1
|
Lara M, Casimiro-Soriguer CS, Pedrosa-Corral I, Gómez-Camarasa C, Lorusso N, Navarro-Marí JM, Dopazo J, Perez-Florido J, Sanbonmatsu-Gámez S. First autochthonous transmission of West Nile virus (WNV) lineage 2 to humans in Spain. One Health 2025; 20:101036. [PMID: 40276693 PMCID: PMC12018207 DOI: 10.1016/j.onehlt.2025.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
West Nile Virus (WNV) lineage 2, primarily endemic to parts of Africa and Europe, has recently emerged as a public health concern in new geographic regions. In 2024, the first autochthonous human case of neuroinvasive disease caused by WNV lineage 2 was identified in Andalusia, Southern Spain. Molecular testing and whole-genome sequencing confirmed WNV lineage 2 as the causative agent. Phylogenetic analysis revealed a close relationship with strains circulating in Central Europe, distinct from previous WNV lineage 2 detections in Spain. Concurrently, WNV lineage 2 RNA was detected in an imperial eagle near the case location, suggesting local viral circulation. This case marks a significant shift in WNV epidemiology in Spain, where lineage 1 has historically been dominant. The findings underscore the expanding range of WNV lineage 2 and the necessity for enhanced vector surveillance, genomic monitoring, and strengthened One Health strategies to mitigate future outbreaks and protect public health.
Collapse
Affiliation(s)
- Maria Lara
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Carlos S. Casimiro-Soriguer
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Irene Pedrosa-Corral
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Cristina Gómez-Camarasa
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Nicola Lorusso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo. Junta de Andalucía, 41020 Sevilla, Spain
| | - Jose M. Navarro-Marí
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Joaquin Dopazo
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Javier Perez-Florido
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Sevilla, 41013 Sevilla, Spain
| | - Sara Sanbonmatsu-Gámez
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain
- Instituto de investigación biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
2
|
Silverj A, Mencattelli G, Monaco F, Iapaolo F, Teodori L, Leone A, Polci A, Curini V, Di Domenico M, Secondini B, Di Lollo V, Ancora M, Di Gennaro A, Morelli D, Perrotta MG, Marini G, Rosà R, Segata N, Rota-Stabelli O, Rizzoli A, Savini G, West Nile Virus Working Group. Origin and evolution of West Nile virus lineage 1 in Italy. Epidemiol Infect 2024; 152:e150. [PMID: 39620707 PMCID: PMC11626449 DOI: 10.1017/s0950268824001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 07/10/2024] [Accepted: 09/03/2024] [Indexed: 12/11/2024] Open
Abstract
West Nile virus (WNV) is a mosquito-borne pathogen that can infect humans, equids, and many bird species, posing a threat to their health. It consists of eight lineages, with Lineage 1 (L1) and Lineage 2 (L2) being the most prevalent and pathogenic. Italy is one of the hardest-hit European nations, with 330 neurological cases and 37 fatalities in humans in the 2021-2022 season, in which the L1 re-emerged after several years of low circulation. We assembled a database comprising all publicly available WNV genomes, along with 31 new Italian strains of WNV L1 sequenced in this study, to trace their evolutionary history using phylodynamics and phylogeography. Our analysis suggests that WNV L1 may have initially entered Italy from Northern Africa around 1985 and indicates a connection between European and Western Mediterranean countries, with two distinct strains circulating within Italy. Furthermore, we identified new genetic mutations that are typical of the Italian strains and that can be tested in future studies to assess their pathogenicity. Our research clarifies the dynamics of WNV L1 in Italy, provides a comprehensive dataset of genome sequences for future reference, and underscores the critical need for continuous and coordinated surveillance efforts between Europe and Africa.
Collapse
Affiliation(s)
- Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Giulia Mencattelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - West Nile Virus Working Group
- The members of the West Nile virus working group are listed in the group authorship list, located in supplementary materials
| |
Collapse
|
3
|
Bhowmick S, Fritz ML, Smith RL. Host-feeding preferences and temperature shape the dynamics of West Nile virus: A mathematical model to predict the impacts of vector-host interactions and vector management on R 0. Acta Trop 2024; 258:107346. [PMID: 39111645 DOI: 10.1016/j.actatropica.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
West Nile virus (WNV) is prevalent across the United States, but its transmission patterns and spatio-temporal intensity vary significantly, particularly in the Eastern United States. For instance, Chicago has long been a hotspot for WNV cases due to its high cumulative incidence of infection, with the number of cases varying considerably from year to year. The abilities of host species to maintain and disseminate WNV, along with eco-epidemiological factors that influence vector-host contact rates underlie WNV transmission potential. There is growing evidence that several vectors exhibit strong feeding preferences towards different host communities. In our research study, we construct a process based weather driven ordinary differential equation (ODE) model to understand the impact of one vector species (Culex pipiens), its preferred avian and non-preferred human hosts on the basic reproduction number (R0). In developing this WNV transmission model, we account for the feeding index, which is defined as the relative preference of the vectors for taking blood meals from a competent avian host versus a non-competent mammalian host. We also include continuous introduction of infected agents into the model during the simulations as the introduction of WNV is not a single event phenomenon. We derive an analytic form of R0 to predict the conditions under which there will be an outbreak of WNV and the relationship between the feeding index and the efficacy of adulticide is highly nonlinear. In our mechanistic model, we also demonstrate that adulticide treatments produced significant reductions in the Culex pipiens population. Sensitivity analysis demonstrates that feeding index and rate of introduction of infected agents are two important factors beside the efficacy of adulticide. We validate our model by comparing simulations to surveillance data collected for the Culex pipiens complex in Cook County, Illinois, USA. Our results reveal that the interaction between the feeding index and mosquito abatement strategy is intricate, especially considering the fluctuating temperature conditions. This induces heterogeneous transmission patterns that need to be incorporated when modelling multi-host, multi-vector transmission models.
Collapse
Affiliation(s)
- Suman Bhowmick
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Megan Lindsay Fritz
- Department of Entomology, Institute for Advanced Computer Studies, University of Maryland, USA
| | - Rebecca Lee Smith
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Aguilera-Sepúlveda P, Cano-Gómez C, Villalba R, Borges V, Agüero M, Bravo-Barriga D, Frontera E, Jiménez-Clavero MÁ, Fernández-Pinero J. The key role of Spain in the traffic of West Nile virus lineage 1 strains between Europe and Africa. Infect Dis (Lond) 2024; 56:743-758. [PMID: 38836293 DOI: 10.1080/23744235.2024.2348633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND West Nile Virus (WNV) is a zoonotic arbovirus worldwide spread. Seasonal WNV outbreaks occur in the Mediterranean basin since the late 1990's with ever-increasing incidence. In Southern Spain WNV is endemic, as disease foci - caused by WNV lineage 1 (WNV-L1) strains - occur every year. On the contrary, WNV-L2 is the dominant lineage in Europe, so most European WNV sequences available belong to this lineage, WNV-L1 sequences being still scarce. METHODS To fill this gap, this study reports the genetic characterisation of 27 newly described WNV-L1 strains, involved in outbreaks affecting wild birds and horses during the last decade in South-Western Spain. RESULTS All strains except one belong to the Western Mediterranean-1 sub-cluster (WMed-1), related phylogenetically to Italian, French, Portuguese, Moroccan and, remarkably, Senegalese strains. This sub-cluster persisted, spread and evolved into three distinguishable WMed-1 phylogenetic groups that co-circulated, notably, in the same province (Cádiz). They displayed different behaviours: from long-term persistence and rapid spread to neighbouring regions within Spain, to long-distance spread to different countries, including transcontinental spread to Africa. Among the different introductions of WNV in Spain revealed in this study, some of them succeeded to get established, some extinguished from the territory shortly afterwards. Furthermore, Spain's southernmost province, Cádiz, constitutes a hotspot for virus incursion. CONCLUSION Southern Spain seems a likely scenario for emergence of exotic pathogens of African origin. Therefore, circulation of diverse WNV-L1 variants in Spain prompts for an extensive surveillance under a One Health approach.
Collapse
Affiliation(s)
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Rubén Villalba
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food (MAPA), Algete, Spain
| | - Daniel Bravo-Barriga
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Eva Frontera
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | |
Collapse
|
5
|
Williams RAJ, Criollo Valencia HA, López Márquez I, González González F, Llorente F, Jiménez-Clavero MÁ, Busquets N, Mateo Barrientos M, Ortiz-Díez G, Ayllón Santiago T. West Nile Virus Seroprevalence in Wild Birds and Equines in Madrid Province, Spain. Vet Sci 2024; 11:259. [PMID: 38922006 PMCID: PMC11209238 DOI: 10.3390/vetsci11060259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
West Nile virus (WNV) is a re-emerging flavivirus, primarily circulating among avian hosts and mosquito vectors, causing periodic outbreaks in humans and horses, often leading to neuroinvasive disease and mortality. Spain has reported several outbreaks, most notably in 2020 with seventy-seven human cases and eight fatalities. WNV has been serologically detected in horses in the Community of Madrid, but to our knowledge, it has never been reported from wild birds in this region. To estimate the seroprevalence of WNV in wild birds and horses in the Community of Madrid, 159 wild birds at a wildlife rescue center and 25 privately owned equines were sampled. Serum from thirteen birds (8.2%) and one equine (4.0%) tested positive with a WNV competitive enzyme-linked immunosorbent assay (cELISA) designed for WNV antibody detection but sensitive to cross-reacting antibodies to other flaviviruses. Virus-neutralization test (VNT) confirmed WNV antibodies in four bird samples (2.5%), and antibodies to undetermined flavivirus in four additional samples. One equine sample (4.0%) tested positive for WNV by VNT, although this horse previously resided in a WN-endemic area. ELISA-positive birds included both migratory and resident species, juveniles and adults. Two seropositive juvenile birds suggest local flavivirus transmission within the Community of Madrid, while WNV seropositive adult birds may have been infected outside Madrid. The potential circulation of flaviviruses, including WNV, in birds in the Madrid Community raises concerns, although further surveillance of mosquitoes, wild birds, and horses in Madrid is necessary to establish the extent of transmission and the principal species involved.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
| | | | - Irene López Márquez
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
| | - Fernando González González
- Group for the Rehabilitation of Native Fauna and their Habitat—GREFA, 28220 Madrid, Spain; (I.L.M.); (F.G.G.)
