diagnostics are those that indicate pulmonary involvement during porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) infections.
Collapse
|
22
|
Turlewicz-Podbielska H, Pomorska-Mól M. Porcine Coronaviruses: Overview of the State of the Art. Virol Sin 2021; 36:833-851. [PMID: 33723809 PMCID: PMC7959302 DOI: 10.1007/s12250-021-00364-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Like RNA viruses in general, coronaviruses (CoV) exhibit high mutation rates which, in combination with their strong tendency to recombine, enable them to overcome the host species barrier and adapt to new hosts. It is currently known that six CoV are able to infect pigs. Four of them belong to the genus Alphacoronavirus [transmissible gastroenteritis coronavirus (TEGV), porcine respiratory coronavirus (PRCV), porcine epidemic diarrhea virus (PEDV), swine acute diarrhea syndrome coronavirus (SADS-CoV)], one of them to the genus Betacoronavirus [porcine hemagglutinating encephalomyelitis virus (PHEV)] and the last one to the genus Deltacoronavirus (PDCoV). PHEV was one of the first identified swine CoV and is still widespread, causing subclinical infections in pigs in several countries. PRCV, a spike deletion mutant of TGEV associated with respiratory tract infection, appeared in the 1980s. PRCV is considered non-pathogenic since its infection course is mild or subclinical. Since its appearance, pig populations have become immune to both PRCV and TGEV, leading to a significant reduction in the clinical and economic importance of TGEV. TGEV, PEDV and PDCoV are enteropathogenic CoV and cause clinically indistinguishable acute gastroenteritis in all age groups of pigs. PDCoV and SADS-CoV have emerged in 2014 (US) and in 2017 (China), respectively. Rapid diagnosis is crucial for controlling CoV infections and preventing them from spreading. Since vaccines are available only for some porcine CoV, prevention should focus mainly on a high level of biosecurity. In view of the diversity of CoV and the potential risk factors associated with zoonotic emergence, updating the knowledge concerning this area is essential.
Collapse
Affiliation(s)
- Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, ul. Wołyńska 35, 60-637, Poznan, Poland.
| |
Collapse
|
23
|
Zhang X, Gao R, Zhou Z, Tang X, Lin J, Wang L, Zhou X, Shen T. A network pharmacology based approach for predicting active ingredients and potential mechanism of Lianhuaqingwen capsule in treating COVID-19. Int J Med Sci 2021; 18:1866-1876. [PMID: 33746604 PMCID: PMC7976588 DOI: 10.7150/ijms.53685] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of severe respiratory disease caused by SARS-CoV-2 has led to millions of infections and raised global health concerns. Lianhuaqingwen capsule (LHQW-C), a traditional Chinese medicine (TCM) formula widely used for respiratory diseases, shows therapeutic efficacy in the application of coronavirus disease 2019 (COVID-19). However, the active ingredients, drug targets, and the therapeutic mechanisms of LHQW-C in treating COVID-19 are poorly understood. In this study, an integrating network pharmacology approach including pharmacokinetic screening, target prediction (targets of the host and targets from the SARS-CoV-2), network analysis, GO enrichment analysis, KEGG pathway enrichment analysis, and virtual docking were conducted. Finally, 158 active ingredients in LHQW-C were screen out, and 49 targets were predicted. GO function analysis revealed that these targets were associated with inflammatory response, oxidative stress reaction, and other biological processes. KEGG enrichment analysis indicated that the targets of LHQW-C were highly enriched to several immune response-related and inflammation-related pathways, including the IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and Th17 cell differentiation. Moreover, four key components (quercetin, luteolin, wogonin, and kaempferol) showed a high binding affinity with SARS-CoV-2 3-chymotrypsin-like protease (3CL pro). The study indicates that some anti-inflammatory ingredients in LHQW-C probably modulate the inflammatory response in severely ill patients with COVID-19.
Collapse
Affiliation(s)
- Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Gao
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zubing Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuehua Tang
- Academic Department, Zhuhai Ebang Pharmaceutical Co., Ltd. Zhuhai, China
| | - Jingjing Lin
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
24
|
Hernández-Díaz D, Martos-Ferreira D, Hernández-Abad V, Villar-Ribera R, Tarrés Q, Rojas-Sola JI. Indoor PM2.5 removal efficiency of two different non-thermal plasma systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111515. [PMID: 33113396 DOI: 10.1016/j.jenvman.2020.111515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The use of non-thermal plasma (NTP) generators in air processing systems and their duct networks to improve indoor air quality (IAQ) has grown considerably in recent years. This paper reviews the advantages and disadvantages of NTP generators for IAQ improvement in biological, chemical and particulate pollutant terms. Also, it assesses and compares the ability of a multipin corona discharge (MPCD) and a dielectric barrier discharge (DBD) generator to reduce the concentration of fine particulate matter (PM2.5) in recycled, unfiltered air in a refrigeration chamber. The MPCD generator was found to have a higher PM2.5 removal efficiency; also, it was faster in removing pollutants, used less energy, and produced much less ozone. The fact that the MPCD generator performed better was seemingly the result of its increased ion production mainly. NTP generators, however, cannot match air filtration media purifiers in this respect as the latter are much more effective in removing particles. Besides, NTP-based air purifying technology continues to be subject to a major drawback, namely: the formation of ozone as a by-product. In any case, the ozone generation was uncorrelated to ion emission when using different technologies.
