1
|
Song J, Zhang J, Chen J, Chen S, Yu Z, He L, Ding K, Wei Y. Cinnamaldehyde Inhibits the Replication of Porcine Reproductive and Respiratory Syndrome Virus Type 2 In Vitro. Viruses 2025; 17:506. [PMID: 40284949 PMCID: PMC12031439 DOI: 10.3390/v17040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Globally, the swine industry suffers significant economic losses due to the presence of porcine reproductive and respiratory syndrome virus (PRRSV). Unfortunately, existing vaccines fail to offer adequate protection against the various strains of PRRSV, and there are currently no specific treatments available for this virus. In this study, we screened four natural products and identified cinnamaldehyde (CA) as an effective inhibitor of PRRSV infection in Marc-145 cells. CA could achieve an inhibition rate of up to 93% on PRRSV N protein at 160 μM. Mechanistically, CA exerted anti-PRRSV ability in different treatment modes. CA could directly interact with PRRSV particles. Cinnamaldehyde blocks the binding, entry, replication, and release of PRRSV. Furthermore, a significant reduction in dsRNA levels was observed in the CA-treated groups compared to the control groups. In conclusion, our research demonstrated that CA could inhibit essential stages of the PRRSV lifecycle: binding, entry, replication, and release. CA could directly interact with PRRSV. Additionally, CA disrupted the expression of dsRNA during viral replication, thereby suppressing in vitro PRRSV replication in Marc-145 cells. This study provides crucial perspectives on the potential application of CA for the prevention and treatment of PRRS.
Collapse
Affiliation(s)
- Junzhu Song
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jingyu Zhang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Ying Wei
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Ramamonjiharisoa MBM, Liu S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. Int J Mol Sci 2025; 26:1294. [PMID: 39941062 PMCID: PMC11818727 DOI: 10.3390/ijms26031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Programmed Ribosomal Frameshifting (PRF) is a mechanism that alters the mRNA reading frame during translation, resulting in the production of out-of-frame proteins. PRF plays crucial roles in maintaining cellular homeostasis and contributes significantly to disease pathogenesis, particularly in viral infections. Notably, PRF can induce immune responses in the SARS-CoV-2 mRNA vaccine, further extending its biological significance. These multiple aspects of PRF highlight its potential as a therapeutic target. Since PRF efficiency can be modulated by cellular factors, its expression or silencing is context-dependent. Therefore, a deeper understanding of PRF is essential for harnessing its therapeutic potential. This review explores PRF biological significance in disease and homeostasis. Such knowledge would serve as a foundation to advance therapeutic strategies targeting PRF modulation, especially in viral infections and vaccine development.
Collapse
Affiliation(s)
- Miora Bruna Marielle Ramamonjiharisoa
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Yang K, Dong J, Li J, Zhou R, Jia X, Sun Z, Zhang W, Li Z. The neonatal Fc receptor (FcRn) is required for porcine reproductive and respiratory syndrome virus uncoating. J Virol 2025; 99:e0121824. [PMID: 39651859 PMCID: PMC11784455 DOI: 10.1128/jvi.01218-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Previous studies from other groups showed that CD163 is required for PRRSV uncoating and genome release. However, CD163 does not interact with nucleocapsid (N) protein. In this study, the neonatal Fc receptor (FcRn) was demonstrated to be irreplaceable for PRRSV infection by knockdown, overexpression, antibodies or IgG blocking, knockout, and replenishment assays. FcRn was further revealed to be involved in PRRSV uncoating for the first time rather than viral attachment and internalization. In detail, FcRn was determined to colocalize with CD163 and PRRSV virions in early endosomes and specially interact with N protein in early endosomes. Taken together, these results provide evidence that FcRn is an essential cellular factor for PRRSV uncoating, which will be a promising target to interfere with the viral infection.IMPORTANCEPRRSV infection results in a severe swine disease affecting pig farming in the world. Although CD163 has been implicated as the uncoating receptor for PRRSV but the uncoating mechanism of PRRSV remains unclear. Here, we identified that FcRn facilitated virion uncoating via interaction with viral N protein in early endosomes. Our work actually expands the knowledge of PRRSV infection and provides an attractive therapeutic target for the prevention and control of PRRS.
Collapse
Affiliation(s)
- Kang Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiarui Dong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jian Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weida Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Ouyang Y, Du Y, Zhang H, Guo J, Sun Z, Luo X, Mei X, Xiao S, Fang L, Zhou Y. Genetic Characterization and Pathogenicity of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Strain in China. Viruses 2024; 16:993. [PMID: 38932283 PMCID: PMC11209116 DOI: 10.3390/v16060993] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.
Collapse
Affiliation(s)
- Yan Ouyang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbing Du
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hejin Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zheng Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiuxin Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xiaowei Mei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.O.); (Y.D.); (H.Z.); (J.G.); (Z.S.); (X.L.); (X.M.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
5
|
Wang T, Xia DS, Tian XX, Yang YB, An TQ. Antigenicity, epitope mapping, and intracellular distribution of the NSP7α protein of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2024; 265:130944. [PMID: 38493809 DOI: 10.1016/j.ijbiomac.2024.130944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen that causes huge economic losses to the global pig industry. Nonstructural protein 7α (NSP7α) of PRRSV is highly conserved among different lineages of PRRSV and could be a potential target for the development of detection methods. In this study, NSP7α was expressed in prokaryote (Escherichia coli) and purified. An NSP7α-ab-ELISA detection method was established, the NSP7α-ab-ELISA has 93.1 % coincidence rate with IDEXX PRRS X3 ab test kit. NSP7α antibody was detected in pig serum by ELISA 14 days following PRRSV infection. Three monoclonal antibodies (4H9, 3F2, and C10) against NSP7α prepared by a hybridoma technique were used for epitope mapping by indirect immunofluorescence. The 4H9, 3F2, and C10 antibodies all recognized the C-terminal 72-149 amino acid region of NSP7α. 4H9 reacted with amino acids 135-143, but 3F2 and C10 did not react with any truncated polypeptide. In addition, by using the monoclonal antibodies, NSP7α was localized solely in the cytoplasm, while the N protein was distributed in the cytoplasm and nucleus. The collective findings of the antigenicity and epitope of NSP7α will be helpful for understanding the antigenicity of NSP7α and developing PRRSV diagnostic methods.
Collapse
Affiliation(s)
- Tao Wang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da-Song Xia
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiao-Xiao Tian
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Bo Yang
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- National Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
6
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
7
|
Hsu CY, Jang Y, Huang WR, Wang CY, Wen HW, Tsai PC, Yang CY, Munir M, Liu HJ. Development of Polycistronic Baculovirus Surface Display Vectors to Simultaneously Express Viral Proteins of Porcine Reproductive and Respiratory Syndrome and Analysis of Their Immunogenicity in Swine. Vaccines (Basel) 2023; 11:1666. [PMID: 38005998 PMCID: PMC10674950 DOI: 10.3390/vaccines11111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
