1
|
De Dios K, Kumar S, Alvandi E, Adhikari UK, David MA, Tayebi M. Phylogeny and Molecular Characterisation of PRNP in Red-Tailed Phascogale ( Phascogale calura). Brain Sci 2025; 15:250. [PMID: 40149772 PMCID: PMC11940036 DOI: 10.3390/brainsci15030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: The normal cellular prion protein (PrPC) is a cell-surface glycoprotein, mainly localised in neurons of the central nervous system (CNS). The human PRNP gene encodes 253 amino acid residues of precursor PrPC. Several studies that investigated the role of PRNP and PrPC in placental mammals, such as humans and mice, failed to reveal its exact function. Methods: In this study, we sequenced and characterised the PRNP gene and PrPC of the marsupial, P. calura, as a strategy to gain molecular insights into its structure and physicochemical properties. Placentals are separated from marsupials by approximately 125 million years of independent evolution. Results: Standard Western blotting analysis of PrPC phascogale displayed the typical un-, mono-, and di-glycosylated bands recognized in placentals. Furthermore, we showed that phascogale PRNP gene has two exons, similar to all the marsupials and placentals of the PRNP genes studied. Of note, the phascogale PRNP gene contained distinctive repeats in the PrPC tail region comparable to the closely related Tasmanian devil (Sarcophilus harrisii) and more distantly related to the grey short-tailed opossum (Monodelphis domestica), common wombat (Vombatus ursinus), and Tammar wallaby (Macropus eugenii); however, its specific composition and numbers were different from placentals. Of importance, comparisons of the phascogale's PrPC physicochemical properties with other monotremes, marsupials, and placentals confirmed the Monotremata-Marsupialia-Placentalia evolutionary distance. We found that the protein instability index, a method used to predict the stability of a protein in vivo (Stable: <40; Instable >40), showed that the PrPC of all marsupials tested, including phascogale, were highly stable compared with the birds, reptiles, amphibians, and fish that were shown to be highly unstable. However, the instability index predicted that all placental species, including human (Homo sapiens), mouse (Mus musculus), bank vole (Myodes glareolus), rhinoceros (Rhinocerotidae), dog (Canis lupus familiaris), flying fox (Pteropus vampyrus), whale (Physeter catodon), cattle (Bos taurus), and sheep (Ovis aries), were either slightly unstable or nearly unstable. Further, our analysis revealed that despite their predicted high PrPC stability, P. calura exhibited substantial N-terminal disorder (53.76%), while species with highly unstable PrPCs based on their instability index, such as Danio rerio, Oryzias latipes, and Astyanax mexicanus, displayed even higher levels of N-terminal disorder (up to 75.84%). These findings highlight a discrepancy between overall predicted stability and N-terminal disorder, suggesting a potential compensatory role of disorder in modulating prion protein stability and function. Conclusions: These results suggest that the high stability of marsupial prion proteins indicates a vital role in maintaining protein homeostasis; however more work is warranted to further depict the exact function.
Collapse
Affiliation(s)
| | | | | | | | | | - Mourad Tayebi
- School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia (U.K.A.)
| |
Collapse
|
2
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
3
|
Corridon TL, O’Moore J, Lian Y, Laversenne V, Noble B, Kamath NG, Serack FE, Shaikh AB, Erickson B, Braun C, Lenz K, Howard M, Chan N, Reidenbach AG, Cabin DE, Vallabh SM, Grindeland A, Oberbeck N, Zhao HT, Minikel EV. PrP turnover in vivo and the time to effect of prion disease therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623215. [PMID: 39605733 PMCID: PMC11601496 DOI: 10.1101/2024.11.12.623215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PrP lowering is effective against prion disease in animal models and is being tested clinically. Therapies in the current pipeline lower PrP production, leaving pre-existing PrP to be cleared according to its own half-life. We hypothesized that PrP's half-life may be a rate-limiting factor for the time to effect of PrP-lowering drugs, and one reason why late treatment of prion-infected mice is not as effective as early treatment. Using isotopically labeled chow with targeted mass spectrometry, as well as antisense oligonucleotide treatment followed by timed PrP measurement, we estimate a half-life of 5-6 days for PrP in the brain. PrP turnover is not affected by over- or under-expression. Mouse PrP and human PrP have similar turnover rates measured in wild-type or humanized knock-in mice. CSF PrP appears to mirror brain PrP in real time in rats. PrP is more readily quantifiable in colon than in other peripheral organs, and appears to have a shorter half-life in colon than in brain. Our data may inform the design of both preclinical and clinical studies of PrP-lowering drugs.
Collapse
Affiliation(s)
- Taylor L Corridon
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jill O’Moore
- Weissman Hood Institute, Great Falls, MT, 59405, USA
| | - Yuan Lian
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vanessa Laversenne
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Nikita G Kamath
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fiona E Serack
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | | | | | - Kenney Lenz
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Nathan Chan
- Comparative Medicine, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew G Reidenbach
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Sonia M Vallabh
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| | | | | | - Hien T Zhao
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Eric Vallabh Minikel
- Program in Brain Health, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Prion Alliance, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Hromadkova L, Kim C, Haldiman T, Peng L, Zhu X, Cohen M, de Silva R, Safar JG. Evolving prion-like tau conformers differentially alter postsynaptic proteins in neurons inoculated with distinct isolates of Alzheimer's disease tau. Cell Biosci 2023; 13:174. [PMID: 37723591 PMCID: PMC10507869 DOI: 10.1186/s13578-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
OBJECTIVES Although accumulation of misfolded tau species has been shown to predict cognitive decline in patients with Alzheimer's disease (AD) and other tauopathies but with the remarkable diversity of clinical manifestations, neuropathology profiles, and time courses of disease progression remaining unexplained by current genetic data. We considered the diversity of misfolded tau conformers present in individual AD cases as an underlying driver of the phenotypic variations of AD and progressive loss of synapses. METHODS To model the mechanism of tau propagation and synaptic toxicity of distinct tau conformers, we inoculated wild-type primary mouse neurons with structurally characterized Sarkosyl-insoluble tau isolates from the frontal cortex of six AD cases and monitored the impact for fourteen days. We analyzed the accumulation rate, tau isoform ratio, and conformational characteristics of de novo-induced tau aggregates with conformationally sensitive immunoassays, and the dynamics of synapse formation, maintenance, and their loss using a panel of pre-and post-synaptic markers. RESULTS At the same concentrations of tau, the different AD tau isolates induced accumulation of misfolded predominantly 4-repeat tau aggregates at different rates in mature neurons, and demonstrated distinct conformational characteristics corresponding to the original AD brain tau. The time-course of the formation of misfolded tau aggregates and colocalization correlated with significant loss of synapses in tau-inoculated cell cultures and the reduction of synaptic connections implicated the disruption of postsynaptic compartment as an early event. CONCLUSIONS The data obtained with mature neurons expressing physiological levels and adult isoforms of tau protein demonstrate markedly different time courses of endogenous tau misfolding and differential patterns of post-synaptic alterations. These and previous biophysical data argue for an ensemble of various misfolded tau aggregates in individual AD brains and template propagation of their homologous conformations in neurons with different rates and primarily postsynaptic interactors. Modeling tau aggregation in mature differentiated neurons provides a platform for investigating divergent molecular mechanisms of tau strain propagation and for identifying common structural features of misfolded tau and critical interactors for new therapeutic targets and approaches in AD.
Collapse
Affiliation(s)
- Lenka Hromadkova
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Chae Kim
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Tracy Haldiman
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Lihua Peng
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
| | - Xiongwei Zhu
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mark Cohen
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Jiri G Safar
- Departments of Pathology, Case Western Reserve University School of Medicine, 2085 Adelbert Rd, Cleveland, OH, 44106, USA.
- Departments of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Departments of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
5
|
Baiardi S, Mammana A, Capellari S, Parchi P. Human prion disease: molecular pathogenesis, and possible therapeutic targets and strategies. Expert Opin Ther Targets 2023; 27:1271-1284. [PMID: 37334903 DOI: 10.1080/14728222.2023.2199923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION Human prion diseases are heterogeneous, and often rapidly progressive, transmissible neurodegenerative disorders associated with misfolded prion protein (PrP) aggregation and self-propagation. Despite their rarity, prion diseases comprise a broad spectrum of phenotypic variants determined at the molecular level by different conformers of misfolded PrP and host genotype variability. Moreover, they uniquely occur in idiopathic, genetically determined, and acquired forms with distinct etiologies. AREA COVERED This review provides an up-to-date overview of potential therapeutic targets in prion diseases and the main results obtained in cell and animal models and human trials. The open issues and challenges associated with developing effective therapies and informative clinical trials are also discussed. EXPERT OPINION Currently tested therapeutic strategies target the cellular PrP to prevent the formation of misfolded PrP or to favor its elimination. Among them, passive immunization and gene therapy with antisense oligonucleotides against prion protein mRNA are the most promising. However, the disease's rarity, heterogeneity, and rapid progression profoundly frustrate the successful undertaking of well-powered therapeutic trials and patient identification in the asymptomatic or early stage before the development of significant brain damage. Thus, the most promising therapeutic goal to date is preventing or delaying phenoconversion in carriers of pathogenic mutations by lowering prion protein expression.
