1
|
Bsoul R, McWilliam OH, Waldemar G, Hasselbalch SG, Simonsen AH, von Buchwald C, Bech M, Pinborg CH, Pedersen CK, Baungaard SO, Lombardía J, Ejlerskov P, Bongianni M, Bronzato E, Zanusso G, Frederiksen KS, Lund EL, Areškevičiūtė A. Accurate detection of pathologic α-synuclein in CSF, skin, olfactory mucosa, and urine with a uniform seeding amplification assay. Acta Neuropathol Commun 2025; 13:113. [PMID: 40413531 PMCID: PMC12102825 DOI: 10.1186/s40478-025-02034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Currently, early diagnosis of dementia with Lewy bodies (DLB) is based on clinical criteria, which is challenging due to overlapping symptoms with other neurodegenerative diseases. Seeding amplification assays, detecting minute amounts of disease causing α-synuclein (αSynD), are emerging as a promising diagnostic tool for α-synucleinopathies including DLB and Parkinson's disease. This study aimed to test whether the same seeding amplification assay established for αSynD detection in cerebrospinal fluid (CSF) could be applied to other biospecimens, including skin, olfactory mucosa, saliva, and urine, obtained from the same patients. A total of 31 patients with probable DLB and 53 healthy controls were recruited. When evaluating the assays' applicability to different biospecimens, only those collected from participants with a positive CSF αSynD result were considered. Seeding amplification assay results were evaluated based on the αSynD amplification rate over 48 h and the value of the area under the curve. The sensitivity and specificity were 94% and 98% for skin, 47% and 100% for olfactory mucosa, and 22% and 100% for urine, respectively for the CSF positive DLB and healthy controls. αSynD was undetectable in saliva. Cohen's Kappa analysis (κ) showed almost perfect agreement between CSF and skin assays (κ = 0.86) but slight to no agreement for CSF versus olfactory mucosa (κ = 0.12) and urine (κ = 0.094). In summary, the seeding amplification assay established for αSynD detection in CSF demonstrated comparable diagnostic performance in minimally invasive skin biopsies. Olfactory mucosa, saliva, and urine sample preparation pose technical challenges resulting in the established assays' low diagnostic accuracy, for now, limiting their use in diagnostics. Nevertheless, the proof-of-concept for αSynD detection in urine expands the potential for non-invasive diagnostics of α-synucleinopathies in the future.
Collapse
Affiliation(s)
- Remarh Bsoul
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Oskar H McWilliam
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja H Simonsen
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Dept. of Otolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Magne Bech
- Dept. of Otolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Clara H Pinborg
- Dept. of Otolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Christian K Pedersen
- Dept. of Otolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sara O Baungaard
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - José Lombardía
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Patrick Ejlerskov
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Matilde Bongianni
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G. B. Rossi, Verona, Italy
| | - Erika Bronzato
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G. B. Rossi, Verona, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Policlinico G. B. Rossi, Verona, Italy
| | - Kristian S Frederiksen
- Danish Dementia Research Centre, Dept. of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva L Lund
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aušrinė Areškevičiūtė
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
2
|
Shimamura MI, Satoh K. Challenges and Revisions in Diagnostic Criteria: Advancing Early Detection of Prion Diseases. Int J Mol Sci 2025; 26:2037. [PMID: 40076658 PMCID: PMC11900056 DOI: 10.3390/ijms26052037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Prion diseases are fatal neurological disorders characterized by abnormal protein accumulation in the brain, leading to neurodegeneration, dementia, and ataxia. Sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, accounts for 80-90% of cases and progresses rapidly, with most patients surviving <6 months to a year after symptom onset, indicating the importance of early diagnosis. The disease is classified into six subtypes based on PRNP gene polymorphisms, with differences in protein degradation patterns contributing to the diversity of clinical symptoms. However, diagnosis remains challenging because of the variability in clinical presentation and disease duration. Traditional diagnostic criteria established by the World Health Organization (WHO) rely on clinical findings, electroencephalogram, and cerebrospinal fluid tests, such as the 14-3-3 protein assay. However, these criteria require pathological confirmation, often delaying diagnosis. The recently proposed Hermann's criteria represent a significant advancement by incorporating newer biomarkers, including magnetic resonance imaging, real-time quaking-induced conversion assay, tau protein, and neurofilament light chain. These criteria improve diagnostic sensitivity and specificity but have a slightly higher risk of false positives. This review compares the effectiveness of these biomarkers with the WHO criteria and highlights the importance of early diagnosis for improving patient care.
Collapse
Affiliation(s)
- Mika Inada Shimamura
- Biomedical Research Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Katsuya Satoh
- Unit of Medical and Dental Sciences, Department of Health Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
- Leading Medical Research Core Unit, Department of Brain Research Unit, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Jamerlan AM, Shim KH, Sharma N, An SSA. Multimer Detection System: A Universal Assay System for Differentiating Protein Oligomers from Monomers. Int J Mol Sci 2025; 26:1199. [PMID: 39940966 PMCID: PMC11818661 DOI: 10.3390/ijms26031199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Depositions of protein aggregates are typical pathological hallmarks of various neurodegenerative diseases (NDs). For example, amyloid-beta (Aβ) and tau aggregates are present in the brain and plasma of patients with Alzheimer's disease (AD); α-synuclein in Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA); mutant huntingtin protein (Htt) in Huntington's disease (HD); and DNA-binding protein 43 kD (TDP-43) in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and limbic-predominant age-related TDP-43 encephalopathy (LATE). The same misfolded proteins can be present in multiple diseases in the form of mixed proteinopathies. Since there is no cure for all these diseases, understanding the mechanisms of protein aggregation becomes imperative in modern medicine, especially for developing diagnostics and therapeutics. A Multimer Detection System (MDS) was designed to distinguish and quantify the multimeric/oligomeric forms from the monomeric form of aggregated proteins. As the unique epitope of the monomer is already occupied by capturing or detecting antibodies, the aggregated proteins with multiple epitopes would be accessible to both capturing and detecting antibodies simultaneously, and signals will be generated from the oligomers rather than the monomers. Hence, MDS could present a simple solution for measuring various conformations of aggregated proteins with high sensitivity and specificity, which may help to explore diagnostic and treatment strategies for developing anti-aggregation therapeutics.
Collapse
Affiliation(s)
| | | | - Niti Sharma
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si 13120, Republic of Korea; (A.M.J.); (K.H.S.)
| |
Collapse
|
4
|
Soto C. α-Synuclein seed amplification technology for Parkinson's disease and related synucleinopathies. Trends Biotechnol 2024; 42:829-841. [PMID: 38395703 PMCID: PMC11223967 DOI: 10.1016/j.tibtech.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Synucleinopathies are a group of neurodegenerative diseases (NDs) associated with cerebral accumulation of α-synuclein (αSyn) misfolded aggregates. At this time, there is no effective treatment to stop or slow down disease progression, which in part is due to the lack of an early and objective biochemical diagnosis. In the past 5 years, the seed amplification technology has emerged for highly sensitive identification of these diseases, even at the preclinical stage of the illness. Much research has been done in multiple laboratories to validate the efficacy and reproducibility of this assay. This article provides a comprehensive review of this technology, including its conceptual basis and its multiple applications for disease diagnosis, as well for understanding of the disease biology and therapeutic development.
Collapse
Affiliation(s)
- Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX77030, USA.
| |
Collapse
|
5
|
Ng D, Watson N, McDermott EA, Kurucu H, Summers D, Andrews M, Green A, Barria M, McKenzie J, Tam J, Smith C, Pal S. Characterisation of RT-QuIC negative cases from the UK National CJD Research and Surveillance programme. J Neurol 2024; 271:4216-4226. [PMID: 38597944 PMCID: PMC11233280 DOI: 10.1007/s00415-024-12345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Incorporation of the real-time quaking-induced conversion (RT-QuIC) assays for diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) has transformed diagnosis largely related to its extremely high specificity. However, the test has a c.10% false-negative result and we aim to characterize the clinical features, investigation profile, and molecular subtype in this cohort of patients. METHODS 250 individuals diagnosed with definite sporadic CJD were identified from the UK National CJD Research and Surveillance Unit from 2012 to 2023. We compared the clinical features and investigation profile in those with a negative CSF RT-QuIC to those with a positive RT-QuIC. RESULTS 27 individuals (10.8%) were CSF RT-QuIC negative. Median age of onset was younger (62 years vs 68 years, p = 0.002), median disease duration was longer (4.4 months vs 10.5 months, p < 0.001), and these individuals were less likely to present with gait difficulties (73% vs 93%, p = 0.003) or motor symptoms (62% vs 80%, p = 0.04). The sensitivity of electroencephalography and diffusion-weighted MRI were similar in both groups. In those who were RT-QuIC negative, there was an overrepresentation of the VV1 (32% vs 1%) and MM2 molecular subtypes (21% vs 3%). Co-occurring neurodegenerative disease was found in 33% (9/27) of those who were RT-QuIC negative. CONCLUSIONS Individuals with sporadic CJD and a negative CSF RT-QuIC present with younger age of onset, different clinical features and are over-represented with the VV1 and MM2 subtypes of sporadic CJD. Further work is required to better understand the biochemical properties contributing to RT-QuIC negative results in these cases.
