1
|
Puenpa J, Korkong S, Vichaiwattana P, Poovorawan Y. Genetic diversity and spread of recombinant coxsackievirus A4 in hand, foot, and mouth disease cases in Bangkok, Thailand: 2017-2023. Sci Rep 2024; 14:26902. [PMID: 39506010 PMCID: PMC11542068 DOI: 10.1038/s41598-024-77832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Coxsackievirus A4 (CVA4) has recently become one of the most common causative agents of hand, foot, and mouth disease. The current study investigated the genetic diversity and spread of recombinant CVA4 by analyzing circulating genotypes and recombinant strains in Bangkok, Thailand, from 2017 to 2023. Partial VP1, 3Dpol, and whole genome sequencing of CVA4 samples collected from collaborating hospitals were conducted. Phylogenetic analysis of CVA4 VP1 and 3Dpol genome regions revealed discordance, indicating recombination. The predominant CVA4 genotype was C3, primarily observed in 2019. The predominant genotype in 2017 was C1. D2, commonly found in China, was occasionally observed. In nucleotide similarity analysis, intertypic recombination between CVA4 and EV-A during the evolutionary history of the virus was evident, particularly in the nonstructural region. The estimated emergence of genotypes C1 and C3 in Thailand occurred around 2014, with an evolutionary rate of 5.8 × 10- 3 nucleotide substitutions per site per year. Genotype D2 exhibited notable variability across both the entire genome and the structural protein region compared to genotype C. Monitoring the genetic diversity and circulation of recombinant CVA4 is crucial for identifying newly emerging virus strains, enabling prompt public health responses and containment efforts, and enhancing surveillance in Thailand.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichaiwattana
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand.
- FRS(T), The Royal Society of Thailand , Sanam Sueapa, Dusit, Bangkok, Thailand.
| |
Collapse
|
2
|
Berginc N, Lunar MM, Šramel N, Poljak M. Molecular epidemiology and characterization of enteroviruses detected in cerebrospinal fluid and respiratory samples in Slovenia, 2014-2023. J Med Virol 2024; 96:e29827. [PMID: 39056240 DOI: 10.1002/jmv.29827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Enterovirus (EV) infections have various symptoms and severe complications, including death. To determine EV prevalence and EV types in Slovenia, data on over 25 000 EV RNA tests for diagnostics and surveillance from 2014 to 2023 were analyzed. Altogether, 3733 cerebrospinal fluid (CSF) and 21 297 respiratory (sentinel and clinical) samples were tested for EV RNA. EV typing was performed on all residual EV-positive CSF samples and on subset of respiratory specimens. Altogether, 1238 samples tested positive for EV RNA: 238 (6.4%) CSF and 1000 (4.7%) respiratory samples. EV-positive patients were predominantly male (p < 0.001). Many EV-positive CSF samples were from infants under 3 months (33.1%), whereas most EV-positive respiratory samples were from children 1 to 2 years old (49.2%). Echovirus 30 (E-30) was most frequent in CSF (33.0%), followed by CV-B5 (13.8%) and E-6 (13.8%). CV-A6 was most frequent in respiratory samples (16.0%), followed by EV-D68 (7.6%) and CV-A5 (7.4%). EV types in CSF and respiratory samples show diverse dynamics, with some outbreaks indicated. A significant difference was found in the EV detection rate between CSF and respiratory samples by age. Various EV types were characterized, showing that some EV types are more neurotropic or cause more severe infections.
Collapse
Affiliation(s)
- Nataša Berginc
- Department of Public Health Microbiology, National Laboratory for Health, Environment, and Food, Maribor, Slovenia
| | - Maja M Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Šramel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Liang Z, Lin C, Huo D, Yang Y, Feng Z, Cui S, Wu D, Ren Z, Li D, Jia L, Dong S, Dou X, Sun Y, Gao Z, Li R. First detection of multiple cases related to CV-A16 strain of B1c clade in Beijing in 2022. J Med Virol 2024; 96:e29796. [PMID: 38982764 DOI: 10.1002/jmv.29796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Coxsackievirus A16 (CV-A16) is a significant etiologic agent of hand, foot, and mouth disease (HFMD) and herpangina (HA), with the capacity to progress to severe complications, including encephalitis, aseptic meningitis, acute flaccid paralysis, myocarditis, and other critical conditions. Beijing's epidemiological surveillance system, established in 2008, encompasses 29 hospitals and 16 district disease control centers. From 2019 to 2021, the circulation of CV-A16 was characterized by the co-circulation of B1a and B1b clades. Multiple cases of HFMD linked to clade B1c has not been reported in Beijing until 2022. This study enrolled 400 HFMD and 493 HA cases. Employing real-time RT-PCR, 368 enterovirus-positive cases were identified, with 180 selected for sequencing. CV-A16 was detected in 18.89% (34/180) of the cases, second only to CV-A6, identified in 63.33% (114/180). Full-length VP1 gene sequences were successfully amplified and sequenced in 22 cases, revealing the presence of clades B1a, B1b, and B1c in 14, 3, and 5 cases, respectively. A cluster of five B1c clade cases occurred between June 29 and July 17, 2022, within a 7-km diameter region in Shunyi District. Phylogenetic analysis of five complete VP1 gene sequences and two full-genome sequences revealed close clustering with the 2018 Indian strain (GenBank accession: MH780757.1) within the B1c India branch, with NCBI BLAST results showing over 98% similarity. Comparative sequence analysis identified three unique amino acid variations (P3S, V25A, and I235V). The 2022 Shunyi District HFMD cases represent the first instances of spatiotemporally correlated CV-A16 B1c clade infections in Beijing, underscoring the necessity for heightened surveillance of B1c clade CV-A16 in HFMD and HA in this region.
Collapse
Affiliation(s)
- Zhichao Liang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Changying Lin
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Da Huo
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yang Yang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhaomin Feng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Shujuan Cui
- Institute for HIV/AIDS and STD Prevention and Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Dan Wu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhenyong Ren
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Dan Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Shuaibing Dong
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiangfeng Dou
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yulan Sun
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Renqing Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| |
Collapse
|
4
|
Volle R, Luo L, Razafindratsimandresy R, Sadeuh-Mba SA, Gouandjika-Valisache I, Horwood P, Duong V, Buchy P, Joffret ML, Huang Z, Duizer E, Martin J, Chakrabarti LA, Dussart P, Jouvenet N, Delpeyroux F, Bessaud M. Neutralization of African enterovirus A71 genogroups by antibodies to canonical genogroups. J Gen Virol 2023; 104. [PMID: 37909282 DOI: 10.1099/jgv.0.001911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a major public health problem, causing a range of illnesses from hand-foot-and-mouth disease to severe neurological manifestations. EV-A71 strains have been phylogenetically classified into eight genogroups (A to H), based on their capsid-coding genomic region. Genogroups B and C have caused large outbreaks worldwide and represent the two canonical circulating EV-A71 subtypes. Little is known about the antigenic diversity of new genogroups as compared to the canonical ones. Here, we compared the antigenic features of EV-A71 strains that belong to the canonical B and C genogroups and to genogroups E and F, which circulate in Africa. Analysis of the peptide sequences of EV-A71 strains belonging to different genogroups revealed a high level of conservation of the capsid residues involved in known linear and conformational neutralization antigenic sites. Using a published crystal structure of the EV-A71 capsid as a model, we found that most of the residues that are seemingly specific to some genogroups were mapped outside known antigenic sites or external loops. These observations suggest a cross-neutralization activity of anti-genogroup B or C antibodies against strains of genogroups E and F. Neutralization assays were performed with diverse rabbit and mouse anti-EV-A71 sera, anti-EV-A71 human standards and a monoclonal neutralizing antibody. All the batches of antibodies that were tested successfully neutralized all available isolates, indicating an overall broad cross-neutralization between the canonical genogroups B and C and genogroups E and F. A panel constituted of more than 80 individual human serum samples from Cambodia with neutralizing antibodies against EV-A71 subgenogroup C4 showed quite similar cross-neutralization activities between isolates of genogroups C4, E and F. Our results thus indicate that the genetic drift underlying the separation of EV-A71 strains into genogroups A, B, C, E and F does not correlate with the emergence of antigenically distinct variants.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
- Present address: Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lingjie Luo
- Present address: Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, PR China
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Serge Alain Sadeuh-Mba
- Present address: Maryland Department of Agriculture, Salisbury Animal Health Laboratory, Salisbury, USA
- Centre Pasteur of Cameroon, Yaounde, Cameroon
| | | | - Paul Horwood
- Present address: James Cook University, Townsville, Australia
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | - Veasna Duong
- Institut Pasteur of Cambodia, Phnom Penh, Cambodia
| | | | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Zhong Huang
- Present address: Fudan University, Shanghai, PR China
- Institut Pasteur of Shanghai - Chinese Academy of Sciences, Shanghai, PR China
| | - Erwin Duizer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Javier Martin
- National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Lisa A Chakrabarti
- Institut Pasteur, Control of Chronic Viral Infections (CIVIC) Group, Virus and Immunity Unit, Université de Paris Cité, CNRS UMR 3569, Paris, France
| | | | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France
| |
Collapse
|
5
|
Rmadi Y, Elargoubi A, González-Sanz R, Mastouri M, Cabrerizo M, Aouni M. Molecular characterization of enterovirus detected in cerebrospinal fluid and wastewater samples in Monastir, Tunisia, 2014-2017. Virol J 2022; 19:45. [PMID: 35303921 PMCID: PMC8932122 DOI: 10.1186/s12985-022-01770-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Enteroviruses (EVs) are considered the main causative agents responsible for aseptic meningitis worldwide. This study was conducted in the Monastir region of Tunisia in order to know the prevalence of EV infections in children with meningitis symptoms. Detected EV types were compared to those identified in wastewater samples.
Methods Two hundred CSF samples collected from hospitalized patients suspected of having aseptic meningitis for an EV infection between May 2014 and May 2017 and 80 wastewater samples collected in the same time-period were analyzed. EV detection and genotyping were performed using PCR methods followed by sequencing. Phylogenetic analyses in the 3′-VP1 region were also carried-out. Results EVs were detected in 12% (24/200) CSF and in 35% (28/80) wastewater samples. EV genotyping was reached in 50% (12/24) CSF-positive samples and in 64% (18/28) sewage. Most frequent types detected in CSF were CVB3, E-30 and E-9 (25% each). In wastewater samples, the same EVs were identified, but also other types non-detected in CSF samples, such as E-17,CVA9 and CVB1 from EV species B, and EV-A71 and CVA8 from EV-A, suggesting their likely lower pathogenicity. Phylogenetic analysis showed that within the same type, different strains circulate in Tunisia. For some of the EV types such as E-9, E-11 or CVB3, the same strains were detected in CSF and wastewater samples. Conclusions Epidemiological studies are important for the surveillance of the EV infections and to better understand the emergence of certain types and variants.