To simultaneously express and improve expression levels of multiple viral proteins of a porcine reproductive and respiratory syndrome virus (PRRSV), polycistronic baculovirus surface display vectors were constructed and characterized. We engineered polycistronic baculovirus surface display vectors, namely, pBacDual Display EGFP(BacDD)-2GP2-2GP4 and pBacDD-4GP5N34A/N51A (mtGP5), which simultaneously express and display the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP4-gp64TM-CTD, and His-tagged mtGP5-gp64TM-CTD fusion proteins of PRRSV on cell membrane of Sf-9 cells. Specific pathogen-free (SPF) pigs were administered intramuscularly in 2 doses at 21 and 35 days of age with genetic recombinant baculoviruses-infected cells. Our results revealed a high level of ELISA-specific antibodies, neutralizing antibodies, IL-4, and IFN-γ in SPF pigs immunized with the developed PRRSV subunit vaccine. To further assess the co-expression efficiency of different gene combinations, pBacDD-GP2-GP3-2GP4 and pBacDD-2mtGP5-2M constructs were designed for the co-expression of the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP3-gp64TM-CTD, and His-tagged GP4-gp64TM-CTD proteins as well as the ectodomain of His-tagged mtGP5-gp64TM-CTD and His-tagged M-gp64TM-CTD fusion proteins of PRRSV. To develop an ELISA assay for detecting antibodies against PRRSV proteins, the sequences encoding the ectodomain of the GP2, GP3, GP4, mtGP5, and M of PRRSV were amplified and subcloned into the pET32a vector and expressed in E. coli. In this work, the optimum conditions for expressing PRRSV proteins were evaluated, and the results suggested that 4 × 105 of Sf-9 cells supplemented with 7% fetal bovine serum and infected with the recombinant baculoviruses at an MOI of 20 for three days showed a higher expression levels of the protein. Taken together, the polycistronic baculovirus surface display system is a useful tool to increase expression levels of viral proteins and to simultaneously express multiple viral proteins of PRRSV for the preparation of subunit vaccines.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun Jang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Li J, Zhou Y, Zhao W, Liu J, Ullah R, Fang P, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus degrades DDX10 via SQSTM1/p62-dependent selective autophagy to antagonize its antiviral activity. Autophagy 2023; 19:2257-2274. [PMID: 36779599 PMCID: PMC10351467 DOI: 10.1080/15548627.2023.2179844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus devastating the global swine industry. DEAD-box helicases (DDXs) are a family of ATP-dependent RNA helicases that are predominantly implicated in modulating cellular RNA metabolism. Meanwhile, a growing number of studies have suggested that some DDXs are associated with innate immunity and virus infection, so they are considered potential antiviral targets. Herein, we screened 40 DDXs and found that ectopic expression of DDX10 exhibited a significant anti-PRRSV effect, while DDX10 knockdown promoted PRRSV proliferation. Further analysis revealed that DDX10 positively regulates type I interferon production, which may contribute to its anti-PRRSV effect. Interestingly, PRRSV infection promoted DDX10 translocation from the nucleus to the cytoplasm for macroautophagic/autophagic degradation to block the antiviral effect of DDX10. By screening PRRSV-encoded proteins, we found that the viral envelope (E) protein interacted with DDX10. In line with the autophagic degradation of DDX10 during PRRSV infection, E protein could induce autophagy and reduce DDX10 expression in wild-type cells, but not in ATG5 or ATG7 knockout (KO) cells. When further screening the cargo receptors for autophagic degradation, we found that SQSTM1/p62 (sequestosome 1) interacted with both DDX10 and E protein, and E protein-mediated DDX10 degradation was almost entirely blocked in SQSTM1 KO cells, demonstrating that E protein degrades DDX10 by promoting SQSTM1-mediated selective autophagy. Our study reveals a novel mechanism by which PRRSV escapes host antiviral innate immunity through selective autophagy, providing a new target for developing anti-PRRSV drugs.Abbreviations: ACTB: actin beta; ATG: autophagy related; co-IP: co-immunoprecipitation; CQ: chloroquine; DDX10: DEAD-box helicase 10; E: envelope; EGFP: enhanced green fluorescent protein; hpi: hours post infection; hpt: hours post transfection; IFA: indirect immunofluorescence assay; IFN-I: type I IFN; IFNB/IFN-β: interferon beta; IRF3: interferon regulatory factor 3; ISGs: interferon-stimulated genes; KO: knockout; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; mAb: monoclonal antibody; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; OPTN: optineurin; ORF: open reading frame; PRRSV: porcine reproductive and respiratory syndrome virus; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: 50% tissue culture infective dose; WT: wild type.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wenkai Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Jiao Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Rizwan Ullah
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhannull, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
9
|
PRRSV nonstructural protein 11 degrades swine ISG15 by its endoribonuclease activity to antagonize antiviral immune response. Vet Microbiol 2023; 280:109720. [PMID: 36921497 DOI: 10.1016/j.vetmic.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped positive-stranded RNA virus which causes serious economic losses to pig industry worldwide. Type I IFN induces expression of interferon-stimulated genes 15 (ISG15) to inhibit virus replication. To survive in the host, PRRSV has evolved to antagonize the antiviral response of ISGylation. Previous studies have reported that nonstructural protein 2 of PRRSV inhibits the ISGylation and antiviral function of ISG15 depending on its ovarian tumor (OTU) domain/papain-like protease domain (PLP2). However, whether there are other PRRSV proteins inhibiting ISGylation of cellular proteins is less well understood. In this study, we first found that PRRSV Nsp11 decreased ISGylation of cellular proteins. Meanwhile, the expression level of ISG15 was significantly inhibited by Nsp11. Further mechanistic studies demonstrated that the transcription of ISG15 was reduced by endoribonuclease activity of Nsp11. Finally, we found that the Nsp11-induced degradation of ISG15 was partially relied on autophagy-lysosome system. Taken together, PRRSV Nsp11 antagonizes the antiviral response of ISG15 by its endoribonuclease activity to promote PRRSV replication. Our results reveal a novel mechanism that PRRSV inhibits ISGylation of cellular proteins and impairs host innate immune response.
Collapse
|
10
|
Zhou Y, Li Y, Tao R, Li J, Fang L, Xiao S. Porcine Reproductive and Respiratory Syndrome Virus nsp5 Induces Incomplete Autophagy by Impairing the Interaction of STX17 and SNAP29. Microbiol Spectr 2023; 11:e0438622. [PMID: 36815765 PMCID: PMC10101144 DOI: 10.1128/spectrum.04386-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that has devastated the worldwide swine industry for over 30 years. Autophagy is an evolutionarily conserved intracellular lysosomal degradation pathway, and previous studies have documented that PRRSV infection prompts autophagosome accumulation. However, whether PRRSV induces complete or incomplete autophagy remains controversial. Here, we demonstrated that overexpression of PRRSV nonstructural protein 5 (nsp5) induced the accumulation of autophagosomes, and a similar scenario was observed in PRRSV-infected cells. Moreover, both PRRSV infection and nsp5 overexpression activated incomplete autophagy, as evidenced by the blockage of autophagosome-lysosome fusion. Mechanistically, nsp5 overexpression, as well as PRRSV infection, inhibited the interaction of syntaxin 17 (STX17) with synaptosomal-associated protein 29 (SNAP29), two SNARE proteins that mediate autophagosome fusion with lysosomes, to impair the formation of autolysosomes. We further confirmed that nsp5 interacted with STX17, rather than SANP29, and the interacting domains of STX17 were the N-terminal motif and SNARE motif. Taken together, the findings of our study suggest a mechanism by which PRRSV induces incomplete autophagy by blocking autophagosome degradation and provide insights into the development of new therapeutics to combat PRRSV infection. IMPORTANCE A substantial number of viruses have been demonstrated to utilize or hijack autophagy to benefit their replication. In the case of porcine reproductive and respiratory syndrome virus (PRRSV), previous studies have demonstrated the proviral effects of autophagy on PRRSV proliferation. Thus, an investigation of the mechanism by which PRRSV regulates the autophagy processes can provide new insight into viral pathogenesis. Autophagic flux is a dynamic process that consists of autophagosome formation and subsequent lysosomal degradation. However, the exact effect of PRRSV infection on the autophagic flux remains disputed. In this study, we demonstrated that PRRSV infection, as well as PRRSV nsp5 overexpression, inhibited the interaction of STX17 with SNAP29 to impair the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux. This information will help us to understand PRRSV-host interactions and unravel new targets for PRRS prevention and control.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
11
|
Ye N, Wang B, Feng W, Tang D, Zeng Z. PRRS virus receptors and an alternative pathway for viral invasion. Virus Res 2022; 320:198885. [PMID: 35948131 DOI: 10.1016/j.virusres.2022.198885] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has a highly restricted cell tropism, which is closely related to the specific receptors associated with PRRSV infection. At least nine cellular molecules have been identified as putative receptors for PRRSV, including CD163, a cysteine-rich scavenger receptor. With the participation of the CD163 receptor and other cofactors, PRRSV invades cells via low pH-dependent clathrin-mediated endocytosis. In addition, PRRSV utilizes viral apoptotic mimicry to infect cells though macropinocytosis as an alternative pathway. In this review, we discuss recent advances in the studies on receptors and pathways that play an important role in PRRSV invasion, and simultaneously explore the use of specific antibodies, small molecules, and blockers targeting receptor-ligand interactions, as a potential strategy for controlling PRRSV infection. Novel antiviral strategies against PRRSV could be developed by identifying the interaction between receptors and ligands.