Collapse
Affiliation(s)
- Simone Baiardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Angela Mammana
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
A field-deployable diagnostic assay for the visual detection of misfolded prions. Sci Rep 2022; 12:12246. [PMID: 35851406 PMCID: PMC9293997 DOI: 10.1038/s41598-022-16323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.
Collapse
|
7
|
Mortberg MA, Zhao HT, Reidenbach AG, Gentile JE, Kuhn E, O'Moore J, Dooley PM, Connors TR, Mazur C, Allen SW, Trombetta BA, McManus AJ, Moore MR, Liu J, Cabin DE, Kordasiewicz HB, Mathews J, Arnold SE, Vallabh SM, Minikel EV. PrP concentration in the central nervous system: regional variability, genotypic effects, and pharmacodynamic impact. JCI Insight 2022; 7:156532. [PMID: 35133987 PMCID: PMC8986079 DOI: 10.1172/jci.insight.156532] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Prion protein (PrP) concentration controls the kinetics of prion replication and is a genetically and pharmacologically validated therapeutic target for prion disease. In order to evaluate PrP concentration as a pharmacodynamic biomarker and assess its contribution to known prion disease risk factors, we developed and validated a plate-based immunoassay reactive for PrP across six species of interest and applicable to brain and cerebrospinal fluid (CSF). PrP concentration varies dramatically between different brain regions in mice, cynomolgus macaques, and humans. PrP expression does not appear to contribute to the known risk factors of age, sex, or common PRNP genetic variants. CSF PrP is lowered in the presence of rare pathogenic PRNP variants, with heterozygous carriers of P102L displaying 55% and of D178N just 31% the CSF PrP concentration of mutation-negative controls. In rodents, pharmacologic reduction of brain Prnp RNA is reflected in brain parenchyma PrP, and in turn in CSF PrP, validating CSF as a sampling compartment for the effect of PrP-lowering therapy. Our findings support the use of CSF PrP as a pharmacodynamic biomarker for PrP-lowering drugs, and suggest that relative reduction from individual baseline CSF PrP concentration may be an appropriate marker for target engagement.
Collapse
Affiliation(s)
- Meredith A Mortberg
- Stanley Center for Psychiatric Research, Broad Institute of Harvard & MIT, Cambridge, United States of America
| | - Hien T Zhao
- Neuroscience, Ionis Pharmaceuticals, Inc., Carlsbad, United States of America
| | - Andrew G Reidenbach
- Stanley Center for Psychiatric Research, Broad Institute of Harvard & MIT, Cambridge, United States of America
| | - Juliana E Gentile
- Stanley Center for Psychiatric Research, Broad Institute of Harvard & MIT, Cambridge, United States of America
| | - Eric Kuhn
- Proteomics Platform, Broad Institute of Harvard & MIT, Cambridge, United States of America
| | - Jill O'Moore
- Comparative Medicine, McLaughlin Research Institute, Great Falls, United States of America
| | - Patrick M Dooley
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, United States of America
| | - Theresa R Connors
- Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Boston, United States of America
| | - Curt Mazur
- Neuroscience, Ionis Pharmaceuticals, Inc., Carlsbad, United States of America
| | - Shona W Allen
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, United States of America
| | - Bianca A Trombetta
- Department of Neurology, Massachusetts General Hospital, Boston, United States of America
| | - Alison J McManus
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, United States of America
| | | | - Jiewu Liu
- Bioagilytix, Bioagilytix, Boston, United States of America
| | - Deborah E Cabin
- Comparative Medicine, McLaughlin Research Institute, Great Falls, United States of America
| | | | - Joel Mathews
- Neuroscience, Ionis Pharmaceuticals, Inc., Carlsbad, United States of America
| | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Boston, United States of America
| | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of Harvard & MIT, Cambridge, United States of America
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of Harvard & MIT, Cambridge, United States of America
| |
Collapse
|
8
|
Kim C, Haldiman T, Kang SG, Hromadkova L, Han ZZ, Chen W, Lissemore F, Lerner A, de Silva R, Cohen ML, Westaway D, Safar JG. Distinct populations of highly potent TAU seed conformers in rapidly progressing Alzheimer's disease. Sci Transl Med 2022; 14:eabg0253. [PMID: 34985969 DOI: 10.1126/scitranslmed.abg0253] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Lenka Hromadkova
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Wei Chen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Frances Lissemore
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rohan de Silva
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 1PJ, UK
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton T6G 2M8, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Siddiqi MK, Kim C, Haldiman T, Kacirova M, Wang B, Bohon J, Chance MR, Kiselar J, Safar JG. Structurally distinct external solvent-exposed domains drive replication of major human prions. PLoS Pathog 2021; 17:e1009642. [PMID: 34138981 PMCID: PMC8211289 DOI: 10.1371/journal.ppat.1009642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022] Open
Abstract
There is a limited understanding of structural attributes that encode the iatrogenic transmissibility and various phenotypes of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Here we report the detailed structural differences between major sCJD MM1, MM2, and VV2 prions determined with two complementary synchrotron hydroxyl radical footprinting techniques—mass spectrometry (MS) and conformation dependent immunoassay (CDI) with a panel of Europium-labeled antibodies. Both approaches clearly demonstrate that the phenotypically distant prions differ in a major way with regard to their structural organization, and synchrotron-generated hydroxyl radicals progressively inhibit their seeding potency in a strain and structure-specific manner. Moreover, the seeding rate of sCJD prions is primarily determined by strain-specific structural organization of solvent-exposed external domains of human prion particles that control the seeding activity. Structural characteristics of human prion strains suggest that subtle changes in the organization of surface domains play a critical role as a determinant of human prion infectivity, propagation rate, and targeting of specific brain structures. Sporadic human prion diseases are conceivably the most heterogenous neurodegenerative disorders and a growing body of research indicates that they are caused by distinct strains of prions. By parallel monitoring their replication potency and progressive hydroxyl radical modification of amino acid side chains during synchrotron irradiation, we identified major differences in the structural organization that correlate with distinct inactivation susceptibility of a given human prion strain. Furthermore, our data demonstrated, for the first time, that seeding activity of different strains of infectious brain-derived human prions is primarily function of distinct solvent-exposed structural domains, and implicate them in the initial binding of cellular isoform of prion protein (PrPC) as a critical step in human prion replication and infectivity.
Collapse
Affiliation(s)
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Miroslava Kacirova
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Benlian Wang
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Jen Bohon
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Mark R Chance
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Janna Kiselar
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America.,Center for Proteomics and Bioinformatics, Case Center for Synchrotron Biosciences, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America.,Department of Neurology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
10
|
Otero A, Duque Velásquez C, Aiken J, McKenzie D. White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains. Sci Rep 2021; 11:11193. [PMID: 34045540 PMCID: PMC8160261 DOI: 10.1038/s41598-021-90606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/12/2021] [Indexed: 11/23/2022] Open
Abstract
PrPC variation at residue 96 (G/S) plays an important role in the epidemiology of chronic wasting disease (CWD) in exposed white-tailed deer populations. In vivo studies have demonstrated the protective effect of serine at codon 96, which hinders the propagation of common CWD strains when expressed in homozygosis and increases the survival period of S96/wt heterozygous deer after challenge with CWD. Previous in vitro studies of the transmission barrier suggested that following a single amplification step, wt and S96 PrPC were equally susceptible to misfolding when seeded with various CWD prions. When we performed serial prion amplification in vitro using S96-PrPC, we observed a reduction in the efficiency of propagation with the Wisc-1 or CWD2 strains, suggesting these strains cannot stably template their conformations on this PrPC once the primary sequence has changed after the first round of replication. Our data shows the S96-PrPC polymorphism is detrimental to prion conversion of some CWD strains. These data suggests that deer homozygous for S96-PrPC may not sustain prion transmission as compared to a deer expressing G96-PrPC.