Collapse
Affiliation(s)
- Dominic Ng
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Neil Watson
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Eugene Ace McDermott
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Hatice Kurucu
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Summers
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mary Andrews
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Alison Green
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marcelo Barria
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet McKenzie
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Johnny Tam
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Suvankar Pal
- UK National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Peden AH, Libori A, Ritchie DL, Yull H, Smith C, Kanguru L, Molesworth A, Knight R, Barria MA. Enhanced Creutzfeldt-Jakob disease surveillance in the older population: Assessment of a protocol for screening brain tissue donations for prion disease. Brain Pathol 2024; 34:e13214. [PMID: 37771100 PMCID: PMC10901620 DOI: 10.1111/bpa.13214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Human prion diseases, including Creutzfeldt-Jakob disease (CJD), occur in sporadic, genetic, and acquired forms. Variant Creutzfeldt-Jakob disease (vCJD) first reported in 1996 in the United Kingdom (UK), resulted from contamination of food with bovine spongiform encephalopathy. There is a concern that UK national surveillance mechanisms might miss some CJD cases (including vCJD), particularly in the older population where other neurodegenerative disorders are more prevalent. We developed a highly sensitive protocol for analysing autopsy brain tissue for the misfolded prion protein (PrPSc ) associated with prion disease, which could be used to screen for prion disease in the elderly. Brain tissue samples from 331 donors to the Edinburgh Brain and Tissue Bank (EBTB), from 2005 to 2022, were analysed, using immunohistochemical analysis on fixed tissue, and five biochemical tests on frozen specimens from six brain regions, based on different principles for detecting PrPSc . An algorithm was established for classifying the biochemical results. To test the effectiveness of the protocol, several neuropathologically confirmed prion disease controls, including vCJD, were included and blinded in the study cohort. On unblinding, all the positive control cases had been correctly identified. No other cases tested positive; our analysis uncovered no overlooked prion disease cases. Our algorithm for classifying cases was effective for handling anomalous biochemical results. An overall analysis suggested that a reduced biochemical protocol employing only three of the five tests on only two brain tissue regions gave sufficient sensitivity and specificity. We conclude that this protocol may be useful as a UK-wide screening programme for human prion disease in selected brains from autopsies in the elderly. Further improvements to the protocol were suggested by enhancements of the in vitro conversion assays made during the course of this study.
Collapse
Affiliation(s)
- Alexander H. Peden
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Adriana Libori
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Helen Yull
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Colin Smith
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
- Edinburgh Brain Bank (EBB), Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Lovney Kanguru
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Anna Molesworth
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Richard Knight
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| | - Marcelo A. Barria
- National CJD Research & Surveillance Unit (NCJDRSU), Centre for Clinical Brain SciencesThe University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
7
|
Mackenzie G, Summers D, Mackenzie J, Knight R. Diagnostic accuracy of diffusion-weighted imaging in variant Creutzfeldt-Jakob disease. Neuroradiology 2023; 65:1715-1727. [PMID: 37831099 PMCID: PMC10654212 DOI: 10.1007/s00234-023-03230-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE This study sought to investigate the diagnostic sensitivity of diffusion-weighted imaging (DWI) in variant Creutzfeldt-Jakob disease (vCJD), a prion disease with significant public health implications on account of its transmissibility. The importance of this research stemmed from the first neuropathologically confirmed vCJD case in a PRNP heterozygous individual in 2016, which displayed DWI features typical of sporadic CJD (sCJD). The case was classified as 'probable' sCJD in life, predominantly based on these imaging findings. While DWI has proven valuable in diagnosing sCJD, its utility in vCJD diagnosis remains unclear. METHODS DWI and Fluid-attenuated inversion recovery (FLAIR) images from probable and definite vCJD cases referred to the National CJD Research and Surveillance Unit (NCJDRSU) were independently analysed by an expert neuroradiologist. Scans were reviewed within a mixed cohort of CJD cases including definite sCJD and non-CJD controls. RESULTS FLAIR sequences demonstrated greater sensitivity in identifying the pulvinar sign in vCJD compared to DWI (73% vs 41%, p-value <0.001). Basal ganglia hyperintensities were more prevalent in DWI (84%) than FLAIR (64%), and cortical hyperintensities were exclusive to DWI (24%). The pulvinar sign showed a specificity of 98% for vCJD and was rare in sCJD. CONCLUSION DWI showed reduced sensitivity compared to FLAIR imaging in detecting the pulvinar sign in vCJD. Conversely, DWI can more distinctively identify basal ganglia and cortical hyperintensities, thus leading to imaging patterns more characteristic of sCJD. Therefore, DWI should be cautiously interpreted in vCJD diagnosis, with axial FLAIR potentially providing a more precise evaluation of the pulvinar sign.
Collapse
Affiliation(s)
- G Mackenzie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - D Summers
- Department of Neuroradiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - J Mackenzie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - R Knight
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Olech M. Conventional and State-of-the-Art Detection Methods of Bovine Spongiform Encephalopathy (BSE). Int J Mol Sci 2023; 24:ijms24087135. [PMID: 37108297 PMCID: PMC10139118 DOI: 10.3390/ijms24087135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disease that belongs to a group of diseases known as transmissible spongiform encephalopathies (TSEs). It is believed that the infectious agent responsible for prion diseases is abnormally folded prion protein (PrPSc), which derives from a normal cellular protein (PrPC), which is a cell surface glycoprotein predominantly expressed in neurons. There are three different types of BSE, the classical BSE (C-type) strain and two atypical strains (H-type and L-type). BSE is primarily a disease of cattle; however, sheep and goats also can be infected with BSE strains and develop a disease clinically and pathogenically indistinguishable from scrapie. Therefore, TSE cases in cattle and small ruminants require discriminatory testing to determine whether the TSE is BSE or scrapie and to discriminate classical BSE from the atypical H- or L-type strains. Many methods have been developed for the detection of BSE and have been reported in numerous studies. Detection of BSE is mainly based on the identification of characteristic lesions or detection of the PrPSc in the brain, often by use of their partial proteinase K resistance properties. The objective of this paper was to summarize the currently available methods, highlight their diagnostic performance, and emphasize the advantages and drawbacks of the application of individual tests.
Collapse
Affiliation(s)
- Monika Olech
- Department of Pathology, National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
9
|
Kanguru L, Logan G, Waddel B, Smith C, Molesworth A, Knight R. A clinicopathological study of selected cognitive impairment cases in Lothian, Scotland: enhanced CJD surveillance in the 65 + population group. BMC Geriatr 2022; 22:603. [PMID: 35858858 PMCID: PMC9298168 DOI: 10.1186/s12877-022-03280-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Variant Creutzfeldt-Jakob Disease (vCJD) is primarily associated with dietary exposure to bovine-spongiform-encephalopathy. Cases may be missed in the elderly population where dementia is common with less frequent referral to specialist neurological services. This study's twin aims were to determine the feasibility of a method to detect possible missed cases in the elderly population and to identify any such cases. METHODS A multi-site study was set-up in Lothian in 2016, to determine the feasibility of enhanced CJD-surveillance in the 65 + population-group, and undertake a clinicopathological investigation of patients with features of 'atypical' dementia. RESULTS Thirty patients are included; 63% male, 37% female. They were referred because of at least one neurological feature regarded as 'atypical' (for the common dementing illnesses): cerebellar ataxia, rapid progression, or somato-sensory features. Mean-age at symptom-onset (66 years, range 53-82 years), the time between onset-of-symptoms and referral to the study (7 years, range 1-13 years), and duration-of-illness from onset-of-symptoms until death or the censor-date (9.5 years, range 1.1-17.4 years) were determined. By the censor-date, 9 cases were alive and 21 had died. Neuropathological investigations were performed on 10 cases, confirming: Alzheimer's disease only (2 cases), mixed Alzheimer's disease with Lewy bodies (2 cases), mixed Alzheimer's disease with amyloid angiopathy (1 case), moderate non-amyloid small vessel angiopathy (1 case), a non-specific neurodegenerative disorder (1 case), Parkinson's disease with Lewy body dementia (1 case), and Lewy body dementia (2 cases). No prion disease cases of any type were detected. CONCLUSION The surveillance approach used was well received by the local clinicians and patients, though there were challenges in recruiting sufficient cases; far fewer than expected were identified, referred, and recruited. Further research is required to determine how such difficulties might be overcome. No missed cases of vCJD were found. However, there remains uncertainty whether this is because missed cases are very uncommon or because the study had insufficient power to detect them.
Collapse
Affiliation(s)
- Lovney Kanguru
- National CJD Research & Surveillance Unit (NCJDRSU), University of Edinburgh, Western General Hospital, Edinburgh, Scotland.
| | - Gemma Logan
- NHS Lothian and Queen Margaret University, Edinburgh, Scotland
| | - Briony Waddel
- Department of Neurology, Ninewells Hospital, Dundee, Scotland
| | - Colin Smith
- National CJD Research & Surveillance Unit (NCJDRSU), University of Edinburgh, Western General Hospital, Edinburgh, Scotland
- Edinburgh Brain Bank (EBB), Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, Scotland
| | | | - Richard Knight
- National CJD Research & Surveillance Unit (NCJDRSU), University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| |
Collapse
|
10
|
Establishing a committee for antemortem reviews of suspect Creutzfeldt-Jakob disease cases in Ireland. Ir J Med Sci 2022:10.1007/s11845-022-03070-2. [PMID: 35840825 PMCID: PMC9286704 DOI: 10.1007/s11845-022-03070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/11/2022] [Indexed: 11/09/2022]
Abstract
Background
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, neurodegenerative disease. In Ireland, clinical diagnostics and laboratory testing remain the responsibility of the managing clinician and the Neuropathology Department at the Beaumont Hospital, respectively. Centralized review of individual cases is not undertaken. Aims To determine how diagnostic processes for CJD could be improved in Ireland and to outline the structure and referral process for a new CJD review panel at the Beaumont Hospital. Methods We surveyed Irish neurologists’ experiences on the management of CJD in Ireland. We measured turnaround times (TAT) for CSF samples referred for diagnostic CJD testing. Finally, we retrospectively reviewed imaging of autopsy-proven CJD cases to compare with initial reports. Results Ninety-three percent of neurologists supported a national central review of suspect CJD cases. A second clinical opinion was considered to be of likely benefit by 79%. Additionally, 93% reported that a centralized review of neuroradiology would be useful. All respondents felt that expediting turnaround of CSF analysis would be of benefit. The average TAT for CSF testing was 35.4 days. In retrospective review of imaging, all patients demonstrated MRI findings consistent with CJD. However, in only one of these cases were the initial pre-autopsy radiological findings reported as being consistent with CJD. Conclusions These findings support the need for improvements to the Irish National CJD Surveillance Unit to maximize antemortem diagnostic accuracy. On foot of this, a clinical CJD Multidisciplinary Team (CJD MDT) has been established to provide a second opinion on (i) the patient’s clinical history, (ii) neuroradiology and (iii) and neurophysiology reports (where available).