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Center (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (F.L.)
| | | | - Núria Busquets
- IRTA, Animal Health Program, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
- Mixed Research Unit IRTA-UAB in Animal Health, Animal Health Research Center (CReSA), Campus of the Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Marta Mateo Barrientos
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Gustavo Ortiz-Díez
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Tania Ayllón Santiago
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, José Antonio Nováis, 28040 Madrid, Spain
- Faculty of Health Sciences, Alfonso X El Sabio University, 28691 Madrid, Spain;
| |
Collapse
|
6
|
Ruiz-López MJ, Aguilera-Sepúlveda P, Cebrián-Camisón S, Figuerola J, Magallanes S, Varona S, Cuesta I, Cano-Gómez C, Sánchez-Mora P, Camacho J, Sánchez-Peña C, Marchena FJ, Ameyugo U, Ruíz S, Sánchez-Seco MP, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J, Vázquez A. Re-Emergence of a West Nile Virus (WNV) Variant in South Spain with Rapid Spread Capacity. Viruses 2023; 15:2372. [PMID: 38140614 PMCID: PMC10747266 DOI: 10.3390/v15122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021-2022 and Senegal in 2012-2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories.
Collapse
Affiliation(s)
- María José Ruiz-López
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain; (S.C.-C.); (S.M.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | | | - Sonia Cebrián-Camisón
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain; (S.C.-C.); (S.M.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain; (S.C.-C.); (S.M.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sergio Magallanes
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain; (S.C.-C.); (S.M.)
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sarai Varona
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.V.); (I.C.)
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 28232 Madrid, Spain
| | - Isabel Cuesta
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.V.); (I.C.)
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (P.A.-S.)
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, 28110 Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, CNM-ISCIII, Carretera Pozuelo-Majadahonda, Km. 2.2, Majadahonda, 28220 Madrid, Spain; (P.S.-M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, CNM-ISCIII, Carretera Pozuelo-Majadahonda, Km. 2.2, Majadahonda, 28220 Madrid, Spain; (P.S.-M.)
| | - Carolina Sánchez-Peña
- Junta de Andalucía, Consejería de Salud y Familias, Dirección General de Salud Pública y Ordenación Farmaceútica, Subdirección de Protección de la Salud, 41020 Sevilla, Spain
| | - Francisco José Marchena
- Junta de Andalucía, Consejería de Salud y Familias, Dirección General de Salud Pública y Ordenación Farmaceútica, Subdirección de Protección de la Salud, 41020 Sevilla, Spain
| | - Ulises Ameyugo
- Junta de Andalucía, Consejería de Salud y Familias, Dirección General de Salud Pública y Ordenación Farmaceútica, Subdirección de Protección de la Salud, 41020 Sevilla, Spain
| | - Santiago Ruíz
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, CNM-ISCIII, Carretera Pozuelo-Majadahonda, Km. 2.2, Majadahonda, 28220 Madrid, Spain; (P.S.-M.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministry of Agriculture, Fisheries and Food, Algete, 28110 Madrid, Spain
| | - Miguel Ángel Jiménez-Clavero
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (P.A.-S.)
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, 28130 Valdeolmos, Spain; (P.A.-S.)
| | - Ana Vázquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, CNM-ISCIII, Carretera Pozuelo-Majadahonda, Km. 2.2, Majadahonda, 28220 Madrid, Spain; (P.S.-M.)
| |
Collapse
|
7
|
Mencattelli G, Ndione MHD, Silverj A, Diagne MM, Curini V, Teodori L, Di Domenico M, Mbaye R, Leone A, Marcacci M, Gaye A, Ndiaye E, Diallo D, Ancora M, Secondini B, Di Lollo V, Mangone I, Bucciacchio A, Polci A, Marini G, Rosà R, Segata N, Fall G, Cammà C, Monaco F, Diallo M, Rota-Stabelli O, Faye O, Rizzoli A, Savini G. Spatial and temporal dynamics of West Nile virus between Africa and Europe. Nat Commun 2023; 14:6440. [PMID: 37833275 PMCID: PMC10575862 DOI: 10.1038/s41467-023-42185-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy.
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy.
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.
| | | | - Andrea Silverj
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Liana Teodori
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Rassoul Mbaye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alessandra Leone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Alioune Gaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - ElHadji Ndiaye
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diawo Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Massimo Ancora
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Barbara Secondini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Valeria Di Lollo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Bucciacchio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Giovanni Marini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Roberto Rosà
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| | - Mawlouth Diallo
- Medical Zoology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Omar Rota-Stabelli
- Centre Agriculture Food Environment, University of Trento, San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Department CIBIO, University of Trento, Trento, Italy
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise, Teramo, Italy
| |
Collapse
|
8
|
Gonzálvez M, Franco JJ, Barbero-Moyano J, Caballero-Gómez J, Ruano MJ, Martínez R, Cano-Terriza D, García-Bocanegra I. Monitoring the epidemic of West Nile virus in equids in Spain, 2020-2021. Prev Vet Med 2023; 217:105975. [PMID: 37481993 DOI: 10.1016/j.prevetmed.2023.105975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
The largest epidemic of West Nile virus (WNV) reported ever in Spain in both humans and equines occurred in 2020, affecting 77 humans and 139 equine herds. Here, we aimed to monitor the outbreaks detected in equid herds in Andalusia (southern Spain), the Spanish region where 89.9% of the outbreaks were reported, and to evaluate the virus circulation and risk factor associated with WNV exposure in the affected herds. The first WNV case was detected in mid-July 2020, the number of outbreaks peaked in mid-August and the last one was confirmed on 26th October 2020. WNV lineage 1 was detected in 12 clinically affected horses using real time RT-PCR. Molecular analysis evidenced high nucleotide identity with WNV sequences obtained from humans, birds and mosquitoes from Spain and Italy between 2020 and 2022. Between five and eight months after the WNV epidemic, a total of 724 equids (including 485 unvaccinated and 239 vaccinated animals) from 113 of the 125 affected herds in Andalusia were sampled. IgM and IgG antibodies against WNV were detected in 1.6% (8/485; 95%IC: 0.0-2.5) and 61.9% (300/485; 95%IC: 58.3-65.5) of the unvaccinated individuals, respectively. The seropositivity in vaccinated horses was 86.6% (207/239). The main risk factors associated with WNV exposure in unvaccinated equids were the breed (crossbreed), the location of animals in spring-summer (outside), and the presence of natural water ponds close to the surveyed herds. The high individual seroprevalence obtained in the affected herds indicates that WNV circulation was more widespread than the reported by passive surveillance during the WNV epidemic in 2020. The re-emergence of WNV in 2020 in southern Spain evidenced the needed to improve integrated surveillance systems, minimizing the impact of future cases in equids and humans in high-risk areas.
Collapse
Affiliation(s)
- Moisés Gonzálvez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Campus de Excelencia Internacional Regional "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Juan J Franco
- Inmunología y Genética Aplicada, S.A. (Eurofins-Ingenasa), Madrid, Spain
| | - Jesús Barbero-Moyano
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain; Grupo de Virología Clínica y Zoonosis, Unidad de Enfermedades Infecciosas, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - María J Ruano
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, Algete, Madrid, Spain
| | - Remigio Martínez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain; Departamento de Sanidad Animal, Unidad de Patología Infecciosa, Facultad de Veterinaria, Universidad de Extremadura, Cáceres, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Ruiz-López MJ, Muñoz-Chimeno M, Figuerola J, Gavilán AM, Varona S, Cuesta I, Martínez-de la Puente J, Zaballos Á, Molero F, Soriguer RC, Sánchez-Seco MP, Ruiz S, Vázquez A. Genomic Analysis of West Nile Virus Lineage 1 Detected in Mosquitoes during the 2020-2021 Outbreaks in Andalusia, Spain. Viruses 2023; 15:v15020266. [PMID: 36851481 PMCID: PMC9962355 DOI: 10.3390/v15020266] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Emerging infectious diseases are one of the most important global health challenges because of their impact on human and animal health. The vector-borne West Nile virus (WNV) is transmitted between birds by mosquitos, but it can also infect humans and horses causing disease. The local circulation of WNV in Spain has been known for decades, and since 2010, there have been regular outbreaks in horses, although only six cases were reported in humans until 2019. In 2020, Spain experienced a major outbreak with 77 human cases, which was followed by 6 additional cases in 2021, most of them in the Andalusian region (southern Spain). This study aimed to characterize the genomes of the WNV circulating in wild-trapped mosquitoes during 2020 and 2021 in Andalusia. We sequenced the WNV consensus genome from two mosquito pools and carried out the phylogenetic analyses. We also compared the obtained genomes with those sequenced from human samples obtained during the outbreak and the genomes obtained previously in Spain from birds (2007 and 2017), mosquitoes (2008) and horses (2010) to better understand the eco-epidemiology of WNV in Spain. As expected, the WNV genomes recovered from mosquito pools in 2020 were closely related to those recovered from humans of the same outbreak. In addition, the strain of WNV circulating in 2021 was highly related to the WNV strain that caused the 2020 outbreak, suggesting that WNV is overwintering in the area. Consequently, future outbreaks of the same strain may occur in in the future.
