1
|
Elois MA, Pavi CP, Jempierre YFSH, Pilati GVT, Zanchetta L, Grisard HBDS, García N, Rodríguez-Lázaro D, Fongaro G. Trends and Challenges in the Detection and Environmental Surveillance of the Hepatitis E Virus. Microorganisms 2025; 13:998. [PMID: 40431171 PMCID: PMC12114463 DOI: 10.3390/microorganisms13050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
The Hepatitis E virus (HEV) is responsible for causing Hepatitis E, a zoonotic disease that has emerged as a significant global health concern, accounting for about 20 million infections and 70,000 deaths annually. Although it is often recognized as a disease that is acute in low-income countries, HEV has also been recognized as a zoonotic disease in high-income countries. The zoonotic transmission requires flexible approaches to effectively monitor the virus, vectors, and reservoirs. However, the environmental monitoring of HEV presents additional challenges due to limitations in current detection methods, making it difficult to accurately assess the global prevalence of the virus. These challenges hinder efforts to fully understand the scope of the disease and to implement effective control measures. This review will explore these and other critical concerns, addressing gaps in HEV research and highlighting the need for improved strategies in the monitoring, prevention, and management of Hepatitis E using a One Health approach.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Catielen Paula Pavi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Yasmin Ferreira Souza Hoffmann Jempierre
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Lucas Zanchetta
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| | - Nerea García
- Department of Animal Health, Complutense University of Madrid, 28040 Madrid, Spain;
- VISAVET Health Surveillance Centre, Complutense University of Madrid, 28040 Madrid, Spain
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (M.A.E.); (C.P.P.); (Y.F.S.H.J.); (G.V.T.P.); (L.Z.); (H.B.d.S.G.); (G.F.)
| |
Collapse
|
2
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
3
|
Liu X, Liu T, Shao Z, Xiong X, Qi S, Guan J, Wang M, Tang YD, Feng Z, Wang L, Yin X. Palmitoylation-dependent association with Annexin II directs hepatitis E virus ORF3 sorting into vesicles and quasi-enveloped virions. Proc Natl Acad Sci U S A 2025; 122:e2418751122. [PMID: 39793027 PMCID: PMC11725905 DOI: 10.1073/pnas.2418751122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025] Open
Abstract
Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear. Here, we demonstrate that the HEV ORF3 protein possesses an inherent capacity for self-secretion and that palmitoylation at two cysteine residues within the ORF3 N-terminal region is essential for its secretion and quasi-enveloped virus formation. We further found that only palmitoylated ORF3 proteins hijacked Annexin II for transport to the cytoskeleton and are then directed into multivesicular bodies through the nSMase-endosomal sorting complexes required for transport-III pathway for secretion. Finally, we show that infection of gerbils with HEV mutants harboring mutations at palmitoylation sites within ORF3 showed no fecal viral shedding but competent replication in the liver. Our study fills a gap in the understanding of the assembly and release of quasi-enveloped virions mediated by ORF3 and offers the potential for designing therapeutic strategies to control HEV infection.
Collapse
Affiliation(s)
- Xing Liu
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Tianxu Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Zhen Shao
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Xiaoyan Xiong
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
- Department of Animal Sciences, Quantitative Veterinary Epidemiology Group, Wageningen University, Wageningen6700 AH, The Netherlands
| | - Shuhui Qi
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Junyong Guan
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Menghang Wang
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Yan-Dong Tang
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, Columbus, OH43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH43205
| | - Lin Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing100191, China
| | - Xin Yin
- Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin150069, China
| |
Collapse
|
4
|
Elois MA, da Silva Grisard HB, Rodríguez-Lázaro D, Fongaro G. Challenges and global trends in combating enteric hepatitis. J Gen Virol 2024; 105. [PMID: 39693132 DOI: 10.1099/jgv.0.002059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Enteric hepatitis, represented by the hepatitis A virus (HAV) and hepatitis E virus (HEV), remains a significant global public health concern. While much progress has been made, many aspects of the biology and pathophysiology of HAV and HEV are still not fully understood. One of the major challenges is the absence of a reliable system for virus replication. Additionally, the lack of standardized and widely accessible diagnostic tests contributes to the underestimation of the true prevalence of these viruses. Factors such as climate change, environmental shifts, globalization and increased population mobility further complicate the spread of these infections by affecting pathogen transmission, water quality and the distribution of vectors. This review approaches the emergent research challenges and trends of enteric hepatitis and focuses on developing more efficient diagnostic tools, exploring the role of zoonotic transmission and addressing the impact of environmental and climate changes on disease dynamics, underscoring the need for collaborative, interdisciplinary efforts to effectively combat enteric hepatitis in a rapidly changing world.
Collapse
Affiliation(s)
- Mariana Alves Elois
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Henrique Borges da Silva Grisard
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - David Rodríguez-Lázaro
- Microbiology Division, Faculty of Sciences, University of Burgos, 09001 Burgos, Spain
- Research Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
5
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
7
|
Letafati A, Taghiabadi Z, Roushanzamir M, Memarpour B, Seyedi S, Farahani AV, Norouzi M, Karamian S, Zebardast A, Mehrabinia M, Ardekani OS, Fallah T, Khazry F, Daneshvar SF, Norouzi M. From discovery to treatment: tracing the path of hepatitis E virus. Virol J 2024; 21:194. [PMID: 39180020 PMCID: PMC11342613 DOI: 10.1186/s12985-024-02470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. HEV is classified into eight genotypes, labeled HEV-1 through HEV-8. Genotypes 1 and 2 exclusively infect humans, while genotypes 3, 4, and 7 can infect both humans and animals. In contrast, genotypes 5, 6, and 8 are restricted to infecting animals. While most individuals with a strong immune system experience a self-limiting infection, those who are immunosuppressed may develop chronic hepatitis. Pregnant women are particularly vulnerable to severe illness and mortality due to HEV infection. In addition to liver-related complications, HEV can also cause extrahepatic manifestations, including neurological disorders. The immune response is vital in determining the outcome of HEV infection. Deficiencies in T cells, NK cells, and antibody responses are linked to poor prognosis. Interestingly, HEV itself contains microRNAs that regulate its replication and modify the host's antiviral response. Diagnosis of HEV infection involves the detection of HEV RNA and anti-HEV IgM/IgG antibodies. Supportive care is the mainstay of treatment for acute infection, while chronic HEV infection may be cleared with the use of ribavirin and pegylated interferon. Prevention remains the best approach against HEV, focusing on sanitation infrastructure improvements and vaccination, with one vaccine already licensed in China. This comprehensive review provides insights into the spread, genotypes, prevalence, and clinical effects of HEV. Furthermore, it emphasizes the need for further research and attention to HEV, particularly in cases of acute hepatitis, especially among solid-organ transplant recipients.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Roushanzamir
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Bahar Memarpour
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Masoomeh Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saeideh Karamian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arghavan Zebardast
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Mehrabinia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Tina Fallah
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Khazry
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Samin Fathi Daneshvar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
8
|
Woytinek K, Glitscher M, Hildt E. Antagonism of epidermal growth factor receptor signaling favors hepatitis E virus life cycle. J Virol 2024; 98:e0058024. [PMID: 38856640 PMCID: PMC11265270 DOI: 10.1128/jvi.00580-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.