Collapse
Affiliation(s)
- D Hernández-Díaz
- Serra Húnter Programme, Department of Engineering Graphics and Design, Polytechnic University of Catalonia, TR5 Campus Terrassa, 08222, Terrassa, Spain.
| | - D Martos-Ferreira
- Department of Electronics, The Salesian University School of Sarrià, Passeig Sant Joan Bosco 74, 08017, Barcelona, Spain.
| | - V Hernández-Abad
- Department of Engineering Graphics and Design, Polytechnic University of Catalonia, TR5 Campus Terrassa, 08222, Terrassa, Spain.
| | - R Villar-Ribera
- Department of Engineering Graphics and Design, Polytechnic University of Catalonia, Campus Manresa, 08242, Manresa, Spain.
| | - Q Tarrés
- LEPAMAP Group, Department of Chemical Engineering, University of Girona, 17003, Girona, Spain.
| | - J I Rojas-Sola
- Department of Engineering Graphics, Design and Projects, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
25
|
Respiratory viral infections drive different lung cytokine profiles in pigs. BMC Vet Res 2021; 17:5. [PMID: 33407470 PMCID: PMC7786461 DOI: 10.1186/s12917-020-02722-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Swine influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are considered key viral pathogens involved in the porcine respiratory disease complex. Concerning the effect of one virus on another with respect to local immune response is still very limited. Determination of presence and quantity of cytokines in the lung tissue and its relation to the lung pathology can lead to a better understanding of the host inflammatory response and its influence on the lung pathology during single or multi-virus infection. The aim of the present study was to explore and compare the patterns of lung cytokine protein response in pigs after single or dual infection with swine IAV and/or PRRSV. Results Inoculation with IAV alone causes an increase in lung concentration of IFN-α, IFN-ɣ, TNF-α, IL-6, IL-8 and IL-10, especially at 2 and 4 DPI. In PRRSV group, beyond early IFN-α, IFN-ɣ, IL-6, IL-8 and IL-10 induction, elevated levels of cytokines at 10 and 21 DPI have been found. In IAV+PRRSV inoculated pigs the lung concentrations of all cytokines were higher than in control pigs. Conclusions Current results indicate that experimental infection of pigs with IAV or PRRSV alone and co-infection with both pathogens induce different kinetics of local cytokine response. Due to strong positive correlation between local TNF-α and IL-10 concentration and lung pathology, we hypothesize that these cytokines are involved in the induction of lung lesions during investigates infection. Nevertheless, no apparent increase in lung cytokine response was seen in pigs co-inoculated simultaneously with both pathogens compared to single inoculated groups. It may also explain no significant effect of co-infection on the lung pathology and pathogen load, compared to single infections. Strong correlation between local concentration of TNF-α, IFN-ɣ, IL-8 and SwH1N1 load in the lung, as well as TNF-α, IL-8 and PRRSV lung titres suggested that local replication of both viruses also influenced the local cytokine response during infection.
Collapse
|
26
|
Kenney SP, Wang Q, Vlasova A, Jung K, Saif L. Naturally Occurring Animal Coronaviruses as Models for Studying Highly Pathogenic Human Coronaviral Disease. Vet Pathol 2020; 58:438-452. [PMID: 33357102 DOI: 10.1177/0300985820980842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronaviruses (CoVs) comprise a large group of positive stranded RNA viruses that infect a diverse host range including birds and mammals. Infection with CoVs typically presents as mild to severe respiratory or enteric disease, but CoVs have the potential to cause significant morbidity or mortality in highly susceptible age groups. CoVs have exhibited a penchant for jumping species barriers throughout history with devastating effects. The emergence of highly pathogenic or infectious CoVs in humans over the past 20 years, including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and most recently severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the significant threat that CoV spillovers pose to humans. Similar to the emergence of SARS-CoV-2, CoVs have been devastating to commercial animal production over the past century, including infectious bronchitis virus in poultry and bovine CoV, as well as the emergence and reemergence of multiple CoVs in swine including transmissible gastroenteritis virus, porcine epidemic diarrhea virus, and porcine deltacoronavirus. These naturally occurring animal CoV infections provide important examples for understanding CoV disease as many animal CoVs have complex pathogenesis similar to SARS-CoV-2 and can shed light on the ongoing SARS-CoV-2 outbreak. We provide an overview and update regarding selected existing animal CoVs and their primary host species, diseases caused by CoVs, how CoVs jump species, whether these CoVs pose an outbreak risk or risk to humans, and how we can mitigate these risks.