Collapse
Affiliation(s)
- María José Ruiz-López
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence:
| | - Milagros Muñoz-Chimeno
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Ana M. Gavilán
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Sarai Varona
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 28232 Madrid, Spain
| | - Isabel Cuesta
- Unidad Bioinformática, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Josué Martínez-de la Puente
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Parasitología, Universidad de Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Ángel Zaballos
- Unidad Genómica, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ramón C. Soriguer
- Estación Biológica de Doñana—CSIC, Avda. Américo Vespucio 26, 41092 Sevilla, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Maria Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Santiago Ruiz
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Servicio de Control de Mosquitos de la Diputación Provincial de Huelva, Ctra. Hospital Infanta Elena s/n, 21007 Huelva, Spain
| | - Ana Vázquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
10
|
Aguilera-Sepúlveda P, Napp S, Llorente F, Solano-Manrique C, Molina-López R, Obón E, Solé A, Jiménez-Clavero MÁ, Fernández-Pinero J, Busquets N. West Nile Virus Lineage 2 Spreads Westwards in Europe and Overwinters in North-Eastern Spain (2017–2020). Viruses 2022; 14:v14030569. [PMID: 35336976 PMCID: PMC8951896 DOI: 10.3390/v14030569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
West Nile virus lineage 2 (WNV-L2) emerged in Europe in 2004; since then, it has spread across the continent, causing outbreaks in humans and animals. During 2017 and 2020, WNV-L2 was detected and isolated from four northern goshawks in two provinces of Catalonia (north-eastern Spain). In order to characterise the first Spanish WNV-L2 isolates and elucidate the potential overwintering of the virus in this Mediterranean region, complete genome sequencing, phylogenetic analyses, and a study of phenotypic characterisation were performed. Our results showed that these Spanish isolates belonged to the central-southern WNV-L2 clade. In more detail, they were related to the Lombardy cluster that emerged in Italy in 2013 and has been able to spread westwards, causing outbreaks in France (2018) and Spain (2017 and 2020). Phenotypic characterisation performed in vitro showed that these isolates presented characteristics corresponding to strains of moderate to high virulence. All these findings evidence that these WNV-L2 strains have been able to circulate and overwinter in the region, and are pathogenic, at least in northern goshawks, which seem to be very susceptible to WNV infection and may be good indicators of WNV-L2 circulation. Due to the increasing number of human and animal cases in Europe in the last years, this zoonotic flavivirus should be kept under extensive surveillance, following a One-Health approach.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (P.A.-S.); (F.L.); (M.Á.J.-C.)
| | - Sebastián Napp
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (P.A.-S.); (F.L.); (M.Á.J.-C.)
| | - Carlos Solano-Manrique
- Centre de Fauna de Vallcalent, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 25199 Lleida, Spain;
| | - Rafael Molina-López
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Elena Obón
- Centre de Fauna de Torreferrussa, Àrea de Gestió Ambiental Servei de Fauna i Flora, Forestal Catalana, 08130 Santa Perpètua de Mogoda, Spain; (R.M.-L.); (E.O.)
| | - Alba Solé
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, 08007 Barcelona, Spain;
| | - Miguel Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (P.A.-S.); (F.L.); (M.Á.J.-C.)
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28130 Valdeolmos, Spain; (P.A.-S.); (F.L.); (M.Á.J.-C.)
- Correspondence: (J.F.-P.); (N.B.)
| | - Núria Busquets
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain;
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.F.-P.); (N.B.)
| |
Collapse
|
11
|
Mencattelli G, Iapaolo F, Monaco F, Fusco G, de Martinis C, Portanti O, Di Gennaro A, Curini V, Polci A, Berjaoui S, Di Felice E, Rosà R, Rizzoli A, Savini G. West Nile Virus Lineage 1 in Italy: Newly Introduced or a Re-Occurrence of a Previously Circulating Strain? Viruses 2021; 14:v14010064. [PMID: 35062268 PMCID: PMC8780300 DOI: 10.3390/v14010064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
In Italy, West Nile virus (WNV) appeared for the first time in the Tuscany region in 1998. After 10 years of absence, it re-appeared in the areas surrounding the Po River delta, affecting eight provinces in three regions. Thereafter, WNV epidemics caused by genetically divergent isolates have been documented every year in the country. Since 2018, only WNV Lineage 2 has been reported in the Italian territory. In October 2020, WNV Lineage 1 (WNV-L1) re-emerged in Italy, in the Campania region. This is the first occurrence of WNV-L1 detection in the Italian territory since 2017. WNV was detected in the internal organs of a goshawk (Accipiter gentilis) and a kestrel (Falco tinnunculus). The RNA extracted in the goshawk tissue samples was sequenced, and a Bayesian phylogenetic analysis was performed by a maximum-likelihood tree. Genome analysis, conducted on the goshawk WNV complete genome sequence, indicates that the strain belongs to the WNV-L1 Western-Mediterranean (WMed) cluster. Moreover, a close phylogenetic similarity is observed between the goshawk strain, the 2008-2011 group of Italian sequences, and European strains belonging to the Wmed cluster. Our results evidence the possibility of both a new re-introduction or unnoticed silent circulation in Italy, and the strong importance of keeping the WNV surveillance system in the Italian territory active.
Collapse
Affiliation(s)
- Giulia Mencattelli
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
- Fondazione Edmund Mach, San Michele all’Adige, 38098 Trento, Italy;
- Correspondence:
| | - Federica Iapaolo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Napoli, Italy; (G.F.); (C.d.M.)
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Annapia Di Gennaro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Andrea Polci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Shadia Berjaoui
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Elisabetta Di Felice
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| | - Roberto Rosà
- Center Agriculture Food Environment, University of Trento, 38098 Trento, Italy;
| | | | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, 64100 Teramo, Italy; (F.I.); (F.M.); (O.P.); (A.D.G.); (V.C.); (A.P.); (S.B.); (E.D.F.); (G.S.)
| |
Collapse
|
12
|
Aguilera-Sepúlveda P, Gómez-Martín B, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J. A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain. Transbound Emerg Dis 2021; 69:3121-3127. [PMID: 34812592 DOI: 10.1111/tbed.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
West Nile Virus (WNV; family Flaviviridae, genus flavivirus) is a zoonotic arbovirus worldwide spread. Its genetic diversity has allowed the definition of at least seven lineages, being lineages 1 and 2 the most widely distributed. Western Mediterranean region has been affected by WNV since decades. In Spain, WNV is actively circulating, provoking annual outbreaks in birds, horses and lately in humans. Lineage 1 is responsible for outbreaks that occurred in central and southern regions, while lineage 2 has been recently described in wild birds in north-eastern part of the country. During 2017 season, a disease outbreak in captive raptors was reported in southern Spain and WNV was isolated from a dead northern goshawk. Full genome sequencing was followed by phylogenetic analyses and analyses of the amino acidic substitutions. This strain, named Spain/2017/NG-b, highly differs from those which have been circulating both in Spain and in the neighbouring Mediterranean countries, constituting a new distinct group, tentatively classified in a newly defined cluster 7 within the WNV clade 1a, supporting a new, independent introduction of the virus in the Western Mediterranean region from an unknown origin. Besides, circumstantial evidence indicates that this emerging WNV strain could be behind the subsequent outbreak occurred nearby in horses. Overall, the reinforcement of surveillance programs, especially in wild birds, is essential to early detect the circulation of WNV and other related flaviviruses that could cause outbreaks in wild or domestic birds, equine and human populations.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| | | | | | - Miguel Ángel Jiménez-Clavero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Madrid, Spain
| | - Jovita Fernández-Pinero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
13
|
Pathogenesis of Two Western Mediterranean West Nile Virus Lineage 1 Isolates in Experimentally Infected Red-Legged Partridges ( Alectoris rufa). Pathogens 2021; 10:pathogens10060748. [PMID: 34199167 PMCID: PMC8231501 DOI: 10.3390/pathogens10060748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is the most widespread flavivirus in the world with a wide vertebrate host range. Its geographic expansion and activity continue to increase with important human and equine outbreaks and local bird mortality. In a previous experiment, we demonstrated the susceptibility of 7-week-old red-legged partridges (Alectoris rufa) to Mediterranean WNV isolates Morocco/2003 and Spain/2007, which varied in virulence for this gallinaceous species. Here we study the pathogenesis of the infection with these two strains to explain the different course of infection and mortality. Day six post-inoculation was critical in the course of infection, with the highest viral load in tissues, the most widespread virus antigen, and more severe lesions. The most affected organs were the heart, liver, and spleen. Comparing infections with Morocco/2003 and Spain/2007, differences were observed in the viral load, virus antigen distribution, and lesion nature and severity. A more acute and marked inflammatory reaction (characterized by participation of microglia and CD3+ T cells) as well as neuronal necrosis in the brain were observed in partridges infected with Morocco/2003 as compared to those infected with Spain/2007. This suggests a higher neurovirulence of Morocco/2003, probably related to one or more specific molecular determinants of virulence different from Spain/2007.
Collapse
|
14
|
García San Miguel Rodríguez-Alarcón L, Fernández-Martínez B, Sierra Moros MJ, Vázquez A, Julián Pachés P, García Villacieros E, Gómez Martín MB, Figuerola Borras J, Lorusso N, Ramos Aceitero JM, Moro E, de Celis A, Oyonarte S, Mahillo B, Romero González LJ, Sánchez-Seco MP, Suárez Rodríguez B, Ameyugo Catalán U, Ruiz Contreras S, Pérez-Olmeda M, Simón Soria F. Unprecedented increase of West Nile virus neuroinvasive disease, Spain, summer 2020. ACTA ACUST UNITED AC 2021; 26. [PMID: 33988123 PMCID: PMC8120797 DOI: 10.2807/1560-7917.es.2021.26.19.2002010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cases of West Nile neuroinvasive disease (WNND) in Spain increased in summer 2020. Here we report on this increase and the local, regional and national public health measures taken in response. We analysed data from regional surveillance networks and the National Epidemiological Surveillance Network, both for human and animal West Nile virus (WNV) infection. During the 2020 season, a total of 77 human cases of WNV infection (median age 65 years; 60% males) were detected in the south-west of Spain; 72 (94%) of these cases developed WNND, presenting as meningoencephalitis, seven of which were fatal. In the previous two decades, only six human cases of WNND were detected in Spain. Reduced activities for vector control this season, together with other factors, might have contributed to the massive increase. Public health measures including vector control, campaigns to raise awareness among physicians and the general population, and interventions to ensure the safety of donations of blood products, organs, cells and tissues were effective to reduce transmission. Going forward, maintenance of vector control activities and an update of the vector-borne diseases response plan in Spain is needed.