Collapse
Affiliation(s)
| | - Mirco Glitscher
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| | - Eberhard Hildt
- Division of Virology, Paul Ehrlich Institute, Langen, Germany
| |
Collapse
|
9
|
Bentz M, Collet L, Morel V, Descamps V, Blanchard E, Lambert C, Demey B, Brochot E, Helle F. The Conserved YPX 3L Motif in the BK Polyomavirus VP1 Protein Is Important for Viral Particle Assembly but Not for Its Secretion into Extracellular Vesicles. Viruses 2024; 16:1124. [PMID: 39066286 PMCID: PMC11281352 DOI: 10.3390/v16071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The BK polyomavirus (BKPyV) is a small DNA non-enveloped virus whose infection is asymptomatic in most of the world's adult population. However, in cases of immunosuppression, the reactivation of the virus can cause various complications, and in particular, nephropathies in kidney transplant recipients or hemorrhagic cystitis in bone marrow transplant recipients. Recently, it was demonstrated that BKPyV virions can use extracellular vesicles to collectively traffic in and out of cells, thus exiting producing cells without cell lysis and entering target cells by diversified entry routes. By a comparison to other naked viruses, we investigated the possibility that BKPyV virions recruit the Endosomal-Sorting Complexes Required for Transport (ESCRT) machinery through late domains in order to hijack extracellular vesicles. We identified a single potential late domain in the BKPyV structural proteins, a YPX3L motif in the VP1 protein, and used pseudovirions to study the effect of point mutations found in a BKPyV clinical isolate or known to ablate the interaction of such a domain with the ESCRT machinery. Our results suggest that this domain is not involved in BKPyV association with extracellular vesicles but is crucial for capsomere interaction and thus viral particle assembly.
Collapse
Affiliation(s)
- Marine Bentz
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
| | - Louison Collet
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
| | - Virginie Morel
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
- Laboratoire de Virologie, Centre Hospitalier Universitaire, 80054 Amiens, France
| | - Véronique Descamps
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
- Laboratoire de Virologie, Centre Hospitalier Universitaire, 80054 Amiens, France
| | - Emmanuelle Blanchard
- INSERM U1259, Université de Tours et CHU de Tours, 37032 Tours, France;
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37032 Tours, France
| | - Caroline Lambert
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
| | - Baptiste Demey
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
- Laboratoire de Virologie, Centre Hospitalier Universitaire, 80054 Amiens, France
| | - Etienne Brochot
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
- Laboratoire de Virologie, Centre Hospitalier Universitaire, 80054 Amiens, France
| | - Francois Helle
- UR UPJV4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80000 Amiens, France (L.C.); (V.M.); (V.D.); (B.D.); (E.B.)
| |
Collapse
|
10
|
Shahini E, Argentiero A, Andriano A, Losito F, Maida M, Facciorusso A, Cozzolongo R, Villa E. Hepatitis E Virus: What More Do We Need to Know? MEDICINA (KAUNAS, LITHUANIA) 2024; 60:998. [PMID: 38929615 PMCID: PMC11205503 DOI: 10.3390/medicina60060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Hepatitis E virus (HEV) infection is typically a self-limiting, acute illness that spreads through the gastrointestinal tract but replicates in the liver. However, chronic infections are possible in immunocompromised individuals. The HEV virion has two shapes: exosome-like membrane-associated quasi-enveloped virions (eHEV) found in circulating blood or in the supernatant of infected cell cultures and non-enveloped virions ("naked") found in infected hosts' feces and bile to mediate inter-host transmission. Although HEV is mainly spread via enteric routes, it is unclear how it penetrates the gut wall to reach the portal bloodstream. Both virion types are infectious, but they infect cells in different ways. To develop personalized treatment/prevention strategies and reduce HEV impact on public health, it is necessary to decipher the entry mechanism for both virion types using robust cell culture and animal models. The contemporary knowledge of the cell entry mechanism for these two HEV virions as possible therapeutic target candidates is summarized in this narrative review.
Collapse
Affiliation(s)
- Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | | | - Alessandro Andriano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro Medical School, 70124 Bari, Italy;
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Marcello Maida
- Gastroenterology and Endoscopy Unit, S. Elia-Raimondi Hospital, 93100 Caltanissetta, Italy;
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy;
| | - Raffaele Cozzolongo
- Gastroenterology Unit, National Institute of Gastroenterology-IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (F.L.); (R.C.)
| | - Erica Villa
- Gastroenterology Unit, CHIMOMO Department, University of Modena & Reggio Emilia, Via del Pozzo 71, 41121 Modena, Italy
| |
Collapse
|
11
|
Li X, Sun X, Pinpin J, Zhao Q, Sun Y. Multifunctional ORF3 protein of hepatitis E virus. J Med Virol 2024; 96:e29691. [PMID: 38783788 DOI: 10.1002/jmv.29691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.
Collapse
Affiliation(s)
- Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Ji Pinpin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Sheng Y, Deng Y, Li X, Ji P, Sun X, Liu B, Zhu J, Zhao J, Nan Y, Zhou EM, Hiscox JA, Stewart JP, Sun Y, Zhao Q. Hepatitis E virus ORF3 protein hijacking thioredoxin domain-containing protein 5 (TXNDC5) for its stability to promote viral particle release. J Virol 2024; 98:e0164923. [PMID: 38548704 PMCID: PMC11019958 DOI: 10.1128/jvi.01649-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis worldwide, responsible for approximately 20 million infections annually. Among the three open reading frames (ORFs) of the HEV genome, the ORF3 protein is involved in virus release. However, the host proteins involved in HEV release need to be clarified. In this study, a host protein, thioredoxin domain-containing protein 5 (TXNDC5), interacted with the non-palmitoylated ORF3 protein by co-immunoprecipitation analysis. We determined that the overexpression or knockdown of TXNDC5 positively regulated HEV release from the host cells. The 17FCL19 mutation of the ORF3 protein lost the ability to interact with TXNDC5. The releasing amounts of HEV with the ORF3 mutation (FCL17-19SSP) were decreased compared with wild-type HEV. The overexpression of TXNDC5 can stabilize and increase ORF3 protein amounts, but not the TXNDC5 mutant with amino acids 1-88 deletion. Meanwhile, we determined that the function of TXNDC5 on the stabilization of ORF3 protein is independent of the Trx-like domains. Knockdown of TXNDC5 could lead to the degradation of ORF3 protein by the endoplasmic reticulum (ER)-associated protein degradation-proteasome system. However, the ORF3 protein cannot be degraded in the knockout-TXNDC5 stable cells, suggesting that it may hijack other proteins for its stabilization. Subsequently, we found that the other members of protein disulfide isomerase (PDI), including PDIA1, PDIA3, PDIA4, and PDIA6, can increase ORF3 protein amounts, and PDIA3 and PDIA6 interact with ORF3 protein. Collectively, our study suggested that HEV ORF3 protein can utilize TXNDC5 for its stability in ER to facilitate viral release. IMPORTANCE Hepatitis E virus (HEV) infection is the leading cause of acute viral hepatitis worldwide. After the synthesis and modification in the cells, the mature ORF3 protein is essential for HEV release. However, the host protein involved in this process has yet to be determined. Here, we reported a novel host protein, thioredoxin domain-containing protein 5 (TXNDC5), as a chaperone, contributing to HEV release by facilitating ORF3 protein stability in the endoplasmic reticulum through interacting with non-palmitoylated ORF3 protein. However, we also found that in the knockout-TXNDC5 stable cell lines, the HEV ORF3 protein may hijack other proteins for its stabilization. For the first time, our study demonstrated the involvement of TXNDC5 in viral particle release. These findings provide some new insights into the process of the HEV life cycle, the interaction between HEV and host factors, and a new direction for antiviral design.
Collapse
Affiliation(s)
- Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxuan Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuwen Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Oechslin N, Da Silva N, Ankavay M, Moradpour D, Gouttenoire J. A genome-wide CRISPR/Cas9 screen identifies a role for Rab5A and early endosomes in hepatitis E virus replication. Proc Natl Acad Sci U S A 2023; 120:e2307423120. [PMID: 38109552 PMCID: PMC10756275 DOI: 10.1073/pnas.2307423120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.