Collapse
Affiliation(s)
- Alicia Otero
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Martin D, Reine F, Herzog L, Igel-Egalon A, Aron N, Michel C, Moudjou M, Fichet G, Quadrio I, Perret-Liaudet A, Andréoletti O, Rezaei H, Béringue V. Prion potentiation after life-long dormancy in mice devoid of PrP. Brain Commun 2021; 3:fcab092. [PMID: 33997785 PMCID: PMC8111064 DOI: 10.1093/braincomms/fcab092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Prions are neurotropic pathogens composed of misfolded assemblies of the host-encoded prion protein PrPC which replicate by recruitment and conversion of further PrPC by an autocatalytic seeding polymerization process. While it has long been shown that mouse-adapted prions cannot replicate and are rapidly cleared in transgenic PrP0/0 mice invalidated for PrPC, these experiments have not been done with other prions, including from natural resources, and more sensitive methods to detect prion biological activity. Using transgenic mice expressing human PrP to bioassay prion infectivity and RT-QuIC cell-free assay to measure prion seeding activity, we report that prions responsible for the most prevalent form of sporadic Creutzfeldt-Jakob disease in human (MM1-sCJD) can persist indefinitely in the brain of intra-cerebrally inoculated PrP0/0 mice. While low levels of seeding activity were measured by RT-QuIC in the brain of the challenged PrP0/0 mice, the bio-indicator humanized mice succumbed at a high attack rate, suggesting relatively high levels of persistent infectivity. Remarkably, these humanized mice succumbed with delayed kinetics as compared to MM1-sCJD prions directly inoculated at low doses, including the limiting one. Yet, the disease that did occur in the humanized mice on primary and subsequent back-passage from PrP0/0 mice shared the neuropathological and molecular characteristics of MM1-sCJD prions, suggesting no apparent strain evolution during lifelong dormancy in PrP0/0 brain. Thus, MM1-sCJD prions can persist for the entire life in PrP0/0 brain with potential disease potentiation on retrotransmission to susceptible hosts. These findings highlight the capacity of prions to persist and rejuvenate in non-replicative environments, interrogate on the type of prion assemblies at work and alert on the risk of indefinite prion persistence with PrP-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Davy Martin
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | | | - Naima Aron
- INRAE, École Nationale Vétérinaire de Toulouse, IHAP, 31 000 Toulouse, France
| | - Christel Michel
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Mohammed Moudjou
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Guillaume Fichet
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Isabelle Quadrio
- Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Hôpitaux de Lyon, 69 000 Lyon, France.,University of Lyon 1, CNRS UMR5292, INSERM U1028, BioRan, 69 000 Lyon, France
| | - Armand Perret-Liaudet
- Neurobiology Laboratory, Biochemistry and Molecular Biology Department, Hôpitaux de Lyon, 69 000 Lyon, France.,University of Lyon 1, CNRS UMR5292, INSERM U1028, BioRan, 69 000 Lyon, France
| | - Olivier Andréoletti
- INRAE, École Nationale Vétérinaire de Toulouse, IHAP, 31 000 Toulouse, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78 350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Meisl G, Kurt T, Condado-Morales I, Bett C, Sorce S, Nuvolone M, Michaels TCT, Heinzer D, Avar M, Cohen SIA, Hornemann S, Aguzzi A, Dobson CM, Sigurdson CJ, Knowles TPJ. Scaling analysis reveals the mechanism and rates of prion replication in vivo. Nat Struct Mol Biol 2021; 28:365-372. [PMID: 33767451 PMCID: PMC8922999 DOI: 10.1038/s41594-021-00565-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Prions consist of pathological aggregates of cellular prion protein and have the ability to replicate, causing neurodegenerative diseases, a phenomenon mirrored in many other diseases connected to protein aggregation, including Alzheimer's and Parkinson's diseases. However, despite their key importance in disease, the individual processes governing this formation of pathogenic aggregates, as well as their rates, have remained challenging to elucidate in vivo. Here we bring together a mathematical framework with kinetics of the accumulation of prions in mice and microfluidic measurements of aggregate size to dissect the overall aggregation reaction into its constituent processes and quantify the reaction rates in mice. Taken together, the data show that multiplication of prions in vivo is slower than in in vitro experiments, but efficient when compared with other amyloid systems, and displays scaling behavior characteristic of aggregate fragmentation. These results provide a framework for the determination of the mechanisms of disease-associated aggregation processes within living organisms.
Collapse
Affiliation(s)
- Georg Meisl
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Timothy Kurt
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Itzel Condado-Morales
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Cyrus Bett
- Department of Pathology, UC San Diego, San Diego, CA, USA
| | - Silvia Sorce
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Mario Nuvolone
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Samuel I A Cohen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Wren Therapeutics, Cambridge, UK
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Abrams J, Arhar T, Mok SA, Taylor IR, Kampmann M, Gestwicki JE. Functional genomics screen identifies proteostasis targets that modulate prion protein (PrP) stability. Cell Stress Chaperones 2021; 26:443-452. [PMID: 33547632 PMCID: PMC7925731 DOI: 10.1007/s12192-021-01191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Prion protein (PrP) adopts either a helical conformation (PrPC) or an alternative, beta sheet-rich, misfolded conformation (PrPSc). The PrPSc form has the ability to "infect" PrPC and force it into the misfolded state. Accumulation of PrPSc is associated with a number of lethal neurodegenerative disorders, including Creutzfeldt-Jacob disease (CJD). Knockout of PrPC protects cells and animals from PrPSc infection; thus, there is interest in identifying factors that regulate PrPC stability, with the therapeutic goal of reducing PrPC levels and limiting infection by PrPSc. Here, we assembled a short-hairpin RNA (shRNA) library composed of 25+ shRNA sequences for each of 133 protein homeostasis (aka proteostasis) factors, such as molecular chaperones and co-chaperones. This Proteostasis shRNA Library was used to identify regulators of PrPC stability in HEK293 Hu129M cells. Strikingly, the screen identified a number of Hsp70 family members and their co-chaperones as putative targets. Indeed, a chemical pan-inhibitor of Hsp70s reduced PrPC levels and limited conversion to PrPSc in N2a cells. These results implicate specific proteostasis sub-networks, especially the Hsp70 system, as potential new targets for the treatment of CJD. More broadly, the Proteostasis shRNA Library might be a useful tool for asking which proteostasis factors are important for a given protein.
Collapse
Affiliation(s)
- Jennifer Abrams
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Taylor Arhar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Sue Ann Mok
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Isabelle R Taylor
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Neurodegenerative Disease, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
14
|
Minikel EV, Zhao HT, Le J, O'Moore J, Pitstick R, Graffam S, Carlson GA, Kavanaugh MP, Kriz J, Kim JB, Ma J, Wille H, Aiken J, McKenzie D, Doh-Ura K, Beck M, O'Keefe R, Stathopoulos J, Caron T, Schreiber SL, Carroll JB, Kordasiewicz HB, Cabin DE, Vallabh SM. Prion protein lowering is a disease-modifying therapy across prion disease stages, strains and endpoints. Nucleic Acids Res 2020; 48:10615-10631. [PMID: 32776089 PMCID: PMC7641729 DOI: 10.1093/nar/gkaa616] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA 92010, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jill O'Moore
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, MT 59405, USA
| | | | | | | | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, QC G1J 2G3, Canada
| | | | - Jiyan Ma
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Holger Wille
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Judd Aiken
- University of Alberta, Edmonton, AB T6G 2M8, Canada
| | | | - Katsumi Doh-Ura
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Matthew Beck
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | - Sonia M Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Prion Alliance, Cambridge, MA, 02139, USA
- Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Colini Baldeschi A, Vanni S, Zattoni M, Legname G. Novel regulators of PrP C expression as potential therapeutic targets in prion diseases. Expert Opin Ther Targets 2020; 24:759-776. [PMID: 32631090 DOI: 10.1080/14728222.2020.1782384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Prion diseases are rare and fatal neurodegenerative disorders. The key molecular event in these disorders is the misfolding of the physiological form of the cellular prion protein, PrPC, leading to the accumulation of a pathological isoform, PrPSc, with unique features. Both isoforms share the same primary sequence, lacking detectable differences in posttranslational modification, a major hurdle for their biochemical or biophysical independent characterization. The mechanism underlying the conversion of PrPC to PrPSc is not completely understood, so finding an effective therapy to cure prion disorders is extremely challenging. AREAS COVERED This review discusses the strategies for decreasing prion replication and throws a spotlight on the relevance of PrPC in the prion accumulation process. EXPERT OPINION PrPC is the key substrate for prion pathology; hence, the most promising therapeutic approach appears to be the targeting of PrPC to block the production of the infectious isoform. The use of RNA interference and antisense oligonucleotide technologies may offer opportunities for treatment because of their success in clinical trials for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Arianna Colini Baldeschi
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per Lo Studio E La Cura Dei Tumori (IRST) IRCCS , Meldola, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
16
|
Global analysis of protein degradation in prion infected cells. Sci Rep 2020; 10:10800. [PMID: 32612191 PMCID: PMC7329860 DOI: 10.1038/s41598-020-67505-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/06/2020] [Indexed: 12/02/2022] Open
Abstract
Prion diseases are rare, neurological disorders caused by the misfolding of the cellular prion protein (PrPC) into cytotoxic fibrils (PrPSc). Intracellular PrPSc aggregates primarily accumulate within late endosomes and lysosomes, organelles that participate in the degradation and turnover of a large subset of the proteome. Thus, intracellular accumulation of PrPSc aggregates has the potential to globally influence protein degradation kinetics within an infected cell. We analyzed the proteome-wide effect of prion infection on protein degradation rates in N2a neuroblastoma cells by dynamic stable isotopic labeling with amino acids in cell culture (dSILAC) and bottom-up proteomics. The analysis quantified the degradation rates of more than 4,700 proteins in prion infected and uninfected cells. As expected, the degradation rate of the prion protein is significantly decreased upon aggregation in infected cells. In contrast, the degradation kinetics of the remainder of the N2a proteome generally increases upon prion infection. This effect occurs concurrently with increases in the cellular activities of autophagy and some lysosomal hydrolases. The resulting enhancement in proteome flux may play a role in the survival of N2a cells upon prion infection.