Collapse
Affiliation(s)
| | - Beatriz Fernández-Martínez
- CIBER Epidemiology and Public Health, Madrid, Spain.,National Center for Epidemiology, Instituto de Salud Carlos III, Ministry of Science and Innovation, , Madrid, Spain
| | | | - Ana Vázquez
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation.,CIBER Epidemiology and Public Health, Madrid, Spain
| | | | - Elena García Villacieros
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - María Belén Gómez Martín
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - Jordi Figuerola Borras
- Consejo Superior de Investigaciones Científicas, Estación biológica de Doñana, Seville, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Nicola Lorusso
- Junta de Andalucía, Servicio de Vigilancia y Salud laboral Seville, Spain
| | | | - Elena Moro
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | - Aránzazu de Celis
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | - Salvador Oyonarte
- Ministry of Health, Scientific Committee on Transfusion Safety, Madrid, Spain
| | | | - Luis José Romero González
- Ministerio de Agricultura, Pesca y Alimentación, Dirección General de Sanidad de la Producción Agraria, Madrid, Spain
| | - María Paz Sánchez-Seco
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation
| | | | - Ulises Ameyugo Catalán
- Junta de Andalucía. Consejería de Salud y Familias. Dirección General de Salud Pública y Ordenación Farmacéutica. Subdirección de Protección de la Salud, Seville, Spain
| | | | - Mayte Pérez-Olmeda
- National Microbiology Center, Instituto de Salud Carlos III, Ministry of Science and Innovation
| | - Fernando Simón Soria
- Ministry of Health, Coordinating Center of Health Alerts and Emergencies, Madrid, Spain
| |
Collapse
|
15
|
Casimiro-Soriguer CS, Perez-Florido J, Fernandez-Rueda JL, Pedrosa-Corral I, Guillot-Sulay V, Lorusso N, Martinez-Gonzalez LJ, Navarro-Marí JM, Dopazo J, Sanbonmatsu-Gámez S. Phylogenetic Analysis of the 2020 West Nile Virus (WNV) Outbreak in Andalusia (Spain). Viruses 2021; 13:836. [PMID: 34063166 PMCID: PMC8148183 DOI: 10.3390/v13050836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
During recent decades West Nile Virus (WNV) outbreaks have continuously occurred in the Mediterranean area. In August 2020 a new WNV outbreak affected 71 people with meningoencephalitis in Andalusia and six more cases were detected in Extremadura (south-west of Spain), causing a total of eight deaths. The whole genomes of four viruses were obtained and phylogenetically analyzed in the context of recent outbreaks. The Andalusian viral samples belonged to lineage 1 and were relatively similar to those of previous outbreaks which occurred in the Mediterranean region. Here we present a detailed analysis of the outbreak, including an extensive phylogenetic study. As part on this effort, we implemented a local Nextstrain server, which has become a constituent piece of regional epidemiological surveillance, wherein forthcoming genomes of environmental samples or, eventually, future outbreaks, will be included.
Collapse
Affiliation(s)
- Carlos S. Casimiro-Soriguer
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.S.C.-S.); (J.P.-F.); (J.L.F.-R.)
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Javier Perez-Florido
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.S.C.-S.); (J.P.-F.); (J.L.F.-R.)
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Jose L. Fernandez-Rueda
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.S.C.-S.); (J.P.-F.); (J.L.F.-R.)
| | - Irene Pedrosa-Corral
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain; (I.P.-C.); (V.G.-S.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Vicente Guillot-Sulay
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain; (I.P.-C.); (V.G.-S.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Nicola Lorusso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Familias, Junta de Andalucía, 41020, Sevilla, Spain;
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer—University of Granada—Andalusian Regional Government, 18016 Granada, Spain;
| | - Jose M. Navarro-Marí
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain; (I.P.-C.); (V.G.-S.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013 Sevilla, Spain; (C.S.C.-S.); (J.P.-F.); (J.L.F.-R.)
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- ELIXIR.ES/FPS, Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Sara Sanbonmatsu-Gámez
- Laboratorio de Referencia de Virus de Andalucía, Servicio de Microbiología, Hospital Virgen de las Nieves, 18014 Granada, Spain; (I.P.-C.); (V.G.-S.); (J.M.N.-M.)
- Instituto de Investigación Biosanitaria, ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
16
|
Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019. Pathogens 2020; 9:pathogens9110908. [PMID: 33143300 PMCID: PMC7692118 DOI: 10.3390/pathogens9110908] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2015, annual West Nile virus (WNV) outbreaks of varying intensities have been reported in France. Recent intensification of enzootic WNV circulation was observed in the South of France with most horse cases detected in 2015 (n = 49), 2018 (n = 13), and 2019 (n = 13). A WNV lineage 1 strain was isolated from a horse suffering from West Nile neuro-invasive disease (WNND) during the 2015 episode in the Camargue area. A breaking point in WNV epidemiology was achieved in 2018, when WNV lineage 2 emerged in Southeastern areas. This virus most probably originated from WNV spread from Northern Italy and caused WNND in humans and the death of diurnal raptors. WNV lineage 2 emergence was associated with the most important human WNV epidemics identified so far in France (n = 26, including seven WNND cases and two infections in blood and organ donors). Two other major findings were the detection of WNV in areas with no or limited history of WNV circulation (Alpes-Maritimes in 2018, Corsica in 2018–2019, and Var in 2019) and distinct spatial distribution of human and horse WNV cases. These new data reinforce the necessity to enhance French WNV surveillance to better anticipate future WNV epidemics and epizootics and to improve the safety of blood and organ donations.
Collapse
|
17
|
West Nile virus transmission and human infection risk in Veneto (Italy): a modelling analysis. Sci Rep 2018; 8:14005. [PMID: 30228340 PMCID: PMC6143586 DOI: 10.1038/s41598-018-32401-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/07/2018] [Indexed: 11/08/2022] Open
Abstract
An intensified and continuous West Nile virus (WNV) spread across northern Italy has been observed since 2008, which caused more than one hundred reported human infections until 2016. Veneto is one of the Italian regions where WNV is considered endemic, and the greatest intensity of circulation was observed during 2013 and 2016. By using entomological data collected across the region in those years, we calibrated a temperature-driven mathematical model through a Bayesian approach that simulates the WNV infection in an avian population with seasonal demography. We considered two alternative routes of life cycle re-activation of the virus at the beginning of each vector breeding season: in the first one the virus is maintained by infected birds, in the other by diapausing mosquitoes previously infected. Afterwards, we computed seasonal risk curves for human infection and quantified how they translate into reported symptomatic cases. According to our results, WNV is more likely to be re-activated each year via previously infected mosquitoes. The highest probability of human infection is expected to occur in August, consistently with observations. Our epidemiological estimates can be of particular interest for public health authorities, to support decisions in term of designing efficient surveillance plans and preventive measures.
Collapse
|
18
|
The Role of Culex pipiens L. (Diptera: Culicidae) in Virus Transmission in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020389. [PMID: 29473903 PMCID: PMC5858458 DOI: 10.3390/ijerph15020389] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/17/2022]
Abstract
Over the past three decades, a range of mosquito-borne viruses that threaten public and veterinary health have emerged or re-emerged in Europe. Mosquito surveillance activities have highlighted the Culex pipiens species complex as being critical for the maintenance of a number of these viruses. This species complex contains morphologically similar forms that exhibit variation in phenotypes that can influence the probability of virus transmission. Critical amongst these is the choice of host on which to feed, with different forms showing different feeding preferences. This influences the ability of the mosquito to vector viruses and facilitate transmission of viruses to humans and domestic animals. Biases towards blood-feeding on avian or mammalian hosts have been demonstrated for different Cx. pipiens ecoforms and emerging evidence of hybrid populations across Europe adds another level of complexity to virus transmission. A range of molecular methods based on DNA have been developed to enable discrimination between morphologically indistinguishable forms, although this remains an active area of research. This review provides a comprehensive overview of developments in the understanding of the ecology, behaviour and genetics of Cx. pipiens in Europe, and how this influences arbovirus transmission.
Collapse
|
19
|
Lim SM, Geervliet M, Verhagen JH, Müskens GJDM, Majoor FA, Osterhaus ADME, Martina BEE. Serologic evidence of West Nile virus and Usutu virus infections in Eurasian coots in the Netherlands. Zoonoses Public Health 2017; 65:96-102. [PMID: 28688117 DOI: 10.1111/zph.12375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 11/29/2022]
Abstract
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV-antibody-positive, and subsequent cross-neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV-neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.
Collapse
Affiliation(s)
- S M Lim
- Artemis One Health Research Foundation, Delft, the Netherlands
| | - M Geervliet
- Artemis One Health Research Foundation, Delft, the Netherlands.,Animal Sciences, Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - J H Verhagen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.,Centre for Ecology and Evolution for Microbial Model Systems Zoonotic Ecology and Epidemiology, Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - G J D M Müskens
- Wageningen Environmental Research (Alterra), Wageningen, The Netherlands
| | - F A Majoor
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - A D M E Osterhaus
- Artemis One Health Research Foundation, Delft, the Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - B E E Martina
- Artemis One Health Research Foundation, Delft, the Netherlands.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
West Nile virus in Tunisia, 2014: First isolation from mosquitoes. Acta Trop 2016; 159:106-10. [PMID: 27038557 DOI: 10.1016/j.actatropica.2016.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/26/2022]
Abstract
Several outbreaks of human West Nile virus (WNV) infections were reported in Tunisia during the last two decades. Serological studies on humans as well as on equine showed intensive circulation of WNV in Tunisia. However, no virus screening of mosquitoes for WNV has been performed in Tunisia. In the present study, we collected mosquito samples from Central Tunisia to be examined for the presence of flaviviruses. A total of 102 Culex pipiens mosquitoes were collected in September 2014 from Central Tunisia. Mosquitoes were pooled according to the collection site, date and sex with a maximum of 5 specimens per pool and tested for the presence of flaviviruses by conventional reverse transcription heminested PCR and by a specific West Nile virus real time reverse transcription PCR. Of a total of 21 pools tested, 7 were positive for WNV and no other flavivirus could be evidenced in mosquito pools. In addition, WNV was isolated on Vero cells. Phylogenetic analysis showed that recent Tunisian WNV strains belong to lineage 1 WNV and are closely related to the Tunisian strain 1997 (PAH 001). This is the first detection and isolation of WNV from mosquitoes in Tunisia. Some areas of Tunisia are at high risk for human WNV infections. WNV is likely to cause future sporadic and foreseeable outbreaks. Therefore, it is of major epidemiological importance to set up an entomological surveillance as an early alert system. Timely detection of WNV should prompt vector control to prevent future outbreaks. In addition, education of people to protect themselves from mosquito bites is of major epidemiological importance as preventive measure against WNV infection.