Collapse
Affiliation(s)
- Noémie Oechslin
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Nathalie Da Silva
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Maliki Ankavay
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne1011, Switzerland
| |
Collapse
|
15
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Corneillie L, Lemmens I, Montpellier C, Ferrié M, Weening K, Van Houtte F, Hanoulle X, Cocquerel L, Amara A, Tavernier J, Meuleman P. The phosphatidylserine receptor TIM1 promotes infection of enveloped hepatitis E virus. Cell Mol Life Sci 2023; 80:326. [PMID: 37833515 PMCID: PMC11073319 DOI: 10.1007/s00018-023-04977-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The hepatitis E virus (HEV) is an underestimated RNA virus of which the viral life cycle and pathogenicity remain partially understood and for which specific antivirals are lacking. The virus exists in two forms: nonenveloped HEV that is shed in feces and transmits between hosts; and membrane-associated, quasi-enveloped HEV that circulates in the blood. It is suggested that both forms employ different mechanisms for cellular entry and internalization but little is known about the exact mechanisms. Interestingly, the membrane of enveloped HEV is enriched with phosphatidylserine, a natural ligand for the T-cell immunoglobulin and mucin domain-containing protein 1 (TIM1) during apoptosis and involved in 'apoptotic mimicry', a process by which viruses hijack the apoptosis pathway to promote infection. We here investigated the role of TIM1 in the entry process of HEV. We determined that HEV infection with particles derived from culture supernatant, which are cloaked by host-derived membranes (eHEV), was significantly impaired after knockout of TIM1, whereas infection with intracellular HEV particles (iHEV) was unaffected. eHEV infection was restored upon TIM1 expression; and enhanced after ectopic TIM1 expression. The significance of TIM1 during entry was further confirmed by viral binding assay, and point mutations of the PS-binding pocket diminished eHEV infection. In addition, Annexin V, a PS-binding molecule also significantly reduced infection. Taken together, our findings support a role for TIM1 in eHEV-mediated cell entry, facilitated by the PS present on the viral membrane, a strategy HEV may use to promote viral spread throughout the infected body.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Building MRBII, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Zwijnaarde 75, Ghent, Belgium
| | - Claire Montpellier
- U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, Lille, France
| | - Martin Ferrié
- U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, Lille, France
| | - Karin Weening
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Building MRBII, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Building MRBII, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Xavier Hanoulle
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, 59000, Lille, France
- EMR9002-BSI-Integrative Structural Biology, CNRS, 59000, Lille, France
| | - Laurence Cocquerel
- U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, Lille, France
| | - Ali Amara
- UMR 7212, Institut de Recherche Saint-Louis, Université de Paris Cité, INSERM U944, CNRS, Hôpital Saint-Louis, 75010, Paris, France
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Zwijnaarde 75, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases (LLID), Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Building MRBII, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
17
|
Nagashima S, Primadharsini PP, Nishiyama T, Takahashi M, Murata K, Okamoto H. Development of a HiBiT-tagged reporter hepatitis E virus and its utility as an antiviral drug screening platform. J Virol 2023; 97:e0050823. [PMID: 37681960 PMCID: PMC10537679 DOI: 10.1128/jvi.00508-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 09/09/2023] Open
Abstract
Previously, we developed an infectious hepatitis E virus (HEV) harboring the nanoKAZ gene in the hypervariable region of the open reading frame 1 (ORF1) of the HEV3b (JE03-1760F/P10) genome and demonstrated the usefulness for screening anti-HEV drugs that inhibit the early infection process. In the present study, we constructed another reporter HEV (HEV3b-HiBiT) by placing a minimized HiBiT tag derived from NanoLuc luciferase at the 3'-end of the viral capsid (ORF2) coding sequence. It replicated efficiently in PLC/PRF/5 cells, produced membrane-associated particles identical to those of the parental virus, and was genetically stable and infectious. The HiBiT tag was fused to both secreted ORF2s (ORF2s-HiBiT) and ORF2c capsid protein (ORF2c-HiBiT). The ORF2c-HiBiT formed membrane-associated HEV particles (eHEV3b-HiBiT). By treating these particles with digitonin, we demonstrated that the HiBiT tag was expressed on the surface of capsid and was present inside the lipid membrane. To simplify the measurement of luciferase activity and provide a more convenient screening platform, we constructed an ORF2s-defective mutant (HEV3b-HiBiT/ΔORF2s) in which the secreted ORF2s are suppressed. We used this system to evaluate the effects of introducing small interfering RNAs and treatment with an inhibitor or accelerator of exosomal release on HEV egress and demonstrated that the effects on virus release can readily be analyzed. Therefore, HEV3b-HiBiT and HEV3b-HiBiT/ΔORF2s reporters may be useful for investigating the virus life cycle and can serve as a more convenient screening platform to search for candidate drugs targeting the late stage of HEV infection such as particle formation and release. IMPORTANCE The construction of recombinant infectious viruses harboring a stable luminescence reporter gene is essential for investigations of the viral life cycle, such as viral replication and pathogenesis, and the development of novel antiviral drugs. However, it is difficult to maintain the stability of a large foreign gene inserted into the viral genome. In the present study, we successfully generated a recombinant HEV harboring the 11-amino acid HiBiT tag in the ORF2 coding region and demonstrated the infectivity, efficient virus growth, particle morphology, and genetic stability, suggesting that this recombinant HEV is useful for in vitro assays. Furthermore, this system can serve as a more convenient screening platform for anti-HEV drugs. Thus, an infectious recombinant HEV is a powerful approach not only for elucidating the molecular mechanisms of the viral life cycle but also for the screening and development of novel antiviral agents.
Collapse
Affiliation(s)
- Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Takashi Nishiyama
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kazumoto Murata
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
18
|
Primadharsini PP, Nagashima S, Nishiyama T, Okamoto H. Three Distinct Reporter Systems of Hepatitis E Virus and Their Utility as Drug Screening Platforms. Viruses 2023; 15:1989. [PMID: 37896767 PMCID: PMC10611241 DOI: 10.3390/v15101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
The hepatitis E virus (HEV) is increasingly acknowledged as the primary cause of acute hepatitis. While most HEV infections are self-limiting, cases of chronic infection and fulminant hepatitis necessitate the administration of anti-HEV medications. However, there is a lack of specific antiviral drugs designed for HEV, and the currently available drug (ribavirin) has been associated with significant adverse effects. The development of innovative antiviral drugs involves targeting distinct steps within the viral life cycle: the early step (attachment and internalization), middle step (translation and RNA replication), and late step (virus particle formation and virion release). We recently established three HEV reporter systems, each covering one or two of these steps. Using these reporter systems, we identified various potential drug candidates that target different steps of the HEV life cycle. Through rigorous in vitro testing using our robust cell culture system with the genotype 3 HEV strain (JE03-1760F/P10), we confirmed the efficacy of these drugs, when used alone or in combination with existing anti-HEV drugs. This underscores their significance in the quest for an effective anti-HEV treatment. In the present review, we discuss the development of the three reporter systems, their applications in drug screening, and their potential to advance our understanding of the incompletely elucidated HEV life cycle.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| | - Takashi Nishiyama
- Laboratory of Membrane Proteins, Research Division for Quantitative Life Sciences, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan;
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke 329-0498, Tochigi, Japan; (P.P.P.); (S.N.)