Collapse
Affiliation(s)
- Yosra Rmadi
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| | - Aida Elargoubi
- Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rubén González-Sanz
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Maha Mastouri
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia.,Laboratory of Microbiology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Maria Cabrerizo
- Enterovirus and Viral Gastrointestinal Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Mahjoub Aouni
- Faculty of Pharmacy, Laboratory of Infectious Diseases and Biological Agents, University of Monastir, LR99-ES27, 5000, Monastir, Tunisia
| |
Collapse
|
6
|
Chen J, Jing H, Martin-Nalda A, Bastard P, Rivière JG, Liu Z, Colobran R, Lee D, Tung W, Manry J, Hasek M, Boucherit S, Lorenzo L, Rozenberg F, Aubart M, Abel L, Su HC, Soler Palacin P, Casanova JL, Zhang SY. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J Exp Med 2021; 218:212742. [PMID: 34726731 PMCID: PMC8570298 DOI: 10.1084/jem.20211349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-β in the patients’ fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.
Collapse
Affiliation(s)
- Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Infectious Diseases, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Immunology Division, Genetics Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Wesley Tung
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Neurology Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Pere Soler Palacin
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
7
|
Xu B, Wang J, Yan B, Xu C, Yin Q, Yang D. Global spatiotemporal transmission patterns of human enterovirus 71 from 1963 to 2019. Virus Evol 2021; 7:veab071. [PMID: 36819972 PMCID: PMC9927877 DOI: 10.1093/ve/veab071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/24/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) can cause large outbreaks of hand, foot, and mouth disease (HFMD) and severe neurological diseases, which is regarded as a major threat to public health, especially in Asia-Pacific regions. However, the global spatiotemporal spread of this virus has not been identified. In this study, we used large sequence datasets and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of different EV71 subgroups globally. The study found that subgroups of HFMD presented global spatiotemporal variation, subgroups B0, B1, and B2 have caused early infections in Europe and America, and then subgroups C1, C2, C3, and C4 replaced B0-B2 as the predominant genotypes, especially in Asia-Pacific countries. The dispersal patterns of genotype B and subgroup C4 showed the complicated routes in Asia and the source might in some Asian countries, while subgroups C1 and C2 displayed more strongly supported pathways globally, especially in Europe. This study found the predominant subgroup of EV71 and its global spatiotemporal transmission patterns, which may be beneficial to reveal the long-term global spatiotemporal transmission patterns of human EV71 and carry out the HFMD vaccine development.
Collapse
Affiliation(s)
- Bing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, 277, Yanta West Road, Xi’an, 710061, China
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
- Key Clinical Discipline by National Health Commission, 277, Yanta West Road, Xi’an, 710061, China
| | - Jinfeng Wang
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Bin Yan
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, 19A, Yuquan Road, Beijing, 100190, China
| | - Chengdong Xu
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Qian Yin
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Deyan Yang
- College of Oceanography and Space Informatics, China University of Petroleum, 66 Changjiangxi Road, Huangdao District, Qingdao, 266580, China
| |
Collapse
|
8
|
Martínez-López N, Muñoz-Almagro C, Launes C, Navascués A, Imaz-Pérez M, Reina J, Romero MP, Calvo C, Ruiz-García M, Megias G, Valencia-Ramos J, Otero A, Cabrerizo M. Surveillance for Enteroviruses Associated with Hand, Foot, and Mouth Disease, and Other Mucocutaneous Symptoms in Spain, 2006-2020. Viruses 2021; 13:v13050781. [PMID: 33924875 PMCID: PMC8146579 DOI: 10.3390/v13050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a mild illness caused by enteroviruses (EV), although in some Asian countries, large outbreaks have been reported in the last 25 years, with a considerable incidence of neurological complications. This study describes epidemiological and clinical characteristics of EV infections involved in HFMD and other mucocutaneous symptoms from 2006 to 2020 in Spain. EV-positive samples from 368 patients were included. EV species A were identified in 85.1% of those typed EV. Coxsackievirus (CV) A6 was the prevalent serotype (60.9%), followed by EV-A71 (9.9%) and CVA16 (7.7%). Infections affected children (1-6 years old) mainly, and show seasonality with peaks in spring-summer and autumn. Clinical data indicated few cases of atypical HFMD as well as those with neurological complications (associated with the 2016 EV-A71 outbreak). Phylogenetic analysis of CVA6 VP1 sequences showed different sub-clusters circulating from 2010 to present. In conclusion, HFMD or exanthemas case reporting has increased in Spain in recent years, probably associated with an increase in circulation of CVA6, although they did not seem to show greater severity. However, EV surveillance in mucocutaneous manifestations should be improved to identify the emergence of new types or variants causing outbreaks and more severe pathologies.
Collapse
Affiliation(s)
- Nieves Martínez-López
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - Carmen Muñoz-Almagro
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Cristian Launes
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Ana Navascués
- Microbiological Department, Complejo Hospitalario de Navarra, 31008 Navarra, Spain;
| | - Manuel Imaz-Pérez
- Microbiological Department, Hospital de Basurto, 48013 Bilbao, Spain;
| | - Jordi Reina
- Microbiological Department, Hospital Son Espases, 07020 Palma de Mallorca, Spain;
| | - María Pilar Romero
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | - Cristina Calvo
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | | | - Gregoria Megias
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Juan Valencia-Ramos
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Almudena Otero
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - María Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
- Correspondence: ; Tel.: +34-918-223-663
| |
Collapse
|
9
|
Huang KYA, Huang PN, Huang YC, Yang SL, Tsao KC, Chiu CH, Shih SR, Lin TY. Emergence of genotype C1 Enterovirus A71 and its link with antigenic variation of virus in Taiwan. PLoS Pathog 2020; 16:e1008857. [PMID: 32936838 PMCID: PMC7521691 DOI: 10.1371/journal.ppat.1008857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/28/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
An outbreak of the hand-foot-mouth disease with severe neurological cases, mainly caused by the genotype C1 enterovirus A71 (EV-A71), occurred in Taiwan between 2018 and early 2019. In the recent decade, the most dominant EV-A71 genotypes in Taiwan were B5 and C4 but changed to C1 in 2018. Antibody-mediated immunity plays a key role in limiting the EV-A71 illness in humans. However, the level of neutralizing activities against genotype C1 virus by human polyclonal and monoclonal antibodies (MAbs) remains largely unclear. In the study, we demonstrated that that 39% (9 in 23) of post-infection sera from the genotype B5- or C4-infected patients in 2014–2017 exhibit reduced titers with the 2018–2019 genotype C1 viruses than with the earlier B5 and C4 viruses tested. This finding with polyclonal sera is confirmed with human MAbs derived from genotype B5 virus-infected individuals. The 2018–2019 genotype C1 virus is resistant to the majority of canyon-targeting human MAbs, which may be associated with the residue change near or at the bottom of the canyon region on the viral capsid. The remaining three antibodies (16-2-11B, 16-3-4D, and 17-1-12A), which target VP1 S241 on the 5-fold vertex, VP3 E81 on the 3-fold plateau and VP2 D84 on the 2-fold plateau of genotype C1 viral capsid, respectively, retained neutralizing activities with variable potencies. These neutralizing antibodies were also found to be protective against a lethal challenge of the 2018–2019 genotype C1 virus in an hSCARB2-transgenic mice model. These results indicate that the EV-A71-specific antibody response may consist of a fraction of poorly neutralizing antibodies against 2018–2019 genotype C1 viruses among a subset of previously infected individuals. Epitope mapping of protective antibodies that recognize the emerging genotype C1 virus has implications for anti-EV-A71 MAbs and the vaccine field. EV-A71 is a cause of hand-foot-mouth disease, epidemics of which still regularly occur around the globe. Given that EV-A71 immune protection from the disease correlates with neutralizing antibody responses, but the responses in humans prior to an outbreak are still poorly understood. An outbreak of hand-foot-mouth disease among children emerged in Taiwan from 2018 to 2019, and genotype C1 EV-A71 caused most of the cases. Here, we characterized EV-A71-neutralizing antibody profiles in details at both the serological and monoclonal levels and showed that antibodies generated by humans prior to the emergence of genotype C1 EV-A71 less effectively neutralize C1 compared to the prior circulating genotypes, which implies the presence of antigenic variation in the EV-A71 genotypes. We further identified and mapped critical neutralizing epitopes of 2018–2019 genotype C1 EV-A71 on the top and margin of the viral capsid pentamer and demonstrated the in vivo protective effect of human monoclonal antibodies, which highlight the properties of human antibody-neutralizing sites on EV-A71 and the potential of human antibodies as antiviral agents.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Child
- Child, Preschool
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/isolation & purification
- Female
- Genetic Variation
- Genome, Viral
- Genotype
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/genetics
- Hand, Foot and Mouth Disease/immunology
- Humans
- Male
- Mice
- Mice, Transgenic
- Taiwan
Collapse
Affiliation(s)
- Kuan-Ying A. Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| | - Peng-Nien Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu-Li Yang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Chien Tsao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (KYAH); (TYL)
| |
Collapse
|
10
|
Volle R, Joffret ML, Ndiaye K, Fernandez-Garcia MD, Razafindratsimandresy R, Heraud JM, Rezig D, Sadeuh-Mba SA, Boulahbal-Anes L, Seghier M, Deshpandeh JM, Bessaud M, Delpeyroux F. Development of a New Internally Controlled One-Step Real-Time RT-PCR for the Molecular Detection of Enterovirus A71 in Africa and Madagascar. Front Microbiol 2020; 11:1907. [PMID: 32922374 PMCID: PMC7456875 DOI: 10.3389/fmicb.2020.01907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a leading cause of hand-foot-and-mouth disease (HFMD) and can be associated with severe neurological complications. EV-A71 strains can be classified into seven genogroups, A-H, on the basis of the VP1 capsid protein gene sequence. Genogroup A includes the prototype strain; genogroups B and C are responsible of major outbreaks worldwide, but little is known about the others, particularly genogroups E and F, which have been recently identified in Africa and Madagascar, respectively. The circulation of EV-A71 in the African region is poorly known and probably underestimated. A rapid and specific assay for detecting all genogroups of EV-A71 is required. In this study, we developed a real-time RT-PCR assay with a competitive internal control (IC). The primers and TaqMan probe specifically target the genomic region encoding the VP1 capsid protein. Diverse EV-A71 RNAs were successfully amplified from the genogroups A, B, C, D, E, and F, with similar sensitivity and robust reproducibility. Neither cross reaction with other EVs nor major interference with the competitive IC was detected. Experimentally spiked stool and plasma specimens provided consistent and reproducible results, and validated the usefulness of the IC for demonstrating the presence of PCR inhibitors in samples. The analysis in an African laboratories network of 1889 untyped enterovirus isolates detected 15 EV-A71 of different genogroups. This specific real-time RT-PCR assay provides a robust and sensitive method for the detection of EV-A71 in biological specimens and for the epidemiological monitoring of EV-A71 including its recently discovered genogroups.