Collapse
|
17
|
Daude N, Kim C, Kang SG, Eskandari-Sedighi G, Haldiman T, Yang J, Fleck SC, Gomez-Cardona E, Han ZZ, Borrego-Ecija S, Wohlgemuth S, Julien O, Wille H, Molina-Porcel L, Gelpi E, Safar JG, Westaway D. Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation. Acta Neuropathol 2020; 139:1045-1070. [PMID: 32219515 PMCID: PMC7244472 DOI: 10.1007/s00401-020-02148-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/29/2023]
Abstract
Tau protein accumulation is a common denominator of major dementias, but this process is inhomogeneous, even when triggered by the same germline mutation. We considered stochastic misfolding of human tau conformers followed by templated conversion of native monomers as an underlying mechanism and derived sensitive conformational assays to test this concept. Assessments of brains from aged TgTauP301L transgenic mice revealed a prodromal state and three distinct signatures for misfolded tau. Frontotemporal lobar degeneration (FTLD)-MAPT-P301L patients with different clinical phenotypes also displayed three signatures, two resembling those found in TgTauP301L mice. As physicochemical and cell bioassays confirmed diverse tau strains in the mouse and human brain series, we conclude that evolution of diverse tau conformers is intrinsic to the pathogenesis of this uni-allelic form of tauopathy. In turn, effective therapeutic interventions in FTLD will need to address evolving repertoires of misfolded tau species rather than singular, static molecular targets.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Shelaine C Fleck
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Sergi Borrego-Ecija
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc, Hospital Clinic, IDIBAPS, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
- Department of Neurology, Case Western Reserve University, Institute of Pathology Building, Rm 406, 2085 Adelbert Road, Cleveland, OH, 44106-4907, USA.
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, T6G 2M8, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Duque Velásquez C, Kim C, Haldiman T, Kim C, Herbst A, Aiken J, Safar JG, McKenzie D. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J Biol Chem 2020; 295:4985-5001. [PMID: 32111742 PMCID: PMC7152757 DOI: 10.1074/jbc.ra120.012546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/22/2020] [Indexed: 11/06/2022] Open
Abstract
Chronic wasting disease (CWD) is caused by an unknown spectrum of prions and has become enzootic in populations of cervid species that express cellular prion protein (PrPC) molecules varying in amino acid composition. These PrPC polymorphisms can affect prion transmission, disease progression, neuropathology, and emergence of new prion strains, but the mechanistic steps in prion evolution are not understood. Here, using conformation-dependent immunoassay, conformation stability assay, and protein-misfolding cyclic amplification, we monitored the conformational and phenotypic characteristics of CWD prions passaged through deer and transgenic mice expressing different cervid PrPC polymorphisms. We observed that transmission through hosts with distinct PrPC sequences diversifies the PrPCWD conformations and causes a shift toward oligomers with defined structural organization, replication rate, and host range. When passaged in host environments that restrict prion replication, distinct co-existing PrPCWD conformers underwent competitive selection, stabilizing a new prion strain. Nonadaptive conformers exhibited unstable replication and accumulated only to low levels. These results suggest a continuously evolving diversity of CWD conformers and imply a critical interplay between CWD prion plasticity and PrPC polymorphisms during prion strain evolution.
Collapse
Affiliation(s)
- Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Chae Kim
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Tracy Haldiman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | - Allen Herbst
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| |
Collapse
|
19
|
Towards a treatment for genetic prion disease: trials and biomarkers. Lancet Neurol 2020; 19:361-368. [PMID: 32199098 DOI: 10.1016/s1474-4422(19)30403-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/19/2023]
Abstract
Prion disease is a rare, fatal, and exceptionally rapid neurodegenerative disease. Although incurable, prion disease follows a clear pathogenic mechanism, in which a single gene gives rise to a single prion protein (PrP) capable of converting into the sole causal disease agent, the misfolded prion. As efforts progress to leverage this mechanistic knowledge toward rational therapies, a principal challenge will be the design of clinical trials. Previous trials in prion disease have been done in symptomatic patients who are often profoundly debilitated at enrolment. About 15% of prion disease cases are genetic, creating an opportunity for early therapeutic intervention to delay or prevent disease. Highly variable age of onset and absence of established prodromal biomarkers might render infeasible existing models for testing drugs before disease onset. Advancement of near-term targeted therapeutics could crucially depend on thoughtful design of rigorous presymptomatic trials.
Collapse
|
20
|
Krance SH, Luke R, Shenouda M, Israwi AR, Colpitts SJ, Darwish L, Strauss M, Watts JC. Cellular models for discovering prion disease therapeutics: Progress and challenges. J Neurochem 2020; 153:150-172. [PMID: 31943194 DOI: 10.1111/jnc.14956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.
Collapse
Affiliation(s)
- Saffire H Krance
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marc Shenouda
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Ahmad R Israwi
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sarah J Colpitts
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lina Darwish
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maximilian Strauss
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Minikel EV, Kuhn E, Cocco AR, Vallabh SM, Hartigan CR, Reidenbach AG, Safar JG, Raymond GJ, McCarthy MD, O'Keefe R, Llorens F, Zerr I, Capellari S, Parchi P, Schreiber SL, Carr SA. Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. Mol Cell Proteomics 2019; 18:2388-2400. [PMID: 31558565 PMCID: PMC6885701 DOI: 10.1074/mcp.ra119.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
Therapies currently in preclinical development for prion disease seek to lower prion protein (PrP) expression in the brain. Trials of such therapies are likely to rely on quantification of PrP in cerebrospinal fluid (CSF) as a pharmacodynamic biomarker and possibly as a trial endpoint. Studies using PrP ELISA kits have shown that CSF PrP is lowered in the symptomatic phase of disease, a potential confounder for reading out the effect of PrP-lowering drugs in symptomatic patients. Because misfolding or proteolytic cleavage could potentially render PrP invisible to ELISA even if its concentration were constant or increasing in disease, we sought to establish an orthogonal method for CSF PrP quantification. We developed a multi-species targeted mass spectrometry method based on multiple reaction monitoring (MRM) of nine PrP tryptic peptides quantified relative to an isotopically labeled recombinant protein standard for human samples, or isotopically labeled synthetic peptides for nonhuman species. Analytical validation experiments showed process replicate coefficients of variation below 15%, good dilution linearity and recovery, and suitable performance for both CSF and brain homogenate and across humans as well as preclinical species of interest. In n = 55 CSF samples from individuals referred to prion surveillance centers with rapidly progressive dementia, all six human PrP peptides, spanning the N- and C-terminal domains of PrP, were uniformly reduced in prion disease cases compared with individuals with nonprion diagnoses. Thus, lowered CSF PrP concentration in prion disease is a genuine result of the disease process and not an artifact of ELISA-based measurement. As a result, dose-finding studies for PrP lowering drugs may need to be conducted in presymptomatic at-risk individuals rather than in symptomatic patients. We provide a targeted mass spectrometry-based method suitable for preclinical quantification of CSF PrP as a tool for drug development.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139; Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| | - Eric Kuhn
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Alexandra R Cocco
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139
| | | | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jiri G Safar
- Departments of Pathology and Neurology Case Western Reserve University, Cleveland, OH 44106
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, NIAID Rocky Mountain Labs, Hamilton, MT 59840
| | - Michael D McCarthy
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Rhonda O'Keefe
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Franc Llorens
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Inga Zerr
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40138, Italy
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| |
Collapse
|
22
|
Thüne K, Schmitz M, Villar-Piqué A, Altmeppen HC, Schlomm M, Zafar S, Glatzel M, Llorens F, Zerr I. The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Rev Mol Diagn 2019; 19:1007-1018. [PMID: 31512940 DOI: 10.1080/14737159.2019.1667231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human prion diseases are a heterogeneous group of incurable and debilitating conditions characterized by a progressive degeneration of the central nervous system. The conformational changes of the cellular prion protein and its formation into an abnormal isoform, spongiform degeneration, neuronal loss, and neuroinflammation are central to prion disease pathogenesis. It has been postulated that truncated variants of aggregation-prone proteins are implicated in neurodegenerative mechanisms. An increasing body of evidence indicates that proteolytic fragments and truncated variants of the prion protein are formed and accumulated in the brain of prion disease patients. These prion protein variants provide a high degree of relevance to disease pathology and diagnosis. Areas covered: In the present review, we summarize the current knowledge on the occurrence of truncated prion protein species and their potential roles in pathophysiological states during prion diseases progression. In addition, we discuss their usability as a diagnostic biomarker in prion diseases. Expert opinion: Either as a primary factor in the formation of prion diseases or as a consequence from neuropathological affection, abnormal prion protein variants and fragments may provide independent information about mechanisms of prion conversion, pathological states, or disease progression.