| |
Collapse
|
19
|
Das A, Rivera-Serrano EE, Yin X, Walker CM, Feng Z, Lemon SM. Cell entry and release of quasi-enveloped human hepatitis viruses. Nat Rev Microbiol 2023; 21:573-589. [PMID: 37185947 PMCID: PMC10127183 DOI: 10.1038/s41579-023-00889-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Infectious hepatitis type A and type E are caused by phylogenetically distinct single-stranded, positive-sense RNA viruses that were once considered to be non-enveloped. However, studies show that both are released nonlytically from hepatocytes as 'quasi-enveloped' virions cloaked in host membranes. These virion types predominate in the blood of infected individuals and mediate virus spread within the liver. They lack virally encoded proteins on their surface and are resistant to neutralizing anti-capsid antibodies induced by infection, yet they efficiently enter cells and initiate new rounds of virus replication. In this Review, we discuss the mechanisms by which specific peptide sequences in the capsids of these quasi-enveloped virions mediate their endosomal sorting complexes required for transport (ESCRT)-dependent release from hepatocytes through multivesicular endosomes, what is known about how they enter cells, and the impact of capsid quasi-envelopment on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Anshuman Das
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lentigen Technology, Inc., Gaithersburg, MD, USA
| | - Efraín E Rivera-Serrano
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Paediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Wang Z, He M, He H, Kilby K, Antueno RD, Castle E, McMullen N, Qian Z, Zeev-Ben-Mordehai T, Duncan R, Pan C. Nonenveloped Avian Reoviruses Released with Small Extracellular Vesicles Are Highly Infectious. Viruses 2023; 15:1610. [PMID: 37515296 PMCID: PMC10384003 DOI: 10.3390/v15071610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Vesicle-encapsulated nonenveloped viruses are a recently recognized alternate form of nonenveloped viruses that can avoid immune detection and potentially increase systemic transmission. Avian orthoreoviruses (ARVs) are the leading cause of various disease conditions among birds and poultry. However, whether ARVs use cellular vesicle trafficking routes for egress and cell-to-cell transmission is still poorly understood. We demonstrated that fusogenic ARV-infected quail cells generated small (~100 nm diameter) extracellular vesicles (EVs) that contained electron-dense material when observed by transmission electron microscope. Cryo-EM tomography indicated that these vesicles did not contain ARV virions or core particles, but the EV fractions of OptiPrep gradients did contain a small percent of the ARV virions released from cells. Western blotting of detergent-treated EVs revealed that soluble virus proteins and the fusogenic p10 FAST protein were contained within the EVs. Notably, virus particles mixed with the EVs were up to 50 times more infectious than virions alone. These results suggest that EVs and perhaps fusogenic FAST-EVs could contribute to ARV virulence.
Collapse
Affiliation(s)
- Zuopei Wang
- Laboratory of Molecular Virology and Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Panyu, Guangzhou 511400, China
| | - Menghan He
- Laboratory of Molecular Virology and Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Panyu, Guangzhou 511400, China
| | - Han He
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle Kilby
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roberto de Antueno
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Castle
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Zhuoyu Qian
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK
| | | | - Roy Duncan
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chungen Pan
- Laboratory of Molecular Virology and Immunology, Technology Innovation Center, Haid Research Institute, Guangdong Haid Group Co., Ltd., Panyu, Guangzhou 511400, China
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
21
|
Kumar A, Subramani C, Raj S, Ranjith-Kumar CT, Surjit M. Hepatitis E Virus Protease Inhibits the Activity of Eukaryotic Initiation Factor 2-Alpha Kinase 4 and Promotes Virus Survival. J Virol 2023; 97:e0034723. [PMID: 37199644 PMCID: PMC10308950 DOI: 10.1128/jvi.00347-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Multiple mechanisms exist in a cell to cope with stress. Four independent stress-sensing kinases constitute the integrated stress response machinery of the mammalian cell, and they sense the stress signals and act by phosphorylating the eukaryotic initiation factor 2α (eIF2α) to arrest cellular translation. Eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4) is one of the four kinases and is activated under conditions of amino acid starvation, UV radiation, or RNA virus infection, resulting in shutdown of global translation. An earlier study in our laboratory constructed the protein interaction network of the hepatitis E virus (HEV) and identified eIF2AK4 as a host interaction partner of the genotype 1 (g1) HEV protease (PCP). Here, we report that PCP's association with the eIF2AK4 results in inhibition of self-association and concomitant loss of kinase activity of eIF2AK4. Site-directed mutagenesis of the 53rd phenylalanine residue of PCP abolishes its interaction with the eIF2AK4. Further, a genetically engineered HEV-expressing F53A mutant PCP shows poor replication efficiency. Collectively, these data identify an additional property of the g1-HEV PCP protein, through which it helps the virus in antagonizing eIF2AK4-mediated phosphorylation of the eIF2α, thus contributing to uninterrupted synthesis of viral proteins in the infected cells. IMPORTANCE Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans. It causes chronic infection in organ transplant patients. Although the disease is self-limiting in normal individuals, it is associated with high mortality (~30%) in pregnant women. In an earlier study, we identified the interaction between the genotype 1 HEV protease (PCP) and cellular eukaryotic initiation factor 2 alpha kinase 4 (eIF2AK4). Since eIF2AK4 is a sensor of the cellular integrated stress response machinery, we evaluated the significance of the interaction between PCP and eIF2AK4. Here, we show that PCP competitively associates with and interferes with self-association of the eIF2AK4, thereby inhibiting its kinase activity. Lack of eIF2AK4 activity prevents phosphorylation-mediated inactivation of the cellular eIF2α, which is essential for initiation of cap-dependent translation. Thus, PCP behaves as a proviral factor, promoting uninterrupted synthesis of viral proteins in infected cells, which is crucial for survival and proliferation of the virus.
Collapse
Affiliation(s)
- Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandru Subramani
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shivani Raj
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
22
|
Songtanin B, Molehin AJ, Brittan K, Manatsathit W, Nugent K. Hepatitis E Virus Infections: Epidemiology, Genetic Diversity, and Clinical Considerations. Viruses 2023; 15:1389. [PMID: 37376687 DOI: 10.3390/v15061389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
According to the World Health Organization, approximately 20 million people worldwide are infected annually with the hepatitis E virus (HEV). There are four main genotypes of HEV. Genotype 1 and genotype 2 are common in developing countries and are transmitted by contaminated water from a fecal-oral route. Genotype 3 and genotype 4 are common in developed countries and can lead to occasional transmission to humans via undercooked meat. Hepatitis E virus 1 and HEV3 can lead to fulminant hepatitis, and HEV3 can lead to chronic hepatitis and cirrhosis in immunocompromised patients. The majority of patients with HEV infection are asymptomatic and usually have spontaneous viral clearance without treatment. However, infection in immunocompromised individuals can lead to chronic HEV infection. Both acute and chronic HEV infections can have extrahepatic manifestations. No specific treatment is required for acute HEV infection, no treatment has been approved in chronic infection, and no HEV vaccine has been approved by the (United States) Food and Drug Administration. This review focuses on the molecular virology (HEV life cycle, genotypes, model systems, zoonosis), pathogenesis, clinical manifestation, and treatment of chronic HEV infection, especially in immunocompromised patients, to provide clinicians a better understanding of the global distribution of these infections and the significant effect they can have on immunocompromised patients.
Collapse
Affiliation(s)
- Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Adebayo J Molehin
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Kevin Brittan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wuttiporn Manatsathit
- Department of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
23
|
Moschidi D, Cantrelle FX, Boll E, Hanoulle X. Backbone NMR resonance assignment of the apo human Tsg101-UEV domain. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:49-54. [PMID: 36740661 DOI: 10.1007/s12104-023-10119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/24/2023] [Indexed: 06/02/2023]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.
Collapse
Affiliation(s)
- Danai Moschidi
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | | | - Emmanuelle Boll
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France.