Collapse
Affiliation(s)
- Romain Volle
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France.,INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France.,INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France.,Institut Pasteur, Viral Populations and Pathogenesis, Paris, France
| | | | | | | | | | | | | | | | | | - Jagadish M Deshpandeh
- National Institute of Virology, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Maël Bessaud
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France.,INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France.,Institut Pasteur, Viral Populations and Pathogenesis, Paris, France
| | - Francis Delpeyroux
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France.,INSERM U994, Institut National de Santé et de La Recherche Médicale, Paris, France
| |
Collapse
|
11
|
González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Ruiz-García MM, Alonso M, González-Abad MJ, Megías G, Rabella N, Del Cuerpo M, Gozalo-Margüello M, González-Praetorius A, Martínez-Sapiña A, Goyanes-Galán MJ, Romero MP, Calvo C, Antón A, Imaz M, Aranzamendi M, Hernández-Rodríguez Á, Moreno-Docón A, Rey-Cao S, Navascués A, Otero A, Cabrerizo M. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30782267 PMCID: PMC6381658 DOI: 10.2807/1560-7917.es.2019.24.7.1800089] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Introduction Enterovirus A71 (EV-A71) is an emerging pathogen that causes a wide range of disorders including severe neurological manifestations. In the past 20 years, this virus has been associated with large outbreaks of hand, foot and mouth disease with neurological complications in the Asia-Pacific region, while in Europe mainly sporadic cases have been reported. In spring 2016, however, an EV-A71 outbreak associated with severe neurological cases was reported in Catalonia and spread further to other Spanish regions. Aim Our objective was to investigate the epidemiology and clinical characteristics of the outbreak. Methods We carried out a retrospective study which included 233 EV-A71-positive samples collected during 2016 from hospitalised patients. We analysed the clinical manifestations associated with EV-A71 infections and performed phylogenetic analyses of the 3’-VP1 and 3Dpol regions from all Spanish strains and a set of EV-A71 from other countries. Results Most EV-A71 infections were reported in children (mean age: 2.6 years) and the highest incidence was between May and July 2016 (83%). Most isolates (218/233) were classified as subgenogroup C1 and 217 of them were grouped in one cluster phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. Moreover, we found a clear association of EV-A71-C1 infection with severe neurological disorders, brainstem encephalitis being the most commonly reported. Conclusion An emerging recombinant variant of EV-A71-C1 was responsible for the large outbreak in 2016 in Spain that was associated with many severe neurological cases.
Collapse
Affiliation(s)
- Rubén González-Sanz
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Cristian Launes
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carmen Muñoz-Almagro
- CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Universitat Internacional de Catalunya, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | - María Pilar Romero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Cristina Calvo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Hospital Universitario La Paz, Fundación IdiPaz, Madrid, Spain
| | - Andrés Antón
- Hospital Universitari Vall d´Hebron, Barcelona, Spain
| | | | | | - Águeda Hernández-Rodríguez
- Microbiology Service, University Hospital "Germans Trias i Pujol", Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Almudena Otero
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Cabrerizo
- Translational Research Network in Paediatric Infectious Diseases (RITIP), IdiPaz, Madrid, Spain.,CIBER de epidemiología y Salud Pública, CIBERESP, Madrid, Spain.,Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Chen L, Xu SJ, Yao XJ, Yang H, Zhang HL, Meng J, Zeng HR, Huang XH, Zhang RL, He YQ. Molecular epidemiology of enteroviruses associated with severe hand, foot and mouth disease in Shenzhen, China, 2014-2018. Arch Virol 2020; 165:2213-2227. [PMID: 32666145 PMCID: PMC7360124 DOI: 10.1007/s00705-020-04734-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the epidemiology and molecular characteristics of enteroviruses associated with severe hand, foot and mouth disease (HFMD) in Shenzhen, China, during 2014-2018. A total of 137 fecal specimens from patients with severe HFMD were collected. Enterovirus (EV) types were determined using real-time reverse transcription polymerase chain reaction (RT-PCR), RT nested PCR, and sequencing. Sequences were analyzed using bioinformatics programs. Of 137 specimens tested, 97 (70.8%), 12 (8.8%), and 10 (7.3%) were positive for EV-A71, coxsackievirus A6 (CVA6), and CVA16, respectively. Other pathogens detected included CVA2 (2.9%, 4/137), CVA10 (2.9%, 4/137), CVA5 (0.7%, 1/137), echovirus 6 (E6) (0.7%, 1/137) and E18 (0.7%, 1/137). The most frequent complication in patients with proven EV infections was myoclonic jerk, followed by aseptic encephalitis, tachypnea, and vomiting. The frequencies of vomiting and abnormal eye movements were higher in EV-A71-infected patients than that in CVA6-infected or CVA16-infected patients. Molecular phylogeny based on the complete VP1 gene revealed no association between the subgenotype of the virus and disease severity. Nevertheless, 12 significant mutations that were likely to be associated with virulence or the clinical phenotype were observed in the 5’UTR, 2Apro, 2C, 3A, 3Dpol and 3’UTR of CVA6. Eight significant mutations were observed in the 5’UTR, 2B, 3A, 3Dpol and 3’UTR of CVA16, and 10 significant mutations were observed in the 5’UTR, VP1, 3A and 3Cpro of CVA10. In conclusion, EV-A71 is still the main pathogen causing severe HFMD, although other EV types can also cause severe complications. Potential virulence or phenotype-associated sites were identified in the genomes of CVA6, CVA16, and CVA10.
Collapse
Affiliation(s)
- Long Chen
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Shao-Jian Xu
- District Key Laboratory for Infectious Disease Prevention and Control, Longhua District Center for Disease Control and Prevention, Shenzhen, 518109, China
| | - Xiang-Jie Yao
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hong Yang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hai-Long Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Han-Ri Zeng
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xu-He Huang
- Guangdong Provincial Institution of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Ren-Li Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Ya-Qing He
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Bisseux M, Debroas D, Mirand A, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C. Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: An effective complementary tool for clinical enterovirus surveillance. WATER RESEARCH 2020; 169:115246. [PMID: 31710918 DOI: 10.1016/j.watres.2019.115246] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/26/2019] [Indexed: 05/28/2023]
Abstract
In a one-year (October 2014-October 2015) pilot study, we assessed wastewater monitoring with sustained sampling for analysis of global enterovirus (EV) infections in an urban community. Wastewater was analysed by ultra-deep sequencing (UDS) after PCR amplification of the partial VP1 capsid protein gene. The nucleotide sequence analysis showed an unprecedented diversity of 48 EV types within the community, which were assigned to the taxonomic species A (n = 13), B (n = 23), and C (n = 12). During the same period, 26 EV types, of which 22 were detected in wastewater, were identified in patients referred to the teaching hospital serving the same urban population. Wastewater surveillance detected a silent circulation of 26 EV types including viruses reported in clinically rare respiratory diseases. Wastewater monitoring as a supplementary procedure can complement clinical surveillance of severe diseases related to non-polio EVs and contribute to the final stages of poliomyelitis eradication.
Collapse
Affiliation(s)
- Maxime Bisseux
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France.
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France
| | - Audrey Mirand
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Christine Archimbaud
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| | - Cécile Henquell
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France; CHU Clermont-Ferrand, 3 IHP, Centre National de Référence des entérovirus et parechovirus - Laboratoire Associé, Laboratoire de Virologie, F-63000, Clermont-Ferrand, France
| |
Collapse
|
14
|
Apostol LN, Shimizu H, Suzuki A, Umami RN, Jiao MMA, Tandoc A, Saito M, Lupisan S, Oshitani H. Molecular characterization of enterovirus-A71 in children with acute flaccid paralysis in the Philippines. BMC Infect Dis 2019; 19:370. [PMID: 31046684 PMCID: PMC6498601 DOI: 10.1186/s12879-019-3955-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Background Several inactivated enterovirus-A71 (EV-A71) vaccines are currently licensed in China; however, the development of additional EV-A71 vaccines is ongoing, necessitating extensive analysis of the molecular epidemiology of the virus worldwide. Until 2012, laboratory confirmation of EV-A71 for hand, foot, and mouth disease (HFMD) and other associated diseases had not occurred in the Philippines. Because EV-A71 has been linked with cases of acute flaccid paralysis (AFP), AFP surveillance is one strategy for documenting its possible circulation in the country. To expand current knowledge on EV-A71, molecular epidemiologic analysis and genetic characterization of EV-A71 isolates were performed in this study. Methods A retrospective study was performed to identify and characterize nonpolio enteroviruses (NPEVs) associated with AFP in the Philippines, and nine samples were found to be EV-A71–positive. Following characterization of these EV-A71 isolates, the complete viral protein 1 (VP1) gene was targeted for phylogenetic analysis. Results Nine EV-A71 isolates detected in 2000 (n = 2), 2002 (n = 4), 2005 (n = 2), and 2010 (n = 1) were characterized using molecular methods. Genomic regions spanning the complete VP1 region were amplified and sequenced using specific primers. Phylogenetic analysis of the full-length VP1 region identified all nine EV-A71 Philippine isolates as belonging to the genogroup C lineage, specifically the C2 cluster. The result indicated a genetic linkage with several strains isolated in Japan and Taiwan, suggesting that strains in the C2 cluster identified in the Asia-Pacific region were circulating in the Philippines. Conclusion The study presents the genetic analysis of EV-A71 in the Philippines. Despite some limitations, the study provides additional genetic data on the circulating EV-A71 strains in the Asia-Pacific region, in which information on EV-A71 molecular epidemiology is incomplete. Considering that EV-A71 has a significant public health impact in the region, knowledge of its circulation in each country is important, especially for formulating vaccines covering a wide variety of strains.
Collapse
Affiliation(s)
- Lea Necitas Apostol
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines.
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Akira Suzuki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Rifqiyah Nur Umami
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan.,Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, 16911, Indonesia
| | - Maria Melissa Ann Jiao
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Amado Tandoc
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mariko Saito
- Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| | - Socorro Lupisan
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku-RITM Collaborating Research Center for Emerging and Re-emerging Infectious Diseases, Muntinlupa, Philippines
| |
Collapse
|
15
|
High Permissiveness for Genetic Exchanges between Enteroviruses of Species A, including Enterovirus 71, Favors Evolution through Intertypic Recombination in Madagascar. J Virol 2019; 93:JVI.01667-18. [PMID: 30602612 DOI: 10.1128/jvi.01667-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Human enteroviruses of species A (EV-A) are the leading cause of hand-foot-and-mouth disease (HFMD). EV-A71 is frequently implicated in HFMD outbreaks and can also cause severe neurological manifestations. We investigated the molecular epidemiological processes at work and the contribution of genetic recombination to the evolutionary history of EV-A in Madagascar, focusing on the recently described EV-A71 genogroup F in particular. Twenty-three EV-A isolates, collected mostly in 2011 from healthy children living in various districts of Madagascar, were characterized by whole-genome sequencing. Eight different types were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent recent intra- and intertypic genetic exchanges between the noncapsid sequences of Madagascan EV-A isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination, with one isolate displaying a mosaic genome resulting from recent genetic exchanges with Madagascan coxsackieviruses A7 and possibly A5 and A10 or common ancestors. The engineering and characterization of recombinants generated from progenitors belonging to different EV-A types or EV-A71 genogroups with distantly related nonstructural sequences indicated a high level of permissiveness for intertypic genetic exchange in EV-A. This permissiveness suggests that the primary viral functions associated with the nonstructural sequences have been highly conserved through the diversification and evolution of the EV-A species. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify surveillance of EV-A circulation and HFMD cases to prevent possible outbreaks due to emerging strains.IMPORTANCE Human enteroviruses of species A (EV-A), including EV-A71, are the leading cause of hand-foot-and-mouth disease (HFMD) and may also cause severe neurological manifestations. We investigated the circulation and molecular evolution of EV-A in Madagascar, focusing particularly on the recently described EV-A71 genogroup F. Eight different types, collected mostly in 2011, were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent genetic exchanges between the different types of isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination. The engineering and characterization of recombinants involving progenitors belonging to different EV-A types indicated a high degree of permissiveness for genetic exchange in EV-A. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify the surveillance of EV-A circulation to prevent possible HFMD outbreaks due to emerging strains.