Collapse
|
11
|
Coysh T, Mead S. The Future of Seed Amplification Assays and Clinical Trials. Front Aging Neurosci 2022; 14:872629. [PMID: 35813946 PMCID: PMC9257179 DOI: 10.3389/fnagi.2022.872629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Prion-like seeded misfolding of host proteins is the leading hypothesised cause of neurodegenerative diseases. The exploitation of the mechanism in the protein misfolding cyclic amplification (PMCA) and real-time quaking-induced conversion (RT-QuIC) assays have transformed prion disease research and diagnosis and have steadily become more widely used for research into other neurodegenerative disorders. Clinical trials in adult neurodegenerative diseases have been expensive, slow, and disappointing in terms of clinical benefits. There are various possible factors contributing to the failure to identify disease-modifying treatments for adult neurodegenerative diseases, some of which include: limited accuracy of antemortem clinical diagnosis resulting in the inclusion of patients with the “incorrect” pathology for the therapeutic; the role of co-pathologies in neurodegeneration rendering treatments targeting one pathology alone ineffective; treatment of the primary neurodegenerative process too late, after irreversible secondary processes of neurodegeneration have become established or neuronal loss is already extensive; and preclinical models used to develop treatments not accurately representing human disease. The use of seed amplification assays in clinical trials offers an opportunity to tackle these problems by sensitively detecting in vivo the proteopathic seeds thought to be central to the biology of neurodegenerative diseases, enabling improved diagnostic accuracy of the main pathology and co-pathologies, and very early intervention, particularly in patients at risk of monogenic forms of neurodegeneration. The possibility of quantifying proteopathic seed load, and its reduction by treatments, is an attractive pharmacodynamic biomarker in the preclinical and early clinical stages of drug development. Here we review some potential applications of seed amplification assays in clinical trials.
Collapse
Affiliation(s)
- Thomas Coysh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Poleggi A, Baiardi S, Ladogana A, Parchi P. The Use of Real-Time Quaking-Induced Conversion for the Diagnosis of Human Prion Diseases. Front Aging Neurosci 2022; 14:874734. [PMID: 35547619 PMCID: PMC9083464 DOI: 10.3389/fnagi.2022.874734] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are rapidly progressive, invariably fatal, transmissible neurodegenerative disorders associated with the accumulation of the amyloidogenic form of the prion protein in the central nervous system (CNS). In humans, prion diseases are highly heterogeneous both clinically and neuropathologically. Prion diseases are challenging to diagnose as many other neurologic disorders share the same symptoms, especially at clinical onset. Definitive diagnosis requires brain autopsy to identify the accumulation of the pathological prion protein, which is the only specific disease biomarker. Although brain post-mortem investigation remains the gold standard for diagnosis, antemortem clinical, instrumental, and laboratory tests showing variable sensitivities and specificity, being surrogate disease biomarkers, have been progressively introduced in clinical practice to reach a diagnosis. More recently, the ultrasensitive Real-Time Quaking-Induced Conversion (RT-QuIC) assay, exploiting, for the first time, the detection of misfolded prion protein through an amplification strategy, has highly improved the “in-vitam” diagnostic process, reaching in cerebrospinal fluid (CSF) and olfactory mucosa (OM) around 96% sensitivity and close to 100% specificity. RT-QuIC also improved the detection of the pathologic prion protein in several peripheral tissues, possibly even before the clinical onset of the disease. The latter aspect is of great interest for the early and even preclinical diagnosis in subjects at genetic risk of developing the disease, who will likely be the main target population in future clinical trials. This review presents an overview of the current knowledge and future perspectives on using RT-QuIC to diagnose human prion diseases.
Collapse
Affiliation(s)
- Anna Poleggi
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Baiardi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Anna Ladogana
- Unit of Clinic, Diagnostics and Therapy of the Central Nervous System Diseases, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Programma Neuropatologia delle Malattie Neurodegenerative, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- *Correspondence: Piero Parchi,
| |
Collapse
|
13
|
Holz CL, Darish JR, Straka K, Grosjean N, Bolin S, Kiupel M, Sreevatsan S. Evaluation of Real-Time Quaking-Induced Conversion, ELISA, and Immunohistochemistry for Chronic Wasting Disease Diagnosis. Front Vet Sci 2022; 8:824815. [PMID: 35118153 PMCID: PMC8803730 DOI: 10.3389/fvets.2021.824815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible prion disorder, primarily affecting free-ranging and captive cervids in North America (United States and Canada), South Korea, and Europe (Finland, Norway, and Sweden). Current diagnostic methods used in the United States for detection of CWD in hunter harvested deer involve demonstration of the causal misfolded prion protein (PrPCWD) in the obex or retropharyngeal lymph nodes (RLNs) using an antigen detection ELISA as a screening tool, followed by a confirmation by the gold standard method, immunohistochemistry (IHC). Real-time quaking-induced conversion (RT-QuIC) assay is a newer approach that amplifies misfolded CWD prions in vitro and has facilitated CWD prion detection in a variety of tissues, body fluids, and excreta. The current study was undertaken to compare ELISA, IHC, and RT-QuIC on RLNs (n = 1,300 animals) from white-tailed deer (WTD) in Michigan. In addition, prescapular, prefemoral and popliteal lymph nodes collected from a small subset (n = 7) of animals were tested. Lastly, the location of the positive samples within Michigan was documented and the percentage of CWD positive RLNs was calculated by sex and age. ELISA and RT-QuIC detected PrPCWD in 184 and 178 out of 1,300 RLNs, respectively. Of the 184 ELISA positive samples, 176 were also IHC positive for CWD. There were seven discordant results when comparing IHC and ELISA. RT-QuIC revealed that six of the seven samples matched the IHC outcomes. One RLN was negative by IHC, but positive by ELISA and RT-QuIC. RT-QuIC, IHC, and ELISA also detected PrPCWD in prescapular, prefemoral and popliteal lymph nodes. CWD infection heterogeneities were observed in different age and sex groups, with young males having higher CWD prevalence. All, except one, CWD positive RLNs analyzed were from ten Counties geographically located in the West Michigan region of the Lower Peninsula. Taken together, we show evidence that the RT-QuIC assay is comparable to ELISA and IHC and could be helpful for routine CWD detection in surveillance programs. RT-QuIC also demonstrated that CWD prions are distributed across lymph nodes in a variety of anatomic locations. A multi-laboratory validation on blinded sample panels is underway and is likely to help to provide insight into the variability (lab-to-lab), analytical sensitivity, and specificity of gold standard diagnostics vs. RT-QuIC assay.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Joseph R Darish
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Kelly Straka
- Michigan Department of Natural Resources, Lansing, MI, United States
| | - Nicole Grosjean
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Steven Bolin
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Matti Kiupel
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Srinand Sreevatsan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
14
|
Xiao K, Yang X, Zhou W, Chen C, Shi Q, Dong X. Validation and Application of Skin RT-QuIC to Patients in China with Probable CJD. Pathogens 2021; 10:pathogens10121642. [PMID: 34959597 PMCID: PMC8707901 DOI: 10.3390/pathogens10121642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
The definite diagnosis of human sporadic Creutzfeldt–Jakob disease (sCJD) largely depends on postmortem neuropathology and PrPSc detection in the brain. The development of real-time quaking-induced conversion (RT-QuIC) of cerebrospinal fluid (CSF) samples makes it possible for premortem diagnosis for sCJD. To test the diagnostic potential of RT-QuIC of skin specimens for probable sCJD, we collected the paired skin and CSF samples from 51 recruited living patients referred to the Chinese CJD surveillance center, including 34 probable sCJD, 14 non-CJD, and 3 genetic prion disease (gPrD). The samples were subjected to RT-QuIC assays using recombinant hamster PrP protein rHaPrP90-231 as the substrate. Using skin RT-QuIC assay, 91.2% (31/34) probable sCJD patients, and 1 T188K genetic CJD (gCJD) cases showed positive prion-seeding activity, while 85.7% (12/14) non-CJD patients were negative. CSF RT-QuIC positive seeding activity was only observed in 14 probable sCJD patients. Analysis of the reactivity of 38 positive skin RT-QuIC tests revealed that the positive rates in the preparations of 10−2, 10−3 and 10−4 diluted skin samples were 88.6% (39/44), 63.6% (28/44), and 25.0% (11/44), respectively. Eleven probable sCJD patients donated two skin specimens collected at different sites simultaneously. Although 95.5% (21/22) skin RT-QuIC elicited positive reaction, the reactivity varied. Our preliminary data indicate high sensitivity and specificity of skin RT-QuIC in prion detection for Chinese probable sCJD and highlight that skin prion-seeding activity is a reliable biomarker for premortem diagnosis of human prion disease.
Collapse
Affiliation(s)
- Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
| | - Xuehua Yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
| | - Wei Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
- China Academy of Chinese Medical Sciences, Dongzhimeinei, South Rd 16, Beijing 100700, China
- Correspondence: (Q.S.); (X.D.); Fax: +86-10-58900815 (X.D.)
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China; (K.X.); (X.Y.); (W.Z.); (C.C.)