Collapse
|
21
|
Abad-Cobo A, Llorente F, Barbero MDC, Cruz-López F, Forés P, Jiménez-Clavero MÁ. Serosurvey Reveals Exposure to West Nile Virus in Asymptomatic Horse Populations in Central Spain Prior to Recent Disease Foci. Transbound Emerg Dis 2016; 64:1387-1392. [PMID: 27156847 DOI: 10.1111/tbed.12510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/28/2022]
Abstract
West Nile fever/encephalitis (WNF) is an infectious disease affecting horses, birds and humans, with a cycle involving birds as natural reservoirs and mosquitoes as transmission vectors. It is a notifiable disease, re-emerging in Europe. In Spain, it first appeared in horses in the south (Andalusia) in 2010, where outbreaks occur every year since. However, in 2014, an outbreak was declared in horses in central Spain, approximately 200 km away from the closest foci in Andalusia. Before that, evidence of West Nile virus (WNV) circulation in central Spain had been obtained only from wildlife, but never in horses. The purpose of this work was to perform a serosurvey to retrospectively detect West Nile virus infections in asymptomatic horses in central Spain from 2011 to 2013, that is before the occurrence of the first outbreaks in the area. For that, serum samples from 369 horses, collected between September 2011 and November 2013 in central Spain, were analysed by ELISA (blocking and IgM) and confirmed by virus neutralization, proving its specificity using parallel titration with another flavivirus (Usutu virus). As a result, 10 of 369 horse serum samples analysed gave positive results by competitive ELISA, 5 of which were confirmed as positive to WNV by virus neutralization (seropositivity rate: 1.35%). One of these WNV seropositive samples was IgM-positive. Chronologically, the first positive samples, including the IgM-positive, corresponded to sera collected in 2012 in Madrid province. From these results, we concluded that WNV circulated in asymptomatic equine populations of central Spain at least since 2012, before the first disease outbreak reported in this area.
Collapse
Affiliation(s)
- A Abad-Cobo
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Llorente
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - M Del Carmen Barbero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain
| | - F Cruz-López
- Centro de Vigilancia Sanitaria Veterinaria (VISAVET), Universidad Complutense, Madrid, Spain
| | - P Forés
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - M Á Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agroalimentaria (INIA-CISA), Valdeolmos, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
22
|
Szentpáli-Gavallér K, Lim SM, Dencső L, Bányai K, Koraka P, Osterhaus ADME, Martina BEE, Bakonyi T, Bálint Á. In Vitro and in Vivo Evaluation of Mutations in the NS Region of Lineage 2 West Nile Virus Associated with Neuroinvasiveness in a Mammalian Model. Viruses 2016; 8:v8020049. [PMID: 26907325 PMCID: PMC4776204 DOI: 10.3390/v8020049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/25/2022] Open
Abstract
West Nile virus (WNV) strains may differ significantly in neuroinvasiveness in vertebrate hosts. In contrast to genetic lineage 1 WNVs, molecular determinants of pathogenic lineage 2 strains have not been experimentally confirmed so far. A full-length infectious clone of a neurovirulent WNV lineage 2 strain (578/10; Central Europe) was generated and amino acid substitutions that have been shown to attenuate lineage 1 WNVs were introduced into the nonstructural proteins (NS1 (P250L), NS2A (A30P), NS3 (P249H) NS4B (P38G, C102S, E249G)). The mouse neuroinvasive phenotype of each mutant virus was examined following intraperitoneal inoculation of C57BL/6 mice. Only the NS1-P250L mutation was associated with a significant attenuation of virulence in mice compared to the wild-type. Multiplication kinetics in cell culture revealed significantly lower infectious virus titres for the NS1 mutant compared to the wild-type, as well as significantly lower amounts of positive and negative stranded RNA.
Collapse
Affiliation(s)
| | - Stephanie M Lim
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - László Dencső
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Budapest, Hungary.
| | - Penelope Koraka
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | | | - Byron E E Martina
- Viroscience Laboratory, Erasmus Medical Centre, 3015CN, Rotterdam, The Netherlands.
| | - Tamás Bakonyi
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, H-1143, Budapest, Hungary.
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, A-1210, Vienna, Austria.
| | - Ádám Bálint
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, H-1143, Budapest, Hungary.
| |
Collapse
|
23
|
Lustig Y, Hindiyeh M, Orshan L, Weiss L, Koren R, Katz-Likvornik S, Zadka H, Glatman-Freedman A, Mendelson E, Shulman LM. Mosquito Surveillance for 15 Years Reveals High Genetic Diversity Among West Nile Viruses in Israel. J Infect Dis 2015; 213:1107-14. [PMID: 26597260 DOI: 10.1093/infdis/jiv556] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/12/2015] [Indexed: 12/16/2022] Open
Abstract
West Nile Virus (WNV) is endemic in Israel and has been the cause of several outbreaks in recent years. In 2000, a countrywide mosquito survey was established to monitor WNV activity and characterize viral genotypes in Israel. We analyzed data from 7135 pools containing 277 186 mosquitoes collected over the past 15 years and, here, report partial sequences of WNV genomes obtained from 102 of the 336 positive mosquito pools. Phylogenetic analysis demonstrated that cluster 4 and the Mediterranean and Eastern European subtypes of cluster 2 within WNV lineage 1 circulated in Israel, as did WNV lineage 2, highlighting a high genetic diversity of WNV genotypes in our region. As a major crossroads for bird migration between Africa and Eurasia and with a long history of human infection, Israel serves as a resource hub for WNV in Africa and Eurasia and provides valuable information on WNV circulation in these regions.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Laor Orshan
- Laboratory of Entomology, Ministry of Health, Jerusalem
| | - Leah Weiss
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Ravit Koren
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Shiri Katz-Likvornik
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Hila Zadka
- Israel Center for Disease Control, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer
| | - Aharona Glatman-Freedman
- Israel Center for Disease Control, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer New York Medical College, Valhalla, New York
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | - Lester M Shulman
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical center, Tel-Hashomer Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
24
|
Experimental infection of rock pigeons (Columba livia) with three West Nile virus lineage 1 strains isolated in Italy between 2009 and 2012. Epidemiol Infect 2015; 144:1301-11. [PMID: 26493864 DOI: 10.1017/s0950268815002642] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
West Nile virus (WNV) circulation dynamics in the context of the urban environment is not yet elucidated. In this perspective, three groups of eight rock pigeons (Columbia livia) were inoculated with three WNV lineage 1 strains isolated in Italy between 2009 and 2012. The pigeons did not develop any clinical signs consistent with WNV acute infection. All animals seroconverted and shed virus up to 15 days post-infection by the oral or cloacal routes. In all infected groups viraemia lasted for 4 days post-infection. No WNV-specific gross or histological lesions were found in infected birds compared to control birds and immunohistochemistry remained constantly negative from all tissues. The reservoir competence index was also assessed and it ranged between 0·11 and 0·14. This study demonstrates that pigeons are competent reservoir hosts for Italian WNV lineage 1 circulating strains thus potentially posing a risk to the public health system.
Collapse
|
25
|
Barzon L, Papa A, Lavezzo E, Franchin E, Pacenti M, Sinigaglia A, Masi G, Trevisan M, Squarzon L, Toppo S, Papadopoulou E, Nowotny N, Ulbert S, Piralla A, Rovida F, Baldanti F, Percivalle E, Palù G. Phylogenetic characterization of Central/Southern European lineage 2 West Nile virus: analysis of human outbreaks in Italy and Greece, 2013-2014. Clin Microbiol Infect 2015; 21:1122.e1-10. [PMID: 26235197 DOI: 10.1016/j.cmi.2015.07.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 01/10/2023]
Abstract
In recent years, West Nile virus (WNV) lineage 2 has been spreading and causing disease outbreaks in humans and animals in Europe. In order to characterize viral diversity, we performed full-length genome sequencing of WNV lineage 2 from human samples collected during outbreaks in Italy and Greece in 2013 and 2014. Phylogenetic analysis showed that these WNV lineage 2 genomes belonged to a monophyletic clade derived from a single introduction into Europe of the prototype Hungarian strain. Correlation of phylogenetic data with geospatial information showed geographical clustering of WNV genome sequences both in Italy and in Greece, indicating that the virus had evolved and diverged during its dispersal in Europe, leading to the emergence of novel genotypes, as it adapted to local ecological niches. These genotypes carried divergent conserved amino acid substitutions, which might have been relevant for viral adaptation, as suggested by selection pressure analysis and in silico and experimental modelling of sequence changes. In conclusion, the results of this study provide further information on WNV lineage 2 transmission dynamics in Europe, and emphasize the need for WNV surveillance activities to monitor viral evolution and diversity.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy.
| | - A Papa
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - E Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - M Pacenti
- Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| | - A Sinigaglia
- IRCCS-IOV Istituto Oncologico Veneto, Padova, Italy
| | - G Masi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - M Trevisan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - L Squarzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - S Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - E Papadopoulou
- National Reference Centre for Arboviruses, Department of Microbiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - N Nowotny
- Institute of Virology, University of Veterinary Medicine, Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - S Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - A Piralla
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Rovida
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - F Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical Sciences, Surgery, Diagnostics and Paediatrics, University of Pavia, Pavia, Italy
| | - E Percivalle
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy; Microbiology and Virology Unit, Padova University Hospital, Padova, Italy
| |
Collapse
|
26
|
Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A. The challenge of West Nile virus in Europe: knowledge gaps and research priorities. ACTA ACUST UNITED AC 2015; 20. [PMID: 26027485 DOI: 10.2807/1560-7917.es2015.20.20.21135] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is continuously spreading across Europe, and other continents, i.e. North and South America and many other regions of the world. Despite the overall sporadic nature of outbreaks with cases of West Nile neuroinvasive disease (WNND) in Europe, the spillover events have increased and the virus has been introduced into new areas. The high genetic diversity of the virus, with remarkable phenotypic variation, and its endemic circulation in several countries, require an intensification of the integrated and multidisciplinary research efforts built under the 7th Framework Programme of the European Union (FP7). It is important to better clarify several aspects of WNV circulation in Europe, including its ecology, genomic diversity, pathogenicity, transmissibility, diagnosis and control options, under different environmental and socio-economic scenarios. Identifying WNV endemic as well as infection-free areas is becoming a need for the development of human vaccines and therapeutics and the application of blood and organs safety regulations. This review, produced as a joint initiative among European experts and based on analysis of 118 scientific papers published between 2004 and 2014, provides the state of knowledge on WNV and highlights the existing knowledge and research gaps that need to be addressed with high priority in Europe and neighbouring countries.