Collapse
|
16
|
Noisumdaeng P, Sangsiriwut K, Prasertsopon J, Klinmalai C, Payungporn S, Mungaomklang A, Chokephaibulkit K, Buathong R, Thitithanyanont A, Puthavathana P. Complete genome analysis demonstrates multiple introductions of enterovirus 71 and coxsackievirus A16 recombinant strains into Thailand during the past decade. Emerg Microbes Infect 2018; 7:214. [PMID: 30552334 PMCID: PMC6294798 DOI: 10.1038/s41426-018-0215-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 02/06/2023]
Abstract
Hand, foot, and mouth disease (HFMD) caused by enteroviruses remains a public health threat, particularly in the Asia-Pacific region during the past two decades. Moreover, the introduction of multiple subgenotypes and the emergence of recombinant viruses is of epidemiological importance. Based on either the full genome or VP1 sequences, 32 enteroviruses (30 from HFMD patients, 1 from an encephalitic patient, and 1 from an asymptomatic contact case) isolated in Thailand between 2006 and 2014 were identified as 25 enterovirus 71 (EV71) isolates (comprising 20 B5, 1 C2, 2 C4a, and 2 C4b subgenotypes) and 7 coxsackievirus A16 (CA16) isolates (comprising 6 B1a and 1 B1b subgenotypes). The EV71 subgenotype C4b was introduced into Thailand for the first time in 2006 and was replaced by subgenotype C4a strains in 2009. Phylogenetic, similarity plot and bootscan analyses of the complete viral genomes identified 12 recombinant viruses among the 32 viral isolates. Only one EV71-B5 isolate out of 20 was a recombinant virus with one region of intratypic or intertypic recombination, while all four EV71-C4 isolates were recombinant viruses having undergone double recombination, and all seven CA16 isolates were recombinant viruses. The recombination breakpoints of these recombinants are located solely within the P2 and P3 regions. Surveillance for circulating strains and subgenotype replacement are important with respect to molecular epidemiology and the selection of the upcoming EV71 vaccine. In addition, the clinical importance of recombinant viruses needs to be further explored.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University (Rangsit center), Khlong Luang, Pathum Thani, 12121, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand
| | - Chompunuch Klinmalai
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anek Mungaomklang
- Debaratana Nakhon Ratchasima Hospital, Ministry of Public Health, Nakhon Ratchasima, 30280, Thailand
| | - Kulkanya Chokephaibulkit
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand
| | - Rome Buathong
- Bureau of Epidemiology, Department of Disease Control, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon, Pathom, 73170, Thailand. .,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-noi, Bangkok, 10700, Thailand.
| |
Collapse
|
17
|
Li J, Li Y, Zhang S, Ma H, Liu X, Liang Z, Zhang W, Jing H, Du Y, Yang Y, Huo D, Chen L, Wang Q. Analysis of an Imported Subgenotype C2 Strain of Human Enterovirus 71 in Beijing, China, 2015. Front Microbiol 2018; 9:2337. [PMID: 30323801 PMCID: PMC6172327 DOI: 10.3389/fmicb.2018.02337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Background: Subgenotype C4 of enterovirus 71 (EV71) is the predominant agent of Hand Foot and Mouth disease (HFMD) circulating in the mainland of China. For the first time, a subgenotype C2 of EV71 named SY30-2 was isolated from a HFMD case in Beijing, China. Since it is uncertain whether antibodies raised against subgenotype C4 of EV71 can protect C2 EV71, it is important to monitor and check the presence of cross-reactive antibodies against new EV71 subgenotypes. To find out the causes for the different NtAb, this study is to investigate the relationships between amino acid residue variations and cross-reactive antibodies against EV71 subgenotypes C2 and C4. Methods: Nucleotide and amino acid sequences from full-length genome sequence of SY30-2 were compared to EV71 reference strains. A microneutralization test was used to detect neutralizing antibody (NTAb) in the sera of subgenotype C4 of EV71 infected cases against SY30-2 and FY17 (a C4 isolate). The 3D structure of the viral capsid protein of SY30-2 was constructed. Results: Genome sequence and similarity plot analyses showed that SY30-2 shared the highest identity with subgenotype C2 of EV71 strains in every fragment of the genome. While the microneutralization test result showed that children infected with subgenotype C4 of EV71 had higher NTAb titers against FY17 than SY30-2 (p < 0.001). The amino acid sequence comparison revealed that four amino acid residues VP1-22, VP1-31, VP1-249 and VP3-93 were highly conserved in subgenotype C4 of EV71 compared with the corresponding amino acid residues on subgenotype C2 of EV71 (p < 0.05). Furthermore, the 3D-structure of viral capsid protein showed that VP1-22, VP1-31 and VP3-93 were located on the surface of virion. Conclusion: This is the first report of an EV71 subgenotype C2 isolated from HFMD in Beijing, China. Only a few antigenic variations on subgenotype C2 of EV71 could have led to a great decrease in NTAb titer. Thus, imported new genotypes and subgenotypes of EV71 should be closely monitored. The efficacy of available vaccines against new viruses should be evaluated as well.
Collapse
Affiliation(s)
- Jie Li
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China.,Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - Yindong Li
- Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - Songjian Zhang
- Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - Hongmei Ma
- Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - XiaoXiao Liu
- Beijing Xi Cheng Center for Disease Prevention and Control, Beijing, China
| | - Zhichao Liang
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| | - Wenzeng Zhang
- Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - Hongbo Jing
- Beijing Shunyi Center for Disease Prevention and Control, Beijing, China
| | - Yiwei Du
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| | - Yang Yang
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| | - Da Huo
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| | - Lijuan Chen
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing, China.,Beijing Center for Preventive Medicine Research, Beijing, China
| |
Collapse
|
18
|
Thao NTT, Donato C, Trang VTH, Kien NT, Trang PMT, Khanh TQ, Nguyet DT, Sessions OM, Cuong HQ, Lan PT, Huong VTQ, van Doorn HR, Vijaykrishna D. Evolution and Spatiotemporal Dynamics of Enterovirus A71 Subgenogroups in Vietnam. J Infect Dis 2017; 216:1371-1379. [PMID: 29029128 PMCID: PMC5853389 DOI: 10.1093/infdis/jix500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background Enterovirus A71 (EV-A71) is the major cause of severe hand, foot, and mouth disease and viral encephalitis in children across the Asia-Pacific region, including in Vietnam, which has experienced a high burden of disease in recent years. Multiple subgenogroups (C1, C4, C5, and B5) concurrently circulate in the region with a large variation in epidemic severity. The relative differences in their evolution and epidemiology were examined within Vietnam and globally. Methods A total of 752 VP1 gene sequences were analyzed (413 generated in this study combined with 339 obtained from GenBank), collected from patients in 36 provinces in Vietnam during 2003-2013, along with epidemiological metadata. Globally representative VP1 gene datasets of subgenogroups were used to coestimate time-resolved phylogenies and relative genetic diversity to infer virus origins and regional transmission network. Results Despite frequent virus migration between countries, the highest genetic diversity of individual subgenogroups was maintained independently for several years in specific Asian countries representing genogroup-specific sources of EV-A71 diversity. Conclusion This study highlights a persistent transmission network of EV-A71, with specific Asian countries seeding other countries in the region and beyond, emphasizing the need for improved EV-A71 surveillance and detailed genetic and antigenic characterization.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Thao
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Celeste Donato
- Program in Emerging Infectious Diseases, Duke-NUS Medical School Singapore
| | - Vu Thi Huyen Trang
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Trung Kien
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Phạm Mai Thuy Trang
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Quoc Khanh
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Dang Thi Nguyet
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - October M Sessions
- Program in Emerging Infectious Diseases, Duke-NUS Medical School Singapore
| | - Hoang Quoc Cuong
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Phan Trong Lan
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Vu Thi Que Huong
- Immunology and Microbiology Department, Pasteur Institute, Ho Chi Minh City, Vietnam
| | | | - Dhanasekaran Vijaykrishna
- Program in Emerging Infectious Diseases, Duke-NUS Medical School Singapore
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Wieczorek M, Purzyńska M, Krzysztoszek A, Ciąćka A, Figas A, Szenborn L. Genetic characterization of enterovirus A71 isolates from severe neurological cases in Poland. J Med Virol 2017; 90:372-376. [PMID: 28960454 DOI: 10.1002/jmv.24958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023]
Abstract
The aim of this study was to report a minor outbreak of enterovirus A71 (EV-A71) infection in Poland and characterize isolates from cases of severe neurological infection detected in 2013 and 2016. Phylogenetic analysis revealed that Polish strains belonged to the C genogroup: C1, C2, and C4. Severe neurological manifestations as encephalitis or acute flaccid paralysis (AFP), were associated with all detected subgenogroups. The C2 subgenogroup was associated with the outbreak in Gdansk, with serious cases of AFP, myelitis, cerebellitis, encephalitis, but also with mild, sporadic cases of aseptic meningitis, in other Polish cities. Data from the study established relationships of EV-A71 from Poland with previously characterized strains and confirmed the importance of high quality enterovirus surveillance with international reach.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Mariola Purzyńska
- Pomeranian Hospitals, Specialist Hospital of Infectious Diseases in Gdansk, Gdansk, Poland
| | - Arleta Krzysztoszek
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Ciąćka
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Agnieszka Figas
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland
| | - Leszek Szenborn
- Department and Clinic of Pediatric Infectious Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
20
|
Phylogeography of Coxsackievirus A16 Reveals Global Transmission Pathways and Recent Emergence and Spread of a Recombinant Genogroup. J Virol 2017; 91:JVI.00630-17. [PMID: 28659474 DOI: 10.1128/jvi.00630-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/06/2017] [Indexed: 12/17/2022] Open
Abstract
Coxsackievirus A16 (CV-A16; Picornaviridae) is an enterovirus (EV) type associated with hand, foot, and mouth disease (HFMD) in children. To investigate the spatial spread of CV-A16, we used viral sequence data sampled during a prospective sentinel surveillance of HFMD in France (2010 to 2014) and phylogenetic reconstruction. A data set of 168 VP1 sequences was assembled with 416 publicly available sequences of various geographic origins. The CV-A16 sequences reported were assigned to two clades, genogroup B and a previously uncharacterized clade D. The time origins of clades B and D were assessed in 1978 (1973 to 1981) and 2004 (2001 to 2007), respectively. The shape of the global CV-A16 phylogeny indicated worldwide cocirculation of genetically distinct virus lineages over time and across geographic regions. Phylogenetic tree topologies and Bayes factor analysis indicated virus migration. Virus transportation events in clade B within Europe and Asia and between countries of the two geographic regions were assessed. The sustained transmission of clade D viruses over 4 years was analyzed at the township level in France and traced back to Peru in South America. Comparative genomics provided evidence of recombination between CV-A16 clades B and D and suggested an intertype recombinant origin for clade D. Time-resolved phylogenies and HFMD surveillance data indicated that CV-A16 persistence is sustained by continuing virus migration at different geographic scales, from community transmission to virus transportation between distant countries. The results showed a significant impact of virus movements on the epidemiological dynamics of HFMD that could have implications for disease prevention.IMPORTANCE Coxsackievirus A16 is one of the most prevalent enterovirus types in hand, foot, and mouth disease outbreaks reported in Southeast Asia. This study is based on epidemiological and viral data on HFMD caused by CV-A16 in a European country. The phylogeographic data complemented the syndromic surveillance with virus migration patterns between geographic regions in France. The results show how viral evolutionary dynamics and global virus spread interact to shape the worldwide pattern of an EV disease. CV-A16 transmission is driven by movements of infected individuals at different geographic levels: within a country (local dynamics), between neighboring countries (regional dynamics), and between distant countries (transcontinental dynamics). The results are consistent with our earlier data on EV-A71 and confirm the epidemiological interconnection of Asia and Europe with regard to EV infections.