Collapse
Affiliation(s)
- Katrin Thüne
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain
| | | | - Markus Schlomm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf (UKE) , Hamburg , Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat , Barcelona , Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| |
Collapse
|
23
|
Raymond GJ, Zhao HT, Race B, Raymond LD, Williams K, Swayze EE, Graffam S, Le J, Caron T, Stathopoulos J, O'Keefe R, Lubke LL, Reidenbach AG, Kraus A, Schreiber SL, Mazur C, Cabin DE, Carroll JB, Minikel EV, Kordasiewicz H, Caughey B, Vallabh SM. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 2019; 5:131175. [PMID: 31361599 PMCID: PMC6777807 DOI: 10.1172/jci.insight.131175] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering 1 target mRNA in the brain, but their development for prion disease has been hindered by 3 unresolved issues from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here, we test ASOs delivered by bolus intracerebroventricular injection to intracerebrally prion-infected WT mice. Prophylactic treatments given every 2–3 months extended survival times 61%–98%, and a single injection at 120 days after infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a nontargeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent — or even single — bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease. ASO-mediated prion protein suppression delays disease and extends survival, even in mice with established prion infection.
Collapse
Affiliation(s)
- Gregory J Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Lynne D Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Eric E Swayze
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Samantha Graffam
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jason Le
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Tyler Caron
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Rhonda O'Keefe
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lori L Lubke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | | | - Curt Mazur
- Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | | | | | - Eric Vallabh Minikel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| | | | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Sonia M Vallabh
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA.,Prion Alliance, Cambridge, Massachusetts, USA
| |
Collapse
|
24
|
Foliaki ST, Lewis V, Islam AMT, Ellett LJ, Senesi M, Finkelstein DI, Roberts B, Lawson VA, Adlard PA, Collins SJ. Early existence and biochemical evolution characterise acutely synaptotoxic PrPSc. PLoS Pathog 2019; 15:e1007712. [PMID: 30970042 PMCID: PMC6490942 DOI: 10.1371/journal.ppat.1007712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/30/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022] Open
Abstract
Although considerable evidence supports that misfolded prion protein (PrPSc) is the principal component of “prions”, underpinning both transmissibility and neurotoxicity, clear consensus around a number of fundamental aspects of pathogenesis has not been achieved, including the time of appearance of neurotoxic species during disease evolution. Utilizing a recently reported electrophysiology paradigm, we assessed the acute synaptotoxicity of ex vivo PrPSc prepared as crude homogenates from brains of M1000 infected wild-type mice (cM1000) harvested at time-points representing 30%, 50%, 70% and 100% of the terminal stage of disease (TSD). Acute synaptotoxicity was assessed by measuring the capacity of cM1000 to impair hippocampal CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in explant slices. Of particular note, cM1000 from 30% of the TSD was able to cause significant impairment of LTP and PTP, with the induced failure of LTP increasing over subsequent time-points while the capacity of cM1000 to induce PTP failure appeared maximal even at this early stage of disease progression. Evidence that the synaptotoxicity directly related to PrP species was demonstrated by the significant rescue of LTP dysfunction at each time-point through immuno-depletion of >50% of total PrP species from cM1000 preparations. Moreover, similar to our previous observations at the terminal stage of M1000 prion disease, size fractionation chromatography revealed that capacity for acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, with the profile appearing maximised by 50% of the TSD. Using enhanced sensitivity western blotting, modestly proteinase K (PK)-resistant PrPSc was detectable at very low levels in cM1000 at 30% of the TSD, becoming robustly detectable by 70% of the TSD at which time substantial levels of highly PK-resistant PrPSc was also evident. Further illustrating the biochemical evolution of acutely synaptotoxic species the synaptotoxicity of cM1000 from 30%, 50% and 70% of the TSD, but not at 100% TSD, was abolished by digestion of immuno-captured PrP species with mild PK treatment (5μg/ml for an hour at 37°C), demonstrating that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were proteinase-sensitive. Overall, these findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, albeit with eventual plateauing of transmitting conformers. Although evidence clearly supports that misfolded prion protein (PrPSc) is the principal component of “prions”, underpinning both transmissibility and neurotoxicity, consensus is lacking around the time of appearance and biochemical profile of neurotoxic species during disease evolution. Employing an electrophysiology model, measuring the capacity of brain homogenates derived from across the disease time-course to impair CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in hippocampal slices, we observed that synaptotoxic species were present from 30% of the terminal stage of disease (TSD). Evidence that synaptotoxicity directly related to PrP species was demonstrated by significant rescue of LTP dysfunction at each time-point through immuno-depleting >~50% of total PrP species from cM1000 preparations. Moreover, size fractionation chromatography revealed that acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, while additional characterisation of cM1000 demonstrated that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were quite proteinase-sensitive. These findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, with biochemical transformation of synaptotoxic conformers continuing until late in disease.
Collapse
Affiliation(s)
- Simote Totauhelotu Foliaki
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | - Victoria Lewis
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | | | - Laura Jane Ellett
- Department of Pathology The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matteo Senesi
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
| | | | - Blaine Roberts
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Victoria A. Lawson
- Department of Pathology The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Anthony Adlard
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Steven John Collins
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
25
|
Prion protein quantification in human cerebrospinal fluid as a tool for prion disease drug development. Proc Natl Acad Sci U S A 2019; 116:7793-7798. [PMID: 30936307 DOI: 10.1073/pnas.1901947116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduction of native prion protein (PrP) levels in the brain is an attractive strategy for the treatment or prevention of human prion disease. Clinical development of any PrP-reducing therapeutic will require an appropriate pharmacodynamic biomarker: a practical and robust method for quantifying PrP, and reliably demonstrating its reduction in the central nervous system (CNS) of a living patient. Here we evaluate the potential of ELISA-based quantification of human PrP in human cerebrospinal fluid (CSF) to serve as a biomarker for PrP-reducing therapeutics. We show that CSF PrP is highly sensitive to plastic adsorption during handling and storage, but its loss can be minimized by the addition of detergent. We find that blood contamination does not affect CSF PrP levels, and that CSF PrP and hemoglobin are uncorrelated, together suggesting that CSF PrP is CNS derived, supporting its relevance for monitoring the tissue of interest and in keeping with high PrP abundance in brain relative to blood. In a cohort with controlled sample handling, CSF PrP exhibits good within-subject test-retest reliability (mean coefficient of variation, 13% in samples collected 8-11 wk apart), a sufficiently stable baseline to allow therapeutically meaningful reductions in brain PrP to be readily detected in CSF. Together, these findings supply a method for monitoring the effect of a PrP-reducing drug in the CNS, and will facilitate development of prion disease therapeutics with this mechanism of action.