Collapse
Affiliation(s)
- A Rizzoli
- Fondazione Edmund Mach, Research and Innovation Centre, Department of Biodiversity and Molecular Ecology, San Michele all Adige (TN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hernández-Triana LM, Jeffries CL, Mansfield KL, Carnell G, Fooks AR, Johnson N. Emergence of west nile virus lineage 2 in europe: a review on the introduction and spread of a mosquito-borne disease. Front Public Health 2014; 2:271. [PMID: 25538937 PMCID: PMC4258884 DOI: 10.3389/fpubh.2014.00271] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/23/2014] [Indexed: 11/13/2022] Open
Abstract
West Nile virus (WNV) is transmitted by mosquitoes and causes fever and encephalitis in humans, equines, and occasionally wild birds. The virus was first isolated in sub-Saharan Africa where it is endemic. WNV lineage 1 has been responsible for repeated disease outbreaks in the countries of the Mediterranean basin over the past 50 years. This lineage was also introduced into North America in 1999 causing widespread human, equine, and avian mortality. WNV lineage 2, the first WNV lineage to be isolated, was believed to be restricted to sub-Saharan Africa causing a relatively mild fever in humans. However, in 2004, an investigation in Hungary of a case of encephalitis in a wild goshawk (Accipiter gentiles) resulted in the isolation of WNV lineage 2. During the summer of 2004, and in subsequent years, the virus appeared to spread locally throughout Hungary and into neighboring Austria. Subsequently, WNV lineage 2 emerged in Greece in 2010 and in Italy in 2011, involving outbreaks on the Italian mainland and Sardinia. Further spread through the Balkan countries is also suspected. Whole genome sequencing has confirmed that the virus responsible for the outbreaks in Greece and Italy was almost identical to that isolated in Hungary. However, unlike the outbreaks in Hungary, the burden of disease in Mediterranean countries has fallen upon the human population with numerous cases of West Nile fever and a relatively higher mortality rate than in previous outbreaks. The emergence of WNV lineage 2 in Europe, its over-wintering and subsequent spread over large distances illustrates the repeated threat of emerging mosquito-borne diseases. This article will review the emergence of WNV lineage 2 in Europe; consider the pathways for virus spread and the public health implications for the continent.
Collapse
Affiliation(s)
- Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK
| | - Claire L Jeffries
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK
| | - Karen L Mansfield
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK
| | - George Carnell
- London School of Hygiene and Tropical Medicine , London , UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK ; Department of Clinical Infection, University of Liverpool , Liverpool , UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-Borne Diseases Research Group, Animal and Plant Health Agency , Addlestone , UK
| |
Collapse
|
29
|
Rapid molecular detection and genotyping of West Nile Virus lineages 1 and 2 by real time PCR and melting curve analysis. J Virol Methods 2014; 207:54-9. [PMID: 24992671 DOI: 10.1016/j.jviromet.2014.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 11/20/2022]
Abstract
Following its spread in the USA, West Nile Virus (WNV) has reemerged in the Mediterranean basin with a renewed pathogenicity. The introduction of WNV lineage 2 in Europe and its co-circulation with lineage 1 has resulted in a continuously changing epidemiological scenario, highlighting the importance of differential detection of the two lineages. The paper describes a new real-time PCR method for the detection and genotyping of the two main lineages of WNV. The method requires a single pair of primers and probes and is based on the analysis of highly conserved consensus sequences detected in the 5' terminus of the viral genome.
Collapse
|
30
|
Saegerman C, Alba-Casals A, García-Bocanegra I, Dal Pozzo F, van Galen G. Clinical Sentinel Surveillance of Equine West Nile Fever, Spain. Transbound Emerg Dis 2014; 63:184-93. [DOI: 10.1111/tbed.12243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- C. Saegerman
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - A. Alba-Casals
- Centre de Recerca en Sanitat Animal (CReSA); UAB-IRTA; Barcelona Spain
| | - I. García-Bocanegra
- Departamento de Sanidad Animal; Facultad de Veterinaria; Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3); Córdoba Spain
| | - F. Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis applied to veterinary science (UREAR-ULg); Fundamental and Applied Research for Animals & Health (FARAH); Faculty of Veterinary Medicine; University of Liege; Liege Belgium
| | - G. van Galen
- Large Animal Clinic, Internal Medicine and Surgery; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
31
|
Del Amo J, Llorente F, Figuerola J, Soriguer RC, Moreno AM, Cordioli P, Weissenböck H, Jiménez-Clavero MA. Experimental infection of house sparrows (Passer domesticus) with West Nile virus isolates of Euro-Mediterranean and North American origins. Vet Res 2014; 45:33. [PMID: 24641615 PMCID: PMC3974220 DOI: 10.1186/1297-9716-45-33] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 11/10/2022] Open
Abstract
West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle involving wild birds as reservoir hosts. The virus has recently emerged in North America and re-emerged in Europe. North American WNV outbreaks are often accompanied by high mortality in wild birds, a feature that is uncommon in Europe. The reason for this difference is unknown, but the intrinsic virulence of the viruses circulating in each continent and/or the susceptibility to the disease of Palearctic as opposed to Nearctic wild bird species could play a role. To assess this question, experimental inoculations with four lineage 1 WNV strains, three from southern Europe (Italy/2008, Italy/2009 and Spain/2007) and one from North America (NY99) were performed on house sparrows (Passer domesticus), a wild passerine common in both continents. Non-significant differences which ranged from 0% to 25% were observed in mortality for the different WNV strains. Viremias lasted from 1 to 5-6 days post-inoculation (dpi) in all cases; individuals inoculated with NY99 had significantly higher titres than those inoculated with any of the Euro-Mediterranean strains. Remarkably, host competence was found to be higher for NY99 than for the other strains. Consequently, albeit being pathogenic for house sparrows, some Euro-Mediterranean strains had reduced capacity for replication in -and transmission from- this host, as compared to the NY99 strain. If applicable also to other wild bird host species, this relatively reduced transmission capacity of the Euro-Mediterranean strains could explain the lower incidence of this disease in wild birds in the Euro-Mediterranean area.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miguel Angel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Ctra Algete-El Casar s/n, Valdeolmos, Spain.
| |
Collapse
|
32
|
Wang S, Luo X, Wei W, Zheng Y, Dou Y, Cai X. Calculation of evolutionary correlation between individual genes and full-length genome: a method useful for choosing phylogenetic markers for molecular epidemiology. PLoS One 2013; 8:e81106. [PMID: 24312527 PMCID: PMC3849185 DOI: 10.1371/journal.pone.0081106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/18/2013] [Indexed: 11/21/2022] Open
Abstract
Individual genes or regions are still commonly used to estimate the phylogenetic relationships among viral isolates. The genomic regions that can faithfully provide assessments consistent with those predicted with full-length genome sequences would be preferable to serve as good candidates of the phylogenetic markers for molecular epidemiological studies of many viruses. Here we employed a statistical method to evaluate the evolutionary relationships between individual viral genes and full-length genomes without tree construction as a way to determine which gene can match the genome well in phylogenetic analyses. This method was performed by calculation of linear correlations between the genetic distance matrices of aligned individual gene sequences and aligned genome sequences. We applied this method to the phylogenetic analyses of porcine circovirus 2 (PCV2), measles virus (MV), hepatitis E virus (HEV) and Japanese encephalitis virus (JEV). Phylogenetic trees were constructed for comparisons and the possible factors affecting the method accuracy were also discussed in the calculations. The results revealed that this method could produce results consistent with those of previous studies about the proper consensus sequences that could be successfully used as phylogenetic markers. And our results also suggested that these evolutionary correlations could provide useful information for identifying genes that could be used effectively to infer the genetic relationships.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wei Wei
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (YD); (XC)
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- * E-mail: (YD); (XC)
| |
Collapse
|
33
|
Barzon L, Pacenti M, Franchin E, Pagni S, Lavezzo E, Squarzon L, Martello T, Russo F, Nicoletti L, Rezza G, Castilletti C, Capobianchi MR, Salcuni P, Cattai M, Cusinato R, Palù G. Large human outbreak of West Nile virus infection in north-eastern Italy in 2012. Viruses 2013; 5:2825-39. [PMID: 24284876 PMCID: PMC3856417 DOI: 10.3390/v5112825] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022] Open
Abstract
Human cases of West Nile virus (WNV) disease have been reported in Italy since 2008. So far, most cases have been identified in north-eastern Italy, where, in 2012, the largest outbreak of WNV infection ever recorded in Italy occurred. Most cases of the 2012 outbreak were identified in the Veneto region, where a special surveillance plan for West Nile fever was in place. In this outbreak, 25 cases of West Nile neuroinvasive disease and 17 cases of fever were confirmed. In addition, 14 WNV RNA-positive blood donors were identified by screening of blood and organ donations and two cases of asymptomatic infection were diagnosed by active surveillance of subjects at risk of WNV exposure. Two cases of death due to WNND were reported. Molecular testing demonstrated the presence of WNV lineage 1 in all WNV RNA-positive patients and, in 15 cases, infection by the novel Livenza strain was ascertained. Surveillance in other Italian regions notified one case of neuroinvasive disease in the south of Italy and two cases in Sardinia. Integrated surveillance for WNV infection remains a public health priority in Italy and vector control activities have been strengthened in areas of WNV circulation.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| | - Monia Pacenti
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Silvana Pagni
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Laura Squarzon
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Thomas Martello
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
| | - Francesca Russo
- Department of Public Health and Screening, Veneto Region, Venice I-30123, Italy; E-Mail:
| | - Loredana Nicoletti
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Giovanni Rezza
- Department of Infectious, Parasitic and Immune-mediated Diseases, National Institute of Health (Istituto Superiore di Sanità, ISS), Rome I-00161, Italy; E-Mails: (L.N.); (G.R.)
| | - Concetta Castilletti
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Maria Rosaria Capobianchi
- National Institute for Infectious Diseases (INMI) “L. Spallanzani”, Rome I-00149, Italy; E-Mails: (C.C.); (M.R.C.)
| | - Pasquale Salcuni
- Department of Prevention and Communication, Ministry of Health, Rome I-00144, Italy; E-Mail:
| | - Margherita Cattai
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Riccardo Cusinato
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova I-35121, Italy; E-Mails: (E.F.); (S.P.); (E.L.); (L.S.); (T.M.)