- Determinants of Aging-Related Diseases, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular, F-59000, Inserm, Lille, France.
| |
Collapse
|
24
|
Liu X, Qi S, Yin X. Morphogenesis of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:159-169. [PMID: 37223865 DOI: 10.1007/978-981-99-1304-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus, a leading cause of acute hepatitis worldwide, has been recognized as non-enveloped virus since its discovery in the 1980s. However, the recent identification of lipid membrane-associated form termed as "quasi-enveloped" HEV has changed this long-held notion. Both naked HEV and quasi-enveloped HEV play important roles in the pathogenesis of hepatitis E. However, the biogenesis and the mechanisms underlying the composition, biogenesis regulation, and functions of the novel quasi-enveloped virions remain enigmatic. In this chapter, we highlight the most recent discoveries on the dual life cycle of these two different types of virions, and further discuss the implication of the quasi-envelopment in our understanding of the molecular biology of HEV.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuhui Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
25
|
Zhang F, Wang Y. HEV Cell Culture. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:119-131. [PMID: 37223862 DOI: 10.1007/978-981-99-1304-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell culture is an important research method in virology. Although many attempts have been conducted to culture HEV in cells, only a few cell culture systems were considered to be efficient enough for usage. Concentration of virus stocks, host cells, and medium components affects the culture efficiency and the genetic mutations during HEV passage were found to be associated with the increased virulence in cell culture. As an alternative method for traditional cell culture, the infectious cDNA clones were constructed. The viral thermal stability, factors that impact the host range, post-translation of viral proteins, and function of different viral proteins were studied using the infectious cDNA clones. HEV cell culture studies on progeny virus showed that the viruses secreted from host cells have an envelope and its formation was associated with pORF3. This result explained the phenomenon that virus could infect host cells in the presence of anti-HEV antibodies.
Collapse
Affiliation(s)
- Feng Zhang
- Division of Therapeutical Monoclonal Antibodies, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan Province, China.
| |
Collapse
|
26
|
Zhou Y, Zhao C, Tian Y, Xu N, Wang Y. Characteristics and Functions of HEV Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:15-32. [PMID: 37223856 DOI: 10.1007/978-981-99-1304-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped virus containing a single-stranded, positive-sense RNA genome of 7.2 kb, which consists of a 5' non-coding region, three open reading frames (ORFs), and a 3' non-coding region. ORF1 is diverse between genotypes and encodes the nonstructural proteins, which include the enzymes needed for virus replication. In addition to its role in virus replication, the function of ORF1 is relevant to viral adaption in culture and may also relate to virus infection and HEV pathogenicity. ORF2 protein is the capsid protein, which is about 660 amino acids in length. It not only protects the integrity of the viral genome, but is also involved in many important physiological activities, such as virus assembly, infection, host interaction, and innate immune response. The main immune epitopes, especially neutralizing epitopes, are located on ORF2 protein, which is a candidate antigen for vaccine development. ORF3 protein is a phosphoprotein of 113 or 114 amino acids with a molecular weight of 13 kDa with multiple functions that can also induce strong immune reactivity. A novel ORF4 has been identified only in genotype 1 HEV and its translation promotes viral replication.
Collapse
Affiliation(s)
- Yan Zhou
- RegCMC, Great Regulatory Affairs, Sanofi (China) Investment Co., Ltd, Beijing, China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Yabin Tian
- Division II of In Vitro Diagnostics for Infectious Diseases, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Xu
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Youchun Wang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.
| |
Collapse
|
27
|
Kinast V, Klöhn M, Nocke MK, Todt D, Steinmann E. Hepatitis E virus species barriers: seeking viral and host determinants. Curr Opin Virol 2022; 56:101274. [PMID: 36283248 DOI: 10.1016/j.coviro.2022.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022]
Abstract
The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either 'single-host' or 'multi-host' genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.
Collapse
Affiliation(s)
- Volker Kinast
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Maximilian K Nocke
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany.
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
28
|
Tréguier Y, Bull-Maurer A, Roingeard P. Apolipoprotein E, a Crucial Cellular Protein in the Lifecycle of Hepatitis Viruses. Int J Mol Sci 2022; 23:ijms23073676. [PMID: 35409035 PMCID: PMC8998859 DOI: 10.3390/ijms23073676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein E (ApoE) is a multifunctional protein expressed in several tissues, including those of the liver. This lipoprotein component is responsible for maintaining lipid content homeostasis at the plasma and tissue levels by transporting lipids between the liver and peripheral tissues. The ability of ApoE to interact with host-cell surface receptors and its involvement in several cellular pathways raised questions about the hijacking of ApoE by hepatotropic viruses. Hepatitis C virus (HCV) was the first hepatitis virus reported to be dependent on ApoE for the completion of its lifecycle, with ApoE being part of the viral particle, mediating its entry into host cells and contributing to viral morphogenesis. Recent studies of the hepatitis B virus (HBV) lifecycle have revealed that this virus and its subviral envelope particles also incorporate ApoE. ApoE favors HBV entry and is crucial for the morphogenesis of infectious particles, through its interaction with HBV envelope glycoproteins. This review summarizes the data highlighting the crucial role of ApoE in the lifecycles of HBV and HCV and discusses its potential role in the lifecycle of other hepatotropic viruses.
Collapse
Affiliation(s)
- Yannick Tréguier
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Anne Bull-Maurer
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
| | - Philippe Roingeard
- INSERM U1259 MAVIVH, Université de Tours et CHU de Tours, 37032 Tours, France; (Y.T.); (A.B.-M.)
- Plateforme IBiSA des Microscopies, Université de Tours et CHU de Tours, 37032 Tours, France
- Correspondence: ; Tel.: +33-0247-366-232
| |
Collapse
|
29
|
Cancela F, Noceti O, Arbiza J, Mirazo S. Structural aspects of hepatitis E virus. Arch Virol 2022; 167:2457-2481. [PMID: 36098802 PMCID: PMC9469829 DOI: 10.1007/s00705-022-05575-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is a leading cause of acute hepatitis worldwide. Hepatitis E is an enterically transmitted zoonotic disease that causes large waterborne epidemic outbreaks in developing countries and has become an increasing public-health concern in industrialized countries. In this setting, the infection is usually acute and self-limiting in immunocompetent individuals, although chronic cases in immunocompromised patients have been reported, frequently associated with several extrahepatic manifestations. Moreover, extrahepatic manifestations have also been reported in immunocompetent individuals with acute HEV infection. HEV belongs to the alphavirus-like supergroup III of single-stranded positive-sense RNA viruses, and its genome contains three partially overlapping open reading frames (ORFs). ORF1 encodes a nonstructural protein with eight domains, most of which have not been extensively characterized: methyltransferase, Y domain, papain-like cysteine protease, hypervariable region, proline-rich region, X domain, Hel domain, and RNA-dependent RNA polymerase. ORF2 and ORF3 encode the capsid protein and a multifunctional protein believed to be involved in virion release, respectively. The novel ORF4 is only expressed in HEV genotype 1 under endoplasmic reticulum stress conditions, and its exact function has not yet been elucidated. Despite important advances in recent years, the biological and molecular processes underlying HEV replication remain poorly understood, primarily due to a lack of detailed information about the functions of the viral proteins and the mechanisms involved in host-pathogen interactions. This review summarizes the current knowledge concerning HEV proteins and their biological properties, providing updated detailed data describing their function and focusing in detail on their structural characteristics. Furthermore, we review some unclear aspects of the four proteins encoded by the ORFs, highlighting the current key information gaps and discussing potential novel experimental strategies for shedding light on those issues.