Collapse
|
21
|
Wieczorek M, Krzysztoszek A. Molecular Characterization of Enteroviruses Isolated from Acute Flaccid Paralysis Cases in Poland, 1999–2014. Pol J Microbiol 2016; 65:443-450. [DOI: 10.5604/17331331.1227670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Enteroviruses (EVs) are among viral pathogens that can cause acute flaccid paralysis (AFP). This study represents an overview of EVs isolated through AFP surveillance in Poland between 1999 and 2014. The presence of enteroviruses was studied in stool samples that were collected from 747 AFP cases and their asymptomatic contacts. Fifty five (6.12%) cases of AFP were associated with enterovirus isolation. Out of the 55 positive cases, 40 were associated with detection of enterovirus in patient, and 15 with detection of EV in healthy contact, without positive detection in paralytic patient. Polioviruses were isolated from 35 AFP cases. The results of this study showed that about 43.6% of positive AFP cases were found in association with the isolation of non-polio enteroviruses (NPEV). A total of 12 different types of the species B were detected (CVA9, CVB1, CVB3, CVB4, CVB5, E3, E4, E9, E11, E13, E30), and one additional isolate represented the species enterovirus A (EV71). Among the 12 serotypes of species B, CVB3 and CVB5 were more frequently detected than others, representing 40% of the characterized isolates, followed by CVB4 (16%), E4 (8%), and E11(8%). Phylogenetic analysis revealed that strains from Poland had the closest genetic relationship with isolates previously identified in Europe (France, Finland, Denmark, Moldova) but also in other parts of the world (Tunisia, China, USA), suggesting wide distribution of these lineages. The paper provides information about NPEV circulation in Poland in the past 16 years, about its association with the AFP and it indicates the need for monitoring NPEV circulation even after the eradication of poliomyelitis.
Collapse
Affiliation(s)
- Magdalena Wieczorek
- National Institute of Public Health – National Institute of Hygiene, Department of Virology, Warsaw, Poland
| | - Arleta Krzysztoszek
- National Institute of Public Health – National Institute of Hygiene, Department of Virology, Warsaw, Poland
| |
Collapse
|
22
|
Lee KY. Enterovirus 71 infection and neurological complications. KOREAN JOURNAL OF PEDIATRICS 2016; 59:395-401. [PMID: 27826325 PMCID: PMC5099286 DOI: 10.3345/kjp.2016.59.10.395] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/14/2015] [Accepted: 10/14/2015] [Indexed: 11/27/2022]
Abstract
Since the outbreak of the enterovirus 71 (EV71) infection in Malaysia in 1997, large epidemics of EV71 have occurred in the Asia-Pacific region. Many children and infants have died from serious neurological complications during these epidemics, and EV71 infection has become a serious public health problem in these areas. EV71 infection causes hand, foot and mouth disease (HFMD) in children, and usually resolves spontaneously. However, EV71 occasionally involves the central nervous system (CNS), and induces diverse neurological complications such as brainstem encephalitis, aseptic meningitis, and acute flaccid paralysis. Among those complications, brainstem encephalitis is the most critical neurological manifestation because it can cause neurogenic pulmonary hemorrhage/edema leading to death. The characteristic clinical symptoms such as myoclonus and ataxia, cerebrospinal fluid (CSF) pleocytosis, and brainstem lesions on magnetic resonance imaging, in conjunction with the skin rash of HFMD and the isolation of EV71 from a stool, throat-swab, or CSF sample are typical findings indicating CNS involvement of EV71 infection. Treatment with intravenous immunoglobulin and milrinone are recommended in cases with severe neurological complications from EV71 infection, such as brainstem encephalitis. Despite the recent discovery of receptors for EV71 in human cells, such as the scavenger receptor B2 and P-selection glycoprotein ligand 1, it is not known why EV71 infection predominantly involves the brainstem. Recently, 3 companies in China have completed phase III clinical trials of EV71 vaccines. However, the promotion and approval of these vaccines in various countries are problems yet to be resolved.
Collapse
Affiliation(s)
- Kyung Yeon Lee
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|
23
|
Mirand A, Molet L, Hassel C, Peigue-Lafeuille HCLAN, Rozenberg F, Bailly JL, Henquell CCC. Enterovirus A71 subgenotype B5, France, 2013. Emerg Infect Dis 2015; 21:707-9. [PMID: 25811300 PMCID: PMC4378463 DOI: 10.3201/eid2104.141093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Hassel C, Mirand A, Lukashev A, TerletskaiaLadwig E, Farkas A, Schuffenecker I, Diedrich S, Huemer HP, Archimbaud C, Peigue-Lafeuille H, Henquell C, Bailly JL. Transmission patterns of human enterovirus 71 to, from and among European countries, 2003 to 2013. Euro Surveill 2015; 20:30005. [DOI: 10.2807/1560-7917.es.2015.20.34.30005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/21/2015] [Indexed: 11/20/2022] Open
Abstract
Enterovirus 71 (EV-71) is involved in epidemics of hand, foot, and mouth disease (HFMD) and has been reported to occur with severe neurological complications in eastern and south-east Asia. In other geographical areas, the transmission of this virus is poorly understood. We used large sequence datasets (of the gene encoding the viral protein 1, VP1) and a Bayesian phylogenetic approach to compare the molecular epidemiology and geographical spread patterns of EV-71 subgenogroups B4, B5, C1, C2, and C4 in Europe relative to other parts of the world. For the study, European countries considered were European Union (EU) Member States and Iceland, Norway and Switzerland. Viruses of the B4, B5, and C4 subgenogroups circulate mainly in eastern and south-east Asia. In Europe sporadic introductions of these subgenogroups are observed, however C1 and C2 viruses predominate. The phylogenies showed evidence of multiple events of spread involving C1 and C2 viruses within Europe since the mid-1990s. Two waves of sporadic C2 infections also occurred in 2010 and 2013. The 2007 Dutch outbreak caused by C2 and the occurrence of B5 and C4 infections in the EU between 2004 and 2013 arose while the circulation of C1 viruses was low. A transmission chain involving a C4 virus was traced from Japan to the EU and then further to Canada between 2001 and 2006. Recent events whereby spread of viruses have occurred from, to, and within Europe appear to be involved in the long term survival of EV-71, highlighting the need for enhanced surveillance of this virus.
Collapse
Affiliation(s)
- Chervin Hassel
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
| | - Audrey Mirand
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Alexander Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Elena TerletskaiaLadwig
- Prof. Gisela Enders & Kollegen MVZ GbR and Institute of Virology, Infectious Diseases and Epidemiology, Stuttgart, Germany
| | - Agnes Farkas
- Division of Virology, National Center for Epidemiology, Budapest, Hungary
| | - Isabelle Schuffenecker
- Laboratoire de Virologie Est des Hospices Civils de Lyon, Centre National de Référence des Entérovirus et Paréchovirus, Bron, France
| | - Sabine Diedrich
- National Reference Center for Poliomyelitis and Enterovirus, Robert Koch Institute, Berlin, Germany
| | | | - Christine Archimbaud
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Cécile Henquell
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Clermont Université, Université d’Auvergne, EPIE, EA 4843, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Virologie, Centre National de Référence des Entérovirus et Paréchovirus – Laboratoire associé, Clermont-Ferrand, France
| |
Collapse
|
25
|
Kok CC. Therapeutic and prevention strategies against human enterovirus 71 infection. World J Virol 2015; 4:78-95. [PMID: 25964873 PMCID: PMC4419123 DOI: 10.5501/wjv.v4.i2.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/21/2014] [Accepted: 02/11/2015] [Indexed: 02/05/2023] Open
Abstract
Human enterovirus 71 (HEV71) is the cause of hand, foot and mouth disease and associated neurological complications in children under five years of age. There has been an increase in HEV71 epidemic activity throughout the Asia-Pacific region in the past decade, and it is predicted to replace poliovirus as the extant neurotropic enterovirus of highest global public health significance. To date there is no effective antiviral treatment and no vaccine is available to prevent HEV71 infection. The increase in prevalence, virulence and geographic spread of HEV71 infection over the past decade provides increasing incentive for the development of new therapeutic and prevention strategies against this emerging viral infection. The current review focuses on the potential, advantages and disadvantages of these strategies. Since the explosion of outbreaks leading to large epidemics in China, research in natural therapeutic products has identified several groups of compounds with anti-HEV71 activities. Concurrently, the search for effective synthetic antivirals has produced promising results. Other therapeutic strategies including immunotherapy and the use of oligonucleotides have also been explored. A sound prevention strategy is crucial in order to control the spread of HEV71. To this end the ultimate goal is the rapid development, regulatory approval and widespread implementation of a safe and effective vaccine. The various forms of HEV71 vaccine designs are highlighted in this review. Given the rapid progress of research in this area, eradication of the virus is likely to be achieved.
Collapse
|
26
|
Huang Y, Zhou Y, Lu H, Yang H, Feng Q, Dai Y, Chen L, Yu S, Yao X, Zhang H, Jiang M, Wang Y, Han N, Hu G, He Y. Characterization of severe hand, foot, and mouth disease in Shenzhen, China, 2009-2013. J Med Virol 2015; 87:1471-9. [PMID: 25951788 DOI: 10.1002/jmv.24200] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2015] [Indexed: 11/07/2022]
Abstract
Hand, foot, and mouth disease (HFMD) is caused by human enteroviruses, especially by enterovirus 71 (EV71) and coxsackievirus A16 (CA16). Patients infected with different enteroviruses show varied clinical symptoms. The aim of this study was to determine whether the etiological spectrum of mild and severe HFMD changed, and the association between pathogens and clinical features. From 2009 to 2013, a total of 2,299 stool or rectal specimens were collected with corresponding patient data. A dynamic view of the etiological spectrum of mild and severe HFMD in Shenzhen city of China was provided. EV71 accounted for the majority proportion of severe HFMD cases and fatalities during 2009-2013. CA16 and EV71 were gradually replaced by coxsackievirus A6 (CA6) as the most common serotype for mild HFMD since 2010. Myoclonic jerk and vomiting were the most frequent severe symptoms. Nervous system complications, including aseptic encephalitis and aseptic meningitis were observed mainly in patients infected by EV71. Among EV71, CA16, CA6, and CA10 infection, fever and pharyngalgia were more likely to develop, vesicles on the hand, foot, elbow, knee and buttock were less likely to develop in patients infected with CA10. Vesicles on the mouth more frequently occurred in the patients with CA6, but less in the patient with EV71. Associations between diverse enterovirus serotypes and various clinical features were discovered in the present study, which may offer further insight into early detection, diagnosis and treatment of HFMD.