- Regional Reference Laboratory for Infectious Diseases, Microbiology and Virology Unit, Padova University Hospital, Padova I-35128, Italy; E-Mails: (M.P.); (M.C.); (R.C.)
- Authors to whom correspondence should be addressed; E-Mails: (L.B.); (G.P.); Tel.: +39-049-821-8946 (L.B.); Fax: +39-049-827-2355 (L.B.); Tel.: +39-049-827-2350 (G.P.); Fax: +39-049-827-2355 (G.P.)
| |
Collapse
|
34
|
Abstract
West Nile virus (WNV), the causative agent of West Nile fever and West Nile neuroinvasive disease in humans, has become endemic in many countries in all continents. Concerns on long-term mobility from WNV have arisen from recent studies that reported chronic kidney disease in patients who recovered from WNV infection, supported by data from animal models that showed prolonged excretion of the virus with urine. The purpose of this review is to summarize and discuss the results of studies in the literature that investigated WNV infection of the kidney in humans and in animal models and WNV excretion with urine, the potential damage to the kidney caused by WNV infection, the risk of WNV disease in kidney transplant recipients, the significance of detecting WNV in urine and its use in the diagnosis of WNV infection, and kidney involvement by other mosquito-borne flaviviruses.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Molecular Medicine, University of Padova, Via A. Gabelli 63, 35121 Padova, Italy.
| | | | | |
Collapse
|
35
|
Llorente F, Pérez-Ramírez E, Fernández-Pinero J, Soriguer R, Figuerola J, Jiménez-Clavero MA. Flaviviruses in game birds, southern Spain, 2011-2012. Emerg Infect Dis 2013; 19:1023-5. [PMID: 23735195 PMCID: PMC3713840 DOI: 10.3201/eid1906.130122] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
36
|
Molecular epidemiology and evolution of West Nile virus in North America. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:5111-29. [PMID: 24135819 PMCID: PMC3823310 DOI: 10.3390/ijerph10105111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/17/2022]
Abstract
West Nile virus (WNV) was introduced to New York in 1999 and rapidly spread throughout North America and into parts of Central and South America. Displacement of the original New York (NY99) genotype by the North America/West Nile 2002 (NA/WN02) genotype occurred in 2002 with subsequent identification of a novel genotype in 2003 in isolates collected from the southwestern Unites States region (SW/WN03 genotype). Both genotypes co-circulate to date. Subsequent WNV surveillance studies have confirmed additional genotypes in the United States that have become extinct due to lack of a selective advantage or stochastic effect; however, the dynamic emergence, displacement, and extinction of multiple WNV genotypes in the US from 1999–2012 indicates the continued evolution of WNV in North America.
Collapse
|
37
|
Engler O, Savini G, Papa A, Figuerola J, Groschup MH, Kampen H, Medlock J, Vaux A, Wilson AJ, Werner D, Jöst H, Goffredo M, Capelli G, Federici V, Tonolla M, Patocchi N, Flacio E, Portmann J, Rossi-Pedruzzi A, Mourelatos S, Ruiz S, Vázquez A, Calzolari M, Bonilauri P, Dottori M, Schaffner F, Mathis A, Johnson N. European surveillance for West Nile virus in mosquito populations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4869-95. [PMID: 24157510 PMCID: PMC3823308 DOI: 10.3390/ijerph10104869] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 12/26/2022]
Abstract
A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of WNV in mosquito populations across Europe and how this is informing our understanding of virus epidemiology. Key findings such as detection of virus, presence of vector species and invasive mosquito species are summarized, and some of the difficulties encountered when applying a cost-effective surveillance programme are highlighted.
Collapse
Affiliation(s)
- Olivier Engler
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez 3700, Switzerland; E-Mails: (O.E.); (J.P.)
| | - Giovanni Savini
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; E-Mail:
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio s/n, Sevilla 41092, Spain; E-Mail:
| | - Martin H. Groschup
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Südufer 17493, Germany; E-Mails: (M.H.G.); (H.K.)
| | - Helge Kampen
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald—Insel Riems, Südufer 17493, Germany; E-Mails: (M.H.G.); (H.K.)
| | - Jolyon Medlock
- Public Health England, Medical Entomology group, MRA, Emergency Response Department, Porton Down, Salisbury SP4 0JG, UK; E-Mails: (J.M.); (A.V.)
| | - Alexander Vaux
- Public Health England, Medical Entomology group, MRA, Emergency Response Department, Porton Down, Salisbury SP4 0JG, UK; E-Mails: (J.M.); (A.V.)
| | | | - Doreen Werner
- Institute of Land Use Systems, Leibnitz Centre for Agricultural Lanscape Research (ZALF), Eberswalder Strasse 84, Müncheberg 15374, Germany; E-Mail:
| | - Hanna Jöst
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Hamburg, Germany and German Mosquito Control Association (KABS), Waldsee and Bernhard-Nocht Institute for Tropical Medicine, Hamburg D-20359, Germany; E-Mail:
| | - Maria Goffredo
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Gioia Capelli
- Zooprofilactic Institute Venezie, Viale dell’ Università, 10, Padua, 35020 Legnaro, Italy; E-Mail:
| | - Valentina Federici
- Zooprofilactic Institute Abruzzo and Molise “G. Caporale”, Campo Boario, Teramo 64100, Italy; E-Mails: (G.S.); (M.G.); (V.F.)
| | - Mauro Tonolla
- Institute of Microbiology, Laboratory of Applied Microbiology, Via Mirasole 22a, Bellinzona CH-6500, Switzerland; E-Mail:
| | - Nicola Patocchi
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | - Eleonora Flacio
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | - Jasmine Portmann
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez 3700, Switzerland; E-Mails: (O.E.); (J.P.)
| | - Anya Rossi-Pedruzzi
- Mosquito Working Group, via al Castello, Canobbio CH-6952, Switzerland; E-Mails: (N.P.); (E.F.); (A.R.-P.)
| | | | - Santiago Ruiz
- Servicio de Control de Mosquitos, Diputación Provincial de Huelva, Huelva E-21003, Spain; E-Mail:
| | - Ana Vázquez
- CNM-Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain; E-Mail:
| | - Mattia Calzolari
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Paolo Bonilauri
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Michele Dottori
- Zooprofilactic Institute Lombardy and Emilia Romagna “B. Ubertini”, Brescia 25124, Italy; E-Mails: (M.C.); (P.B.); (M.D.)
| | - Francis Schaffner
- Institute of Parasitology, National Centre for Vector Entomology, University of Zurich, Winterthurerstr 266a, Zurich 8057, Switzerland; E-Mails: (F.S.); (A.M.)
| | - Alexander Mathis
- Institute of Parasitology, National Centre for Vector Entomology, University of Zurich, Winterthurerstr 266a, Zurich 8057, Switzerland; E-Mails: (F.S.); (A.M.)
| | - Nicholas Johnson
- Animal Health and Veterinary Laboratories Agency, Woodham Lane, Surrey KT15, 3NB, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)1932-357-937; Fax: +44-(0)1932-357-239
| |
Collapse
|
38
|
The complex epidemiological scenario of West Nile virus in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4669-89. [PMID: 24084676 PMCID: PMC3823324 DOI: 10.3390/ijerph10104669] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/22/2013] [Indexed: 12/16/2022]
Abstract
Entomological, veterinary, and human surveillance systems for West Nile virus (WNV) infection have been implemented in Italy since the first detection of the virus in 1998. These surveillance activities documented a progressive increase of WNV activity and spread in different regions and the emergence of new WNV lineages and strains. Italy is a paradigmatic example of the complex epidemiology of WNV in Europe, where sporadic cases of WNV infection, clusters, and small outbreaks have been reported in several regions. In addition, different strains of both WNV lineage 1 and lineage 2 have been identified, even co-circulating in the same area.
Collapse
|
39
|
Barzon L, Pacenti M, Franchin E, Lavezzo E, Masi G, Squarzon L, Pagni S, Toppo S, Russo F, Cattai M, Cusinato R, Palu G. Whole genome sequencing and phylogenetic analysis of West Nile virus lineage 1 and lineage 2 from human cases of infection, Italy, August 2013. ACTA ACUST UNITED AC 2013; 18. [PMID: 24084339 DOI: 10.2807/1560-7917.es2013.18.38.20591] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A human outbreak of West Nile virus (WNV) infection caused by WNV lineage 2 is ongoing in northern Italy. Analysis of six WNV genome sequences obtained from clinical specimens demonstrated similarities with strains circulating in central Europe and Greece and the presence of unique amino acid changes that identify a new viral strain. In addition, WNV lineage 1 Livenza, responsible for a large outbreak in north-eastern Italy in 2012, was fully sequenced from a blood donor during this 2013 outbreak.