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310007, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Dongzhimeinei, South Rd 16, Beijing 100700, China
- Center for Global Public Health, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing 102206, China
- Correspondence: (Q.S.); (X.D.); Fax: +86-10-58900815 (X.D.)
| |
Collapse
|
15
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
16
|
Lashuel HA. Rethinking protein aggregation and drug discovery in neurodegenerative diseases: Why we need to embrace complexity? Curr Opin Chem Biol 2021; 64:67-75. [PMID: 34174698 DOI: 10.1016/j.cbpa.2021.05.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/19/2022]
Abstract
More than a century has passed since pathological protein aggregates were first identified in the brains of patients with neurodegenerative diseases (NDDs). Yet, we still do not have effective therapies to treat or slow the progression of these devastating diseases or diagnostics for early detection and monitoring disease progression. Herein, I reflect on recent findings that are challenging traditional views about the composition, ultrastructural properties, and diversity of protein pathologies in the brain, their mechanisms of formation and how we investigate and model pathological aggregation processes in the laboratory today. This article is an invitation to embrace the complexity of proteinopathies as an essential step to understanding the molecular mechanisms underpinning NDDs and to advance translational research and drug discovery in NDDs.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
17
|
Dong TTT, Satoh K. The Latest Research on RT-QuIC Assays-A Literature Review. Pathogens 2021; 10:pathogens10030305. [PMID: 33807776 PMCID: PMC8000803 DOI: 10.3390/pathogens10030305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
The misfolding of proteins such as the prion protein, α-synuclein, and tau represents a key initiating event for pathogenesis of most common neurodegenerative disorders, and its presence correlates with infectivity. To date, the diagnosis of these disorders mainly relied on the recognition of clinical symptoms when neurodegeneration was already at an advanced phase. In recent years, several efforts have been made to develop new diagnostic tools for the early diagnosis of prion diseases. The real-time quaking-induced conversion (RT–QuIC) assay, an in vitro assay that can indirectly detect very low amounts of PrPSc aggregates, has provided a very promising tool to improve the early diagnosis of human prion diseases. Over the decade since RT–QuIC was introduced, the diagnosis of not only prion diseases but also synucleinopathies and tauopathies has greatly improved. Therefore, in our study, we summarize the current trends and knowledge of RT–QuIC assays, as well as discuss the diagnosis of neurodegenerative diseases using RT–QuIC assays, which have been updated in recent years.
Collapse
|
18
|
Haley N. Amplification Techniques for the Detection of Misfolded Prion Proteins in Experimental and Clinical Samples. ACTA ACUST UNITED AC 2021; 130:e118. [PMID: 32150353 DOI: 10.1002/cpmb.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article describes two methods for amplifying prions present in experimental and clinical samples: the protein misfolding cyclic amplification (PMCA) assay and the real-time quaking-induced conversion (RT-QuIC) assay. Protocols for preparation of amplification substrate and analysis of results are included in addition to those for the individual assays. For each assay, control and suspect samples are mixed with appropriate amplification substrate, which is whole brains from mice in the case of PMCA and recombinant prion protein produced in bacteria for RT-QuIC, followed by cyclic amplification over a number of cycles of sonication (PMCA) or shaking (RT-QuIC) at a consistent incubation temperature. The resultant amplification products are then assessed either by western blotting (PMCA) or based on fluorescent emissions (RT-QuIC). The equipment and expertise necessary for successfully performing either assay vary and will be important factors for individual laboratories to consider when identifying which assay is more appropriate for their experimental design. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Prion amplification via protein misfolding cyclic amplification Support Protocol 1: Collection of whole brains from mice and preparation of normal brain homogenate Basic Protocol 2: Prion amplification via real-time quaking-induced conversion Support Protocol 2: Preparation of recombinant truncated white-tailed-deer prion protein.
Collapse
Affiliation(s)
- Nicholas Haley
- College of Graduate Studies, Department of Microbiology and Immunology, Midwestern University, Glendale, Arizona
| |
Collapse
|
19
|
Suzuki A, Sawada K, Yamasaki T, Denkers ND, Mathiason CK, Hoover EA, Horiuchi M. Involvement of N- and C-terminal region of recombinant cervid prion protein in its reactivity to CWD and atypical BSE prions in real-time quaking-induced conversion reaction in the presence of high concentrations of tissue homogenates. Prion 2020; 14:283-295. [PMID: 33345717 PMCID: PMC7757825 DOI: 10.1080/19336896.2020.1858694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022] Open
Abstract
The real-time quaking-induced conversion (RT-QuIC) reaction is a sensitive and specific method for detecting prions. However, inhibitory factors present in tissue homogenates can easily interfere with this reaction. To identify the RT-QuIC condition under which low levels of chronic wasting disease (CWD) and bovine spongiform encephalopathy (BSE) prions can be detected in the presence of high concentrations of brain tissue homogenates, reactivities of various recombinant prion proteins (rPrPs) were tested. Among the tested rPrPs, recombinant cervid PrP (rCerPrP) showed a unique reactivity: the reactivity of rCerPrP to CWD and atypical BSE prions was not highly affected by high concentrations of normal brain homogenates. The unique reactivity of rCerPrP disappeared when the N-terminal region (aa 25-93) was truncated. Replacement of aa 23-149 of mouse (Mo) PrP with the corresponding region of CerPrP partially restored the unique reactivity of rCerPrP in RT-QuIC. Replacement of the extreme C-terminal region of MoPrP aa 219-231 to the corresponding region of CerPrP partially conferred the unique reactivity of rCerPrP to rMoPrP, suggesting the involvement of both N- and C-terminal regions. Additionally, rCerN-Mo-CerCPrP, a chimeric PrP comprising CerPrP aa 25-153, MoPrP aa 150-218, and CerPrP aa 223-233, showed an additive effect of the N- and C-terminal regions. These results provide a mechanistic implication for detecting CWD and atypical BSE prions using rCerPrP and are useful for further improvements of RT-QuIC.
Collapse
Affiliation(s)
- Akio Suzuki
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuhei Sawada
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takeshi Yamasaki
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Nathaniel D Denkers
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Candace K Mathiason
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Edward A Hoover
- Prion Research Center, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Infectious Diseases, Hokkaido University, Kita-ku, Sapporo, Japan
- Global Station for Zoonosis Control. Global Institute for Collaborative Research and Education, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
20
|
Mammadova N, West Greenlee MH, Moore SJ, Hwang S, Lehmkuhl AD, Nicholson EM, Greenlee JJ. Evaluation of Antemortem Diagnostic Techniques in Goats Naturally Infected With Scrapie. Front Vet Sci 2020; 7:517862. [PMID: 33240943 PMCID: PMC7677257 DOI: 10.3389/fvets.2020.517862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) that affects sheep and goats. Sheep and goats can be infected with scrapie as lambs or kids via contact with the placenta or placental fluids, or from ingestion of prions shed in the environment and/or bodily fluids (e.g., saliva, urine, and feces). Like other TSEs, scrapie is generally not diagnosed before extensive and irreversible brain damage has occurred. Therefore, a reliable method to screen animals may facilitate diagnosis. Additionally, while natural scrapie in sheep has been widely described, naturally acquired goat scrapie is less well-characterized. The purpose of this study was to better understand natural goat scrapie in regard to disease phenotype (i.e., incubation period, clinical signs, neuroanatomical deposition patterns of PrPSc, and molecular profile as detected by Western blot) and to evaluate the efficacy of antemortem tests to detect scrapie-positive animals in a herd of goats. Briefly, 28 scrapie-exposed goats were removed from a farm depopulated due to previous diagnoses of scrapie on the premises and observed daily for 30 months. Over the course of the observation period, antemortem biopsies of recto-anal mucosa-associated lymphoid tissue (RAMALT) were taken and tested using immunohistochemistry and real-time quaking-induced conversion (RT-QuIC), and retinal thickness was measured in vivo using optical coherence tomography (OCT). Following the observation period, immunohistochemistry and Western blot were performed to assess neuroanatomical deposition patterns of PrPSc and molecular profile. Our results demonstrate that antemortem rectal biopsy was 77% effective in identifying goats naturally infected with scrapie and that a positive antemortem rectal biopsy was associated with the presence of clinical signs of neurologic disease and a positive dam status. We report that changes in retinal thickness are not detectable over the course of the observation period in goats naturally infected with scrapie. Finally, our results indicate that the accumulation of PrPSc in central nervous system (CNS) and non-CNS tissues is consistent with previous reports of scrapie in sheep and goats.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Aaron D Lehmkuhl
- National Veterinary Services Laboratories (NVSL) Diagnostic Bacteriology and Pathology Laboratory, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, United States
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| |
Collapse
|
21
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Uttley L, Carroll C, Wong R, Hilton DA, Stevenson M. Creutzfeldt-Jakob disease: a systematic review of global incidence, prevalence, infectivity, and incubation. THE LANCET. INFECTIOUS DISEASES 2020; 20:e2-e10. [PMID: 31876504 DOI: 10.1016/s1473-3099(19)30615-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
Creutzfeldt-Jakob disease (CJD) is a fatal disease presenting with rapidly progressive dementia, and most patients die within a year of clinical onset. CJD poses a potential risk of iatrogenic transmission, as it can incubate asymptomatically in humans for decades before becoming clinically apparent. In this Review, we sought evidence to understand the current iatrogenic risk of CJD to public health by examining global evidence on all forms of CJD, including clinical incidence and prevalence of subclinical disease. We found that although CJD, particularly iatrogenic CJD, is rare, the incidence of sporadic CJD is increasing. Incubation periods as long as 40 years have been observed, and all genotypes have now been shown to be susceptible to CJD. Clinicians and surveillance programmes should maintain awareness of CJD to mitigate future incidences of its transmission. Awareness is particularly relevant for sporadic CJD, which occurs in older people in whom clinical presentation could resemble rapidly developing dementia.