Collapse
|
26
|
Lillehaug S, Yetman MJ, Puchades MA, Checinska MM, Kleven H, Jankowsky JL, Bjaalie JG, Leergaard TB. Brain-wide distribution of reporter expression in five transgenic tetracycline-transactivator mouse lines. Sci Data 2019; 6:190028. [PMID: 30806643 PMCID: PMC6390708 DOI: 10.1038/sdata.2019.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022] Open
Abstract
The spatial pattern of transgene expression in tetracycline-controlled mouse models is governed primarily by the driver line used to introduce the tetracycline-controlled transactivator (tTA). Detailed maps showing where each tTA driver activates expression are therefore essential for designing and using tet-regulated models, particularly in brain research where cell type and regional specificity determine the circuits affected by conditional gene expression. We have compiled a comprehensive online repository of serial microscopic images showing brain-wide reporter expression for five commonly used tTA driver lines. We have spatially registered all images to a common three-dimensional mouse brain anatomical reference atlas for direct comparison of spatial distribution across lines. The high-resolution images and associated metadata are shared via the web page of the EU Human Brain Project. Images can be inspected using an interactive viewing tool that includes an optional overlay feature providing anatomical delineations and reference atlas coordinates. Interactive viewing is supplemented by semi-quantitative analyses of expression levels within anatomical subregions for each tTA driver line.
Collapse
Affiliation(s)
- Sveinung Lillehaug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Michael J. Yetman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maja A. Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martyna M. Checinska
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Joanna L. Jankowsky
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Departments of Molecular and Cellular Biology, Neurology, and Neurosurgery, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jan G. Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B. Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
28
|
Leighton PLA, Allison WT. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function. J Alzheimers Dis 2018; 54:3-29. [PMID: 27392869 DOI: 10.3233/jad-160361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted.
Collapse
Affiliation(s)
- Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Longhena F, Spano P, Bellucci A. Targeting of Disordered Proteins by Small Molecules in Neurodegenerative Diseases. Handb Exp Pharmacol 2018; 245:85-110. [PMID: 28965171 DOI: 10.1007/164_2017_60] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The formation of protein aggregates and inclusions in the brain and spinal cord is a common neuropathological feature of a number of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and many others. These are commonly referred as neurodegenerative proteinopathies or protein-misfolding diseases. The main characteristic of protein aggregates in these disorders is the fact that they are enriched in amyloid fibrils. Since protein aggregation is considered to play a central role for the onset of neurodegenerative proteinopathies, research is ongoing to develop strategies aimed at preventing or removing protein aggregation in the brain of affected patients. Numerous studies have shown that small molecule-based approaches may be potentially the most promising for halting protein aggregation in neurodegenerative diseases. Indeed, several of these compounds have been found to interact with intrinsically disordered proteins and promote their clearing in experimental models. This notwithstanding, at present small molecule inhibitors still awaits achievements for clinical translation. Hopefully, if we determine whether the formation of insoluble inclusions is effectively neurotoxic and find a valid biomarker to assess their protein aggregation-inhibitory activity in the human central nervous system, the use of small molecule inhibitors will be considered as a cure for neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - PierFranco Spano
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa No. 11, Brescia, 25123, Italy.
- Laboratory of Personalized and Preventive Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
30
|
What Is Our Current Understanding of PrP Sc-Associated Neurotoxicity and Its Molecular Underpinnings? Pathogens 2017; 6:pathogens6040063. [PMID: 29194372 PMCID: PMC5750587 DOI: 10.3390/pathogens6040063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
The prion diseases are a collection of fatal, transmissible neurodegenerative diseases that cause rapid onset dementia and ultimately death. Uniquely, the infectious agent is a misfolded form of the endogenous cellular prion protein, termed PrPSc. Despite the identity of the molecular agent remaining the same, PrPSc can cause a range of diseases with hereditary, spontaneous or iatrogenic aetiologies. However, the link between PrPSc and toxicity is complex, with subclinical cases of prion disease discovered, and prion neurodegeneration without obvious PrPSc deposition. The toxic mechanisms by which PrPSc causes the extensive neuropathology are still poorly understood, although recent advances are beginning to unravel the molecular underpinnings, including oxidative stress, disruption of proteostasis and induction of the unfolded protein response. This review will discuss the diseases caused by PrPSc toxicity, the nature of the toxicity of PrPSc, and our current understanding of the downstream toxic signaling events triggered by the presence of PrPSc.
Collapse
|
31
|
Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SAM, Mathiason CK, Kincaid AE, Bartz JC. PrPSc formation and clearance as determinants of prion tropism. PLoS Pathog 2017; 13:e1006298. [PMID: 28355274 PMCID: PMC5386299 DOI: 10.1371/journal.ppat.1006298] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/10/2017] [Accepted: 03/16/2017] [Indexed: 11/19/2022] Open
Abstract
Prion strains are characterized by strain-specific differences in neuropathology but can also differ in incubation period, clinical disease, host-range and tissue tropism. The hyper (HY) and drowsy (DY) strains of hamster-adapted transmissible mink encephalopathy (TME) differ in tissue tropism and susceptibility to infection by extraneural routes of infection. Notably, DY TME is not detected in the secondary lymphoreticular system (LRS) tissues of infected hosts regardless of the route of inoculation. We found that similar to the lymphotropic strain HY TME, DY TME crosses mucosal epithelia, enters draining lymphatic vessels in underlying laminae propriae, and is transported to LRS tissues. Since DY TME causes disease once it enters the peripheral nervous system, the restriction in DY TME pathogenesis is due to its inability to establish infection in LRS tissues, not a failure of transport. To determine if LRS tissues can support DY TME formation, we performed protein misfolding cyclic amplification using DY PrPSc as the seed and spleen homogenate as the source of PrPC. We found that the spleen environment can support DY PrPSc formation, although at lower rates compared to lymphotropic strains, suggesting that the failure of DY TME to establish infection in the spleen is not due to the absence of a strain-specific conversion cofactor. Finally, we provide evidence that DY PrPSc is more susceptible to degradation when compared to PrPSc from other lymphotrophic strains. We hypothesize that the relative rates of PrPSc formation and clearance can influence prion tropism.
Collapse
Affiliation(s)
- Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Katie A. Langenfeld
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Thomas E. Eckland
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jonathan Trinh
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Sara A. M. Holec
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anthony E. Kincaid
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- Department of Pharmacy Science, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
32
|
Kang SG, Kim C, Aiken J, Yoo HS, McKenzie D. Dual MicroRNA to Cellular Prion Protein Inhibits Propagation of Pathogenic Prion Protein in Cultured Cells. Mol Neurobiol 2017; 55:2384-2396. [PMID: 28357807 DOI: 10.1007/s12035-017-0495-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 01/08/2023]
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders affecting humans and various mammals. In spite of intensive efforts, there is no effective cure or treatment for prion diseases. Cellular forms of prion protein (PrPC) is essential for propagation of abnormal isoforms of prion protein (PrPSc) and pathogenesis. The effect of an artificial dual microRNA (DmiR) on PrPC suppression and resultant inhibition of prion replication was determined using prion-infectible cell cultures: differentiated C2C12 culture and primary mixed neuronal and glial cells culture (MNGC). Processing of DmiR by prion-susceptible myotubes, but not by reserve cells, in differentiated C2C12 culture slowed prion replication, implying an importance of cell type-specific PrPC targeting. In MNGC, reduction of PrPC with DmiR was effective for suppressing prion replication. MNGC lentivirally transduced with non-targeting control miRNAs (scrambled) reduced prion replication at a level similar to that with a synthetic analogue of viral RNA, poly I:C. The results suggest that a synergistic combination of the immunostimulatory RNA duplexes (miRNA) and PrPC silencing with DmiR might augment a therapeutic potential of RNA interference.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, BK21 PLUS, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
33
|
PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection. J Virol 2017; 91:JVI.01686-16. [PMID: 27847358 DOI: 10.1128/jvi.01686-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrPC) influences PrPC misfolding into the disease-associated isoform, PrPres, as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrPC away from rafts. Previous studies showed that nonraft transmembrane PrPC variants resist conversion to PrPres when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrPC and GPI-anchored PrPres in distinct membrane environments. Thus, it remained unclear whether transmembrane PrPC might convert to PrPres if seeded by an exogenous source of PrPres not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrPC To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrPC supported persistent PrPres propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrPC is required for persistent PrPres propagation, implicating raft microdomains as a location for conversion. IMPORTANCE Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrPC) directs it to specific regions of cell membranes called rafts. In order to test the importance of the raft environment on prion propagation, we developed a novel model for prion infection where cells expressing either GPI-anchored PrPC or transmembrane-anchored PrPC, which partitions it to a different location, were treated with infectious, misfolded forms of the prion protein, PrPres We show that only GPI-anchored PrPC was able to convert to PrPres and able to serially propagate. The results strongly suggest that GPI anchoring and the localization of PrPC to rafts are crucial to the ability of PrPC to propagate as a prion.