Collapse
Affiliation(s)
- Florencia Cancela
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ofelia Noceti
- grid.414402.70000 0004 0469 0889Programa Nacional de Trasplante Hepático y Unidad Docente Asistencial Centro Nacional de Tratamiento Hepatobiliopancreatico. Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Juan Arbiza
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- grid.11630.350000000121657640Sección Virología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay ,grid.11630.350000000121657640Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay ,Av. Alfredo Navarro 3051, PC 11600 Montevideo, Uruguay
| |
Collapse
|
30
|
Bentaleb C, Hervouet K, Montpellier C, Camuzet C, Ferrié M, Burlaud-Gaillard J, Bressanelli S, Metzger K, Werkmeister E, Ankavay M, Janampa NL, Marlet J, Roux J, Deffaud C, Goffard A, Rouillé Y, Dubuisson J, Roingeard P, Aliouat-Denis CM, Cocquerel L. The endocytic recycling compartment serves as a viral factory for hepatitis E virus. Cell Mol Life Sci 2022; 79:615. [PMID: 36460928 PMCID: PMC9718719 DOI: 10.1007/s00018-022-04646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
Although hepatitis E virus (HEV) is the major leading cause of enterically transmitted viral hepatitis worldwide, many gaps remain in the understanding of the HEV lifecycle. Notably, viral factories induced by HEV have not been documented yet, and it is currently unknown whether HEV infection leads to cellular membrane modeling as many positive-strand RNA viruses. HEV genome encodes the ORF1 replicase, the ORF2 capsid protein and the ORF3 protein involved in virion egress. Previously, we demonstrated that HEV produces different ORF2 isoforms including the virion-associated ORF2i form. Here, we generated monoclonal antibodies that specifically recognize the ORF2i form and antibodies that recognize the different ORF2 isoforms. One antibody, named P1H1 and targeting the ORF2i N-terminus, recognized delipidated HEV particles from cell culture and patient sera. Importantly, AlphaFold2 modeling demonstrated that the P1H1 epitope is exposed on HEV particles. Next, antibodies were used to probe viral factories in HEV-producing/infected cells. By confocal microscopy, we identified subcellular nugget-like structures enriched in ORF1, ORF2 and ORF3 proteins and viral RNA. Electron microscopy analyses revealed an unprecedented HEV-induced membrane network containing tubular and vesicular structures. We showed that these structures are dependent on ORF2i capsid protein assembly and ORF3 expression. An extensive colocalization study of viral proteins with subcellular markers, and silencing experiments demonstrated that these structures are derived from the endocytic recycling compartment (ERC) for which Rab11 is a central player. Hence, HEV hijacks the ERC and forms a membrane network of vesicular and tubular structures that might be the hallmark of HEV infection.
Collapse
Affiliation(s)
- Cyrine Bentaleb
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Kévin Hervouet
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Claire Montpellier
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Charline Camuzet
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Martin Ferrié
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Julien Burlaud-Gaillard
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France ,Université de Tours et CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Stéphane Bressanelli
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-Sur-Yvette, France
| | - Karoline Metzger
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Elisabeth Werkmeister
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014-US41-PLBS-Plateformes Lilloises de Biologie and Santé, Lille, France
| | - Maliki Ankavay
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France ,Present Address: Division of Gastroenterology and Hepatology, Institute of Microbiology, Lausanne, Switzerland
| | - Nancy Leon Janampa
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France
| | - Julien Marlet
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France
| | | | | | - Anne Goffard
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Yves Rouillé
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Jean Dubuisson
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Philippe Roingeard
- grid.411167.40000 0004 1765 1600Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032 Tours, France ,Université de Tours et CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Cécile-Marie Aliouat-Denis
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laurence Cocquerel
- grid.503422.20000 0001 2242 6780University of Lille, CNRS, Inserm, CHU Lille, Pasteur Institute of Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000 Lille, France
| |
Collapse
|
31
|
The Viral ORF3 Protein Is Required for Hepatitis E Virus Apical Release and Efficient Growth in Polarized Hepatocytes and Humanized Mice. J Virol 2021; 95:e0058521. [PMID: 34523963 DOI: 10.1128/jvi.00585-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hepatitis E virus (HEV), an enterically transmitted RNA virus, is a major cause of acute hepatitis worldwide. Additionally, HEV genotype 3 (gt3) can frequently persist in immunocompromised individuals with an increased risk for developing severe liver disease. Currently, no HEV-specific treatment is available. The viral open reading frame 3 (ORF3) protein facilitates HEV egress in vitro and is essential for establishing productive infection in macaques. Thus, ORF3, which is unique to HEV, has the potential to be explored as a target for antiviral therapy. However, significant gaps exist in our understanding of the critical functions of ORF3 in HEV infection in vivo. Here, we utilized a polarized hepatocyte culture model and a human liver chimeric mouse model to dissect the roles of ORF3 in gt3 HEV release and persistent infection. We show that ORF3's absence substantially decreased HEV replication and virion release from the apical surface but not the basolateral surface of polarized hepatocytes. While wild-type HEV established a persistent infection in humanized mice, mutant HEV lacking ORF3 (ORF3null) failed to sustain the infection despite transient replication in the liver and was ultimately cleared. Strikingly, mice inoculated with the ORF3null virus displayed no fecal shedding throughout the 6-week experiment. Overall, our results demonstrate that ORF3 is required for HEV fecal shedding and persistent infection, providing a rationale for targeting ORF3 as a treatment strategy for HEV infection. IMPORTANCE HEV infections are associated with significant morbidity and mortality. HEV gt3 additionally can cause persistent infection, which can rapidly progress to liver cirrhosis. Currently, no HEV-specific treatments are available. The poorly understood HEV life cycle hampers the development of antivirals for HEV. Here, we investigated the role of the viral ORF3 protein in HEV infection in polarized hepatocyte cultures and human liver chimeric mice. We found that two major aspects of the HEV life cycle require ORF3: fecal virus shedding and persistent infection. These results provide a rationale for targeting ORF3 to treat HEV infection.
Collapse
|
32
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
33
|
Kerviel A, Zhang M, Altan-Bonnet N. A New Infectious Unit: Extracellular Vesicles Carrying Virus Populations. Annu Rev Cell Dev Biol 2021; 37:171-197. [PMID: 34270326 DOI: 10.1146/annurev-cellbio-040621-032416] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Adeline Kerviel
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Mengyang Zhang
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
34
|
Glitscher M, Hildt E. Hepatitis E virus egress and beyond - the manifold roles of the viral ORF3 protein. Cell Microbiol 2021; 23:e13379. [PMID: 34272798 DOI: 10.1111/cmi.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Although the hepatitis E virus represents an uprising threat to the global community by representing the commonest cause of an acute viral hepatitis worldwide, its life cycle is grossly understudied. Albeit HEV is a non-enveloped virus, its progeny is released as quasi-enveloped virions. Thus, the responsible accessory protein pORF3 gained rising attention in the past years. It mediates viral release via the exosomal route by targeting the viral capsid to the endosomal system, more precisely to multivesicular bodies. As this is followed by quasi-envelopment, pORF3 may in terms represent a substitute to a conventional envelope protein. This feature proofs to be rather unique with respect to other enteric viruses, although the protein's role in the viral life cycle seems to reach far beyond simply maintaining release of progeny viruses. How pORF3 affects viral morphogenesis, how it mediates efficient viral release and how it supports viral spread is summarised in this microreview. With this, we aim to shed light on functions of pORF3 to gain further insights in still enigmatic aspects of the HEV life cycle. TAKE AWAYS: HEV is released as exosome via multivesicular bodies Viral pORF3 mediates release via endosomal complexes required for transport pORF3 modulates various cellular processes in infected cells Elucidation of pORF3-related processes imply novel clinical strategies.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
35
|
Ji H, Chen S, He Q, Wang W, Gong S, Qian Z, Zhang Y, Wei D, Yu W, Huang F. The different replication between nonenveloped and quasi-enveloped hepatitis E virus. J Med Virol 2021; 93:6267-6277. [PMID: 34076903 DOI: 10.1002/jmv.27121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) is the major pathogen of viral hepatitis. However, the understanding of the HEV life cycle is limited. In the present study, cells were separately infected with nonenveloped HEV (derived from feces or bile) or quasi-enveloped HEV (derived from the cell culture after serial passages, eHEV) and observed by confocal fluorescence microscopy to investigate the life cycle of HEV. HEV finished its binding and entry into host cells at first 6 h postinoculation (hpi). Cells inoculated with eHEV showed less infectivity than cells inoculated with nonenveloped HEV. Newly synthesized progeny virions were released into the supernatant of cell cultures from 48 hpi. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis results showed that the supernatant's progeny viruses were infectious even after five serial passages. These results show the significant difference between nonenveloped HEV and eHEV, which will provide novel insights into the HEV replication cycle. The efficient cell culture of HEV will promote the development of anti-HEV drugs and vaccines.