Collapse
Affiliation(s)
| | | | | | - Kwonil Jung
- 2647The Ohio State University, Wooster, OH, USA
| | - Linda Saif
- 2647The Ohio State University, Wooster, OH, USA
| |
Collapse
|
27
|
Patil V, Renu S, Feliciano-Ruiz N, Han Y, Ramesh A, Schrock J, Dhakal S, HogenEsch H, Renukaradhya GJ. Intranasal Delivery of Inactivated Influenza Virus and Poly(I:C) Adsorbed Corn-Based Nanoparticle Vaccine Elicited Robust Antigen-Specific Cell-Mediated Immune Responses in Maternal Antibody Positive Nursery Pigs. Front Immunol 2020; 11:596964. [PMID: 33391267 PMCID: PMC7772411 DOI: 10.3389/fimmu.2020.596964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
We designed the killed swine influenza A virus (SwIAV) H1N2 antigen (KAg) with polyriboinosinic:polyribocytidylic acid [(Poly(I:C)] adsorbed corn-derived Nano-11 particle based nanovaccine called Nano-11-KAg+Poly(I:C), and evaluated its immune correlates in maternally derived antibody (MDA)-positive pigs against a heterologous H1N1 SwIAV infection. Immunologically, in tracheobronchial lymph nodes (TBLN) detected enhanced H1N2-specific cytotoxic T-lymphocytes (CTLs) in Nano-11-KAg+Poly(I:C) vaccinates, and in commercial vaccinates detected CTLs with mainly IL-17A+ and early effector phenotypes specific to both H1N2 and H1N1 SwAIV. In commercial vaccinates, activated H1N2- and H1N1-specific IFNγ+&TNFα+, IL-17A+ and central memory T-helper/Memory cells, and in Nano-11-KAg+Poly(I:C) vaccinates H1N2-specific central memory, IFNγ+ and IFNγ+&TNFα+, and H1N1-specific IL-17A+ T-helper/Memory cells were observed. Systemically, Nano-11-KAg+Poly(I:C) vaccine augmented H1N2-specific IFNγ+ CTLs and H1N1-specific IFNγ+ T-helper/Memory cells, and commercial vaccine boosted H1N2- specific early effector CTLs and H1N1-specific IFNγ+&TNFα+ CTLs, as well as H1N2- and H1N1-specific T-helper/Memory cells with central memory, IFNγ+&TNFα+, and IL-17A+ phenotypes. Remarkably, commercial vaccine induced an increase in H1N1-specific T-helper cells in TBLN and naive T-helper cells in both TBLN and peripheral blood mononuclear cells (PBMCs), while H1N1- and H1N2-specific only T-helper cells were augmented in Nano-11-KAg+Poly(I:C) vaccinates in both TBLN and PBMCs. Furthermore, the Nano-11-KAg+Poly(I:C) vaccine stimulated robust cross-reactive IgG and secretory IgA (SIgA) responses in lungs, while the commercial vaccine elicited high levels of serum and lung IgG and serum hemagglutination inhibition (HI) titers. In conclusion, despite vast genetic difference (77% in HA gene identity) between the vaccine H1N2 and H1N1 challenge viruses in Nano-11-KAg+Poly(I:C) vaccinates, compared to over 95% identity between H1N1 of commercial vaccine and challenge viruses, the virus load and macroscopic lesions in the lungs of both types of vaccinates were comparable, but the Nano-11-KAg+Poly(I:C) vaccine cleared the virus from the nasal passage better. These data suggested the important role played by Nano-11 and Poly(I:C) in the induction of polyfunctional, cross-protective cell-mediated immunity against SwIAV in MDA-positive pigs.
Collapse
Affiliation(s)
- Veerupaxagouda Patil
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Ninoshkaly Feliciano-Ruiz
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yi Han
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Anikethana Ramesh
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer Schrock
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, College of Food, Agricultural and Environmental Sciences, Wooster, OH, United States.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
28
|
Comparative Pathogenesis of Bovine and Porcine Respiratory Coronaviruses in the Animal Host Species and SARS-CoV-2 in Humans. J Clin Microbiol 2020; 58:JCM.01355-20. [PMID: 32522830 PMCID: PMC7383540 DOI: 10.1128/jcm.01355-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).
Collapse
|
29
|
Pomorska-Mól M, Podgórska K, Czyżewska-Dors E, Turlewicz-Podbielska H, Gogulski M, Włodarek J, Łukomska A. Kinetics of single and dual simultaneous infection of pigs with swine influenza A virus and porcine reproductive and respiratory syndrome virus. J Vet Intern Med 2020; 34:1903-1913. [PMID: 32618394 PMCID: PMC7517861 DOI: 10.1111/jvim.15832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background Simultaneous viral infections exhibit the phenomenon of viral interference, but understanding of the effect of one virus on another is limited. Objective Evaluate and compare clinical characteristics, immune and acute phase response, viral shedding and viral load in pigs singly and doubly inoculated with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV). Animals Fifty‐four 7‐week‐old piglets. Methods Clinical status and gross lung lesions were scored. Titration of swIAV was carried out in Madin‐Darby canine kidney cells. The PRRSV RNA was quantified using a commercial qPCR kit. Antibodies were detected by hemagglutination inhibition assay and commercial ELISA. A lymphocyte proliferation assay was used to measure antigen‐specific T‐cell responses. Acute phase proteins were determined using ELISA. Results No differences were found between mean clinical scores, swIAV and PRRSV shedding, and magnitude of the humoral and T‐cell response between single‐inoculated and dual‐inoculated groups. Concentrations of C‐reactive protein and haptoglobin increased in PRRSV‐inoculated and coinoculated groups, whereas serum amyloid A concentration was increased in groups inoculated or coinoculated with swIAV. Mean swIAV TCID50 titers in the lungs did not differ significantly between coinoculated and swIAV single‐inoculated pigs. A significantly higher mean copy number of PRRSV was found in the lungs of PRRSV only‐inoculated pigs at 2 day postinoculation (DPI). From 4 DPI, no significant differences in PRRSV load were identified. Conclusions and Clinical Importance Coinfection of pigs with swIAV and PRRSV did not potentiate clinical signs, lung lesions, immune response, and replication of the viruses in the respiratory tract.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
| | | | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Jan Włodarek
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| | - Anna Łukomska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznań, Poland
| |
Collapse
|
30
|
Elizondo-Quiroga D, Zapata-Cuellar L, Uribe-Flores JA, Gaona-Bernal J, Camacho-Villegas TA, Manuel-Cabrera CA, Trujillo-Ortega ME, Ramírez-Hernández G, Herradora-Lozano MA, Mercado-García MDC, Gutiérrez Ortega A. An Escherichia coli-Expressed Porcine Reproductive and Respiratory Syndrome Virus Chimeric Protein Induces a Specific Immunoglobulin G Response in Immunized Piglets. Viral Immunol 2019; 32:370-382. [PMID: 31644382 DOI: 10.1089/vim.2019.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) still poses a threat to the swine industry worldwide. Currently, commercial vaccines against PRRSV, which consist of modified live or inactivated virus, reduce symptoms and viremia in immunized pigs, but efficacy against heterologous strains is variable. This has led to the development of subunit vaccines that contain viral antigens that show the highest variability. In this work, a chimeric protein comprising short amino acid sequences from glycoprotein 3 (GP3), glycoprotein 4 (GP4), glycoprotein 5 (GP5), and M (matrix protein) proteins of PRRSV was designed and expressed in Escherichia coli. This protein, designated as PRRSVchim, was purified by immobilized metal affinity chromatography and evaluated. PRRSVchim was identified by immunoglobulin G (IgG) presence in serum samples from PRRSV-positive pigs. Also, the protein probed to be antigenic in immunized mice and piglets and provided some degree of protection against challenge with a PRRSV field isolate. These results show the potential of PRRSVchim protein for both PRRSV diagnostic and immunoprophylaxis.