Collapse
Affiliation(s)
- Ni Ye
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bin Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Wei Feng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Deyuan Tang
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Chen Q, Zhou J, Yang Z, Guo J, Liu Z, Sun X, Jiang Q, Fang L, Wang D, Xiao S. An intermolecular salt bridge linking substrate binding and P1 substrate specificity switch of arterivirus 3C-like proteases. Comput Struct Biotechnol J 2022; 20:3409-3421. [PMID: 35832618 PMCID: PMC9271976 DOI: 10.1016/j.csbj.2022.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose a major threat to the equine- and swine-breeding industries throughout the world. Previously, we and others demonstrated that PRRSV 3C-like protease (3CLpro) had very high glutamic acid (Glu)-specificity at the P1 position (P1-Glu). Comparably, EAV 3CLpro exhibited recognition of both Glu and glutamine (Gln) at the P1 position. However, the underlying mechanisms of the P1 substrate specificity shift of arterivirus 3CLpro remain unclear. We systematically screened the specific amino acids in the S1 subsite of arterivirus 3CLpro using a cyclized luciferase-based biosensor and identified Gly116, His133 and Ser136 (using PRRSV 3CLpro numbering) are important for recognition of P1-Glu, whereas Ser136 is nonessential for recognition of P1-Gln. Molecular dynamics simulations and biochemical experiments highlighted that the PRRSV 3CLpro and EAV 3CLpro formed distinct S1 subsites for the P1 substrate specificity switch. Mechanistically, a specific intermolecular salt bridge between PRRSV 3CLpro and substrate P1-Glu (Lys138/P1-Glu) are invaluable for high Glu-specificity at the P1 position, and the exchange of K138T (salt bridge interruption, from PRRSV to EAV) shifted the specificity of PRRSV 3CLpro toward P1-Gln. In turn, the T139K exchange of EAV 3CLpro showed a noticeable shift in substrate specificity, such that substrates containing P1-Glu are likely to be recognized more efficiently. These findings identify an evolutionarily accessible mechanism for disrupting or reorganizing salt bridge with only a single mutation of arterivirus 3CLpro to trigger a substrate specificity switch.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zhixiang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zimin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xinyi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qingshi Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
13
|
Yan X, Shang P, Yim-im W, Sun Y, Zhang J, Firth AE, Lowe J, Fang Y. Molecular characterization of emerging variants of PRRSV in the United States: new features of the -2/-1 programmed ribosomal frameshifting signal in the nsp2 region. Virology 2022; 573:39-49. [DOI: 10.1016/j.virol.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
14
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
15
|
Li J, Wang D, Fang P, Pang Y, Zhou Y, Fang L, Xiao S. DEAD-Box RNA Helicase 21 (DDX21) Positively Regulates the Replication of Porcine Reproductive and Respiratory Syndrome Virus via Multiple Mechanisms. Viruses 2022; 14:v14030467. [PMID: 35336874 PMCID: PMC8949431 DOI: 10.3390/v14030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) remains a persistent hazard in the global pig industry. DEAD (Glu-Asp-Ala-Glu) box helicase 21 (DDX21) is a member of the DDX family. In addition to its function of regulating cellular RNA metabolism, DDX21 also regulates innate immunity and is involved in the replication cycle of some viruses. However, the relationship between DDX21 and PRRSV has not yet been explored. Here, we found that a DDX21 overexpression promoted PRRSV replication, whereas knockdown of DDX21 reduced PRRSV proliferation. Mechanistically, DDX21 promoted PRRSV replication independently of its ATPase, RNA helicase, and foldase activities. Furthermore, overexpression of DDX21 stabilized the expressions of PRRSV nsp1α, nsp1β, and nucleocapsid proteins, three known antagonists of interferon β (IFN-β). Knockdown of DDX21 activated the IFN-β signaling pathway in PRRSV-infected cells, suggesting that the effect of DDX21 on PRRSV-encoded IFN-β antagonists may be a driving factor for its contribution to viral proliferation. We also found that PRRSV infection enhanced DDX21 expression and promoted its nucleus-to-cytoplasm translocation. Screening PRRSV-encoded proteins showed that nsp1β interacted with the C-terminus of DDX21 and enhanced the expression of DDX21. Taken together, these findings reveal that DDX21 plays an important role in regulating PRRSV proliferation through multiple mechanisms.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yu Pang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (D.W.); (P.F.); (Y.P.); (Y.Z.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
16
|
Yu X, Zhu X, Chen X, Li D, Xu Q, Yao L, Sun Q, Ghonaim AH, Ku X, Fan S, Yang H, He Q. Establishment of a Blocking ELISA Detection Method for Against African Swine Fever Virus p30 Antibody. Front Vet Sci 2022; 8:781373. [PMID: 34977214 PMCID: PMC8718596 DOI: 10.3389/fvets.2021.781373] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease of domestic pigs caused by African swine fever virus (ASFV). A sensitive and reliable serological diagnostic assay is required, so laboratories can effectively and quickly detect ASFV infection. The p30 protein is abundantly expressed early in cells and has excellent antigenicity. Therefore, this study aimed to produce and characterize p30 monoclonal antibodies with an ultimate goal of developing a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for ASFV antibody detection. Three monoclonal antibodies against p30 protein that were expressed in E. coli were generated, and their characterizations were investigated. Furthermore, a blocking ELISA based on a monoclonal antibody was developed. To evaluate the performance of the assay, 186 sera samples (88 negative and 98 positive samples) were analyzed and a receiver-operating characteristic (ROC) analysis was applied to determine the cutoff value. Based on the ROC analysis, the area under the curve (AUC) was 0.997 (95% confidence interval: 99.2 to 100%). Besides, a diagnostic sensitivity of 97.96% (95% confidence interval: 92.82 to 99.75%) and a specificity of 98.96% (95% confidence interval: 93.83 to 99.97%) were achieved when the cutoff value was set to 38.38%. Moreover, the coefficients of inter- and intra-batches were <10%, indicating the good repeatability of the method. The maximum dilution of positive standard serum detected by this ELISA method was 1:512. The blocking ELISA was able to detect seroconversion in two out of five pigs at 10 Dpi and the p30 response increasing trend through the time course of the study (0–20 Dpi). In conclusion, the p30 mAb-based blocking ELISA developed in this study demonstrated a high repeatability with maximized diagnostic sensitivity and specificity. The assay could be a useful tool for field surveillance and epidemiological studies in swine herd.
Collapse
Affiliation(s)
- Xuexiang Yu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xianjing Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaoyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dongfan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qian Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lun Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Sun
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ahmed H Ghonaim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Desert Research Center, Cairo, Egypt
| | - Xugang Ku
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shengxian Fan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hanchun Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qigai He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
17
|
Guo J, Liu Z, Tong X, Wang Z, Xu S, Chen Q, Zhou J, Fang L, Wang D, Xiao S. Evolutionary Dynamics of Type 2 Porcine Reproductive and Respiratory Syndrome Virus by Whole-Genome Analysis. Viruses 2021; 13:v13122469. [PMID: 34960738 PMCID: PMC8706008 DOI: 10.3390/v13122469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen in the swine industry, is a genetically highly diverse RNA virus. However, the phylogenetic and genomic recombination properties of this virus are not yet fully understood. In this study, we performed an integrated analysis of all available whole-genome sequences of type 2 PRRSV (n = 901) to reveal its evolutionary dynamics. The results showed that there were three distinct phylogenetic lineages of PRRSV in their distribution patterns. We identified that sublineage 2.7 (L2.7), associated with a NADC30 cluster, had the highest substitution rate and higher viral genetic diversity, and inter-lineage recombination is observed more frequently in L2.7 PRRSV compared to other sublineages. Most inter-lineage recombination events detected are observed between L2.7 PRRSVs (as major parents) and L3.4 (a JXA1-R-related cluster)/L3.7 (a WUH3-related cluster) PRRSVs (as minor parents). Moreover, the recombination hotspots are located in the structural protein gene ORF2 and ORF4, or in the non-structural protein gene nsp7. In addition, a GM2-related cluster, L3.2, shows inconsistent recombination modes compared to those of L2.7, suggesting that it may have undergone extensive and unique recombination in their evolutionary history. We also identified several amino acids under positive selection in GP2, GP4 and GP5, the major glycoproteins of PRRSV, showing the driving force behind adaptive evolution. Taken together, our results provide new insights into the evolutionary dynamics of PPRSV that contribute to our understanding of the critical factors involved in its evolution and guide future efforts to develop effective preventive measures against PRRSV.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zimin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xue Tong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Zixin Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Qian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junwei Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: or ; Tel.: +86-27-8728-6884; Fax: +86-27-8728-2608
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.G.); (Z.L.); (X.T.); (Z.W.); (S.X.); (Q.C.); (J.Z.); (L.F.); (S.X.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
18
|
Ke W, Zhou Y, Lai Y, Long S, Fang L, Xiao S. Porcine reproductive and respiratory syndrome virus nsp4 positively regulates cellular cholesterol to inhibit type I interferon production. Redox Biol 2021; 49:102207. [PMID: 34911669 PMCID: PMC8758914 DOI: 10.1016/j.redox.2021.102207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular cholesterol plays an important role in the life cycles of enveloped viruses. Previous studies by our group and other groups have demonstrated that the depletion of cellular cholesterol by methyl-β-cyclodextrin (MβCD) reduces the proliferation of porcine reproductive and respiratory syndrome virus (PRRSV), a porcine Arterivirus that has been devastating the swine industry worldwide for over two decades. However, how PRRSV infection regulates cholesterol synthesis is not fully understood. In this study, we showed that PRRSV infection upregulated the activity of protein phosphatase 2 (PP2A), which subsequently activated 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme in the cholesterol synthesis pathway, to increase the levels of cellular cholesterol. By screening the PRRSV-encoded proteins, we showed that nsp4 dominated the upregulation of cellular cholesterol, independently of the 3C-like protease activity of nsp4. A mutation analysis showed that domain I (amino acids 1–80) of PRRSV nsp4 interacted with PR65 alpha (PR65α), the structural subunit, and PP2Ac, the catalytic subunit, of PP2A. Importantly, domain I of nsp4 inhibited Sendai virus-induced interferon β production, and this inhibitory effect was eliminated by Lovastatin, an HMGCR inhibitor, indicating that the upregulation of cellular cholesterol by nsp4 is a strategy used by PRRSV to suppress the antiviral innate immunity of its host. Collectively, we here demonstrated the mechanism by which PRRSV regulates cellular cholesterol synthesis and reported a novel strategy by which PRRSV evades its host's antiviral innate immune response. PRRSV nsp4 up-regulates cellular cholesterol via the PP2A-HMGCR pathway. Nsp4 domain I (amino acids 1–80) interacts with A and C subunits of PP2A. Nsp4 domain I inhibits IFN-I production by upregulating cellular cholesterol. The HMGCR inhibitor Lovastatin inhibits PRRSV proliferation.