Collapse
|
34
|
Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, Hexem E, Peelor FF, Miller BF, Hamilton KL, Transtrum MK, Bikman BT, Price JC. Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient Signals. Mol Cell Proteomics 2016; 16:243-254. [PMID: 27932527 PMCID: PMC5294211 DOI: 10.1074/mcp.m116.063255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Indexed: 01/01/2023] Open
Abstract
Control of protein homeostasis is fundamental to the health and longevity of all organisms. Because the rate of protein synthesis by ribosomes is a central control point in this process, regulation, and maintenance of ribosome function could have amplified importance in the overall regulatory circuit. Indeed, ribosomal defects are commonly associated with loss of protein homeostasis, aging, and disease (1–4), whereas improved protein homeostasis, implying optimal ribosomal function, is associated with disease resistance and increased lifespan (5–7). To maintain a high-quality ribosome population within the cell, dysfunctional ribosomes are targeted for autophagic degradation. It is not known if complete degradation is the only mechanism for eukaryotic ribosome maintenance or if they might also be repaired by replacement of defective components. We used stable-isotope feeding and protein mass spectrometry to measure the kinetics of turnover of ribosomal RNA (rRNA) and 71 ribosomal proteins (r-proteins) in mice. The results indicate that exchange of individual proteins and whole ribosome degradation both contribute to ribosome maintenance in vivo. In general, peripheral r-proteins and those with more direct roles in peptide-bond formation are replaced multiple times during the lifespan of the assembled structure, presumably by exchange with a free cytoplasmic pool, whereas the majority of r-proteins are stably incorporated for the lifetime of the ribosome. Dietary signals impact the rates of both new ribosome assembly and component exchange. Signal-specific modulation of ribosomal repair and degradation could provide a mechanistic link in the frequently observed associations among diminished rates of protein synthesis, increased autophagy, and greater longevity (5, 6, 8, 9).
Collapse
Affiliation(s)
| | | | | | - Eric Evans
- From the ‡Department of Chemistry and Biochemistry
| | | | - Jared Knecht
- From the ‡Department of Chemistry and Biochemistry
| | - Eric Hexem
- From the ‡Department of Chemistry and Biochemistry
| | - Fredrick F Peelor
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | - Benjamin F Miller
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | - Karyn L Hamilton
- §Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado 80523
| | | | - Benjamin T Bikman
- ‖Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602
| | - John C Price
- From the ‡Department of Chemistry and Biochemistry,
| |
Collapse
|
35
|
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, McLean CY, Tung JY, Yu LPC, Gambetti P, Blevins J, Zhang S, Cohen Y, Chen W, Yamada M, Hamaguchi T, Sanjo N, Mizusawa H, Nakamura Y, Kitamoto T, Collins SJ, Boyd A, Will RG, Knight R, Ponto C, Zerr I, Kraus TFJ, Eigenbrod S, Giese A, Calero M, de Pedro-Cuesta J, Haïk S, Laplanche JL, Bouaziz-Amar E, Brandel JP, Capellari S, Parchi P, Poleggi A, Ladogana A, O'Donnell-Luria AH, Karczewski KJ, Marshall JL, Boehnke M, Laakso M, Mohlke KL, Kähler A, Chambert K, McCarroll S, Sullivan PF, Hultman CM, Purcell SM, Sklar P, van der Lee SJ, Rozemuller A, Jansen C, Hofman A, Kraaij R, van Rooij JGJ, Ikram MA, Uitterlinden AG, van Duijn CM, Daly MJ, MacArthur DG. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med 2016; 8:322ra9. [PMID: 26791950 DOI: 10.1126/scitranslmed.aad5169] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance-the probability that a carrier of the purported disease-causing genotype will indeed develop the disease-is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA. Prion Alliance, Cambridge, MA 02139, USA.
| | - Sonia M Vallabh
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA. Prion Alliance, Cambridge, MA 02139, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Karol Estrada
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kaitlin E Samocha
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cory Y McLean
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Joyce Y Tung
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Linda P C Yu
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Pierluigi Gambetti
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Janis Blevins
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Shulin Zhang
- University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Yvonne Cohen
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Wei Chen
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yosikazu Nakamura
- Department of Public Health, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Steven J Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alison Boyd
- Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert G Will
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard Knight
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Claudia Ponto
- National Reference Center for the Surveillance of Human Transmissible Spongiform Encephalopathies, Georg-August-University, Goettingen 37073, Germany
| | - Inga Zerr
- National Reference Center for the Surveillance of Human Transmissible Spongiform Encephalopathies, Georg-August-University, Goettingen 37073, Germany
| | - Theo F J Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Sabina Eigenbrod
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Miguel Calero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Jesús de Pedro-Cuesta
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Stéphane Haïk
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Pierre and Marie Curie University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France. Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Louis Laplanche
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75010 Paris, France
| | - Elodie Bouaziz-Amar
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75010 Paris, France
| | - Jean-Philippe Brandel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Pierre and Marie Curie University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France. Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| | - Sabina Capellari
- Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna 40123, Italy. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna 40123, Italy. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Anna Poleggi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Anna Ladogana
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jamie L Marshall
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Anna Kähler
- Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA. Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | - Shaun M Purcell
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - Annemieke Rozemuller
- Dutch Surveillance Centre for Prion Diseases, Department of Pathology, University Medical Center, Utrecht 3584 CX, Netherlands
| | - Casper Jansen
- Dutch Surveillance Centre for Prion Diseases, Department of Pathology, University Medical Center, Utrecht 3584 CX, Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, Rotterdam 3000 CA, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands. Department of Internal Medicine, Erasmus MC, Rotterdam 3000 CA, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | | | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
36
|
Daude N, Gapeshina H, Dong B, Winship I, Westaway D. Neuroprotective properties of the PrP-like Shadoo glycoprotein assessed in the middle cerebral artery occlusion model of ischemia. Prion 2016; 9:376-93. [PMID: 26516793 PMCID: PMC4964864 DOI: 10.1080/19336896.2015.1105432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biochemical similarities have been noted between the natively unstructured region of the cellular prion protein, PrPC, and a GPI-linked glycoprotein called Shadoo (Sho); these proteins are encoded by the Prnp and Sprn genes, respectively. Both proteins are expressed in the adult central nervous system and they share overlapping partners, including each other, in interactome studies. As prior studies have ascribed neuroprotective properties to the N-terminal region of PrPC, specifically the octarepeat region, we investigated Sho's neuroprotective properties. To this end we assessed Sho-null (Sprn0/0) and hemizygous (Sprn0/+) mice in the middle cerebral artery occlusion (MCAO) model versus wild type mice and also vs. transgene-rescued Sprn0/0-TgSprn mice. Sprn0/0 mice had a tendency to greater fragility in reaching endpoint and deficits in parameters including infarct volume and neurogenesis, with a reciprocal trend noted in transgene-rescued mice; however these effects did not reach significance. Loss of both PrPC and Sho immunostaining occurred in parallel to neuronal loss on the ipsilateral side of MCAO-lesioned animals; while focal elevations in immunostaining in the penumbra region were sometimes evident for PrPC, they were not noted for Sho. Our studies argue against discernible neuroprotective action of Sho in the genetic backgrounds used for this MCAO paradigm. Whether or not the positively charged N-terminal regions in Sho and PrPC fulfil different roles in vivo remains to be determined.
Collapse
Affiliation(s)
- Nathalie Daude
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| | - Hristina Gapeshina
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| | - Bin Dong
- b Neurochemical Research Unit; University of Alberta ; Edmonton , AB , Canada
| | - Ian Winship
- b Neurochemical Research Unit; University of Alberta ; Edmonton , AB , Canada
| | - David Westaway
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| |
Collapse
|
37
|
Notari S, Xiao X, Espinosa JC, Cohen Y, Qing L, Aguilar-Calvo P, Kofskey D, Cali I, Cracco L, Kong Q, Torres JM, Zou W, Gambetti P. Transmission characteristics of variably protease-sensitive prionopathy. Emerg Infect Dis 2016; 20:2006-14. [PMID: 25418590 PMCID: PMC4257788 DOI: 10.3201/eid2012.140548] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This disease is transmissible and thus an authentic prion disease. Variably protease-sensitive prionopathy (VPSPr), a recently identified and seemingly sporadic human prion disease, is distinct from Creutzfeldt-Jakob disease (CJD) but shares features of Gerstmann-Sträussler-Scheinker disease (GSS). However, contrary to exclusively inherited GSS, no prion protein (PrP) gene variations have been detected in VPSPr, suggesting that VPSPr might be the long-sought sporadic form of GSS. The VPSPr atypical features raised the issue of transmissibility, a prototypical property of prion diseases. We inoculated VPSPr brain homogenate into transgenic mice expressing various levels of human PrP (PrPC). On first passage, 54% of challenged mice showed histopathologic lesions, and 34% harbored abnormal PrP similar to that of VPSPr. Surprisingly, no prion disease was detected on second passage. We concluded that VPSPr is transmissible; thus, it is an authentic prion disease. However, we speculate that normal human PrPC is not an efficient conversion substrate (or mouse brain not a favorable environment) and therefore cannot sustain replication beyond the first passage.