Collapse
Affiliation(s)
- Yun Huang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Yuanping Zhou
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hong Lu
- Scientific Research Department of Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Hong Yang
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Qianjin Feng
- Department of Health Statistics and Epidemiology, College of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingchun Dai
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Long Chen
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shouyi Yu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Xiangjie Yao
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hailong Zhang
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ming Jiang
- Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yujie Wang
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Ning Han
- Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guifang Hu
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Yaqing He
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
27
|
Epidemiological and etiological characteristics of hand, foot, and mouth disease in Henan, China, 2008-2013. Sci Rep 2015; 5:8904. [PMID: 25754970 PMCID: PMC4354091 DOI: 10.1038/srep08904] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common childhood illness caused by enteroviruses. HFMD outbreaks and reported cases have sharply increased in China since 2008. Epidemiological and clinical data of HFMD cases reported in Henan Province were collected from 2008 to 2013. Clinical specimens were obtained from a subset of these cases. Descriptive epidemiological methods were used to analyze the time, region and population distribution. The VP1 gene from EV71 and CA16 isolates was amplified, and the sequences were analyzed. 400,264 cases of HFMD were reported in this study, including 22,309 severe and 141 fatal cases. Incidence peaked between April and May. Laboratory confirmation was obtained for 27,692 (6.9%) cases; EV71, CA16, and other enteroviruses accounted for 59.5%, 14.1%, 26.4%, respectively. Phylogenetic analysis revealed that EV71 belonged to the C4a evolution branch of C4 sub-genotype and CA16 belonged to subtype B1a or B1b. The occurrence of HFMD in Henan was closely related to season, age and region distribution. Children under five were the most affected population. The major pathogens causing HFMD and their genotypes have not notably changed in Henan. The data strongly support the importance of EV71 vaccination in a high population density area such as Henan, China.
Collapse
|
28
|
Abstract
INTRODUCTION Enterovirus 71 (EV71) is an etiological agent that causes severe neurological complications in children. EV71 outbreaks have occurred throughout the Asia-Pacific region, posing a severe global public health threat; however, no specific therapeutic strategy exists for treating EV71-infected children. AREAS COVERED Five manufacturers have produced inactivated EV71 whole virus vaccines in mainland China, Taiwan, and Singapore, which have completed Phase III (mainland China) and Phase I (Taiwan and Singapore) clinical trials. Various EV71 vaccine candidates are being researched in animal models, including live-attenuated virus vaccine, recombinant VP1 vaccine, VP1-based DNA vaccine, synthetic peptide vaccine and virus-like particle vaccine. In this review, the present situation is summarized, and feasible improvements to the EV71 vaccine are explored. EXPERT OPINION Although inactivated EV71 vaccines are safe, efficient and elicit strong immune responses to protect adults, children and infants against infection, the quality control of production is critical.
Collapse
Affiliation(s)
- Yu-An Kung
- Chang Gung University, Research Center for Emerging Viral Infections , 259 Wen-Hua 1st Road, Kwei-Shan, Taoyuan, 333 (Zip code) , Taiwan +886 3 2118800 ext. 5497 ; +886 3 2118174 ;
| | | | | | | |
Collapse
|
29
|
Fischer TK, Nielsen AY, Sydenham TV, Andersen PH, Andersen B, Midgley SE. Emergence of enterovirus 71 C4a in Denmark, 2009 to 2013. ACTA ACUST UNITED AC 2014; 19. [PMID: 25306878 DOI: 10.2807/1560-7917.es2014.19.38.20911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enterovirus (EV) 71 has emerged as a primary cause of severe neurologic enterovirus infection in the aftermath of the global polio eradication effort. Eleven subgenotypes of EV71 exist, the C4 subgenotype being associated with large outbreaks in Asia with high mortality rates. This subgenotype has rarely been reported in Europe. In the period between 1 January 2009 and 31 December 2013 a total of 1,447 EV positive samples from 1,143 individuals were sent to the Statens Serum Institute (SSI), and 938 samples from 913 patients were genotyped at the Danish National World Health Organization Reference laboratory for Poliovirus at SSI. Echovirus 6 (E06) (n=141 patients), echovirus 30 (E30) (n=114), coxsackievirus A6 (CA06) (n=96) and EV71 (n=63) were the most prevalent genotypes. We observed a shift in circulating EV71 subgenotypes during the study period, with subgenotype C4 dominating in 2012. A total of 34 EV71 patients were found to be infected with strains of the C4 subgenotype, and phylogenetic analysis revealed that they belonged to the C4a lineage. In our study, the proportions of cases with cerebral and/or sepsis-like symptoms were similar in those affected by C4a (19/34) and those with C1 and C2 (15/35). The majority (n=30) of the 34 EV71 C4 cases were children≤5 years of age, and males (n=22) were over-represented. Continued EV surveillance is required to monitor the spread of EV71 C4 in Denmark and the rest of Europe.
Collapse
Affiliation(s)
- T K Fischer
- Virus Surveillance and Research Section, Statens Serum Institute, Denmark
| | | | | | | | | | | |
Collapse
|
30
|
The approved pediatric drug suramin identified as a clinical candidate for the treatment of EV71 infection-suramin inhibits EV71 infection in vitro and in vivo. Emerg Microbes Infect 2014; 3:e62. [PMID: 26038755 PMCID: PMC4185360 DOI: 10.1038/emi.2014.60] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/17/2023]
Abstract
Enterovirus 71 (EV71) causes severe central nervous system infections, leading to cardiopulmonary complications and death in young children. There is an urgent unmet medical need for new pharmaceutical agents to control EV71 infections. Using a multidisciplinary approach, we found that the approved pediatric antiparasitic drug suramin blocked EV71 infectivity by a novel mechanism of action that involves binding of the naphtalentrisulonic acid group of suramin to the viral capsid. Moreover, we demonstrate that when suramin is used in vivo at doses equivalent to or lower than the highest dose already used in humans, it significantly decreased mortality in mice challenged with a lethal dose of EV71 and peak viral load in adult rhesus monkeys. Thus, suramin inhibits EV71 infection by neutralizing virus particles prior to cell attachment. Consequently, these findings identify suramin as a clinical candidate for further development as a therapeutic or prophylactic treatment for severe EV71 infection.
Collapse
|
31
|
Schuffenecker I, Henquell C, Mirand A, Coste-Burel M, Marque-Juillet S, Desbois D, Lagathu G, Bornebusch L, Bailly JL, Lina B. New introductions of enterovirus 71 subgenogroup C4 strains, France, 2012. Emerg Infect Dis 2014; 20:1343-6. [PMID: 25061698 PMCID: PMC4111202 DOI: 10.3201/eid2008.131858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In France during 2012, human enterovirus 71 (EV-A71) subgenogroup C4 strains were detected in 4 children hospitalized for neonatal fever or meningitis. Phylogenetic analysis showed novel and independent EV-A71 introductions, presumably from China, and suggested circulation of C4 strains throughout France. This observation emphasizes the need for monitoring EV-A71 infections in Europe.
Collapse
|
32
|
Zhang B, Wu X, Huang K, Li L, Zheng L, Wan C, He ML, Zhao W. The variations of VP1 protein might be associated with nervous system symptoms caused by enterovirus 71 infection. BMC Infect Dis 2014; 14:243. [PMID: 24886383 PMCID: PMC4101859 DOI: 10.1186/1471-2334-14-243] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 04/30/2014] [Indexed: 01/24/2023] Open
Abstract
Background The VP1 protein of enterovirus 71 (EV71) is an important immunodominant protein which is responsible for host-receptor binding. Nevertheless, the relationship between VP1 and neurovirulence is still poorly understood. In this study, we investigated the relationship between mutation of VP1 and neurovirulent phenotype of EV71 infection. Methods One hundred and eighty-seven strains from Genbank were included, with a clear clinical background. They were divided into two groups, one with nervous system symptoms and one with no nervous system symptoms. After alignment, the significance of amino acid variation was determined by using the χ2 test and a phylogenetic tree was constructed with MEGA software (version 5.1). Results We showed no significant difference in neurovirulence between genotype B and C. Interestingly, we found that variations of E145G/Q, E164D/K and T292N/K were associated with nervous system infection in genotype B. In the case of genotype C, the N31D mutation increased the risk for nervous complications, whereas I262V mutation decreased the risk of nervous complications. We used a 3D model of VP1 to demonstrate the potential molecular basis for EV71 nervous system tropism. Conclusions Distinct variations are shown to be associated with neurovirulent phenotype in the different genotype. Detection of variation in genotypes and subtypes may be important for the prediction of clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Liang He
- School of Public Health and Tropical Medicine, Southern Medical University, NO,1023 Shatai Road, Guangzhou 510515, P,R, China.
| | | |
Collapse
|
33
|
Bessaud M, Razafindratsimandresy R, Nougairède A, Joffret ML, Deshpande JM, Dubot-Pérès A, Héraud JM, de Lamballerie X, Delpeyroux F, Bailly JL. Molecular comparison and evolutionary analyses of VP1 nucleotide sequences of new African human enterovirus 71 isolates reveal a wide genetic diversity. PLoS One 2014; 9:e90624. [PMID: 24598878 PMCID: PMC3944068 DOI: 10.1371/journal.pone.0090624] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/01/2014] [Indexed: 01/11/2023] Open
Abstract
Most circulating strains of Human enterovirus 71 (EV-A71) have been classified primarily into three genogroups (A to C) on the basis of genetic divergence between the 1D gene, which encodes the VP1 capsid protein. The aim of the present study was to provide further insights into the diversity of the EV-A71 genogroups following the recent description of highly divergent isolates, in particular those from African countries, including Madagascar. We classified recent EV-A71 isolates by a large comparison of 3,346 VP1 nucleotidic sequences collected from GenBank. Analysis of genetic distances and phylogenetic investigations indicated that some recently-reported isolates did not fall into the genogroups A-C and clustered into three additional genogroups, including one Indian genogroup (genogroup D) and 2 African ones (E and F). Our Bayesian phylogenetic analysis provided consistent data showing that the genogroup D isolates share a recent common ancestor with the members of genogroup E, while the isolates of genogroup F evolved from a recent common ancestor shared with the members of the genogroup B. Our results reveal the wide diversity that exists among EV-A71 isolates and suggest that the number of circulating genogroups is probably underestimated, particularly in developing countries where EV-A71 epidemiology has been poorly studied.