Collapse
Affiliation(s)
- Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yinan Lai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Siwen Long
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
19
|
The Function of the PRRSV-Host Interactions and Their Effects on Viral Replication and Propagation in Antiviral Strategies. Vaccines (Basel) 2021; 9:vaccines9040364. [PMID: 33918746 PMCID: PMC8070056 DOI: 10.3390/vaccines9040364] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) affects the global swine industry and causes disastrous economic losses each year. The genome of PRRSV is an enveloped single-stranded positive-sense RNA of approximately 15 kb. The PRRSV replicates primarily in alveolar macrophages of pig lungs and lymphatic organs and causes reproductive problems in sows and respiratory symptoms in piglets. To date, studies on how PRRSV survives in the host, the host immune response against viral infections, and pathogenesis, have been reported. PRRSV vaccines have been developed, including inactive virus, modified live virus, attenuated live vaccine, DNA vaccine, and immune adjuvant vaccines. However, there are certain problems with the durability and effectiveness of the licensed vaccines. Moreover, the high variability and fast-evolving populations of this RNA virus challenge the design of PRRSV vaccines, and thus effective vaccines against PRRSV have not been developed successfully. As is well known, viruses interact with the host to escape the host’s immune response and then replicate and propagate in the host, which is the key to virus survival. Here, we review the complex network and the mechanism of PRRSV–host interactions in the processes of virus infection. It is critical to develop novel antiviral strategies against PRRSV by studying these host–virus interactions and structures to better understand the molecular mechanisms of PRRSV immune escape.
Collapse
|
20
|
A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny. PLoS Pathog 2021; 17:e1009403. [PMID: 33735221 PMCID: PMC7971519 DOI: 10.1371/journal.ppat.1009403] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell’s exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly. Arteriviruses are a rapidly expanding family of positive-stranded RNA viruses, which includes economically important veterinary pathogens like equine arteritis virus (EAV) and two species of porcine reproductive and respiratory syndrome virus (PRRSV-1 and PRRSV-2). In our previous studies, we uncovered an unprecedented arterivirus gene expression mechanism: a highly efficient -2 programmed ribosomal frameshift (PRF) that is controlled by an interaction of viral protein nsp1ß with specific RNA sequences and host poly(C) binding proteins. It is used by PRRSVs, and most other arteriviruses, to efficiently produce a previously unknown nonstructural protein variant, nsp2TF. In this study, we demonstrate that PRRSV nsp2TF interacts with the two major arteriviral envelope proteins, GP5 and M, whose heterodimerization in the secretory pathway is a key step in envelope protein trafficking and virus assembly. Our findings suggest that nsp2TF promotes arterivirus assembly by antagonizing the ubiquitination-dependent proteasomal degradation of GP5 and M proteins. This mechanism is based on the DUB activity of the PLP2 protease domain located within the N-terminal region of nsp2TF. To our knowledge, this is the first study to demonstrate that viruses can express a DUB that functions specifically to counteract the ubiquitination and degradation of key viral structural proteins.
Collapse
|
21
|
Patel A, Treffers EE, Meier M, Patel TR, Stetefeld J, Snijder EJ, Mark BL. Molecular characterization of the RNA-protein complex directing -2/-1 programmed ribosomal frameshifting during arterivirus replicase expression. J Biol Chem 2020; 295:17904-17921. [PMID: 33127640 PMCID: PMC7939443 DOI: 10.1074/jbc.ra120.016105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs -1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical -1 and -2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1β (nsp1β) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1β and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate -1 and -2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1β and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1β:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1β within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1β and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1β and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism.
Collapse
Affiliation(s)
- Ankoor Patel
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Emmely E Treffers
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Trushar R Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
22
|
Porcine reproductive and respiratory syndrome virus Nsp4 cleaves ZAP to antagonize its antiviral activity. Vet Microbiol 2020; 250:108863. [PMID: 33035816 DOI: 10.1016/j.vetmic.2020.108863] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens impacting the global swine industry. PRRSV has been recognized to modulate the host immune response through a number of mechanisms. In our previous study, we found that over-expression of ZAP, a zinc finger antiviral protein of host, could suppress PRRSV replication, but how PRRSV escape the restriction of ZAP under natural conditions was still unknown. In this study, We found PRRSV infection significantly down-regulate the endogenous ZAP protein expression in Marc-145 cells. And PRRSV nonstructural protein 4 (Nsp4), a 3C-like serine proteinase, was screened to be responsible for ZAP reduction. Nsp4 could cleave ZAP, depending on its protease activity. The anti-PRRSV activity of ZAP was antagonized by Nsp4 in Marc-145 cells. In addition, we identified a unique amino acid, serine 180 of Nsp4 was required for efficient degradation of ZAP, and the mutation at residue 180 could decrease the ability of recombinant PRRSV to degrade ZAP. Those findings reveal a manner of PRRSV Nsp4 antagonizing the antiviral activity of ZAP, and shed light on a new strategy evolved by PRRSV to escape the host defense.
Collapse
|
23
|
Wei ZY, Liu F, Li Y, Wang HL, Zhang ZD, Chen ZZ, Feng WH. Aspartic acid at residue 185 modulates the capacity of HP-PRRSV nsp4 to antagonize IFN-I expression. Virology 2020; 546:79-87. [PMID: 32452419 PMCID: PMC7172695 DOI: 10.1016/j.virol.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
In a previous study, we have shown that highly-pathogenic PRRSV (HP-PRRSV) nonstructural protein 4 (nsp4) antagonizes type I IFN expression induced by poly(I:C). Here, we demonstrated that the mutation of Aspartic acid 185 (Asp185) impaired the ability of nsp4 to inhibit IFN-I production induced by poly(I:C). Subsequently, we verified that all the mutants at the residue 185, regardless of amino acid size (including Cys and Ser) and charge (including Glu and Lys), impaired nsp4 catalytic activity. However, when Asp185 in nsp4 was replaced by a similar structure amino acid Asparagine 185 (Asn185), nsp4 stayed but with a decreased protease activity. Importantly, the recombinant virus with Asn185 mutation in HP-PRRSV-nsp4 exhibited slower replication rate and higher ability to induce IFN-I expression compared with wild-type (wt) HP-PRRSV.
Collapse
Affiliation(s)
- Ze-Yu Wei
- State Key Laboratory of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Sciences, China
| | - Fang Liu
- State Key Laboratory of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Sciences, China
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, China; Department of Botany, College of Biological Sciences, China
| | - Hong-Lei Wang
- State Key Laboratory of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Sciences, China
| | - Zi-Ding Zhang
- State Key Laboratory of Agrobiotechnology, China; Department of Botany, College of Biological Sciences, China
| | - Zhong-Zhou Chen
- State Key Laboratory of Agrobiotechnology, China; Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, China; Department of Microbiology and Immunology, College of Biological Sciences, China.
| |
Collapse
|
24
|
Zhang Y, Gao F, Li L, Zhao K, Jiang S, Jiang Y, Yu L, Zhou Y, Liu C, Tong G. Porcine Reproductive and Respiratory Syndrome Virus Antagonizes PCSK9's Antiviral Effect via Nsp11 Endoribonuclease Activity. Viruses 2020; 12:v12060655. [PMID: 32560445 PMCID: PMC7354446 DOI: 10.3390/v12060655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in the swine industry worldwide. Our previous study had indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9) was a responsive gene in porcine alveolar macrophages (PAMs) upon PRRSV infection. However, whether PCSK9 impacts the PRRSV replication and how the PRRSV modulates host PCSK9 remains elusive. Here, we demonstrated that PCSK9 protein suppressed the replication of both type-1 and type-2 PRRSV species. More specifically, the C-terminal domain of PCSK9 was responsible for the antiviral activity. Besides, we showed that PCSK9 inhibited PRRSV replication by targeting the virus receptor CD163 for degradation through the lysosome. In turn, PRRSV could down-regulate the expression of PCSK9 in both PAMs and MARC-145 cells. By screening the nonstructural proteins (nsps) of PRRSV, we showed that nsp11 could antagonize PCSK9’s antiviral activity. Furthermore, mutagenic analyses of PRRSV nsp11 revealed that the endoribonuclease activity of nsp11 was critical for antagonizing the antiviral effect of PCSK9. Collectively, our data provide further insights into the interaction between PRRSV and the cell host and offer a new potential target for the antiviral therapy of PRRSV.
Collapse
Affiliation(s)
- Yujiao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Fei Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Liwei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Kuan Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Shan Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Lingxue Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Yanjun Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Correspondence: (C.L.); (G.T.)
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (Y.Z.); (F.G.); (L.L.); (K.Z.); (S.J.); (Y.J.); (L.Y.); (Y.Z.)