Collapse
Affiliation(s)
- Darwin Elizondo-Quiroga
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Lorena Zapata-Cuellar
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - José Alberto Uribe-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | - Jorge Gaona-Bernal
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Tanya Amanda Camacho-Villegas
- CONACYT-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| | | | - María Elena Trujillo-Ortega
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Ramírez-Hernández
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marco Antonio Herradora-Lozano
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - María Del Cármen Mercado-García
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Abel Gutiérrez Ortega
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, México
| |
Collapse
|
31
|
Hozain AE, Tipograf Y, Pinezich MR, Cunningham KM, Donocoff R, Queen D, Fung K, Marboe CC, Guenthart BA, O'Neill JD, Vunjak-Novakovic G, Bacchetta M. Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. J Thorac Cardiovasc Surg 2019; 159:1640-1653.e18. [PMID: 31761338 PMCID: PMC7094131 DOI: 10.1016/j.jtcvs.2019.09.121] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Objectives Lung remains the least-utilized solid organ for transplantation. Efforts to recover donor lungs with reversible injuries using ex vivo perfusion systems are limited to <24 hours of support. Here, we demonstrate the feasibility of extending normothermic extracorporeal lung support to 4 days using cross-circulation with conscious swine. Methods A swine behavioral training program and custom enclosure were developed to enable multiday cross-circulation between extracorporeal lungs and recipient swine. Lungs were ventilated and perfused in a normothermic chamber for 4 days. Longitudinal analyses of extracorporeal lungs (ie, functional assessments, multiscale imaging, cytokine quantification, and cellular assays) and recipient swine (eg, vital signs and blood and tissue analyses) were performed. Results Throughout 4 days of normothermic support, extracorporeal lung function was maintained (arterial oxygen tension/inspired oxygen fraction >400 mm Hg; compliance >20 mL/cm H2O), and recipient swine were hemodynamically stable (lactate <3 mmol/L; pH, 7.42 ± 0.05). Radiography revealed well-aerated lower lobes and consolidation in upper lobes of extracorporeal lungs, and bronchoscopy showed healthy airways without edema or secretions. In bronchoalveolar lavage fluid, granulocyte-macrophage colony-stimulating factor, interleukin (IL) 4, IL-6, and IL-10 levels increased less than 6-fold, whereas interferon gamma, IL-1α, IL-1β, IL-1ra, IL-2, IL-8, IL-12, IL-18, and tumor necrosis factor alpha levels decreased from baseline to day 4. Histologic evaluations confirmed an intact blood–gas barrier and outstanding preservation of airway and alveolar architecture. Cellular viability and metabolism in extracorporeal lungs were confirmed after 4 days. Conclusions We demonstrate feasibility of normothermic maintenance of extracorporeal lungs for 4 days by cross-circulation with conscious swine. Cross-circulation approaches could support the recovery of damaged lungs and enable organ bioengineering to improve transplant outcomes.
Collapse
Affiliation(s)
- Ahmed E Hozain
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY
| | - Yuliya Tipograf
- Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Katherine M Cunningham
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Rachel Donocoff
- Institute of Comparative Medicine, Columbia University Medical Center, Columbia University, New York, NY
| | - Dawn Queen
- Vagelos College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY
| | - Kenmond Fung
- Department of Clinical Perfusion, Columbia University Medical Center, Columbia University, New York, NY
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY
| | - Brandon A Guenthart
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - John D O'Neill
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY.
| | - Matthew Bacchetta
- Department of Biomedical Engineering, Columbia University Medical Center, Columbia University, New York, NY; Departments of Thoracic and Cardiac Surgery, Vanderbilt University, Nashville, Tenn.
| |
Collapse
|
32
|
|
33
|
Chen D, Liu X, Xu S, Chen D, Zhou L, Ge X, Han J, Guo X, Yang H. TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Vet Microbiol 2019; 234:25-33. [PMID: 31213269 DOI: 10.1016/j.vetmic.2019.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022]
Abstract
Porcine productive and respiratory syndrome virus (PRRSV) and classical swine fever virus (CSFV) both are major pathogens of swine that pose a great threat to the Chinese pig industry. It has been found that PRRSV infection can lead to vaccination failure of CSFV C strain-derived modified live vaccine (CSFV-C) by interfering with the immune responses to the latter. To investigate whether PRRSV can suppress CSFV-C replication, we created a 3D4/21-based cell line PAM39 that is susceptible to both viruses by expressing PRRSV receptors CD163 and CD169, and then investigated their interplay under the condition of either sequential or simultaneous co-infection. The most significant suppressive effect came from the sequential infection when the cells were first infected by PRRSV and then followed by CSFV-C at an interval of 6 h. In addition, this effect was independent of PRRSV strains. Mechanistically, PRRSV induced an elevated level of a subset of pro-inflammatory cytokines, especially tumor necrosis factor (TNF-α), through the nuclear factor κB (NF-κB) signaling pathway to inhibit the replication of CSFV-C in vitro. Thus, our studies provide an alternative explanation on PRRSV-induced CSFV vaccination failure, and this has an important implication in CSF vaccination and control.