Collapse
Affiliation(s)
- Maël Bessaud
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- * E-mail:
| | | | - Antoine Nougairède
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Marie-Line Joffret
- Institut Pasteur, Unité de biologie des virus entériques, Paris, France
- INSERM U994, Paris, France
| | | | - Audrey Dubot-Pérès
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao PDR
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-Michel Héraud
- Institut Pasteur de Madagascar, Unité de Virologie, Antananarivo, Madagascar
| | - Xavier de Lamballerie
- Aix Marseille Univ, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | | | - Jean-Luc Bailly
- Clermont Université, Université d'Auvergne, EPIE EA4843, Clermont-Ferrand, France
| |
Collapse
|
34
|
Lukashev AN, Shumilina EY, Belalov IS, Ivanova OE, Eremeeva TP, Reznik VI, Trotsenko OE, Drexler JF, Drosten C. Recombination strategies and evolutionary dynamics of the Human enterovirus A global gene pool. J Gen Virol 2014; 95:868-873. [PMID: 24425417 DOI: 10.1099/vir.0.060004-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We analysed natural recombination in 79 Human enterovirus A strains representing 13 serotypes by sequencing of VP1, 2C and 3D genome regions. The half-life of a non-recombinant tree node in coxsackieviruses 2, 4 and 10 was only 3.5 years, and never more than 9 years. All coxsackieviruses that differed by more than 7 % of the nucleotide sequence in any genome region were recombinants relative to each other. Enterovirus 71 (EV71), on the contrary, displayed remarkable genetic stability. Three major EV71 clades were stable for 19-29 years, with a half-life of non-recombinant viruses between 13 and 18.5 years in different clades. Only five EV71 strains out of over 150 recently acquired non-structural genome regions from coxsackieviruses, while none of 80 contemporary coxsackieviruses had non-structural genes transferred from the three EV71 clades. In contrast to earlier observations, recombination between VP1 and 2C genome regions was not more frequent than between 2C and 3D regions.
Collapse
Affiliation(s)
| | - Elena Yu Shumilina
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Ilya S Belalov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Olga E Ivanova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Tatiana P Eremeeva
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Vadim I Reznik
- Center of Hygiene and Epidemiology in Khabarovsk Region, Khabarovsk, Russia
| | - O E Trotsenko
- Khabarovsk Institute of Epidemiology and Microbiology, Khabarovsk, Russia
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
35
|
Huang YP, Lin TL, Lin TH, Wu HS. Antigenic and genetic diversity of human enterovirus 71 from 2009 to 2012, Taiwan. PLoS One 2013; 8:e80942. [PMID: 24348916 PMCID: PMC3858369 DOI: 10.1371/journal.pone.0080942] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022] Open
Abstract
Different subgenogroups of enterovirus 71 (EV-71) have caused numerous outbreaks of hand, foot, and mouth disease worldwide, especially in the Asia-Pacific region. During the development of a vaccine against EV-71, the genetic and antigenic diversities of EV-71 isolates from Taiwan were analyzed by phylogenetic analyses and neutralization tests. The results showed that the dominant genogroups had changed twice, from B to C and from C to B, between 2009 and 2012. The subgenogroup B5 (B5b cluster) was dominant in 2008-2009 but was replaced by subgenogroup C4 in 2010-2011. From the end of 2011 to 2012, the re-emerging subgenogroup B5 (B5c cluster) was identified as the dominant subgenogroup of EV-71 outbreaks, and subgenogroups C2 and C4 were detected in sporadic cases. Interestingly, the amino acid substitution at position 145 in the VP1 gene was observed in some strains isolated from patients with acute flaccid paralysis. Furthermore, thirty-five strains and their corresponding serum samples were used to analyze the cross-protections and antigenic diversities among different subgenogroups (C4a, C5, B4, B5b, B5c, and C2-like) of EV-71. Evident antigenic diversity existed only for the C2-like subgenogroup, which was not effectively neutralized by other serum samples. In contrast, the anti-C2-like serum sample showed broad cross-reactivity against all other subgenogroups. Therefore, these results may provide valuable information for the selection of EV-71 vaccine candidates and the evolution of EV-71 subgenogroups in Taiwan from 2009 to 2012.
Collapse
Affiliation(s)
- Yuan-Pin Huang
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Tsuey-Li Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Ting-Han Lin
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
| | - Ho-Sheng Wu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan, Republic of China
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
36
|
Montes M, Artieda J, Piñeiro LD, Gastesi M, Diez-Nieves I, Cilla G. Hand, foot, and mouth disease outbreak and coxsackievirus A6, northern Spain, 2011. Emerg Infect Dis 2013; 19. [PMID: 23751014 PMCID: PMC3647425 DOI: 10.3201/eid1904.121589] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
MESH Headings
- Child, Preschool
- Disease Outbreaks
- Enterovirus/classification
- Enterovirus/genetics
- Enterovirus/isolation & purification
- Enterovirus A, Human/classification
- Enterovirus A, Human/genetics
- Enterovirus A, Human/isolation & purification
- Hand, Foot and Mouth Disease/epidemiology
- Hand, Foot and Mouth Disease/virology
- Humans
- Incidence
- Infant
- Infant, Newborn
- Phylogeny
- RNA, Viral/classification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Spain/epidemiology
- Viral Proteins/classification
- Viral Proteins/genetics
- Viral Proteins/isolation & purification
Collapse
|
37
|
Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus a6- and coxsackievirus a10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Clin Microbiol 2013; 51:3560-6. [PMID: 23966496 DOI: 10.1128/jcm.01231-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sporadic hand, foot, and mouth disease (HFMD) outbreaks and other infectious diseases in recent years have frequently been associated with certain human enterovirus (HEV) serotypes. This study explored the prevalences and genetic characteristics of non-HEV71 and non-coxsackievirus A16 (CV-A16) human enterovirus-associated HFMD infections in Shenzhen, China. A total of 2,411 clinical stool specimens were collected from hospital-based surveillance for HFMD from 2008 to 2012. The detection of HEV was performed by real-time reverse transcription-PCR (RT-PCR) and RT-seminested PCR, and spatiotemporal phylogenetic analysis was performed based on the VP1 genes. A total of 1,803 (74.8%) strains comprising 28 different serotypes were detected. In the past 5 years, the predominant serotypes were HEV71 (60.0%), followed by CV-A16 (21.2%) and two uncommon serotypes, CV-A6 (13.0%) and CV-A10 (3.3%). However, CV-A6 replaced CV-A16 as the second most common serotype between 2010 and 2012. As an emerging pathogen, CV-A6 became as common a causative agent of HFMD as HEV71 in Shenzhen in 2012. Phylogenetic analysis revealed that little variation occurred in the Chinese HEV71 and CV-A16 strains. The genetic characteristics of the Chinese CV-A6 and CV-A10 strains displayed geographic differences. The CV-A6 and CV-A10 strains circulating in Shenzhen likely originated in Europe. It was found that human enteroviruses have a high mutation rate due to evolutionary pressure and frequent recombination (3.2 × 10(-3) to 6.4 ×10(-3) substitutions per site per year for HEV71, CV-A6, CV-A16, and CV-A10). Since certain serotypes are potential threats to the public health, this study provides further insights into the significance of the epidemiological surveillance of HFMD.
Collapse
|
38
|
Infections à entérovirus et parechovirus : de mieux en mieux documentées. Arch Pediatr 2013. [DOI: 10.1016/s0929-693x(13)71370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
High frequency and diversity of species C enteroviruses in Cameroon and neighboring countries. J Clin Microbiol 2012; 51:759-70. [PMID: 23254123 DOI: 10.1128/jcm.02119-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human enteroviruses (HEVs) are endemic worldwide and among the most common viruses infecting humans. Nevertheless, there are very limited data on the circulation and genetic diversity of HEVs in developing countries and sub-Saharan Africa in particular. We investigated the circulation and genetic diversity of HEVs among 436 healthy children in a limited area of the far north region of Cameroon in 2008 and 2009. We also characterized the genetic biodiversity of 146 nonpolio enterovirus (NPEV) isolates obtained throughout the year 2008 from stool specimens of patients with acute flaccid paralysis (AFP) in Cameroon, Chad, and Gabon. We found a high rate of NPEV infections (36.9%) among healthy children in the far north region of Cameroon. Overall, 45 different HEV types were found among healthy children and AFP patients. Interestingly, this study uncovered a high rate of HEVs of species C (HEV-C) among all typed NPEVs: 63.1% (94/149) and 39.5% (49/124) in healthy children and AFP cases, respectively. Besides extensive circulation, the most prevalent HEV-C type, coxsackievirus A-13, featured a tremendous intratypic diversity. Africa-specific HEV lineages were discovered, including HEV-C lineages and the recently reported EV-A71 "genogroup E." Virtually all pathogenic circulating vaccine-derived polioviruses (cVDPVs) that have been fully characterized were recombinants between oral poliovaccine (OPV) strains and cocirculating HEV-C strains. The extensive circulation of diverse HEV-C types and lineages in countries where OPV is massively used constitutes a major viral factor that could promote the emergence of recombinant cVDPVs in the Central African subregion.
Collapse
|
40
|
Farcy C, Mirand A, Marque Juillet S, Henquell C, Neulier C, Foucaud P, Peigue-Lafeuille H. [Enterovirus nosocomial infections in a neonatal care unit: from diagnosis to evidence, from a clinical observation of a central nervous system infection]. Arch Pediatr 2012; 19:921-6. [PMID: 22884744 DOI: 10.1016/j.arcped.2012.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/27/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
Abstract
Although enteroviruses generally cause asymptomatic or mild disease, neonates are at higher risk for severe illnesses, among which systemic disease characterized by multiorgan involvement is a potentially fatal condition. Enterovirus neonatal infections may be the source of nosocomial infections in neonatology or in pediatric intensive care units. We report central nervous system infections due to Echovirus 11 in two neonates and the molecular evidence of nosocomial transmission of this strain in a neonatal unit by enterovirus genotyping and phylogenetic analysis. This report illustrates the importance of including enterovirus genome detection in the sepsis screening concomitantly with bacteriological investigations performed at admission of a neonate. Rapid diagnosis and subsequent genotyping could have a beneficial impact on clinical practices at the individual level (reducing the length of antibiotic therapy) and public health policy at the collective level by reinforcing hygiene measures to prevent nosocomial infections, with nurseries and neonatal units being at greater risks.
Collapse
Affiliation(s)
- C Farcy
- Service de pédiatrie néonatologie, centre hospitalier de Versailles, hôpital André-Mignot, 177, rue de Versailles, 78150 Le Chesnay, France
| | | | | | | | | | | | | |
Collapse
|
41
|
McMinn PC. Recent advances in the molecular epidemiology and control of human enterovirus 71 infection. Curr Opin Virol 2012; 2:199-205. [PMID: 22482716 DOI: 10.1016/j.coviro.2012.02.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/11/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
Human enterovirus 71 (HEV71) has emerged as an important cause of viral encephalitis in the Southeast Asia over the past 15 years. A pattern of increased epidemic activity and endemic circulation of HEV71 has been observed since 1997 and is associated with the regular emergence of new genetic lineages. Although the reason for this increase in HEV71 circulation remains unknown, evidence is accumulating that recombination events may drive the evolution of new genetic lineages. Prevention of HEV71 epidemics is likely to require the development of an effective vaccine. Fortunately, several candidate EV71 vaccines have recently been reported, several of which have been shown to be effective in animal models and commenced clinical trial in 2010. Furthermore, ongoing investigations into the molecular basis of HEV71 infection and virulence have pointed the way towards novel approaches to live attenuated vaccine development.