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.L.); (G.T.)
| |
Collapse
|
25
|
Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus. Virology 2020; 543:63-75. [PMID: 32174300 PMCID: PMC7112050 DOI: 10.1016/j.virol.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Viruses exploit phosphorylation of both viral and host proteins to support viral replication. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus replicase nsp2, and two nsp2-related −2/−1 frameshifting products, nsp2TF and nsp2N, are hyper-phosphorylated. By mapping phosphorylation sites, we subdivide an extended, previously uncharacterized region, located between the papain-like protease-2 (PLP2) domain and frameshifting site, into three distinct domains. These domains include two large hypervariable regions (HVR) with putative intrinsically disordered structures, separated by a conserved and partly structured interval domain that we defined as the inter-HVR conserved domain (IHCD). Abolishing phosphorylation of the inter-species conserved residue serine918, which is located within the IHCD region, abrogates accumulation of viral genomic and subgenomic RNAs and recombinant virus production. Our study reveals the biological significance of phosphorylation events in nsp2-related proteins, emphasizes pleiotropic functions of nsp2-related proteins in the viral life cycle, and presents potential links to pathogenesis.
Collapse
|
26
|
Porcine Reproductive and Respiratory Syndrome Virus E Protein Degrades Porcine Cholesterol 25-Hydroxylase via the Ubiquitin-Proteasome Pathway. J Virol 2019; 93:JVI.00767-19. [PMID: 31341055 DOI: 10.1128/jvi.00767-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 01/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome is one of the most important infectious diseases affecting the global pig industry. Previous studies from our group and other groups showed that cholesterol 25-hydroxylase (CH25H), a multitransmembrane endoplasmic reticulum-associated enzyme, catalyzes the production of 25-hydroxycholesterol (25HC) and inhibits porcine reproductive and respiratory syndrome virus (PRRSV) replication. However, PRRSV infection also actively decreases porcine CH25H (pCH25H) expression, through unidentified mechanisms. In this study, we found that the ubiquitin-proteasome pathway plays a major role in pCH25H degradation during PRRSV infection and that the PRRSV-encoded envelope (E) protein interacts with pCH25H. PRRSV E protein degraded pCH25H via ubiquitination, and the ubiquitination site was at pCH25H Lys28. Interestingly, PRRSV E protein appeared to specifically degrade pCH25H but not human CH25H, likely because of a Lys28Arg substitution in the human orthologue. As expected, ubiquitin-mediated degradation by E protein attenuated the antiviral effect of pCH25H by downregulating 25HC production. In addition, we found that knockdown of pCH25H decreased E protein-induced inflammatory cytokine expression and that pCH25H overexpression had the opposite effect. These findings suggested that regulation of pCH25H expression was associated with E protein-induced inflammatory responses. Taken together, our results and those of previous studies of the anti-PRRSV effects of CH25H highlight the complex interplay between PRRSV and pCH25H.IMPORTANCE CH25H has received significant attention due to its broad antiviral activity, which it mediates by catalyzing the production of 25HC. Most studies have focused on the antiviral mechanisms of CH25H; however, whether viruses also actively regulate CH25H expression has not yet been reported. Previous studies demonstrated that pCH25H inhibits PRRSV replication not only via production of 25HC but also by ubiquitination and degradation of viral nonstructural protein 1α. In this study, we expanded on previous work and found that PRRSV actively degrades pCH25H through the ubiquitin-proteasome pathway. PRRSV E protein, a viral structural protein, is involved in this process. This study reveals a novel mechanism of interaction between virus and host during PRRSV infection.
Collapse
|
27
|
Li Y, Firth AE, Brierley I, Cai Y, Napthine S, Wang T, Yan X, Kuhn JH, Fang Y. Programmed -2/-1 Ribosomal Frameshifting in Simarteriviruses: an Evolutionarily Conserved Mechanism. J Virol 2019; 93:e00370-19. [PMID: 31167906 PMCID: PMC6675879 DOI: 10.1128/jvi.00370-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1β, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1β of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1β are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1β, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1βs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yingyun Cai
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Sawsan Napthine
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Tao Wang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
- Yangzhou University, Yangzhou, People's Republic of China
| | - Xingyu Yan
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
28
|
Chen J, Wang D, Sun Z, Gao L, Zhu X, Guo J, Xu S, Fang L, Li K, Xiao S. Arterivirus nsp4 Antagonizes Interferon Beta Production by Proteolytically Cleaving NEMO at Multiple Sites. J Virol 2019; 93:e00385-19. [PMID: 30944180 PMCID: PMC6613749 DOI: 10.1128/jvi.00385-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.
Collapse
Affiliation(s)
- Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Li Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
29
|
Petrovan V, Yuan F, Li Y, Shang P, Murgia MV, Misra S, Rowland RRR, Fang Y. Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Res 2019; 269:197632. [PMID: 31129172 DOI: 10.1016/j.virusres.2019.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Among the structural proteins that compose the virion of African swine fever virus (ASFV), p30 is one of the most immunogenic proteins and is produced during early stage of ASFV infection. These two characteristics make p30 a good target for diagnostic assays to detect ASFV infection. In this study, we describe a panel of newly generated p30-specific monoclonal antibodies (mAbs). The reactivity of these mAbs was confirmed by immunoprecipitation and Western blot analysis in Vero cells infected with alphavirus replicon particles that express p30 (RP-p30). Furthermore, this panel of mAbs recognized ASFV strains BA71 V (Genotype I) and Georgia/2007 (Genotype II) in immunofluorescence assays on virus-infected Vero cells and swine macrophages, respectively. These mAbs also detected p30 expression by immunohistochemistry in tissue samples from ASFV-infected pigs. Epitope mapping revealed that a selected mAb from the panel recognized a linear epitope within the 32-amino acid region, 61-93. In contrast, two of the mAbs recognize the C-terminal region of the protein, which is highly hydrophilic, enriched in glutamic acid residues, and predicted to contain an intrinsically disordered protein region (IDPR). This panel of mAbs and mAb-based diagnostic assays potentially represent valuable tools for ASFV detection, surveillance and disease control.
Collapse
Affiliation(s)
- Vlad Petrovan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Fangfeng Yuan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Maria V Murgia
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Saurav Misra
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 1711 Claflin Road, Manhattan, KS 66506, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
30
|
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 2019; 6:38. [PMID: 30842948 PMCID: PMC6391865 DOI: 10.3389/fvets.2019.00038] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important swine diseases in the world. It is causing an enormous economic burden due to reproductive failure in sows and a complex respiratory syndrome in pigs of all ages, with mortality varying from 2 to 100% in the most extreme cases of emergent highly pathogenic strains. PRRSV displays complex interactions with the immune system and a high mutation rate, making the development, and implementation of control strategies a major challenge. In this review, the biology of the virus will be addressed focusing on newly discovered functions of non-structural proteins and novel dissemination mechanisms. Secondly, the role of different cell types and viral proteins will be reviewed in natural and vaccine-induced immune response together with the role of different immune evasion mechanisms focusing on those gaps of knowledge that are critical to generate more efficacious vaccines. Finally, novel strategies for antigen discovery and vaccine development will be discussed, in particular the use of exosomes (extracellular vesicles of endocytic origin). As nanocarriers of lipids, proteins and nucleic acids, exosomes have potential effects on cell activation, modulation of immune responses and antigen presentation. Thus, representing a novel vaccination approach against this devastating disease.
Collapse
Affiliation(s)
- Sergio Montaner-Tarbes
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| | - Hernando A Del Portillo
- Innovex Therapeutics S.L, Badalona, Spain.,Germans Trias i Pujol Health Science Research Institute, Badalona, Spain.,ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Montoya
- Innovex Therapeutics S.L, Badalona, Spain.,Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Lorenzo Fraile
- Innovex Therapeutics S.L, Badalona, Spain.,Departamento de Ciencia Animal, Escuela Técnica Superior de Ingenieria Agraria (ETSEA), Universidad de Lleida, Lleida, Spain
| |
Collapse
|
31
|
Mapping the Nonstructural Protein Interaction Network of Porcine Reproductive and Respiratory Syndrome Virus. J Virol 2018; 92:JVI.01112-18. [PMID: 30282705 DOI: 10.1128/jvi.01112-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive-stranded RNA virus belonging to the family Arteriviridae Synthesis of the viral RNA is directed by replication/transcription complexes (RTC) that are mainly composed of a network of PRRSV nonstructural proteins (nsps) and likely cellular proteins. Here, we mapped the interaction network among PRRSV nsps by using yeast two-hybrid screening in conjunction with coimmunoprecipitation (co-IP) and cotransfection assays. We identified a total of 24 novel interactions and found that the interactions were centered on open reading frame 1b (ORF1b)-encoded nsps that were mainly connected by the transmembrane proteins nsp2, nsp3, and nsp5. Interestingly, the interactions of the core enzymes nsp9 and nsp10 with transmembrane proteins did not occur in a straightforward manner, as they worked in the co-IP assay but were poorly capable of finding each other within intact mammalian cells. Further proof that they can interact within cells required the engineering of N-terminal truncations of both nsp9 and nsp10. However, despite the poor colocalization relationship in cotransfected cells, both nsp9 and nsp10 came together with membrane proteins (e.g., nsp2) at the viral replication and transcription complexes (RTC) in PRRSV-infected cells. Thus, our results indicate the existence of a complex interaction network among PRRSV nsps and raise the possibility that the recruitment of key replicase proteins to membrane-associated nsps may involve some regulatory mechanisms during infection.IMPORTANCE Synthesis of PRRSV RNAs within host cells depends on the efficient and correct assembly of RTC that takes places on modified intracellular membranes. As an important step toward dissecting this poorly understood event, we investigated the interaction network among PRRSV nsps. Our studies established a comprehensive interaction map for PRRSV nsps and revealed important players within the network. The results also highlight the likely existence of a regulated recruitment of the PRRSV core enzymes nsp9 and nsp10 to viral membrane nsps during PRRSV RTC assembly.