Collapse
Affiliation(s)
- Dongjie Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowen Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shengkui Xu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
34
|
Nedumpun T, Techakriengkrai N, Thanawongnuwech R, Suradhat S. Negative Immunomodulatory Effects of Type 2 Porcine Reproductive and Respiratory Syndrome Virus-Induced Interleukin-1 Receptor Antagonist on Porcine Innate and Adaptive Immune Functions. Front Immunol 2019; 10:579. [PMID: 30972072 PMCID: PMC6443931 DOI: 10.3389/fimmu.2019.00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Impaired innate and adaptive immune responses are evidenced throughout the course of PRRSV infection. We previously reported that interleukin-1 receptor antagonist (IL-1Ra) was involved in PRRSV-induced immunosuppression during an early phase of infection. However, the exact mechanism associated with PRRSV-induced IL-1Ra immunomodulation remains unknown. To explore the immunomodulatory properties of PRRSV-induced IL-1Ra on porcine immune functions, monocyte-derived dendritic cells (MoDC) and leukocytes were cultured with type 2 PRRSV, and the immunological role of IL-1Ra was assessed by addition of anti-porcine IL-1Ra Ab. The results demonstrated that PRRSV-induced IL-1Ra reduced phagocytosis, surface expression of MHC II (SLA-DR) and CD86, as well as downregulation of IFNA and IL1 gene expression in the MoDC culture system. Interestingly, IL-1Ra secreted by the PRRSV-infected MoDC also inhibited T lymphocyte differentiation and proliferation, but not IFN-γ production. Although PRRSV-induced IL-1Ra was not directly linked to IL-10 production, it contributed to the differentiation of regulatory T lymphocytes (Treg) within the culture system. Taken together, our results demonstrated that PRRSV-induced IL-1Ra downregulates innate immune functions, T lymphocyte differentiation and proliferation, and influences collectively with IL-10 in the Treg induction. The immunomodulatory roles of IL-1Ra elucidated in this study increase our understanding of the immunobiology of PRRSV.
Collapse
Affiliation(s)
- Teerawut Nedumpun
- Interdisciplinary Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Navapon Techakriengkrai
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand.,Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sanipa Suradhat
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Emerging Infectious Diseases in Animals, Chulalongkorn University (CU-EIDAs), Bangkok, Thailand
| |
Collapse
|
35
|
Attenuation of Influenza A Virus Disease Severity by Viral Coinfection in a Mouse Model. J Virol 2018; 92:JVI.00881-18. [PMID: 30232180 DOI: 10.1128/jvi.00881-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Influenza viruses and rhinoviruses are responsible for a large number of acute respiratory viral infections in human populations and are detected as copathogens within hosts. Clinical and epidemiological studies suggest that coinfection by rhinovirus and influenza virus may reduce disease severity and that they may also interfere with each other's spread within a host population. To determine how coinfection by these two unrelated respiratory viruses affects pathogenesis, we established a mouse model using a minor serogroup rhinovirus (rhinovirus strain 1B [RV1B]) and mouse-adapted influenza A virus (A/Puerto Rico/8/1934 [PR8]). Infection of mice with RV1B 2 days before PR8 reduced the severity of infection by a low or medium, but not high, dose of PR8. Disease attenuation was associated with an early inflammatory response in the lungs and enhanced clearance of PR8. However, coinfection by RV1B did not reduce PR8 viral loads early in infection or inhibit replication of PR8 within respiratory epithelia or in vitro Inflammation in coinfected mice remained focal compared to diffuse inflammation and damage in the lungs of mice infected by PR8. The timing of RV1B coinfection was a critical determinant of protection, suggesting that sufficient time is needed to induce this response. Finally, disease attenuation was not unique to RV1B: dose-dependent coinfection by a murine coronavirus (mouse hepatitis virus strain 1 [MHV-1]) also reduced the severity of PR8 infection. Unlike RV1B, coinfection with MHV-1 reduced early PR8 replication, which was associated with upregulation of beta interferon (IFN-β) expression. This model is critical for understanding the mechanisms responsible for influenza disease attenuation during coinfection by unrelated respiratory viruses.IMPORTANCE Viral infections in the respiratory tract can cause severe disease and are responsible for a majority of pediatric hospitalizations. Molecular diagnostics have revealed that approximately 20% of these patients are infected by more than one unrelated viral pathogen. To understand how viral coinfection affects disease severity, we inoculated mice with a mild viral pathogen (rhinovirus or murine coronavirus), followed 2 days later by a virulent viral pathogen (influenza A virus). This model demonstrated that rhinovirus can reduce the severity of influenza A virus, which corresponded with an early but controlled inflammatory response in the lungs and early clearance of influenza A virus. We further determined the dose and timing parameters that were important for effective disease attenuation and showed that influenza disease is also reduced by coinfection with a murine coronavirus. These findings demonstrate that coinfecting viruses can alter immune responses and pathogenesis in the respiratory tract.