Collapse
Affiliation(s)
- Peter C McMinn
- Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
42
|
Mirand A, Henquell C, Archimbaud C, Ughetto S, Antona D, Bailly JL, Peigue-Lafeuille H. Outbreak of hand, foot and mouth disease/herpangina associated with coxsackievirus A6 and A10 infections in 2010, France: a large citywide, prospective observational study. Clin Microbiol Infect 2012; 18:E110-8. [PMID: 22404077 DOI: 10.1111/j.1469-0691.2012.03789.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hand, foot and mouth disease (HFMD) and herpangina (HA) are frequently caused by several distinct serotypes belonging to the human enterovirus A species (HEVA). Enterovirus 71 is considered as a significant public health threat because of rare but fatal neurological complications. A sentinel surveillance system involving paediatricians from Clermont-Ferrand (France) was set up to determine the clinical and epidemiological characteristics of HFMD/HA associated with enterovirus infections. A standardized report form was used to collect demographic and clinical data. Throat or buccal specimens were obtained prospectively and tested for the presence of enteroviruses. The frequency of HEVA serotypes was determined by genotyping. Phylogenetic relationships were analysed to identify potential new virus variants. From 1 April to 31 December 2010, a total of 222 children were enrolled. The predominant clinical presentation was HA (63.8%) and this was frequently associated with clinical signs of HFMD (48%). An enterovirus infection was diagnosed in 143 (64.4%) patients and serotype identification was achieved in 141/143 (98.6%). The predominant serotypes were coxsackievirus A10 (39.9%) and A6 (28%), followed by coxsackievirus A16 (17.5%) and enterovirus 71 (6.3%). Fever was observed in 115 (80.4%) children. No patient had neurological complications. Coxsackievirus A10 and A6 strains involved in the outbreak were consistently genetically related with those detected earlier in Finland and constituted distinct European lineages. Although several enterovirus serotypes have been involved in HFMD/HA cases, the outbreak described in this population survey was caused by coxsackievirus A6 and coxsackievirus A10, the third dual outbreak in Europe in the last 3 years.
Collapse
Affiliation(s)
- A Mirand
- CHU Clermont-Ferrand, Laboratoire de Virologie, Centre de Biologie, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tan CYQ, Gonfrier G, Ninove L, Zandotti C, Dubot-Pérès A, de Lamballerie X, Charrel RN. Screening and detection of human enterovirus 71 infection by a real-time RT-PCR assay in Marseille, France, 2009-2011. Clin Microbiol Infect 2012; 18:E77-80. [PMID: 22332991 DOI: 10.1111/j.1469-0691.2012.03769.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enterovirus-positive samples diagnosed in Marseille (January 2009 to September 2011) were screened for EV71 by real-time RT-PCR. EV71 was detected in three children below the age of 2 years with no history of overseas travel; two of these cases were associated with severe clinical presentation. Viruses demonstrated genetic similarity to other European genogroup C2 strains. Strain MRS/09/3663 complete sequencing revealed 97.6% identity across the entire genome with a 2008 Singapore isolate, without signs of possible recombination events. To our knowledge, this is the first detection of EV71 infection in Marseille, France, that confirms the current circulation of EV71 in France.
Collapse
Affiliation(s)
- C Y Q Tan
- UMR190 Emergence des Pathologies Virales, Aix-Marseille Université, Institut de Recherche pour le Développement, EHESP French School of Public Health, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Huang SW, Wang YF, Yu CK, Su IJ, Wang JR. Mutations in VP2 and VP1 capsid proteins increase infectivity and mouse lethality of enterovirus 71 by virus binding and RNA accumulation enhancement. Virology 2012; 422:132-43. [DOI: 10.1016/j.virol.2011.10.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/28/2011] [Accepted: 10/13/2011] [Indexed: 10/15/2022]
|
45
|
Tian H, Yang QZ, Liang J, Dong SY, Liu ZJ, Wang LX. Clinical features and management outcomes of severe hand, foot and mouth disease. Med Princ Pract 2012; 21:355-9. [PMID: 22188681 DOI: 10.1159/000334619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 10/23/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study was designed to describe the clinical features and management outcomes of severe hand, foot and mouth disease (HFMD). SUBJECTS AND METHODS Data on 147 severe HFMD patients during an outbreak in 2009 were analyzed. RESULTS Most patients were under 3 years of age; 102 (69.4%) were boys. All had skin rashes and fever of ≥38°C. All (n = 147, 100%) showed signs of central nervous system involvement, such as lethargy (n = 124, 84.4%), myoclonic jerks (n = 76, 51.7%), or drowsiness (n = 34, 23.1%). Respiratory symptoms were mainly tachypnea (n = 112, 76.2%) or bradypnea (n = 21, 14.3%). Common cardiovascular symptoms included tachycardia (n = 134, 91.2%) and hypertension (n = 23, 15.5%). Chest X-ray showed increased markings in 76 (51.7%) or consolidation in 44 (29.9%). Hyperglycemia and elevated blood lactic acid levels were found in 127 (86.4%) and 130 (88.4%), respectively. Positive enterovirus EV71-PCR was found in 113 (76.9%). All patients were treated with mechanical ventilation for 61.2 ± 12.8 h (range, 40-96 h), as well as mannitol, dexamethasone, gamma globulin and ribavirin. Dopamine, dobutamine or amrinone was administered in 58.5, 51.0 and 21.8%, respectively. Three patients (2%) died during hospitalization. All others had a full recovery and were discharged after 14.2 ± 1.6 days (range, 12-17 days). CONCLUSION Central nervous and cardiorespiratory systems were involved in the patients with severe HFMD. Fasting blood glucose and lactic acid levels increased in the majority of patients. Mechanical ventilation and supportive pharmacotherapy were associated with a good clinical outcome in these patients.
Collapse
Affiliation(s)
- Hui Tian
- Department of Intensive Care, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, PR China
| | | | | | | | | | | |
Collapse
|
46
|
van der Sanden S, van Eek J, Martin DP, van der Avoort H, Vennema H, Koopmans M. Detection of recombination breakpoints in the genomes of human enterovirus 71 strains isolated in the Netherlands in epidemic and non-epidemic years, 1963–2010. INFECTION GENETICS AND EVOLUTION 2011; 11:886-94. [DOI: 10.1016/j.meegid.2011.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/10/2011] [Accepted: 02/14/2011] [Indexed: 11/25/2022]
|
47
|
Badran SA, Midgley S, Andersen P, Böttiger B. Clinical and virological features of enterovirus 71 infections in Denmark, 2005 to 2008. ACTA ACUST UNITED AC 2011; 43:642-8. [PMID: 21526904 DOI: 10.3109/00365548.2011.577094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Since the late 1990s enterovirus 71 (EV71) has caused epidemics of hand, foot and mouth disease with fatal cases especially in the Asian Pacific region. The objective of this study was to describe the clinical and virological features of EV71 infections in Denmark. METHODS All enterovirus-positive samples in Denmark are submitted to the National Poliovirus Laboratory for typing, and the EV71-positive samples are characterized by sequencing and phylogenetic analysis. Clinical information was gathered for the EV71-positive patients. RESULTS During 2005-2008, EV71 was demonstrated in 29 patients. In 2007 EV71 was the second most common enterovirus type detected in Denmark. Twenty-one of the 29 patients were children aged ≤1 y, 24 were hospitalized, and meningitis was the most common diagnosis. Gastroenteritis and hand, foot and mouth disease were other common clinical manifestations, but no fatal cases or cases of pulmonary oedema were seen. A novel subgenotype in Europe, B5, dominated the 2007 outbreak, but co-circulated with subgenotypes C1 and C2. CONCLUSIONS In conclusion EV71 was among the common enterovirus types in Denmark, and in 2007 a novel subgenotype, B5, was observed. EV71 was mainly diagnosed in infants, and the majority of patients were hospitalized with meningitis.
Collapse
Affiliation(s)
- Shadia Ali Badran
- Department of Virology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
48
|
Schuffenecker I, Mirand A, Antona D, Henquell C, Chomel JJ, Archimbaud C, Billaud G, Peigue-Lafeuille H, Lina B, Bailly JL. Epidemiology of human enterovirus 71 infections in France, 2000-2009. J Clin Virol 2010; 50:50-6. [PMID: 21035387 DOI: 10.1016/j.jcv.2010.09.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Human enterovirus 71 (EV-71) emerged as a significant pathogen able to cause large outbreaks involving severe neurological cases and children fatalities in Asia. OBJECTIVES To describe epidemiology of EV-71 infections in France. STUDY DESIGN Fifty-nine patients admitted in 12 different hospitals from 1994 to 2009 were included. The entire VP1 coding gene of 58 EV-71 strains was sequenced and phylogenetic analyses were performed to assign strains to genogroups/subgenogroups and to compare French isolates to European and worldwide isolates. RESULTS The median age of the patients was 1.04 years (9 days to 7 years). Among 46 documented EV-71 infections, 39 were self-limited. Seven children developed severe sepsis-like, respiratory or neurological complications. Among them, 2 children died from acute respiratory distress syndrome. All the EV-71 strains belonged to genogroup C: 31 isolates belonged to subgenogroup C1, 26 to subgenogroup C2 and 1 to subgenogroup C4. All the strains were genetically related to other European strains isolated at the same period of time. Although C1 isolates were predominant between 1994 and 2005, C2 strains have been predominant since 2007. No association was found between any genotype and the age or the clinical symptoms. CONCLUSIONS The C4 subgenogroup, which was associated with large outbreaks in China, did not spread in France. It is important to monitor more carefully the EV-71 strains circulating in France to detect the introduction of new genetic variants that could be associated with major outbreaks.
Collapse
Affiliation(s)
- Isabelle Schuffenecker
- Centre National de Référence des Entérovirus, Laboratoire de Virologie Est des Hospices Civils de Lyon, Groupement Hospitalier Est, 59 boulevard Pinel, F-69677 Bron Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, Regagnon C, Charbonné F, Peigue-Lafeuille H. Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. INFECTION GENETICS AND EVOLUTION 2010; 11:276-89. [PMID: 20615482 DOI: 10.1016/j.meegid.2010.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 06/07/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
Human echovirus types 6 (E-6) and 30 (E-30) cause seasonal epidemics of aseptic meningitis. These two enteroviruses are frequently observed in co-circulation, an epidemiological pattern that is prerequisite for the occurrence of dual infections, which can lead to recombination between co-infecting virus strains. Viral sequences were determined at loci 1D (VP1 capsid protein) and 3CD (non structural proteins) in 49 E-6 strains recovered in a single geographical region in France from 1999 to 2007, during the epidemiological survey of enterovirus infections. They were compared with previously recorded sequences of E-30 strains to investigate their evolutionary histories and possible recombination patterns. Phylogenetic analyses identified two distinct E-6 populations and different subpopulations. Assuming a relaxed molecular clock model and a Bayesian skyline demographic model in coalescent analyses with the BEAST program, the substitution rate in E-6 was estimated at 8.597×10(-3) and 6.252×10(-3) substitution/site/year for loci 1D and 3CD respectively. Consistent estimates of divergence times (t(MRCA)) were obtained for loci 1D and 3CD indicating that two distinct E-6 populations originated in 1997 and 1999. Incongruent phylogenetic patterns inferred for the two loci were indicative of recombination events between the two populations. Phylogenies including the E-30 3CD sequences showed close genetic relationships between E-6 and discrete E-30 subpopulations. Recombination breakpoints were located with statistical significance in E-6 and E-30 genomes. Estimates of t(MRCA) of phylogenetic recombinant clades indicated directional genetic transfers from E-30 to E-6 populations and their co-divergence over the time period studied.
Collapse
Affiliation(s)
- J-L Bailly
- Clermont Université, Université d'Auvergne, EA 3843, BP 10448, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|