Collapse
|
32
|
Double-stranded viral RNA persists in vitro and in vivo during prolonged infection of porcine reproductive and respiratory syndrome virus. Virology 2018; 524:78-89. [DOI: 10.1016/j.virol.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
|
33
|
Liu Y, Hu Y, Chai Y, Liu L, Song J, Zhou S, Su J, Zhou L, Ge X, Guo X, Han J, Yang H. Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virol Sin 2018; 33:429-439. [PMID: 30353315 PMCID: PMC6235764 DOI: 10.1007/s12250-018-0054-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/30/2018] [Indexed: 01/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1a and ORF1b. In particular, translation of ORF1b depends on a -1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8, addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 kDa (72-95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8-9ORF1b, but not the ORF1b-coded portion (nsp9ORF1b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72-95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8-nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9. Our findings here paves way for further charactering the biological function of PRRSV nsp9.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yunhao Hu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yue Chai
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Liping Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jiangwei Song
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaochuan Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jia Su
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
34
|
Chung CJ, Cha SH, Grimm AL, Ajithdoss D, Rzepka J, Chung G, Yu J, Davis WC, Ho CS. Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells that kill virus infected cells. PLoS One 2018; 13:e0203482. [PMID: 30188946 PMCID: PMC6126854 DOI: 10.1371/journal.pone.0203482] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is difficult to control because the virus undergoes antigenic variation during infection and also modulates the protective host immune response. Although current vaccines do not provide full protection, they have provided insight into the mechanisms of protection. Live PRRSV vaccines induce partial protection before the appearance of neutralizing antibody, suggesting cell-mediated immunity or other mechanisms may be involved. Herein, we demonstrate recovery from infection is associated with development of cytotoxic T-lymphocytes (CTL) that can kill PRRSV-infected target cells. Initial experiments showed survival of PRRSV-infected monocyte derived macrophage (MDM) targets is reduced when overlaid with peripheral blood mononuclear cells (PBMC) from gilts that had recovered from PRRSV infection. Further studies with PBMC depleted of either CD4+ or CD8+ T-cells and positively selected subpopulations of CD4+ and CD8+ T-cells showed that both CD4+ and CD8+ T-cells were involved in killing. Examination of killing at different time points revealed killing was biphasic and mediated by CTL of different phenotypes. CD4+CD8+high were associated with killing target cells infected for 3–6 hours. CD4+CD8- CTL were associated with killing at 16–24 hours. Thus, all the anti-PRRSV CTL activity in pigs was attributed to two phenotypes of CD4+ cells which is different from the anti-viral CD4-CD8+ CTL phenotype found in most other animals. These findings will be useful for evaluating CTL responses induced by current and future vaccines, guiding to a novel direction for future vaccine development.
Collapse
Affiliation(s)
- Chungwon J. Chung
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- VMRD Inc., Pullman, Washington, United States of America
- * E-mail: (CJC); (SHC)
| | - Sang-Ho Cha
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- * E-mail: (CJC); (SHC)
| | | | - Dharani Ajithdoss
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joanna Rzepka
- VMRD Inc., Pullman, Washington, United States of America
| | - Grace Chung
- VMRD Inc., Pullman, Washington, United States of America
| | - Jieun Yu
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Chak-Sum Ho
- Gift of life Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
35
|
Tao R, Fang L, Bai D, Ke W, Zhou Y, Wang D, Xiao S. Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 4 Cleaves Porcine DCP1a To Attenuate Its Antiviral Activity. THE JOURNAL OF IMMUNOLOGY 2018; 201:2345-2353. [DOI: 10.4049/jimmunol.1701773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
|
36
|
Porcine Reproductive and Respiratory Syndrome Virus Infection Induces both eIF2α Phosphorylation-Dependent and -Independent Host Translation Shutoff. J Virol 2018; 92:JVI.00600-18. [PMID: 29899101 DOI: 10.1128/jvi.00600-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has caused tremendous economic losses in the global swine industry since it was discovered in the late 1980s. Inducing host translation shutoff is a strategy used by many viruses to optimize their replication and spread. Here, we demonstrate that PRRSV infection causes host translation suppression, which is strongly dependent on viral replication. By screening PRRSV-encoded nonstructural proteins (nsps), we found that nsp2 participates in the induction of host translation shutoff and that its transmembrane (TM) domain is required for this process. nsp2-induced translation suppression is independent of protein degradation pathways and the phosphorylation of eukaryotic initiation factor 2α (eIF2α). However, the overexpression of nsp2 or its TM domain significantly attenuated the mammalian target of rapamycin (mTOR) signaling pathway, an alternative pathway for modulating host gene expression. PRRSV infection also attenuated the mTOR signaling pathway, and PRRSV-induced host translation shutoff could be partly reversed when the attenuated mTOR phosphorylation was reactivated by an activator of the mTOR pathway. PRRSV infection still negatively regulated the host translation when the effects of eIF2α phosphorylation were completely reversed. Taken together, our results demonstrate that PRRSV infection induces host translation shutoff and that nsp2 is associated with this process. Both eIF2α phosphorylation and the attenuation of the mTOR signaling pathway contribute to PRRSV-induced host translation arrest.IMPORTANCE Viruses are obligate parasites, and the production of progeny viruses relies strictly on the host translation machinery. Therefore, the efficient modulation of host mRNA translation benefits viral replication, spread, and evolution. In this study, we provide evidence that porcine reproductive and respiratory syndrome virus (PRRSV) infection induces host translation shutoff and that the viral nonstructural protein nsp2 is associated with this process. Many viruses induce host translation shutoff by phosphorylating eukaryotic initiation factor 2α (eIF2α). However, PRRSV nsp2 does not induce eIF2α phosphorylation but attenuates the mTOR signaling pathway, another pathway regulating the host cell translational machinery. We also found that PRRSV-induced host translation shutoff was partly reversed by eliminating the effects of eIF2α phosphorylation or reactivating the mTOR pathway, indicating that PRRSV infection induces both eIF2α phosphorylation-dependent and -independent host translation shutoff.
Collapse
|
37
|
Global analysis of ubiquitome in PRRSV-infected pulmonary alveolar macrophages. J Proteomics 2018; 184:16-24. [DOI: 10.1016/j.jprot.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022]
|
38
|
Nan H, Lan J, Tian M, Dong S, Tian J, Liu L, Xu X, Chen H. The Network of Interactions Among Porcine Reproductive and Respiratory Syndrome Virus Non-structural Proteins. Front Microbiol 2018; 9:970. [PMID: 29867873 PMCID: PMC5960727 DOI: 10.3389/fmicb.2018.00970] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
The RNA synthesis of porcine reproductive and respiratory syndrome virus (PRRSV), a positive-strand RNA virus, is compartmentalized in virus-induced double-membrane vesicles where viral proteins and some cellular proteins assemble into replication and transcription complexes (RTCs). The viral replicase proteins are the major components of the RTCs but the physical associations among these non-structural proteins (nsps) remain elusive. In this study, we investigated the potential interactions between PRRSV nsps by yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BiFC) and pull-down assays. Our analyses revealed a complex network of interactions involving most of PRRSV nsps. Among them, nsp9 and nsp12 were identified as the hubs of the nsp interactome; transmembrane proteins nsp2 and nsp5 both interacted with nsp3, indicating that the three membrane-bound proteins might bind together to form the scaffold to support the association of RTCs with the intracellular membrane. The PRRSV nsp interactions identified in this study may provide valuable clues for future researches on the RTC formation and function.