Collapse
Affiliation(s)
- Lesley Uttley
- School of Health and Related Research, University of Sheffield, Sheffield, UK.
| | - Christopher Carroll
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - David A Hilton
- Department of Neuropathology, University Hospitals Plymouth National Health Service Trust, Plymouth, UK
| | - Matt Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Pathogenic Prion Protein Isoforms Are Not Present in Cerebral Organoids Generated from Asymptomatic Donors Carrying the E200K Mutation Associated with Familial Prion Disease. Pathogens 2020; 9:pathogens9060482. [PMID: 32570796 PMCID: PMC7350378 DOI: 10.3390/pathogens9060482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Cerebral organoids (COs) are a self-organizing three-dimensional brain tissue mimicking the human cerebral cortex. COs are a promising new system for modelling pathological features of neurological disorders, including prion diseases. COs expressing normal prion protein (PrPC) are susceptible to prion infection when exposed to the disease isoforms of PrP (PrPD). This causes the COs to develop aspects of prion disease pathology considered hallmarks of disease, including the production of detergent-insoluble, protease-resistant misfolded PrPD species capable of seeding the production of more misfolded species. To determine whether COs can model aspects of familial prion diseases, we produced COs from donor fibroblasts carrying the E200K mutation, the most common cause of human familial prion disease. The mature E200K COs were assessed for the hallmarks of prion disease. We found that up to 12 months post-differentiation, E200K COs harbored no PrPD as confirmed by the absence of detergent-insoluble, protease-resistant, and seeding-active PrP species. Our results suggest that the presence of the E200K mutation within the prion gene is insufficient to cause disease in neuronal tissue. Therefore, other factors, such as further genetic modifiers or aging processes, may influence the onset of misfolding.
Collapse
|
24
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
25
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
26
|
Hwang S, Dassanayake RP, Nicholson EM. PAD-Beads enrichment enhances detection of PrP Sc using real-time quaking-induced conversion. BMC Res Notes 2019; 12:806. [PMID: 31836019 PMCID: PMC6911270 DOI: 10.1186/s13104-019-4842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Scrapie is a transmissible spongiform encephalopathy (TSE) that naturally occurs in sheep and goats. This fatal neurodegenerative disease results from misfolding of the normal cellular prion protein (PrPC) to a pathogenic prion protein form (PrPSc). This pathogenic form, PrPSc, accumulates in the brain and lymphoid tissues. The presence of PrPSc can be detected by an in vitro conversion assay known as real-time quaking induced conversion (RT-QuIC). RT-QuIC has been used to detect PrPSc in a variety of biological tissues from brains to fluids. While this technique is both rapid and sensitive, enhancing the detection of prions would be valuable in the diagnostic laboratories. Results In this study, we assessed whether PrPSc detection sensitivity of RT-QuIC can be increased by enriching PrPSc in scrapie tissue homogenates using commercially available aggregated protein binding ligands coated magnetic beads (PAD-Beads). Coupling of RT-QuIC to PAD-Beads based cleanup allowed detection of PrPSc rapidly and without dilution of scrapie sheep brain homogenates prior to RT-QuIC. The PAD-Beads sample pretreatment step prior to RT-QuIC is a useful enhancement in the diagnosis of TSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Rohana P Dassanayake
- Ruminant Disease and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA.
| |
Collapse
|
27
|
Kaelber N, Bett C, Asher DM, Gregori L. Quaking-induced conversion of prion protein on a thermal mixer accelerates detection in brains infected with transmissible spongiform encephalopathy agents. PLoS One 2019; 14:e0225904. [PMID: 31830760 PMCID: PMC6908438 DOI: 10.1371/journal.pone.0225904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022] Open
Abstract
Detection of misfolded prion protein, PrPTSE, in biological samples is important to develop antemortem tests for transmissible spongiform encephalopathies (TSEs). The real-time quaking-induced conversion (RT-QuIC) assay detects PrPTSE but requires dedicated equipment and relatively long incubation times when applied to samples containing extremely low levels of PrPTSE. It was shown that a microplate shaker with heated top (Thermomixer-C) accelerated amplification of PrPTSE in brain suspensions of 263K scrapie and sporadic Creutzfeldt-Jakob disease (sCJD). We expanded the investigation to include TSE agents previously untested, including chronic wasting disease (CWD), macaque-adapted variant CJD (vCJD) and human vCJD, and we further characterized the assays conducted at 42°C and 55°C. PrPTSE from all brains containing the TSE agents were successfully amplified using a truncated hamster recombinant protein except for human vCJD which required truncated bank vole recombinant protein. We compared assays conducted at 42°C on Thermomixer-C, Thermomixer-R (without heated top) and on a fluorimeter used for RT-QuIC. QuIC on Thermomixer-R achieved in only 18 hours assay sensitivity similar to that of RT-QuIC read at 60 hours (or 48 hours with sCJD). QuIC on Thermomixer-C required 24 hours to complete and the endpoint titers of some TSEs were 10-fold lower than those obtained with RT-QuIC and Thermomixer-R. Conversely, at 55°C, the reactions with sCJD and CWD on Thermomixer-C achieved the same sensitivity as with RT-QuIC but in shorter times. Human vCJD samples tested at higher temperatures gave rise to high reactivity in wells containing normal control samples. Similarly, reactions on Thermomixer-R were unsuitable at 55°C. The main disadvantage of Thermomixers is that they cannot track formation of PrP fibrils in real time, a feature useful in some applications. The main advantages of Thermomixers are that they need shorter reaction times to detect PrPTSE, are easier to use, involve more robust equipment, and are relatively affordable. Improvements to QuIC using thermal mixers may help develop accessible antemortem TSE tests.
Collapse
Affiliation(s)
- Nadine Kaelber
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Cyrus Bett
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - David M. Asher
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Luisa Gregori
- Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Peden AH, Kanguru L, Ritchie DL, Smith C, Molesworth AM. Study protocol for enhanced CJD surveillance in the 65+ years population group in Scotland: an observational neuropathological screening study of banked brain tissue donations for evidence of prion disease. BMJ Open 2019; 9:e033744. [PMID: 31662408 PMCID: PMC6830687 DOI: 10.1136/bmjopen-2019-033744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Creutzfeldt-Jakob disease (CJD) is a human prion disease that occurs in sporadic, genetic and acquired forms. Variant CJD (vCJD) is an acquired form first identified in 1996 in the UK. To date, 178 cases of vCJD have been reported in the UK, most of which have been associated with dietary exposure to the bovine spongiform encephalopathy agent. Most vCJD cases have a young age of onset, with a median age at death of 28 years. In the UK, suspected cases of vCJD are reported to the UK National Creutzfeldt-Jakob Disease Research & Surveillance Unit (NCJDRSU). There is, however, a concern that the national surveillance system might be missing some cases of vCJD or other forms of human prion disease, particularly in the older population, perhaps because of atypical clinical presentation. This study aims to establish whether there is unrecognised prion disease in people aged 65 years and above in the Scottish population by screening banked brain tissue donated to the Edinburgh Brain Bank (EBB). METHODS Neuropathological screening of prospective and retrospective brain tissue samples is performed. This involves histopathological and immunohistochemical analysis and prion protein biochemical analysis. During the study, descriptive statistics are used to describe the study population, including the demographics and clinical, pathological and referral characteristics. Controlling for confounders, univariate and multivariate analyses will be used to compare select characteristics of newly identified suspect cases with previously confirmed cases referred to the NCJDRSU. ETHICS AND DISSEMINATION Brain tissue donations to EBB are made voluntarily by the relatives of patients, with consent for use in research. The EBB has ethical approval to provide tissue samples to research projects (REC reference 16/ES/0084). The findings of this study will be disseminated in meetings, conferences, workshops and as peer-reviewed publications. TRIAL REGISTRATION NUMBERS 10/S1402/69 and 10/S1402/70.
Collapse
Affiliation(s)
- Alexander Howard Peden
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Lovney Kanguru
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Diane L Ritchie
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| | - Anna M Molesworth
- Centre for Clinical Brain Sciences, National CJD Research & Surveillance Unit, Edinburgh, UK
| |
Collapse
|
29
|
Piconi G, Peden AH, Barria MA, Green AJE. Epitope mapping of the protease resistant products of RT-QuIC does not allow the discrimination of sCJD subtypes. PLoS One 2019; 14:e0218509. [PMID: 31206560 PMCID: PMC6576779 DOI: 10.1371/journal.pone.0218509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible, rapidly progressive and fatal neurodegenerative disease. The transmissible agent linked to sCJD is composed of the misfolded form of the host-encoded prion protein. The combination of histopathological and biochemical analyses has allowed the identification and sub-classification of six sCJD subtypes. This classification depends on the polymorphic variability of codon 129 of the prion protein gene and the PrPres isotype, and appears to be associated with neuropathological and clinical features. Currently, sCJD subtyping is only fully achievable post mortem. However, a rapid and non-invasive method for discriminating sCJD subtypes in vita would be invaluable for the clinical management of affected individuals, and for the selection of participants for clinical trials. The CSF analysis by Real Time Quaking Induced Conversion (RT-QuIC) reaction is the most sensitive and specific ante mortem sCJD diagnostic test available to date, and it is used by a number of laboratories internationally. RT-QuIC takes advantage of the natural replication mechanisms of prions by template-induced misfolding, employing recombinant prion protein as reaction substrate. We asked whether epitope mapping, of the RT-QuIC reaction products obtained from seeding RT-QuIC with brain and CSF samples from each of the six molecular subtypes of sCJD could be employed to distinguish them and therefore achieve in vita sCJD molecular subtyping. We found that it is possible to distinguish the RT-QuIC products generated by sCJD biological samples from the ones generated by spontaneous conversion in the negative controls, but that different sCJD subtypes generate very similar, if not identical RT-QuIC reaction products. We concluded that whilst RT-QuIC has demonstrable diagnostic value it has limited prognostic value at this point in time.