Collapse
Affiliation(s)
- L Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pauli G, Bauerfeind U, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H. West nile virus. Transfus Med Hemother 2013; 40:265-84. [PMID: 24179475 PMCID: PMC3776406 DOI: 10.1159/000353698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/15/2012] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rainer Seitz
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | |
Collapse
|
41
|
Bargaoui R, Lecollinet S, Lancelot R. Mapping the Serological Prevalence Rate of West Nile fever in Equids, Tunisia. Transbound Emerg Dis 2013; 62:55-66. [DOI: 10.1111/tbed.12077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Indexed: 11/30/2022]
Affiliation(s)
- R. Bargaoui
- Institut de la Recherche Vétérinaire de Tunisie (IRVT); Service de Virologie; Tunis Tunisie
| | - S. Lecollinet
- Agence Nationale de Sécurité Sanitaire de l'Alimentation; de l'Environnement et du Travail (ANSES), UMR n°1161 Virologie ANSES, INRA, ENVA; Maisons-Alfort France
| | - R. Lancelot
- CIRAD, UMR n°15 CMAEE (CIRAD, INRA); Montpellier France
| |
Collapse
|
42
|
Del Amo J, Sotelo E, Fernández-Pinero J, Gallardo C, Llorente F, Agüero M, Jiménez-Clavero MA. A novel quantitative multiplex real-time RT-PCR for the simultaneous detection and differentiation of West Nile virus lineages 1 and 2, and of Usutu virus. J Virol Methods 2013; 189:321-7. [PMID: 23499258 DOI: 10.1016/j.jviromet.2013.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/22/2013] [Accepted: 02/21/2013] [Indexed: 12/11/2022]
Abstract
An increase in activity of two mosquito-borne flaviviruses, West Nile virus (WNV) and Usutu virus (USUV), has been reported in Europe in recent years. The current epidemiological situation calls for RT-PCR methods that are able to detect not only the widespread lineage 1 (L1) WNV, but also lineage 2 (L2) WNV. In addition, the presence in Europe of the closely related USUV requires methods that can identify these three flaviviruses and permit an efficient and accurate differential diagnosis. Here we describe a new one-step real-time multiplex RT-PCR that detects and differentiates efficiently WNV-L1, WNV-L2 and USUV in a single reaction. The assay is based on different sets of primers and fluorogenic probes specific to each virus that are labelled with selective, non-overlapping fluorogen-quencher pairs. This enables the fluorescence emitted by each probe, characterized by distinct wavelengths, to be differentiated. This multiplex assay was very sensitive to all of the target viruses; in addition, there were no cross-reactions between the viruses and the assay did not react to any other phylogenetically or symptomatically related viruses. Quantitation was enabled through the use of in vitro-transcribed RNAs developed specifically for each virus as copy number standards. This new assay was validated using different types of experimental and field samples.
Collapse
Affiliation(s)
- Javier Del Amo
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Rossini G, Carletti F, Rigoli R, Piga S, Bagnarelli P, Gaibani P, Pierro A, Nanni Costa A, Grossi P, Ippolito G, Landini MP, Di Caro A, Capobianchi MR, Sambri V. Heterogeneity of West Nile virus genotype 1a in Italy, 2011. J Gen Virol 2013; 94:314-317. [DOI: 10.1099/vir.0.046235-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
West Nile virus (WNV) is currently circulating in several European countries and, over recent decades, concomitantly with enhanced surveillance studies and improved diagnostic capabilities, an increase in the geographical distribution and in the number of cases in Europe has been documented. In Italy in 2011, 14 human cases of WNV neuroinvasive infections due to lineage 1 strains were registered in several Italian regions. Here we report WNV partial sequences obtained from serum samples of two patients living in different regions of Italy (Veneto and Sardinia). Phylogenetic analysis, performed on a fragment (566 nt) of the envelope gene, showed that WNV strains circulating in Italy in 2011 belong to lineage 1a, but are different from lineage 1a strains isolated in 2008–2009.The data reported here are consistent with the hypothesis of multiple recent introductions of WNV lineage 1a strains into Italy.
Collapse
Affiliation(s)
- Giada Rossini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Fabrizio Carletti
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Sandro Piga
- Ospedale Santissima Trinità, Unit of Infectious Diseases, Cagliari, Italy
| | - Patrizia Bagnarelli
- Università Politecnica Marche, Virology Unit, Department of Biomedical Sciences and Public Health, Ancona, Italy
| | - Paolo Gaibani
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Anna Pierro
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | | | - Paolo Grossi
- Veneto Regional Coordinating Transplant Centre, Azienda Ospedaliera di Padova, Padua, Italy
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | - Maria Paola Landini
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| | - Antonino Di Caro
- National Institute for Infectious Diseases (INMI) ‘L. Spallanzani’, Rome, Italy
| | | | - Vittorio Sambri
- Regional Reference Centre for Microbiological Emergencies (CRREM), Unit of Clinical Microbiology, St Orsola University Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
44
|
Barzon L, Pacenti M, Franchin E, Squarzon L, Lavezzo E, Toppo S, Martello T, Cattai M, Cusinato R, Palù G. Novel West Nile virus lineage 1a full genome sequences from human cases of infection in north-eastern Italy, 2011. Clin Microbiol Infect 2012; 18:E541-4. [DOI: 10.1111/1469-0691.12001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Jiménez-Clavero MÁ. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms. Front Genet 2012; 3:105. [PMID: 22707955 PMCID: PMC3374460 DOI: 10.3389/fgene.2012.00105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/22/2012] [Indexed: 01/24/2023] Open
Abstract
Environmental changes have an undoubted influence on the appearance, distribution, and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral) diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue (BT) and West Nile fever/encephalitis (WNF), have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. BT, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. WNF affects wildlife (birds), domestic animals (equines), and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus (WNV) has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife, and livestock. In Europe, WNV is known long time ago, but it is since the last years of the twentieth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world?
Collapse
Affiliation(s)
- Miguel Á Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Spain
| |
Collapse
|
46
|
Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna Region (Italy) in 2010. PLoS One 2012; 7:e38058. [PMID: 22666446 PMCID: PMC3364206 DOI: 10.1371/journal.pone.0038058] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/02/2012] [Indexed: 12/31/2022] Open
Abstract
Background In 2008, after the first West Nile virus (WNV) detection in the Emilia-Romagna region, a surveillance system, including mosquito- and bird-based surveillance, was established to evaluate the virus presence. Surveillance was improved in following years by extending the monitoring to larger areas and increasing the numbers of mosquitoes and birds tested. Methodology/Principal Findings A network of mosquito traps, evenly distributed and regularly activated, was set up within the surveyed area. A total of 438,558 mosquitoes, grouped in 3,111 pools and 1,276 birds (1,130 actively sampled and 146 from passive surveillance), were tested by biomolecular analysis. The survey detected WNV in 3 Culex pipiens pools while Usutu virus (USUV) was found in 89 Cx. pipiens pools and in 2 Aedes albopictus pools. Two birds were WNV-positive and 12 were USUV-positive. Furthermore, 30 human cases of acute meningoencephalitis, possibly caused by WNV or USUV, were evaluated for both viruses and 1,053 blood bags were tested for WNV, without any positive result. Conclusions/Significance Despite not finding symptomatic human WNV infections during 2010, the persistence of the virus, probably due to overwintering, was confirmed through viral circulation in mosquitoes and birds, as well as for USUV. In 2010, circulation of the two viruses was lower and more delayed than in 2009, but this decrease was not explained by the relative abundance of Cx. pipiens mosquito, which was greater in 2010. The USUV detection in mosquito species confirms the role of Cx. pipiens as the main vector and the possible involvement of Ae. albopictus in the virus cycle. The effects of meteorological conditions on the presence of USUV-positive mosquito pools were considered finding an association with drought conditions and a wide temperature range. The output produced by the surveillance system demonstrated its usefulness and reliability in terms of planning public health policies.
Collapse
|
47
|
García-Bocanegra I, Jaén-Téllez JA, Napp S, Arenas-Montes A, Fernández-Morente M, Fernández-Molera V, Arenas A. West Nile fever outbreak in horses and humans, Spain, 2010. Emerg Infect Dis 2012; 17:2397-9. [PMID: 22172565 PMCID: PMC3311180 DOI: 10.3201/eid1712.110651] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Sotelo E, Fernández-Pinero J, Jiménez-Clavero MÁ. La fiebre/encefalitis por virus West Nile: reemergencia en Europa y situación en España. Enferm Infecc Microbiol Clin 2012; 30:75-83. [DOI: 10.1016/j.eimc.2011.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 12/29/2022]
|
49
|
Díaz LA, Albrieu Llinás G, Vázquez A, Tenorio A, Contigiani MS. Silent circulation of St. Louis encephalitis virus prior to an encephalitis outbreak in Cordoba, Argentina (2005). PLoS Negl Trop Dis 2012; 6:e1489. [PMID: 22303490 PMCID: PMC3269431 DOI: 10.1371/journal.pntd.0001489] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/10/2011] [Indexed: 12/02/2022] Open
Abstract
St. Louis encephalitis virus is a complex zoonoses. In 2005, 47 laboratory-confirmed and probable clinical cases of SLEV infection were reported in Córdoba, Argentina. Although the causes of 2005 outbreak remain unknown, they might be related not only to virological factors, but also to ecological and environmental conditions. We hypothesized that one of the factors for SLE reemergence in Córdoba, Argentina, was the introduction of a new SLEV genotype (SLEV genotype III), with no previous activity in the area. In order to evaluate this hypothesis we carried out a molecular characterization of SLEV detections from mosquitoes collected between 2001 and 2004 in Córdoba city. A total of 315 mosquito pools (11,002 individuals) including 12 mosquitoes species were analyzed. Overall, 20 pools (8 mosquitoes species) were positive for SLEV. During this study, genotypes II, V and VII were detected. No mosquito pool infected with genotype III was detected before the 2005 outbreak. Genotype V was found every year and in the 8 sampled sites. Genotypes II and VII showed limited temporal and spatial activities. We cannot dismiss the association of genotype II and V as etiological agents during the outbreak. However, the silent circulation of other SLEV strains in Córdoba city before the 2005 outbreak suggests that the introduction of genotype III was an important factor associated to this event. Not mutually exclusive, other factors such as changes in avian hosts and mosquitoes vectors communities, driven by climatic and environmental modifications, should also be taken into consideration in further studies. The St. Louis encephalitis is a complex zoonoses in the New World. In South America (Argentina and Brazil), SLE is an emerging arbovirosis. SLEV reemerged in Argentina during 2002 and, since then, outbreaks have been reported in 2005, 2006, 2010 and 2011. During the 2005 outbreak two SLEV genotype III strains were isolated. Although the causes of the 2005 outbreak remain unknown, they might be related not only to virological factors, but also to changes in the structure and dynamics of vectors and/or avian amplifying hosts' populations and environmental conditions. We hypothesized that one of the factors for SLE reemergence in Córdoba, Argentina, was the introduction of a new SLEV genotype, with no previous activity in the area. No mosquitoes were detected infected with genotype III during this four-year study, even 10 months before the outbreak. The silent circulation of other SLEV strains in Córdoba city before the 2005 outbreak suggests that the introduction of genotype III was an important factor associated to this event. Not mutually exclusive, other factors such as changes in avian hosts and mosquitoes vectors communities, driven by climatic and environmental modifications, should also be taken into consideration in further studies.
Collapse
Affiliation(s)
- Luis Adrian Díaz
- Laboratorio de Arbovirus, Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | |
Collapse
|