Collapse
Affiliation(s)
- Hao Nan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jixun Lan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengmeng Tian
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shan Dong
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiao Tian
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Long Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
ZHANG ZB, XU L, WEN XX, DONG JG, ZHOU L, GE XN, YANG HC, GUO X. Identification of the strain-specifically truncated nonstructural protein 10 of porcine reproductive and respiratory syndrome virus in infected cells. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2018; 17:1171-1180. [PMID: 32288956 PMCID: PMC7128467 DOI: 10.1016/s2095-3119(17)61896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/29/2018] [Indexed: 06/11/2023]
Abstract
The nonstructural protein 10 (nsp10) of porcine reproductive and respiratory syndrome virus (PRRSV) encodes for helicase which plays a vital role in viral replication. In the present study, a truncated form of nsp10, termed nsp10a, was found in PRRSV-infected cells and the production of nsp10a was strain-specific. Mass spectrometric analysis and deletion mutagenesis indicated that nsp10a may be short of about 70 amino acids in the N terminus of nsp10. Further studies by rescuing recombinant viruses showed that the Glu-69 in nsp10 was the key amino acid for nsp10a production. Finally, we demonstrated that nsp10a exerted little influence on the growth kinetics of PRRSV in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Han-chun YANG
- Correspondence YANG Han-chun, Tel/Fax: +86-10-62731296
| | - Xin GUO
- GUO Xin, Tel/Fax: +86-10-62732875
| |
Collapse
|
40
|
Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology 2018; 517:122-134. [DOI: 10.1016/j.virol.2017.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022]
|
41
|
Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology 2018; 517:164-176. [PMID: 29325778 PMCID: PMC5884420 DOI: 10.1016/j.virol.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Recently, we identified a unique -2/-1 ribosomal frameshift mechanism in PRRSV, which yields two truncated forms of nonstructural protein (nsp) 2 variants, nsp2TF and nsp2N. Here, in vitro expression of individual PRRSV nsp2TF and nsp2N demonstrated their ability to suppress cellular innate immune responses in transfected cells. Two recombinant viruses were further analyzed, in which either nsp2TF was C-terminally truncated (vKO1) or expression of both nsp2TF and nsp2N was knocked out (vKO2). Host cellular mRNA profiling showed that a panel of cellular immune genes, in particular those involved in innate immunity, was upregulated in cells infected with vKO1 and vKO2. Compared to the wild-type virus, vKO1 and vKO2 expedited the IFN-α response and increased NK cell cytotoxicity, and subsequently enhanced T cell immune responses in infected pigs. Our data strongly implicate nsp2TF/nsp2N in arteriviral immune evasion and demonstrate that nsp2TF/nsp2N-deficient PRRSV is less capable of counteracting host innate immune responses. In vitro expression of PRRSV nsp2TF/nsp2N affects cellular innate immune response. Nsp2TF/nsp2N suppressed immune genes expression in PRRSV-infected cells. Nsp2TF/nsp2N-deficient mutants showed attenuated growth in vivo. Nsp2TF/nsp2N-deficient mutants induced augmented immune responses in infected pigs.
Collapse
|
42
|
Wang FX, Yang Y, Liu X, He MH, Liu Y, Sun N, Zhu HW, Ren JQ, Wu H, Wen YJ. Development of monoclonal antibody for differentiating porcine reproductive and respiratory syndrome virus and identification of a novel non-structural protein 2 epitope peptide. Virusdisease 2017; 28:408-415. [PMID: 29291232 PMCID: PMC5747843 DOI: 10.1007/s13337-017-0400-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 08/29/2017] [Indexed: 10/25/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein (NP) is the immunodominant region of PRRSV viral proteins. Non-structural protein 2 (Nsp2) and its hypervariable region play an essential role in the differential diagnosis of PRRSV. Western blot and immunofluorescence assay (IFA) analyses found that 2 out of 18 monoclonal antibodies (MAbs) recognized the NP and that 5 of 11 MAbs recognized Nsp2-120aa. IFA data demonstrated that 2 MAbs raised against the NP have a positive reaction to PRRSV; either HP-PRRSV, classic PRRSV or the vaccine strain at 1:100 dilution. Two MAbs raise against Nsp2-120aa also react positively with the classic PRRSV nor HP-PRRSV, but not with the PRRSV vaccine strain TJM-F92. Epitope mapping using truncated proteins identified a novel Nsp2-120aa epitope. In addition, we show that MAb BR/PNsp2-2A20 recognizes a 20 amino acid peptide (707) GRFEFLPKMILETPPPHPCG (727) of Nsp2. Based on our findings, we propose that MAb BR/PNsp2-2A20, raised against Nsp2-120aa of PRRSV, as a candidate specific diagnostic MAb for differentiation of the PRRSV virulent strains infected pig from vaccine strain TJM-F92 inoculated ones. The MAbs developed here have potential for use in diagnostic and research tools, including immunofluorescence assay, enzyme-linked immunosorbent assay and Western blotting.
Collapse
Affiliation(s)
- Feng-Xue Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Yong Yang
- Wuxi Medical School, Jiangnan University, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Xing Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Min-Hui He
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Ying Liu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Na Sun
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Hong-Wei Zhu
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Jing-Qiang Ren
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
| | - Hua Wu
- Sinovet (Beijing) Biotechnology Co., Ltd, B302 Zhongguancun Biomedical Park, 5 Shangdikaituo Road, Beijing, People’s Republic of China
| | - Yong-Jun Wen
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, No. 4899, Juye Avenue, Jingyue Economic and Technological Development Zone, Changchun, 130112 Jilin People’s Republic of China
- Inner Mongolia Agricultural University, 306 Zhaowuda Rd, Saihan Region, Hohhot, People’s Republic of China
| |
Collapse
|
43
|
Cholesterol 25-Hydroxylase Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication through Enzyme Activity-Dependent and -Independent Mechanisms. J Virol 2017; 91:JVI.00827-17. [PMID: 28724759 DOI: 10.1128/jvi.00827-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol 25-hydroxylase (CH25H) has recently been identified as a host restriction factor that exerts antiviral effects by catalyzing the production of 25-hydroxycholesterol (25HC). CH25H can be rapidly induced upon infection with some viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, has ranked among the most important swine pathogens since it was discovered in the late 1980s. In this study, we found that PRRSV infection significantly downregulated the expression of CH25H in cells by a so-far unknown mechanism, suggesting that CH25H exerts antiviral activity against PRRSV. Indeed, overexpression of CH25H inhibited PRRSV replication, whereas knockdown of CH25H by short interfering RNA (siRNA) promoted PRRSV infection. The anti-PRRSV effect of 25HC operates via inhibition of viral penetration. Interestingly, a CH25H mutant (CH25H-M) lacking hydroxylase activity still inhibited PRRSV infection. Screening using a yeast two-hybrid system followed by coimmunoprecipitation and immunofluorescence colocalization analyses confirmed that both CH25H and CH25H-M interact with the nonstructural protein 1 alpha (nsp1α) of PRRSV. Unexpectedly, the expression of nsp1α decreased following coexpression with CH25H or CH25H-M. Detailed analyses demonstrated that CH25H/CH25H-M could degrade nsp1α through the ubiquitin-proteasome pathway and that site K169 in the nsp1α protein is the key site of ubiquitination. Taken together, our findings demonstrate that CH25H restricts PRRSV replication by targeting viral penetration as well as degrading nsp1α, revealing a novel antiviral mechanism used by CH25H.IMPORTANCE PRRSV has been a continuous threat to the global swine industry, and current vaccines are insufficient to provide sustainable control. CH25H has been found to exert a broad antiviral effect; thus, it is an attractive target for the development of anti-PRRSV drugs. Here, we demonstrate that CH25H is an interferon-stimulated gene that is highly expressed in porcine alveolar macrophages. CH25H exerts its anti-PRRSV effect not only via the production of 25HC to inhibit viral penetration but also by degrading viral protein through the ubiquitin-proteasome pathway, suggesting that CH25H is a candidate for the development of antiviral therapeutics. However, PRRSV infection appears to actively decrease CH25H expression to promote viral replication, highlighting the complex game between PRRSV and its host.
Collapse
|
44
|
Leng C, Zhang W, Zhang H, Kan Y, Yao L, Zhai H, Li M, Li Z, Liu C, An T, Peng J, Wang Q, Leng Y, Cai X, Tian Z, Tong G. ORF1a of highly pathogenic PRRS attenuated vaccine virus plays a key role in neutralizing antibody induction in piglets and virus neutralization in vitro. Virol J 2017; 14:159. [PMID: 28830563 PMCID: PMC5568364 DOI: 10.1186/s12985-017-0825-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens in swine in most countries, especially China. Two PRRSV attenuated live vaccine strains (HuN4-F112 and CH-1R) are currently widely used in China. Our previous study showed that HuN4-F112, but not CH-1R, induced high anti-nucleocapsid (N) antibody and neutralizing antibody (NA) titers. Additionally, sera from HuN4-F112 inoculated pigs induced low cross neutralization of CH-1R. METHODS In the present study, 6 chimeric viruses through exchanging 5' untranslated region (UTR) + open reading frame (ORF)1a, ORF1b, and ORF2-7 + 3'UTR between HuN4-F112 and CH-1R were constructed and rescued based on the infectious clones of rHuN4-F112 and rCH-1R. The characteristics of these viruses were investigated in vitro and vivo. RESULTS All the three fragments, 5'UTR + ORF1a, ORF1b, and ORF2-7 + 3'UTR, could affect the replication efficiencies of rHuN4-F112 and rCH-1R in vitro. Additionally, both 5'UTR + ORF1a and ORF2-7 + 3'UTR affected the anti-N antibody and NA responses targeting rHuN4-F112 and rCH-1R in piglets. CONCLUSIONS The 5'UTR + ORF1a region of HuN4-F112 played a key role in inducing NAs in piglets. Furthermore, we confirmed for the first time that ORF1a contains a neutralization region. This study provides important information that can be used for further study of the generation of anti-PRRSV NAs.