Collapse
|
36
|
Blomström AL, Ye X, Fossum C, Wallgren P, Berg M. Characterisation of the Virome of Tonsils from Conventional Pigs and from Specific Pathogen-Free Pigs. Viruses 2018; 10:v10070382. [PMID: 30036964 PMCID: PMC6071052 DOI: 10.3390/v10070382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/31/2022] Open
Abstract
Porcine respiratory disease is a multifactorial disease that can be influenced by a number of different microorganisms, as well as by non-infectious factors such as the management and environment of the animals. It is generally believed that the interaction between different infectious agents plays an important role in regard to respiratory diseases. Therefore, we used high-throughput sequencing combined with viral metagenomics to characterise the viral community of tonsil samples from pigs coming from a conventional herd with lesions in the respiratory tract at slaughter. In parallel, samples from specific pathogen-free pigs were also analysed. This study showed a variable co-infection rate in the different pigs. The differences were not seen at the group level but in individual pigs. Some viruses such as adenoviruses and certain picornaviruses could be found in most pigs, while others such as different parvoviruses and anelloviruses were only identified in a few pigs. In addition, the complete coding region of porcine parvovirus 7 was obtained, as were the complete genomes of two teschoviruses. The results from this study will aid in elucidating which viruses are circulating in both healthy pigs and in pigs associated with respiratory illness. This knowledge is needed for future investigations into the role of viral-viral interactions in relation to disease development.
Collapse
Affiliation(s)
- Anne-Lie Blomström
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Xingyu Ye
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
- Guangyuan Center for Animal Disease Control and Prevention, Guangyuan 628017, China.
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| | - Per Wallgren
- National veterinary institute (SVA), 751 89 Uppsala Sweden.
| | - Mikael Berg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, 750 07 Uppsala, Sweden.
| |
Collapse
|
37
|
Different susceptibility to porcine reproductive and respiratory syndrome virus infection among Chinese native pig breeds. Arch Virol 2018; 163:2155-2164. [DOI: 10.1007/s00705-018-3821-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
38
|
Nasal delivery of chitosan/alginate nanoparticle encapsulated bee (Apis mellifera) venom promotes antibody production and viral clearance during porcine reproductive and respiratory syndrome virus infection by modulating T cell related responses. Vet Immunol Immunopathol 2018; 200:40-51. [PMID: 29776611 DOI: 10.1016/j.vetimm.2018.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
In this study, we administered specially developed chitosan/alginate nanoparticle encapsulated BV (CH/AL-BV) which has slow-releasing properties and mucosal adhesiveness to pig via nasal route and evaluate whether it can facilitate systemic immune response and improve clearance of porcine reproductive and respiratory syndrome virus (PRRSV). The CH/AL-BV-administered group with PRRSV vaccination showed significantly enhanced Th1-related responses including a high population of CD4+ T lymphocyte and cytokine mRNA levels including interferon-gamma (IFN-γ) and interleukin (IL)-12 and increased PRRSV-specific IgG levels. In the PRRSV challenge experiment, the CH/AL-BV group showed a significant decrease of viral burden in the sera and tissues (lung and bronchial lymph node) and mild interstitial pneumonia signs on both lung gross examination and microscopic evaluation with high levels of PRRSV-specific IgG and viral neutralizing antibody. CH/AL-BV also effectively induced not only Th1-related immune responses including increase in portion of CD4+ T lymphocyte, cytokines (IFN-γ and IL-12), and transcriptional factors (STAT4 and T-bet), but also stimulated IFN-γ-secreting cell families such as CD4+ T lymphocytes and Th/memory cells. Interestingly, the CH/AL-BV group showed decrease in PRRSV-specific immune-suppressive actions, including the T regulatory cell population and its related cytokines (IL-10 and TGF-β) and transcriptional factors (STAT5 and Foxp3). Therefore, nasal-delivered CH/AL-BV may effectively induce non-specific immune stimulating actions, particularly those related to Th1 responses and viral clearance activities against PRRSV infection. Based on these results, CH/AL-BV could be a promising strategy for overcoming the disadvantages of classical PRRSV vaccination and can be applied as a preventive agent against PRRSV and other viral diseases, particularly those with immune-suppressive characteristics.