Collapse
Affiliation(s)
- Hanbin Ji
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shuangfeng Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Qiuxia He
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenjing Wang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Shilin Gong
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Zhongyao Qian
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Yike Zhang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Daqiao Wei
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China.,Yunnan Provincial Key Laboratory of Clinical Virology, Kunming, PR China
| |
Collapse
|
36
|
Yang YL, Nan YC. Open reading frame 3 protein of hepatitis E virus: Multi-function protein with endless potential. World J Gastroenterol 2021; 27:2458-2473. [PMID: 34092969 PMCID: PMC8160619 DOI: 10.3748/wjg.v27.i20.2458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV), a fecal-orally transmitted foodborne viral pathogen, causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the identification of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. HEV-open reading frame (ORF) 3, the smallest ORF in HEV genomes, initially had been perceived as an unremarkable HEV accessory protein. However, as novel HEV-ORF3 function has been discovered that is related to the existence of a putative third virion structural form, referred to as “quasi-enveloped” HEV particles, HEV is challenging the conventional virion structure-based classification scheme, which assigns all viruses to two groups, “enveloped” or “non-enveloped”. In this review, we systematically describe recent progress that has identified multiple pathogenic roles of HEV-ORF3, including roles in HEV virion release, biogenesis of quasi-enveloped virus, regulation of the host innate immune response, and interference with host signaling pathways. In addition, implications of HEV-ORF3-associated quasi-enveloped virions are discussed to guide future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yong-Lin Yang
- Department of Infectious Diseases, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, Jiangsu Province, China
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yu-Chen Nan
- Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
37
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
38
|
Wang B, Meng XJ. Structural and molecular biology of hepatitis E virus. Comput Struct Biotechnol J 2021; 19:1907-1916. [PMID: 33995894 PMCID: PMC8079827 DOI: 10.1016/j.csbj.2021.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the most common causes of acute viral hepatitis, mainly transmitted by fecal-oral route but has also been linked to fulminant hepatic failure, chronic hepatitis, and extrahepatic neurological and renal diseases. HEV is an emerging zoonotic pathogen with a broad host range, and strains of HEV from numerous animal species are known to cross species barriers and infect humans. HEV is a single-stranded, positive-sense RNA virus in the family Hepeviridae. The genome typically contains three open reading frames (ORFs): ORF1 encodes a nonstructural polyprotein for virus replication and transcription, ORF2 encodes the capsid protein that elicits neutralizing antibodies, and ORF3, which partially overlaps ORF2, encodes a multifunctional protein involved in virion morphogenesis and pathogenesis. HEV virions are non-enveloped spherical particles in feces but exist as quasi-enveloped particles in circulating blood. Two types of HEV virus-like particles (VLPs), small T = 1 (270 Å) and native virion-sized T = 3 (320-340 Å) have been reported. There exist two distinct forms of capsid protein, the secreted form (ORF2S) inhibits antibody neutralization, whereas the capsid-associated form (ORF2C) self-assembles to VLPs. Four cis-reactive elements (CREs) containing stem-loops from secondary RNA structures have been identified in the non-coding regions and are critical for virus replication. This mini-review discusses the current knowledge and gaps regarding the structural and molecular biology of HEV with emphasis on the virion structure, genomic organization, secondary RNA structures, viral proteins and their functions, and life cycle of HEV.
Collapse
Affiliation(s)
- Bo Wang
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
39
|
Identification of the interferon-inducible GTPase GBP1 as major restriction factor for the Hepatitis E virus. J Virol 2021; 95:JVI.01564-20. [PMID: 33472929 PMCID: PMC8092694 DOI: 10.1128/jvi.01564-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This study aims to gain deeper insight into HEV-induced innate immunity by characterizing the crosstalk between the virus and the host factor guanylate-binding protein 1 (GBP1). We observe that the amount of GBP1 is elevated upon infection, although number of transcripts is decreased, which is explained by a prolonged protein half-life. Modulation of GBP1 levels via overexpression significantly inhibits the viral life cycle. Use of various GBP-1 mutants revealed that the antiviral effect of GBP-1 on HEV is independent from the GTPase-activity, but depends on the capacity of GBP-1 to form GBP1 homodimers. This connects GBP-1 to the autophagosomal pathway. Indeed, dimerization competent GBP1 targets the viral capsid protein to the lysosomal compartment leading to inactivation of the viral particle. Most importantly, silencing of GBP1 abolishes the antiviral effect of IFNγ on HEV. In IFNγ treated cells the virus is targeted to lysosomal structures and destroyed therein. This process depends in part on GBP1. These observations about the relevance of GBP1 for type II interferon-mediated innate immunity against HEV could be a base for tailoring novel antivirals and improvement of disease management.IMPORTANCE Although HEV represents a worldwide public health problem with 20 million infections and 44.000 death cases per year, there are still no specific antivirals available and many aspects of the viral life cycle are not well understood. Here we identify the guanylate binding protein 1 (GBP1) as a restriction factor affecting life cycle of HEV. Surprisingly, the antiviral effect of GBP1 does not depend on its GTPase function, but on its capacity to homodimerize. We revealed that GBP1 exerts its antiviral activity by targeting HEV to the lysosomal compartment where the virus is inactivated. Most importantly, we observed that the antiviral effect of interferon-γ on HEV strongly depends on GBP1. Our observation that GBP1 impairs HEV and is crucial for the antiviral effect of interferons on HEV extends understanding of host defense-mechanisms. As the interferon-system represents a universal defense-mechanism, our study could help to design novel antivirals targeting.
Collapse
|
40
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
41
|
Glitscher M, Martín DH, Woytinek K, Schmidt B, Tabari D, Scholl C, Stingl JC, Seelow E, Choi M, Hildt E. Targeting Cholesterol Metabolism as Efficient Antiviral Strategy Against the Hepatitis E Virus. Cell Mol Gastroenterol Hepatol 2021; 12:159-180. [PMID: 33601063 PMCID: PMC8099564 DOI: 10.1016/j.jcmgh.2021.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The Hepatitis E virus hijacks the endosomal system for its release. These structures are highly dependent on cholesterol. Hence, this study investigates the impact of HEV on cholesterol-metabolism, the effect of intracellular cholesterol content on HEV-release and the potential of cholesterol-modulators to serve as antivirals. METHODS Intracellular cholesterol-content of cells was modulated and impacts on HEV were monitored using qPCR, Western blot, microscopy, virus-titration and density-gradient centrifugation. Blood-lipids and HEV-RNA were routinely quantified in chronically infected patients during follow-up visits. RESULTS In HEV-infected cells, decreased levels of cholesterol are found. In patients, HEV infection decreases serum-lipid concentrations. Importantly, statin treatment herein increases viral titers. Similarly, reduction of intracellular cholesterol via simvastatin treatment increases viral release in vitro. On the contrary, elevating intracellular cholesterol via LDL or 25-hydroxycholesterol strongly reduces viral release due to enhanced lysosomal degradation of HEV. Drug-induced elevation of intracellular cholesterol via fenofibrate or PSC833 impairs HEV release via the same mechanism. CONCLUSIONS This study analyses the crosstalk between HEV and intracellular cholesterol. The results highlight the importance of an intact cholesterol homeostasis for HEV-release and thereby identify a potential target for antiviral strategies. Especially fenofibrate is considered a promising novel antiviral against HEV. Beyond this, the study may help clinicians evaluating co-treatments of HEV-infected patients with statins, as this may be counter indicated.