Collapse
Affiliation(s)
- Chaoliang Leng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China.,Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Wuchao Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Yunchao Kan
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Lunguang Yao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Hongyue Zhai
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Mingliang Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang, 473061, China
| | - Zhen Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Chunxiao Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Yumin Leng
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China
| | - Zhijun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China.
| | - Guangzhi Tong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427, Maduan Street, Nangang District, Harbin, 150001, China. .,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518, Ziyue Road, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
45
|
Wang H, Liu R, Zhang W, Sun L, Ning Z, Ji F, Cui J, Zhang G. Identification of epitopes on nonstructural protein 7 of porcine reproductive and respiratory syndrome virus recognized by monoclonal antibodies using phage-display technology. Virus Genes 2017; 53:623-635. [PMID: 28597195 DOI: 10.1007/s11262-017-1472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
Nonstructural protein 7 (nsp7) of porcine reproductive and respiratory syndrome virus (PRRSV) is considered to be a suitable reagent for the development of serological diagnostic assays. It can be expressed as a soluble recombinant protein in Escherichia coli, and its antibody response may continue up to 202 days post-infection. Furthermore, the region encoded by nsp7 is highly homologous among various strains within the genotype, and the results of nsp7-based enzyme-linked immunosorbent assay (ELISA) showed high agreement with previous Idexx ELISA results. All these evidences suggest the existence of important epitopes on nsp7, though the characteristics of these epitopes remain unclear. In the present study, we prepared three monoclonal antibodies against nsp7 protein and used them to screen the epitope-distribution characteristics of PRRSV nsp7 protein by phage-display technology. We identified a linear epitope NAWGDEDRLN at amino acids 153-162 type II PRRSV nsp7β subunit. This newly defined epitope showed excellent reactivity with PRSSV-positive serum samples. These results further our understanding of the antigenic structure of nsp7 protein, and provide efficient reagents for PRRSV serological tests.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Rongchang Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian Province, China
| | - Weidong Zhang
- Hospital of South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Lingshuang Sun
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, China
| | - Fangxiao Ji
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China
| | - Jin Cui
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong Province, China.
- MOA Key Laboratory of Animal Vaccine Development, Guangzhou, 510642, Guangdong Province, China.
| |
Collapse
|
46
|
A Naturally Occurring Recombinant Enterovirus Expresses a Torovirus Deubiquitinase. J Virol 2017; 91:JVI.00450-17. [PMID: 28490584 DOI: 10.1128/jvi.00450-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
Enteroviruses (EVs) are implicated in a wide range of diseases in humans and animals. In this study, a novel enterovirus (enterovirus species G [EVG]) (EVG 08/NC_USA/2015) was isolated from a diagnostic sample from a neonatal pig diarrhea case and identified by using metagenomics and complete genome sequencing. The viral genome shares 75.4% nucleotide identity with a prototypic EVG strain (PEV9 UKG/410/73). Remarkably, a 582-nucleotide insertion, flanked by 3Cpro cleavage sites at the 5' and 3' ends, was found in the 2C/3A junction region of the viral genome. This insertion encodes a predicted protease with 54 to 68% amino acid identity to torovirus (ToV) papain-like protease (PLP) (ToV-PLP). Structural homology modeling predicts that this protease adopts a fold and a catalytic site characteristic of minimal PLP catalytic domains. This structure is similar to those of core catalytic domains of the foot-and-mouth disease virus leader protease and coronavirus PLPs, which act as deubiquitinating and deISGylating (interferon [IFN]-stimulated gene 15 [ISG15]-removing) enzymes on host cell substrates. Importantly, the recombinant ToV-PLP protein derived from this novel enterovirus also showed strong deubiquitination and deISGylation activities and demonstrated the ability to suppress IFN-β expression. Using reverse genetics, we generated a ToV-PLP knockout recombinant virus. Compared to the wild-type virus, the ToV-PLP knockout mutant virus showed impaired growth and induced higher expression levels of innate immune genes in infected cells. These results suggest that ToV-PLP functions as an innate immune antagonist; enterovirus G may therefore gain fitness through the acquisition of ToV-PLP from a recombination event.IMPORTANCE Enteroviruses comprise a highly diversified group of viruses. Genetic recombination has been considered a driving force for viral evolution; however, recombination between viruses from two different orders is a rare event. In this study, we identified a special case of cross-order recombination between enterovirus G (order Picornavirales) and torovirus (order Nidovirales). This naturally occurring recombination event may have broad implications for other picornaviral and/or nidoviral species. Importantly, we demonstrated that the exogenous ToV-PLP gene that was inserted into the EVG genome encodes a deubiquitinase/deISGylase and potentially suppresses host cellular innate immune responses. Our results provide insights into how a gain of function through genetic recombination, in particular cross-order recombination, may improve the ability of a virus to evade host immunity.
Collapse
|
47
|
Chen J, Xu X, Tao H, Li Y, Nan H, Wang Y, Tian M, Chen H. Structural Analysis of Porcine Reproductive and Respiratory Syndrome Virus Non-structural Protein 7α (NSP7α) and Identification of Its Interaction with NSP9. Front Microbiol 2017; 8:853. [PMID: 28553277 PMCID: PMC5425468 DOI: 10.3389/fmicb.2017.00853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Non-structural protein 7 (NSP7), which can be further cleaved into NSP7α and NSP7β, is one of the most conserved proteins of porcine reproductive and respiratory syndrome virus (PRRSV). NSP7 plays a role in provoking the humoral immune system in PRRSV-infected swine, but its structure and function are still not fully understood. Here, we analyzed the expression of NSP7, NSP7α, and NSP7β in PRRSV-infected MARC-145 cells. The solution structure of NSP7α was determined by using nuclear magnetic resonance (NMR). Although the structure provided little clue to its function, based on the structure of NSP7α, we predicted and further identified some key amino acids on NSP7α for the interaction of NSP7α with NSP9, the RNA dependent RNA polymerase of PRRSV. This study provided some new insights into the structure and function of PRRSV NSP7.
Collapse
Affiliation(s)
- Jiaping Chen
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hu Tao
- College of Science, Northwest A&F UniversityYangling, China
| | - Yuan Li
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hao Nan
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Yuanyuan Wang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Mengmeng Tian
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F UniversityYangling, China
| |
Collapse
|
48
|
Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 2017; 13:e1006206. [PMID: 28231264 PMCID: PMC5322883 DOI: 10.1371/journal.ppat.1006206] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5) region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs) and peripheral blood monocytes (PBMCs) were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs) show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages. Porcine Reproductive and Respiratory Syndrome is an endemic infectious disease of pigs, manifesting differently in pigs of different ages but primarily causing late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV). PRRSV only infects a specific subset of cells of the innate immune system of the monocyte/macrophage lineage. Previous research found that the virus needs a specific receptor, CD163, in order to make its own membrane fuse with the host cell membrane in an uptake vesicle to release the viral genetic information into the cytosol and achieve a successful infection. CD163 has a pearl-on-a-string structure, whereby the “pearl”/ domain number 5 was found to interact with the virus and allow it to infect a cell. Here we describe how we generated pigs lacking the CD163 subdomain 5 using so-called CRISPR/Cas9 gene editing in zygotes. The pigs were healthy under normal husbandry conditions and other biological functions conducted by the CD163 were found to be intact. We isolated a variety of monocyte and macrophage cells from these pigs and found them to be completely resistant to PRRSV infection.
Collapse
Affiliation(s)
- Christine Burkard
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Simon G. Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Elizabeth Reid
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | - Ben Jackson
- The Pirbright Institute, Ash Road, Pirbright, Woking, United Kingdom
| | | | - Tahar Ait-Ali
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex. J Virol 2017; 91:JVI.01911-16. [PMID: 27881655 DOI: 10.1128/jvi.01911-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most important veterinary infectious diseases in countries with intensive swine industries. PRRS virus (PRRSV) infection usually suppresses proinflammatory cytokine expression in the early stage of infection, whereas it induces an inflammatory storm in the late stage. However, precisely how the virus is capable of doing so remains obscure. In this study, we found that by blocking the interaction of its catalytic subunit HOIP and accessory molecule SHARPIN, PRRSV can suppress NF-κB signal transduction in the early stage of infection. Our findings not only reveal a novel mechanism evolved by PRRSV to regulate inflammatory responses but also highlight the important role of linear ubiquitination modification during virus infection.
Collapse
|
50
|
Diseases Primarily Affecting the Reproductive System. Vet Med (Auckl) 2017. [PMCID: PMC7150237 DOI: 10.1016/b978-0-7020-5246-0.00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|