Collapse
|
39
|
Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018; 9:17. [PMID: 29378639 PMCID: PMC5789598 DOI: 10.1186/s13287-018-0774-8] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem (stromal) cells (MSCs) mediate their immunoregulatory and tissue repair functions by secreting paracrine factors, including extracellular vesicles (EVs). In several animal models of human diseases, MSC-EVs mimic the beneficial effects of MSCs. Influenza viruses cause annual outbreaks of acute respiratory illness resulting in significant mortality and morbidity. Influenza viruses constantly evolve, thus generating drug-resistant strains and rendering current vaccines less effective against the newly generated strains. Therefore, new therapies that can control virus replication and the inflammatory response of the host are needed. The objective of this study was to examine if MSC-EV treatment can attenuate influenza virus-induced acute lung injury in a preclinical model. METHODS We isolated EVs from swine bone marrow-derived MSCs. Morphology of MSC-EVs was determined by electron microscopy and expression of mesenchymal markers was examined by flow cytometry. Next, we examined the anti-influenza activity of MSC-EVs in vitro in lung epithelial cells and anti-viral and immunomodulatory properties in vivo in a pig model of influenza virus. RESULTS MSC-EVs were isolated from MSC-conditioned medium by ultracentrifugation. MSC-EVs were round-shaped and, similarly to MSCs, expressed mesenchymal markers and lacked the expression of swine leukocyte antigens I and II. Incubation of PKH-26-labeled EVs with lung epithelial cells revealed that MSC-EVs incorporated into the epithelial cells. Next, we examined the anti-influenza and anti-inflammatory properties of MSC-EVs. MSC-EVs inhibited the hemagglutination activity of avian, swine, and human influenza viruses at concentrations of 1.25-5 μg/ml. MSC-EVs inhibited influenza virus replication and virus-induced apoptosis in lung epithelial cells. The anti-influenza activity of MSC-EVs was due to transfer of RNAs from EVs to epithelial cells since pre-incubation of MSC-EVs with RNase enzyme abrogated the anti-influenza activity of MSC-EVs. In a pig model of influenza virus, intratracheal administration of MSC-EVs 12 h after influenza virus infection significantly reduced virus shedding in the nasal swabs, influenza virus replication in the lungs, and virus-induced production of proinflammatory cytokines in the lungs of influenza-infected pigs. The histopathological findings revealed that MSC-EVs alleviated influenza virus-induced lung lesions in pigs. CONCLUSIONS Our data demonstrated in a relevant preclinical large animal model of influenza virus that MSC-EVs possessed anti-influenza and anti-inflammatory properties and that EVs may be used as cell-free therapy for influenza in humans.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Levi Arthur Richardson
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691 USA
| | - Tea Meulia
- Molecular and Cellular Imaging Center, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH USA
| |
Collapse
|
40
|
Khatri M, Richardson LA. Therapeutic potential of porcine bronchoalveolar fluid-derived mesenchymal stromal cells in a pig model of LPS-induced ALI. J Cell Physiol 2018; 233:5447-5457. [PMID: 29231967 DOI: 10.1002/jcp.26397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In this study, we isolated mesenchymal stromal (stem) cells (MSCs) from broncho-alveolar lavage fluid (BAL) of 2-6-week-old commercial pigs. BAL-MSCs displayed fibroblastic morphology and possessed self-renewal properties. Similar to bone-marrow MSCs, BAL-MSCs expressed mesenchymal markers and both cell types lacked the expression of hematopoetic markers. BAL-MSCs, when cultured in differentiation induction media, differentiated into adipocytes, osteocytes, and chondrocytes. Next, we examined if BAL-MSCs have the ability to treat lipopolysaccharide (LPS)-induced acute lung injury (ALI) in a pig model. Five-week-old commercial pigs were inoculated intra-tracheally with E. coli LPS (1 mg/kg body weight [b.wt.]). Twelve hours after the LPS inoculation, groups of pigs were inoculated intra-tracheally with BM-MSCs or BAL-MSCs (2 × 106 cells/kg b.wt.). Forty eight hours after the cells administration pigs were euthanized and neutrophils in BAL, lung lesions, and cytokines in lung lysates, and engraftment of MSCs in lungs were examined. Engraftment of BAL-MSCs in injured lungs was significantly higher than the BM-MSCs, however, both cell types were equally effective in attenuating LPS-induced ALI as evidenced by decreased inflammation, lung lesions, and proinflammatory cytokines in the lungs of pigs treated with BAL- or BM-MSCs. These data in a preclinical large animal model suggest that BAL-MSCs may be used in clinical settings to treat ALI in humans.
Collapse
Affiliation(s)
- Mahesh Khatri
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| | - Levi A Richardson
- Department of Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio
| |
Collapse
|
41
|
Comparison of mono- and co-infection by swine influenza A viruses and porcine respiratory coronavirus in porcine precision-cut lung slices. Res Vet Sci 2017; 115:470-477. [PMID: 28779714 PMCID: PMC7111742 DOI: 10.1016/j.rvsc.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/31/2017] [Accepted: 07/16/2017] [Indexed: 01/09/2023]
Abstract
Coronaviruses as well as influenza A viruses are widely spread in pig fattening and can cause high economical loss. Here we infected porcine precision-cut lung slices with porcine respiratory coronavirus and two Influenza A viruses to analyze if co-infection with these viruses may enhance disease outcome in swine. Ciliary activity of the epithelial cells in the bronchus of precision-cut lung slices was measured. Co-infection of PCLS reduced virulence of both virus species compared to mono-infection. Similar results were obtained by mono- and co-infection experiments on a porcine respiratory cell line. Again lower titers in co-infection groups indicated an interference of the two RNA viruses. This is in accordance with in vivo experiments, revealing cell innate immune answers to both PRCoV and SIV that are able to restrict the virulence and pathogenicity of the viruses. PCLS can be used to analyze porcine respiratory coronavirus infection. Co-infection of PCLS with PRCoV and SIV reduces viral replication efficiency. SIV replication is reduced after co-infection of NPTr cells with PRCoV. Porcine influenza and coronaviruses interfere during infection.
Collapse
|
42
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
43
|
Frossard JP, Grierson S, Cheney T, Steinbach F, Choudhury B, Williamson S. UK Pigs at the Time of Slaughter: Investigation into the Correlation of Infection with PRRSV and HEV. Viruses 2017; 9:v9060110. [PMID: 28598352 PMCID: PMC5490802 DOI: 10.3390/v9060110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/30/2022] Open
Abstract
Hepatitis E virus (HEV) and porcine reproductive and respiratory syndrome virus (PRRSV) and are both globally prevalent in the pig population. While HEV does not cause clinical disease in pigs, its zoonotic potential has raised concerns in the food safety sector. PRRS has become endemic in the United Kingdom (UK) since its introduction in 1991, and continues to cause considerable economic losses to the swine industry. A better understanding of the current prevalence and diversity of PRRSV and HEV in the UK, and their potential association, is needed to assess risks and target control measures appropriately. This study used plasma, tonsil, and cecal content samples previously collected from pigs in 14 abattoirs in England and Northern Ireland to study the prevalence of several pathogens including PRRSV and HEV. The diversity of PRRSV strains detected in these samples was analyzed by sequencing open reading frame 5 (ORF5), revealing no substantial difference in PRRSV strains from these clinically unaffected pigs relative to those from clinical cases of disease in the UK. Despite the potential immuno-modulatory effect of PRRSV infection, previously demonstrated to affect Salmonella and HEV shedding profiles, no significant association was found between positive PRRSV status and positive HEV status.