Collapse
Affiliation(s)
- Gabriele Piconi
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | - Alexander H. Peden
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Marcelo A. Barria
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Alison J. E. Green
- The National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
30
|
Soane T, Schott JM, Stone J, Smith C, Pal S, Davenport RJ. Clinicopathological case: progressive somnolence and dementia in an accountant: when the shine rubs off the gold standard. Pract Neurol 2019; 18:505-512. [PMID: 31091190 DOI: 10.1136/practneurol-2018-001989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2018] [Indexed: 11/03/2022]
Abstract
A 63-year-old accountant developed progressive somnolence, cognitive decline, gait disturbance and cerebellar dysfunction with autonomic features. This report documents the clinicopathological conference at the 39th Edinburgh Advanced Neurology Course 2017.
Collapse
Affiliation(s)
- Tim Soane
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
| | - Jonathan M Schott
- Dementia Research Centre, University College London Institute of Neurology, London, UK
| | - Jon Stone
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
| | - Colin Smith
- Department of Neuropathology, Western General Hospital, Edinburgh, UK
| | | | - Richard J Davenport
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, UK
| |
Collapse
|
31
|
Rossi M, Baiardi S, Parchi P. Understanding Prion Strains: Evidence from Studies of the Disease Forms Affecting Humans. Viruses 2019; 11:E309. [PMID: 30934971 PMCID: PMC6520670 DOI: 10.3390/v11040309] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are a unique group of rare neurodegenerative disorders characterized by tissue deposition of heterogeneous aggregates of abnormally folded protease-resistant prion protein (PrPSc), a broad spectrum of disease phenotypes and a variable efficiency of disease propagation in vivo. The dominant clinicopathological phenotypes of human prion disease include Creutzfeldt⁻Jakob disease, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann⁻Sträussler⁻Scheinker disease. Prion disease propagation into susceptible hosts led to the isolation and characterization of prion strains, initially operatively defined as "isolates" causing diseases with distinctive characteristics, such as the incubation period, the pattern of PrPSc distribution, and the regional severity of neuropathological changes after injection into syngeneic hosts. More recently, the structural basis of prion strains has been linked to amyloid polymorphs (i.e., variant amyloid protein conformations) and the concept extended to all protein amyloids showing polymorphic structures and some evidence of in vivo or in vitro propagation by seeding. Despite the significant advances, however, the link between amyloid structure and disease is not understood in many instances. Here we reviewed the most significant contributions of human prion disease studies to current knowledge of the molecular basis of phenotypic variability and the prion strain phenomenon and underlined the unsolved issues from the human disease perspective.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy.
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna 40138, Italy.
| |
Collapse
|
32
|
Race B, Williams K, Chesebro B. Transmission studies of chronic wasting disease to transgenic mice overexpressing human prion protein using the RT-QuIC assay. Vet Res 2019; 50:6. [PMID: 30670087 PMCID: PMC6341683 DOI: 10.1186/s13567-019-0626-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/10/2019] [Indexed: 01/07/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal prion disease which infects deer, elk and moose. CWD was first described as a wasting syndrome in captive deer in Colorado and Wyoming wildlife facilities from 1967 to 1979. Currently, CWD has been reported in 26 states of the USA, three Canadian provinces, South Korea, Norway and Finland. Since human consumption of cervids is common, it is critical to determine if CWD can infect humans. Published research, including epidemiologic studies and transmission studies using animal models, including transgenic mice that express human prion protein, have suggested existence of a strong species barrier between cervid CWD and humans. In the current study, we tested CWD transmission into two additional strains of transgenic mice (tg66 and tgRM). These mice over-express human prion protein at high levels and are highly sensitive to infection by human-tropic prions. One hundred and eight mice were inoculated intracerebrally with three different sources of CWD. After long periods of observation, brain tissues from CWD-inoculated mice were screened for evidence of prion infection by RT-QuIC, immunohistochemistry (IHC) and immunoblot. No IHC or immunoblot evidence was found to suggest transmission had occurred, and most mice were negative by RT-QuIC assay. However, four mice with inconsistent positive RT-QuIC reactions were detected. The seeding activity detected in these mice may represent a low level of CWD agent, suggesting a possible transfer of CWD infection. Alternatively, these results might be due to false positive reactions or residual CWD inoculum.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA.
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| |
Collapse
|
33
|
Wang Z, Manca M, Foutz A, Camacho MV, Raymond GJ, Race B, Orru CD, Yuan J, Shen P, Li B, Lang Y, Dang J, Adornato A, Williams K, Maurer NR, Gambetti P, Xu B, Surewicz W, Petersen RB, Dong X, Appleby BS, Caughey B, Cui L, Kong Q, Zou WQ. Early preclinical detection of prions in the skin of prion-infected animals. Nat Commun 2019; 10:247. [PMID: 30651538 PMCID: PMC6335425 DOI: 10.1038/s41467-018-08130-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/07/2018] [Indexed: 01/08/2023] Open
Abstract
A definitive pre-mortem diagnosis of prion disease depends on brain biopsy for prion detection currently and no validated alternative preclinical diagnostic tests have been reported to date. To determine the feasibility of using skin for preclinical diagnosis, here we report ultrasensitive serial protein misfolding cyclic amplification (sPMCA) and real-time quaking-induced conversion (RT-QuIC) assays of skin samples from hamsters and humanized transgenic mice (Tg40h) at different time points after intracerebral inoculation with 263K and sCJDMM1 prions, respectively. sPMCA detects skin PrPSc as early as 2 weeks post inoculation (wpi) in hamsters and 4 wpi in Tg40h mice; RT-QuIC assay reveals earliest skin prion-seeding activity at 3 wpi in hamsters and 20 wpi in Tg40h mice. Unlike 263K-inoculated animals, mock-inoculated animals show detectable skin/brain PrPSc only after long cohabitation periods with scrapie-infected animals. Our study provides the proof-of-concept evidence that skin prions could be a biomarker for preclinical diagnosis of prion disease.
Collapse
Affiliation(s)
- Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, The People's Republic of China
| | - Matteo Manca
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA
| | - Aaron Foutz
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Manuel V Camacho
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA
| | - Christina D Orru
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Pingping Shen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, The People's Republic of China
| | - Baiya Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi Province, The People's Republic of China
| | - Yue Lang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, The People's Republic of China
| | - Johnny Dang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Alise Adornato
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA
| | - Nicholas R Maurer
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, 24061, Virginia, USA
| | - Witold Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, 48859, MI, USA
| | - Xiaoping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, The People's Republic of China
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, 59840, MT, USA.
| | - Li Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, The People's Republic of China.
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, The People's Republic of China.
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, The People's Republic of China.
- Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
- National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, 44106, OH, USA.
| |
Collapse
|
34
|
Hwang S, Tatum T, Lebepe-Mazur S, Nicholson EM. Preparation of lyophilized recombinant prion protein for TSE diagnosis by RT-QuIC. BMC Res Notes 2018; 11:895. [PMID: 30547851 PMCID: PMC6295004 DOI: 10.1186/s13104-018-3982-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/04/2018] [Indexed: 01/17/2023] Open
Abstract
Objective Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases, often referred as prion diseases. TSEs result from the misfolding of the cellular prion protein (PrPC) into a pathogenic form (PrPSc) that accumulates in the brain and lymphatic tissue. Amplification based assays such as real-time quaking induced conversion allow us to assess the conversion of PrPC to PrPSc. Real-time quaking induced conversion (RT-QuIC) can be used for the detection of PrPSc in a variety of biological tissues from humans and animals. However, RT-QuIC requires a continuous supply of freshly purified prion protein and this necessity is not sustainable in a diagnostic laboratory setting. Results In this study, we developed a method to dry and preserve the prion protein for long term storage allowing for production of the protein and storage for extended time prior to use and room temperature shipping to appropriate diagnostic laboratory destinations facilitating widespread use of RT-QuIC as a diagnostic method.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Trudy Tatum
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Semakaleng Lebepe-Mazur
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA.
| |
Collapse
|
35
|
Cell-free prion protein conversion assays in screening for anti-prion drug candidates. Curr Opin Pharmacol 2018; 44:1-7. [PMID: 30412823 DOI: 10.1016/j.coph.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 11/22/2022]
Abstract
The search for medications to treat prion diseases has lasted more than 30 years but no clinically validated treatments for prion diseases of humans or livestock have been realized. A primary strategy has been to identify molecules that can inhibit the formation of pathological forms of prion protein, for example, protease-resistant forms called PrPres. Such inhibitors can prolong the lives of experimental animals inoculated peripherally with prions, but the practical therapeutic efficacy of known inhibitors against ongoing brain infections has so far been limited by toxicity, insufficient bioavailability to the CNS, and/or strain specificities. Thus, the search continues for clinically applicable inhibitors of PrPres accumulation. Here we highlight key cell-free assays that are useful for the initial screening and mechanistic characterization of such compounds and are relatively high throughput, rapid, and cost-effective. These include cell-free conversions, protein misfolding cyclic amplification (PMCA), real time quaking-induced conversion (RT-QuIC), and fluorescence correlation-based competitive binding assays.