Collapse
Affiliation(s)
| | | | | | | | - Denna Tabari
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Evelyn Seelow
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mira Choi
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Eberhard Hildt
- Department Virology, Paul-Ehrlich-Institut, Langen, Germany,Correspondence Address requests for correspondence to Eberhard Hildt, Department Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany. fax: +49610377772140.
| |
Collapse
|
42
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Tallan A, Feng Z. Virus spread in the liver: mechanisms, commonalities, and unanswered questions. Future Virol 2020; 15:707-715. [PMID: 33250929 DOI: 10.2217/fvl-2020-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The liver is home to five known human hepatitis viruses (hepatitis A virus-hepatitis E virus). Despite being phylogenetically unrelated, these viruses replicate and spread in the liver without causing apparent cytopathic effects, and all have evolved strategies to counteract antibody-mediated inhibition of virus spread. In this review, we discuss the current understanding regarding the spread mechanisms for these viruses with an attempt to extract common principles and identify key questions for future studies.
Collapse
Affiliation(s)
- Alexi Tallan
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zongdi Feng
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus OH 43210, USA
| |
Collapse
|
44
|
Pallerla SR, Harms D, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT, Velavan TP. Hepatitis E Virus Infection: Circulation, Molecular Epidemiology, and Impact on Global Health. Pathogens 2020; 9:856. [PMID: 33092306 PMCID: PMC7589794 DOI: 10.3390/pathogens9100856] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Infection with hepatitis E virus (HEV) represents the most common source of viral hepatitis globally. Although infecting over 20 million people annually in endemic regions, with major outbreaks described since the 1950s, hepatitis E remains an underestimated disease. This review gives a current view of the global circulation and epidemiology of this emerging virus. The history of HEV, from the first reported enteric non-A non-B hepatitis outbreaks, to the discovery of the viral agent and the molecular characterization of the different human pathogenic genotypes, is discussed. Furthermore, the current state of research regarding the virology of HEV is critically assessed, and the challenges towards prevention and diagnosis, as well as clinical risks of the disease described. Together, these points aim to underline the significant impact of hepatitis E on global health and the need for further in-depth research to better understand the pathophysiology and its role in the complex disease manifestations of HEV infection.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
| | - Dominik Harms
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Reimar Johne
- Unit Viruses in Food, Department Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany;
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
- European Virus Bioinformatics Center (EVBC), 07743 Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, 44801 Bochum, Germany; (D.T.); (E.S.)
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jürgen J. Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, 93053 Regensburg, Germany; (M.S.); (J.J.W.)
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, 13353 Berlin, Germany;
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30623 Hannover, Germany;
- German Center for Infection Research, Partner Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - C.-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany; (S.R.P.); (T.P.V.)
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi 100000, Vietnam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
45
|
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) infections are the main causes for acute hepatitis worldwide. Both viruses had long been considered as nonenveloped viruses. However, recent work has uncovered that both viruses circulate in the bloodstream as membrane-cloaked, "quasi-enveloped" particles that are, surprisingly, infectious and likely the only form mediating virus spread within the host. The discovery of quasi-enveloped HAV and HEV particles has fundamentally changed the traditional view on the life cycle and pathogenesis of these viruses. However, because HAV and HEV are phylogenetically unrelated and their capsid assembly processes are quite distinct, it is not clear whether they use similar or different mechanisms for envelopment and exit. This review provides an overview of the current knowledge about the assembly and exit processes of HAV and HEV and perspectives for future studies.
Collapse
Affiliation(s)
- Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
46
|
Intercellular Transmission of Naked Viruses through Extracellular Vesicles: Focus on Polyomaviruses. Viruses 2020; 12:v12101086. [PMID: 32993049 PMCID: PMC7599864 DOI: 10.3390/v12101086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.
Collapse
|
47
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
48
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
49
|
Wallace SJ, Crossan C, Hussaini SH, Dalton HR. Hepatitis E: a largely underestimated, emerging threat. Br J Hosp Med (Lond) 2020; 80:399-404. [PMID: 31283400 DOI: 10.12968/hmed.2019.80.7.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus has two distinct clinical and epidemiological patterns based on the varying genotypes. Genotypes 3 and 4 cause widespread, sporadic infection in high-income countries and are emerging as the most common type of viral hepatitis in much of Europe. These infections carry significant morbidity and mortality in the growing numbers of immunosuppressed patients or in patients with established liver disease. Furthermore the growing extra-hepatic associations of the virus, including neurological and kidney injury, suggest that it may have been misnamed as a 'hepatitis' virus. This review explores current understanding of the epidemiology, virology and clinical presentations of hepatitis E infection and identifies vulnerable patient groups, who are at serious risk from infection. Guidance is offered regarding the diagnosis, treatment and prevention of this growing public health hazard.
Collapse
Affiliation(s)
- S J Wallace
- Speciality Registrar, Department of Gastroenterology, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN
| | - C Crossan
- Research Fellow, Department of Life Sciences, Glasgow Caledonian University, Glasgow
| | - S H Hussaini
- Consultant, Department of Gastroenterology, Royal Cornwall Hospital, Truro, Cornwall
| | - H R Dalton
- Retired Consultant, Department of Gastroenterology, Royal Cornwall Hospital, Truro, Cornwall
| |
Collapse
|
50
|
Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells. Virus Res 2020; 278:197868. [PMID: 31962066 DOI: 10.1016/j.virusres.2020.197868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/14/2023]
Abstract
Recent reports have shown that rat hepatitis E virus (HEV) is capable of infecting humans. We also successfully propagated rat HEV into human PLC/PRF/5 cells, raising the possibility of a similar mechanism shared by human HEV and rat HEV. Rat HEV has the proline-rich sequence, PxYPMP, in the open reading frame 3 (ORF3) protein that is indispensable for its release. However, the release mechanism remains unclear. The overexpression of dominant-negative (DN) mutant of vacuolar protein sorting (Vps)4A or Vps4B decreased rat HEV release to 23.9 % and 18.0 %, respectively. The release of rat HEV was decreased to 8.3 % in tumor susceptibility gene 101 (Tsg101)-depleted cells and to 31.5 % in apoptosis-linked gene 2-interacting protein X (Alix)-depleted cells. Although rat HEV ORF3 protein did not bind to Tsg101, we found a 90-kDa protein capable of binding to wild-type rat HEV ORF3 protein but not to ORF3 mutant with proline to leucine mutations in the PxYPMP motif. Rat HEV release was also decreased in Ras-associated binding 27A (Rab27A)- or hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-depleted cells (to 20.1 % and 18.5 %, respectively). In addition, the extracellular rat HEV levels in the infected PLC/PRF/5 cells were increased after treatment with Bafilomycin A1 and decreased after treatment with GW4869. These results indicate that rat HEV utilizes multivesicular body (MVB) sorting for its release and that the exosomal pathway is required for rat HEV egress. A host protein alternative to Tsg101 that can bind to rat HEV ORF3 should be explored in further study.
Collapse
|