Collapse
Affiliation(s)
| | - Sylvia Grierson
- Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey KT15 3NB, UK.
| | - Tanya Cheney
- Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey KT15 3NB, UK.
| | - Falko Steinbach
- Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey KT15 3NB, UK.
| | - Bhudipa Choudhury
- Animal and Plant Health Agency, Woodham Lane, New Haw, Surrey KT15 3NB, UK.
| | - Susanna Williamson
- Surveillance Intelligence Unit, Animal and Plant Health Agency, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK.
| |
Collapse
|
44
|
UK Pigs at the Time of Slaughter: Investigation into the Correlation of Infection with PRRSV and HEV. Viruses 2017. [DOI: 10.3390/v9050110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Diseases of the Alimentary Tract. Vet Med (Auckl) 2017. [PMCID: PMC7167529 DOI: 10.1016/b978-0-7020-5246-0.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
|
48
|
Gerdts V, Zakhartchouk A. Vaccines for porcine epidemic diarrhea virus and other swine coronaviruses. Vet Microbiol 2016; 206:45-51. [PMID: 27964998 PMCID: PMC7117160 DOI: 10.1016/j.vetmic.2016.11.029] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
Abstract
Swine coronaviruses responsible for significant economic losses to the swine industry. Vaccines available only for TGEV and PEDV. Types of vaccines include inactivated, live attenuated, recombinant, vectored and DNA vaccines. Most vaccines aim to induce lactogenic immunity by immunizing sows at the end of gestation.
The recent introduction of the porcine epidemic diarrhea virus (PEDV) into the North American swine herd has highlighted again the need for effective vaccines for swine coronaviruses. While vaccines for transmissible gastroenteritis virus (TGEV) have been available to producers around the world for a long time, effective vaccines for PEDV and deltacoronaviruses were only recently developed or are still in development. Here, we review existing vaccine technologies for swine coronaviruses and highlight promising technologies which may help to control these important viruses in the future.
Collapse
Affiliation(s)
- Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan, S7N5E3, Canada.
| | - Alexander Zakhartchouk
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan, S7N5E3, Canada
| |
Collapse
|
49
|
Lund M, Røsæg MV, Krasnov A, Timmerhaus G, Nyman IB, Aspehaug V, Rimstad E, Dahle MK. Experimental Piscine orthoreovirus infection mediates protection against pancreas disease in Atlantic salmon (Salmo salar). Vet Res 2016; 47:107. [PMID: 27769313 PMCID: PMC5075195 DOI: 10.1186/s13567-016-0389-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
Viral diseases are among the main challenges in farming of Atlantic salmon (Salmo salar). The most prevalent viral diseases in Norwegian salmon aquaculture are heart and skeletal muscle inflammation (HSMI) caused by Piscine orthoreovirus (PRV), and pancreas disease (PD) caused by Salmonid alphavirus (SAV). Both PRV and SAV target heart and skeletal muscles, but SAV additionally targets exocrine pancreas. PRV and SAV are often present in the same locations and co-infections occur, but the effect of this crosstalk on disease development has not been investigated. In the present experiment, the effect of a primary PRV infection on subsequent SAV infection was studied. Atlantic salmon were infected with PRV by cohabitation, followed by addition of SAV shedder fish 4 or 10 weeks after the initial PRV infection. Histopathological evaluation, monitoring of viral RNA levels and host gene expression analysis were used to assess disease development. Significant reduction of SAV RNA levels and of PD specific histopathological changes were observed in the co-infected groups compared to fish infected by SAV only. A strong correlation was found between histopathological development and expression of disease related genes in heart. In conclusion, experimentally PRV infected salmon are less susceptible to secondary SAV infection and development of PD.
Collapse
Affiliation(s)
- Morten Lund
- Section of Immunology, Norwegian Veterinary Institute, Oslo, Norway
| | - Magnus Vikan Røsæg
- SalMar ASA, Kverva, Norway
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Gerrit Timmerhaus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ingvild Berg Nyman
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | |
Collapse
|
50
|
Du L, Liu Y, Du Y, Wang H, Zhang M, Du Y, Feng WH. Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-15 through PKCβ1-TAK1-NF-κB signaling pathway. Virology 2016; 496:166-174. [PMID: 27318153 DOI: 10.1016/j.virol.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most important infectious diseases in swine industry. IL-15 is a pleiotropic cytokine and has been shown to be essential to transform NKs, CD8 T cells, and other cells of the immune systems into functional effectors. Here, we demonstrated that the broad-spectrum or conventional PKC inhibitors repressed PRRSV-induced IL-15 expression and NF-κB activation. Subsequently, we found that the PKCβ specific inhibitor inhibited PRRSV-induced IL-15 production, which was also confirmed by knock-down of PKCβ1, suggesting that PKCβ1 is involved in the PRRSV-induced IL-15 expression. In addition, we demonstrated that PRRSV activated NF-κB through PKCβ1-induced TAK1 activation. Finally, we demonstrated that PRRSV activated PKCβ1 dependent on the participation of TRIF and MAVS. These data indicate that PRRSV up-regulates IL-15 through TRIF/MAVS-PKCβ1-TAK1-NF-κB signaling pathway. These findings will provide new insights into the molecular mechanisms of IL-15 production induced by PRRSV.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinping Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meijie Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China.
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|