Collapse
|
36
|
Orrú CD, Yuan J, Appleby BS, Li B, Li Y, Winner D, Wang Z, Zhan YA, Rodgers M, Rarick J, Wyza RE, Joshi T, Wang GX, Cohen ML, Zhang S, Groveman BR, Petersen RB, Ironside JW, Quiñones-Mateu ME, Safar JG, Kong Q, Caughey B, Zou WQ. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci Transl Med 2018; 9:9/417/eaam7785. [PMID: 29167394 DOI: 10.1126/scitranslmed.aam7785] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/04/2017] [Accepted: 08/18/2017] [Indexed: 11/02/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is transmissible through iatrogenic routes due to abundant infectious prions [misfolded forms of the prion protein (PrPSc)] in the central nervous system (CNS). Some epidemiological studies have associated sCJD risk with non-CNS surgeries. We explored the potential prion seeding activity and infectivity of skin from sCJD patients. Autopsy or biopsy skin samples from 38 patients [21 sCJD, 2 variant CJD (vCJD), and 15 non-CJD] were analyzed by Western blotting and real-time quaking-induced conversion (RT-QuIC) for PrPSc Skin samples from two patients were further examined for prion infectivity by bioassay using two lines of humanized transgenic mice. Western blotting revealed dermal PrPSc in one of five deceased sCJD patients and one of two vCJD patients. However, the more sensitive RT-QuIC assay detected prion seeding activity in skin from all 23 CJD decedents but not in skin from any non-CJD control individuals (with other neurological conditions or other diseases) during blinded testing. Although sCJD patient skin contained ~103- to 105-fold lower prion seeding activity than did sCJD patient brain tissue, all 12 mice from two transgenic mouse lines inoculated with sCJD skin homogenates from two sCJD patients succumbed to prion disease within 564 days after inoculation. Our study demonstrates that the skin of sCJD patients contains both prion seeding activity and infectivity, which raises concerns about the potential for iatrogenic sCJD transmission via skin.
Collapse
Affiliation(s)
- Christina D Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Jue Yuan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Baiya Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Otolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Province, People's Republic of China
| | - Yu Li
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Dane Winner
- University Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Zerui Wang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yi-An Zhan
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Mark Rodgers
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jason Rarick
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert E Wyza
- Human Tissue Procurement Facility, Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tripti Joshi
- Human Tissue Procurement Facility, Comprehensive Cancer Center Tissue Resources Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Gong-Xian Wang
- First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Shulin Zhang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Robert B Petersen
- Foundation Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Miguel E Quiñones-Mateu
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,University Hospital Translational Laboratory, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Wen-Quan Zou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA. .,Department of Neurology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China.,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.,National Center for Regenerative Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
37
|
Hermann P, Laux M, Glatzel M, Matschke J, Knipper T, Goebel S, Treig J, Schulz-Schaeffer W, Cramm M, Schmitz M, Zerr I. Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance. Neurology 2018; 91:e331-e338. [DOI: 10.1212/wnl.0000000000005860] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
ObjectiveTo validate an amended protocol for clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) including real-time quaking-induced conversion (RT-QuIC) and to observe its use in CJD surveillance.MethodsIn the framework of a prospective epidemiologic study, all neuropathologically confirmed cases with sCJD who received CSF RT-QuIC analysis during diagnostic workup (n = 65) and a control group of individuals without CJD (n = 118) were selected to investigate the accuracy of an amended diagnostic protocol. The patients had been referred to the German National Reference Center for Transmissible Spongiform Encephalopathies. The influence of the amended protocol on incidence figures was evaluated in the context of 3 years of surveillance activity (screened cases using 14-3-3 test n = 18,789, highly suspicious cases of CJD n = 704). Annual incidences were calculated with current criteria and the amended protocol.ResultsThe amended protocol showed a sensitivity of 97% and a specificity of 99%. When it was applied to all suspected cases who were referred to the reference center, the assessed incidence of CJD increased from 1.7 to 2.2 per million in 2016.ConclusionCJD surveillance remains challenging because information from external health care institutions can be limited. RT-QuIC shows excellent diagnostic accuracy when applied in the clinical setting to symptomatic patients. Data for RT-QuIC alone when applied as a general screening test are not available yet. We propose an amended research protocol that improves early and accurate clinical diagnosis of sCJD during surveillance activities. The use of this protocol will probably lead to a significant increase of the incidence rate.Classification of evidenceThis study provides Class III evidence that for patients with suspected sCJD, criteria for clinical diagnosis plus the CSF RT-QuIC accurately identifies patients with sCJD (sensitivity 97%, specificity 99%).
Collapse
|
38
|
Paciotti S, Bellomo G, Gatticchi L, Parnetti L. Are We Ready for Detecting α-Synuclein Prone to Aggregation in Patients? The Case of "Protein-Misfolding Cyclic Amplification" and "Real-Time Quaking-Induced Conversion" as Diagnostic Tools. Front Neurol 2018; 9:415. [PMID: 29928254 PMCID: PMC5997809 DOI: 10.3389/fneur.2018.00415] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
The accumulation and deposition of α-synuclein aggregates in brain tissue is the main event in the pathogenesis of different neurodegenerative disorders grouped under the term of synucleinopathies. They include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. To date, the diagnosis of any of these disorders mainly relies on the recognition of clinical symptoms, when the neurodegeneration is already in an advanced phase. In the last years, several efforts have been carried out to develop new diagnostic tools for early diagnosis of synucleinopathies, with special interest to Parkinson's disease. The Protein-Misfolding Cyclic Amplification (PMCA) and the Real-Time Quaking-Induced Conversion (RT-QuIC) are ultrasensitive protein amplification assays for the detection of misfolded protein aggregates. Starting from the successful application in the diagnosis of human prion diseases, these techniques were recently tested for the detection of misfolded α-synuclein in brain homogenates and cerebrospinal fluid samples of patients affected by synucleinopathies. So far, only a few studies on a limited number of samples have been performed to test PMCA and RT-QuIC diagnostic reliability. Neverthless, these assays have shown very high sensitivity and specificity in detecting synucleinopathies even at the pre-clinical stage. Despite the application of PMCA and RT-QuIC for α-synuclein detection in biological fluids is very recent, these techniques seem to have the potential for identifying subjects that will be likely to develop synucleinopathies.
Collapse
Affiliation(s)
- Silvia Paciotti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
39
|
Abstract
In coping with prion diseases, it is important to have tests that are practical enough for routine applications in medicine, agriculture, wildlife biology, and research, yet sensitive enough to detect minimal amounts of infectivity. Real-time quaking-induced conversion (RT-QuIC) assays have evolved to the point where they fulfill these criteria in applications to various human and animal prion diseases. For example, RT-QuIC assays of cerebrospinal fluid and nasal brushings allow for highly sensitive (77-97%) and specific (99-100%) identification of human sCJD patients. Recent improvements have markedly enhanced sensitivity and reduced the assay time required for many samples to a matter of hours rather than days. By combining analyses of cerebrospinal fluid and nasal brushings, diagnostic sensitivities and specificities of nearly 100% can be achieved. RT-QuIC assays are based on prion-seeded amyloid fibril formation by recombinant prion protein (rPrPSen) in multiwell plates using a Thioflavin T fluorescence readout. Here we describe our current RT-QuIC methodologies as well as technical considerations in executing, troubleshooting, and adapting the assay to new strains of prions and sample types.
Collapse
|
40
|
Groveman BR, Orrù CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B, Campbell KJ, Safar J, Galasko D, Caughey B. Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun 2018; 6:7. [PMID: 29422107 PMCID: PMC5806364 DOI: 10.1186/s40478-018-0508-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 11/25/2022] Open
Abstract
The diagnosis and treatment of synucleinopathies such as Parkinson disease and dementia with Lewy bodies would be aided by the availability of assays for the pathogenic disease-associated forms of α-synuclein (αSynD) that are sufficiently sensitive, specific, and practical for analysis of accessible diagnostic specimens. Two recent αSynD seed amplification tests have provided the first prototypes for ultrasensitive and specific detection of αSynD in patients' cerebrospinal fluid. These prototypic assays require 5-13 days to perform. Here, we describe an improved α-synuclein real time quaking-induced conversion (αSyn RT-QuIC) assay that has similar sensitivity and specificity to the prior assays, but can be performed in 1-2 days with quantitation. Blinded analysis of cerebrospinal fluid from 29 synucleinopathy cases [12 Parkinson's and 17 dementia with Lewy bodies] and 31 non-synucleinopathy controls, including 16 Alzheimer's cases, yielded 93% diagnostic sensitivity and 100% specificity for this test so far. End-point dilution analyses allowed quantitation of relative amounts of αSynD seeding activity in cerebrospinal fluid samples, and detection in as little as 0.2 μL. These results confirm that αSynD seeding activity is present in cerebrospinal fluid. We also demonstrate that it can be rapidly detected, and quantitated, even in early symptomatic stages of synucleinopathy.
Collapse
Affiliation(s)
- Bradley R Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Christina D Orrù
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrew G Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Katrina J Campbell
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California-San Diego, La Jolla, CA, USA.
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
41
|
Abstract
The human prion diseases comprise Creutzfeldt-Jakob disease, variably protease-sensitive prionopathy, Gerstmann-Sträussler-Scheinker disease, fatal familial insomnia, and kuru. Each is a uniformly fatal rare neurodegenerative disease in which conformational changes in the prion protein are thought to be the central pathophysiologic event. The majority of cases of human prion diseases occur worldwide in the form of sporadic Creutzfeldt-Jakob disease and a minority of around 10-15% are associated with mutations of the prion protein gene, termed PRNP, in the forms of genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia. Prion diseases are also transmissible and occur in iatrogenic and zoonotic forms (iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease respectively), adding a public health dimension to their management. Despite having a high public profile, human prion diseases are both rare and heterogeneous in their clinicopathologic phenotype, sometimes making a diagnosis challenging. A combined clinical, genetic, neuropathologic, and biochemical approach to diagnosis is therefore essential. The intensive study of these diseases continues to inform on neurodegenerative mechanisms and the role of protein misfolding in more common neurodegenerative diseases such as Parkinson disease and Alzheimer disease.
Collapse
Affiliation(s)
- James W Ironside
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
| | - Diane L Ritchie
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Mark W Head
- National CJD Research and Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| |
Collapse
|
42
|
Hwang S, West Greenlee MH, Balkema-Buschmann A, Groschup MH, Nicholson EM, Greenlee JJ. Real-Time Quaking-Induced Conversion Detection of Bovine Spongiform Encephalopathy Prions in a Subclinical Steer. Front Vet Sci 2018; 4:242. [PMID: 29404344 PMCID: PMC5780402 DOI: 10.3389/fvets.2017.00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) belongs to a group of fatal prion diseases that result from the misfolding of the cellular prion protein (PrPC) into a pathogenic form (PrPSc) that accumulates in the brain. In vitro assays such as serial protein misfolding amplification and real-time quaking-induced conversion (RT-QuIC) allow assessment of the conversion of PrPC to PrPSc. RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. However, there is no such comparison of RT-QuIC data between BSE positive and presymptomatic cattle. Further, the current study assesses prion distribution in multiple brain regions of clinically ill or subclinical animals. Here, we compare RT-QuIC reactions seeded with brain samples collected from experimentally inoculated cattle that were clinically ill or subclinically affected with BSE. The results demonstrate RT-QuIC seeding in various brain regions of an animal with subclinical BSE despite being determined negative by immunohistochemistry. Bioassay of the subclinical animal and RT-QuIC of brainstem from inoculated knockout (PRNP-/-) cattle were used to confirm infectivity in the subclinical animal and determine that RT-QuIC reactions were not the result of residual inoculum, respectively. These results confirm that RT-QuIC is a highly sensitive prion detection assay that can detect prions in a steer prior to the onset of clinical signs of BSE.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Eric M Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Justin J Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| |
Collapse
|
43
|
Abstract
Iatrogenic transmission of Creutzfeldt-Jakob disease (CJD) has occurred through particular medical procedures. Among them, dura mater grafts and pituitary-derived growth hormone obtained from human cadavers undiagnosed as CJD are the most frequent sources of infection. Recent advances in our knowledge about dura mater graft- and human pituitary-derived growth hormone-associated CJD patients have revealed that the combination of the infected CJD strain and the PRNP genotype of the patient determines their clinical, neuropathologic, and biochemical features. In this chapter, we summarize the clinical, neuropathologic, biochemical, and diagnostic features of dura mater graft- and human pituitary-derived growth hormone-associated CJD patients for the appropriate diagnosis of iatrogenic CJD.
Collapse
|
44
|
Abstract
Protein amplification techniques exploit the ability of PrPTSE to induce a conformational change in prion protein (PrP) in a continuous fashion, so that the small amount of PrPTSE found in tissues and biologic fluids in prion diseases can be amplified to a point where they are detectable by conventional laboratory techniques. The most widely used protein aggregation assays are protein misfolding cyclic amplification assay (PMCA) and real-time quaking-induced conversion (RT-QuIC). These assays have been used extensively in both animal and human prion disease in studies ranging from the development of diagnostics, understanding disease transmission potential, to investigating mechanisms underlying neurodegeneration. In human prion disease, cerebrospinal fluid (CSF) RT-QuIC analysis has been shown to be a highly sensitive and specific test for sporadic Creutzfeldt-Jakob disease (sCJD) and has now been included in the diagnostic criteria. It is also a useful investigation for some genetic forms of prion disease where other cerebrospinal fluid tests may be negative. PMCA shows great potential for the diagnosis of variant CJD (vCJD) and has the ability to distinguish vCJD from sCJD, which may become increasingly important with emergence of a patient with neuropathologically confirmed vCJD associated with PRNP codon129MV, which indicates that a new wave of vCJD cases is likely and that these may be difficult to distinguish from sCJD.
Collapse
Affiliation(s)
- Alison J E Green
- National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
45
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017; 6:E67. [PMID: 29240682 PMCID: PMC5750591 DOI: 10.3390/pathogens6040067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
The misfolding of the cellular prion protein (PrPC) into the disease-associated isoform (PrPSc) and its accumulation as amyloid fibrils in the central nervous system is one of the central events in transmissible spongiform encephalopathies (TSEs). Due to the proteinaceous nature of the causal agent the molecular mechanisms of misfolding, interspecies transmission, neurotoxicity and strain phenomenon remain mostly ill-defined or unknown. Significant advances were made using in vivo and in cellula models, but the limitations of these, primarily due to their inherent complexity and the small amounts of PrPSc that can be obtained, gave rise to the necessity of new model systems. The production of recombinant PrP using E. coli and subsequent induction of misfolding to the aberrant isoform using different techniques paved the way for the development of cell-free systems that complement the previous models. The generation of the first infectious recombinant prion proteins with identical properties of brain-derived PrPSc increased the value of cell-free systems for research on TSEs. The versatility and ease of implementation of these models have made them invaluable for the study of the molecular mechanisms of prion formation and propagation, and have enabled improvements in diagnosis, high-throughput screening of putative anti-prion compounds and the design of novel therapeutic strategies. Here, we provide an overview of the resultant advances in the prion field due to the development of recombinant PrP and its use in cell-free systems.
Collapse
Affiliation(s)
- Jorge M. Charco
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Vanessa Venegas
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Sandra García-Martínez
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Rafael López-Moreno
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Ezequiel González-Miranda
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Miguel Ángel Pérez-Castro
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain; (J.M.C.); (H.E.); (V.V.); (S.G.-M.); (R.L.-M.); (E.G.-M.); (M.Á.P.-C.)
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
47
|
Abstract
Creutzfeldt-Jakob disease (CJD) is a rare prion disorder that has been the subject of both professional and public interest following the identification of variant CJD as a zoonotic disorder. There have been recent advances in diagnostic techniques, including real-time quaking-induced conversion and magnetic resonance imaging brain scan, that have allowed more accurate case recognition in all forms of CJD. Although the epidemic of variant CJD is clearly in decline, prevalence studies suggest that it may be premature to be complacent about concerns for public health.
Collapse
Affiliation(s)
- Graeme Mackenzie
- National CJD Research & Surveillance Unit, Bryan Matthews Building, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Robert Will
- National CJD Research & Surveillance Unit, Bryan Matthews Building, Western General Hospital, Edinburgh, EH4 2XU, UK
| |
Collapse
|
48
|
Altered rPrP substrate structures and their influence on real-time quaking induced conversion reactions. Protein Expr Purif 2017; 143:20-27. [PMID: 29031681 DOI: 10.1016/j.pep.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/06/2017] [Accepted: 10/11/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Bacterially-produced recombinant prion protein (rPrP) has traditionally been used for in vitro fibrillation assays and reagent development for prion disease research. In recent years, it has also been used as a substrate for real-time quaking-induced conversion (RT-QuIC), a very sensitive method of detecting the presence of the misfolded, disease-associated isoform of the prion protein (PrPd). Multi-centre trials have demonstrated that RT-QuIC is a suitably reliable and robust technique for clinical practice; however, in the absence of a commercial supplier of rPrP as a substrate for RT-QuIC, laboratories have been required to independently generate this key component of the assay. No harmonized method for producing the protein has been agreed upon, in part due to the variety of substrates that have been applied in RT-QuIC. METHODS This study examines the effects of two different rPrP refolding protocols on the production, QuIC performance, and structure characteristics of two constructs of rPrP commonly used in QuIC: full length hamster and a sheep-hamster chimeric rPrP. RESULTS Under the described conditions, the best performing substrate was the chimeric sheep-hamster rPrP produced by shorter guanidine-HCl exposure and faster gradient elution. CONCLUSIONS The observation that different rPrP production protocols influence QuIC performance indicates that caution should be exercised when comparing inter-laboratory QuIC results.
Collapse
|
49
|
Moore SJ, West Greenlee MH, Kondru N, Manne S, Smith JD, Kunkle RA, Kanthasamy A, Greenlee JJ. Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation. J Virol 2017; 91:e00926-17. [PMID: 28701407 PMCID: PMC5599732 DOI: 10.1128/jvi.00926-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023] Open
Abstract
Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated (n = 20), orally inoculated (n = 19), and noninoculated (n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled ("market weight" groups). The remaining pigs ("aged" groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrPSc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity.IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrPSc) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6 months postinoculation). Only one pig developed clinical neurologic signs suggestive of prion disease. The amount of PrPSc in the brains and lymphoid tissues of positive pigs was small, especially in orally inoculated pigs. Regardless, positive results obtained with orally inoculated pigs suggest that it may be possible for swine to serve as a reservoir for prion disease under natural conditions.
Collapse
Affiliation(s)
- S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - M Heather West Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Naveen Kondru
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Sireesha Manne
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Jodi D Smith
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| | - Robert A Kunkle
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| | - Anumantha Kanthasamy
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa, USA
| |
Collapse
|
50
|
Candelise N, Schmitz M, Da Silva Correia SM, Arora AS, Villar-Piqué A, Zafar S, Llorens F, Cramm M, Zerr I. Applications of the real-time quaking-induced conversion assay in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies. Expert Rev Mol Diagn 2017; 17:897-904. [PMID: 28817974 DOI: 10.1080/14737159.2017.1368389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The development of in vitro protein misfolding amplification assays for the detection and analysis of abnormally folded proteins, such as proteinase K resistant prion protein (PrPres) was a major innovation in the prion field. In prion diseases, these types of assays imitate the pathological conversion of the cellular PrP (PrPC) into a proteinase resistant associated conformer or amyloid, called PrPres. Areas covered: The most prominent protein misfolding amplification assays are the protein misfolding cyclic amplification (PMCA), which is based on sonication and the real-time quaking-induced conversion (RT-QuIC) technique based on shaking. The more recently established RT-QuIC is fully automatic and enables the monitoring of misfolded protein aggregates in real-time by using a fluorescent dye. Expert commentary: RT-QuIC is a very robust and highly reproducible test system which is applicable in diagnosis, prion strain-typing, drug pre-screening and other amyloidopathies.
Collapse
Affiliation(s)
- Niccolò Candelise
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Matthias Schmitz
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Susana Margarida Da Silva Correia
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Amandeep Singh Arora
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Anna Villar-Piqué
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Saima Zafar
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Franc Llorens
- b Department of Neuropathology , Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) , Barcelona , Spain
| | - Maria Cramm
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| | - Inga Zerr
- a Department of Neurology , University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE) , Göttingen , Germany
| |
Collapse
|