Collapse
|
38
|
Kang SG, Kim C, Cortez LM, Carmen Garza M, Yang J, Wille H, Sim VL, Westaway D, McKenzie D, Aiken J. Toll-like receptor-mediated immune response inhibits prion propagation. Glia 2016; 64:937-51. [PMID: 26880394 DOI: 10.1002/glia.22973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 02/03/2023]
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and various mammals. The prominent neuropathological change in prion diseases is neuroinflammation characterized by activation of neuroglia surrounding prion deposition. The cause and effect of this cellular response, however, is unclear. We investigated innate immune defenses against prion infection using primary mixed neuronal and glial cultures. Conditional prion propagation occurred in glial cultures depending on their immune status. Preconditioning of the cells with the toll-like receptor (TLR) ligand, lipopolysaccharide, resulted in a reduction in prion propagation, whereas suppression of the immune responses with the synthetic glucocorticoid, dexamethasone, increased prion propagation. In response to recombinant prion fibrils, glial cells up-regulated TLRs (TLR1 and TLR2) expression and secreted cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6, granulocyte-macrophage colony-stimulating factor, and interferon-β). Preconditioning of neuronal and glial cultures with recombinant prion fibrils inhibited prion replication and altered microglial and astrocytic populations. Our results provide evidence that, in early stages of prion infection, glial cells respond to prion infection through TLR-mediated innate immunity.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - María Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Valerie L Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Agricultural, Food, and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
Sawyer EB, Edgeworth JA, Thomas C, Collinge J, Jackson GS. Preclinical detection of infectivity and disease-specific PrP in blood throughout the incubation period of prion disease. Sci Rep 2015; 5:17742. [PMID: 26631638 PMCID: PMC4668555 DOI: 10.1038/srep17742] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative disorder characterised by accumulation of pathological isoforms of the prion protein, PrP. Although cases of clinical vCJD are rare, there is evidence there may be tens of thousands of infectious carriers in the United Kingdom alone. This raises concern about the potential for perpetuation of infection via medical procedures, in particular transfusion of contaminated blood products. Accurate biochemical detection of prion infection is crucial to mitigate risk and we have previously reported a blood assay for vCJD. This assay is sensitive for abnormal PrP conformers at the earliest stages of preclinical prion disease in mice and precedes the maximum infectious titre in blood. Not only does this support the possibility of screening asymptomatic individuals, it will also facilitate the elucidation of the complex relationship that exists between the ensemble of abnormal PrP conformers present in blood and the relationship to infectivity.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Julie Ann Edgeworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Claire Thomas
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Graham S Jackson
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
40
|
Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species. J Virol 2015; 89:12418-26. [PMID: 26423957 DOI: 10.1128/jvi.02142-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED In lethal prion neurodegenerative diseases, misfolded prion proteins (PrP(Sc)) replicate by redirecting the folding of the cellular prion glycoprotein (PrP(C)). Infections of different durations can have a subclinical phase with constant levels of infectious particles, but the mechanisms underlying this plateau and a subsequent exit to overt clinical disease are unknown. Using tandem biophysical techniques, we show that attenuated accumulation of infectious particles in presymptomatic disease is preceded by a progressive fall in PrP(C) level, which constricts replication rate and thereby causes the plateau effect. Furthermore, disease symptoms occurred at the threshold associated with increasing levels of small, relatively less protease-resistant oligomeric prion particles (oPrP(Sc)). Although a hypothetical lethal isoform of PrP cannot be excluded, our data argue that diminishing residual PrP(C) levels and continuously increasing levels of oPrP(Sc) are crucial determinants in the transition from presymptomatic to symptomatic prion disease. IMPORTANCE Prions are infectious agents that cause lethal brain diseases; they arise from misfolding of a cell surface protein, PrP(C) to a form called PrP(Sc). Prion infections can have long latencies even though there is no protective immune response. Accumulation of infectious prion particles has been suggested to always reach the same plateau in the brain during latent periods, with clinical disease only occurring when hypothetical toxic forms (called PrP(L) or TPrP) begin to accumulate. We show here that infectivity plateaus arise because PrP(C) precursor levels become downregulated and that the duration of latent periods can be accounted for by the level of residual PrP(C), which transduces a toxic effect, along with the amount of oligomeric forms of PrP(Sc).
Collapse
|
41
|
Shikiya RA, Eckland TE, Young AJ, Bartz JC. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification. Prion 2015; 8:415-20. [PMID: 25482601 DOI: 10.4161/19336896.2014.983759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.
Collapse
Affiliation(s)
- Ronald A Shikiya
- a Department of Medical Microbiology and Immunology ; School of Medicine; Creighton University ; Omaha, NE USA
| | | | | | | |
Collapse
|
42
|
Ye L, Fritschi SK, Schelle J, Obermüller U, Degenhardt K, Kaeser SA, Eisele YS, Walker LC, Baumann F, Staufenbiel M, Jucker M. Persistence of Aβ seeds in APP null mouse brain. Nat Neurosci 2015; 18:1559-61. [DOI: 10.1038/nn.4117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/25/2015] [Indexed: 01/02/2023]
|
43
|
Singh J, Udgaonkar JB. Molecular Mechanism of the Misfolding and Oligomerization of the Prion Protein: Current Understanding and Its Implications. Biochemistry 2015; 54:4431-42. [PMID: 26171558 DOI: 10.1021/acs.biochem.5b00605] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies, make up a group of fatal neurodegenerative disorders linked with the misfolding and aggregation of the prion protein (PrP). Although it is not yet understood how the misfolding of PrP induces neurodegeneration, it is widely accepted that the formation of misfolded prion protein (termed PrP(Sc)) is both the triggering event in the disease and the main component of the infectious agent responsible for disease transmission. Despite the clear involvement of PrP(Sc) in prion diseases, the exact composition of PrP(Sc) is not yet well-known. Recent studies show that misfolded oligomers of PrP could, however, be responsible for neurotoxicity and/or infectivity in the prion diseases. Hence, understanding the molecular mechanism of formation of the misfolded oligomers of PrP is critical for developing an understanding about the prion diseases and for developing anti-prion therapeutics. This review discusses recent advances in understanding the molecular mechanism of misfolded oligomer formation by PrP and its implications for the development of anti-prion therapeutics.
Collapse
Affiliation(s)
- Jogender Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
44
|
Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 2015; 8:111-6. [PMID: 24401672 PMCID: PMC7030914 DOI: 10.4161/pri.27661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.
Collapse
|
45
|
Choi YP, Head MW, Ironside JW, Priola SA. Uptake and degradation of protease-sensitive and -resistant forms of abnormal human prion protein aggregates by human astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3299-307. [PMID: 25280631 DOI: 10.1016/j.ajpath.2014.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrP(Sc)) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrP(Sc) is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrP(Sc)). Although evidence suggests that sPrP(Sc) may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrP(Sc). Furthermore, the cell does not appear to distinguish between sPrP(Sc) and protease-resistant PrP(Sc), suggesting that sPrP(Sc) could contribute to prion infection.
Collapse
Affiliation(s)
- Young Pyo Choi
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Mark W Head
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - James W Ironside
- National Creutzfeldt Jakob Disease Research & Surveillance Unit, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.
| |
Collapse
|
46
|
Watts JC, Prusiner SB. Mouse models for studying the formation and propagation of prions. J Biol Chem 2014; 289:19841-9. [PMID: 24860095 DOI: 10.1074/jbc.r114.550707] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses.
Collapse
Affiliation(s)
- Joel C Watts
- From the Institute for Neurodegenerative Diseases and the Department of Neurology, University of California, San Francisco, California 94143
| | - Stanley B Prusiner
- From the Institute for Neurodegenerative Diseases and the Department of Neurology, University of California, San Francisco, California 94143
| |
Collapse
|
47
|
Rouvinski A, Karniely S, Kounin M, Moussa S, Goldberg MD, Warburg G, Lyakhovetsky R, Papy-Garcia D, Kutzsche J, Korth C, Carlson GA, Godsave SF, Peters PJ, Luhr K, Kristensson K, Taraboulos A. Live imaging of prions reveals nascent PrPSc in cell-surface, raft-associated amyloid strings and webs. ACTA ACUST UNITED AC 2014; 204:423-41. [PMID: 24493590 PMCID: PMC3912534 DOI: 10.1083/jcb.201308028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrP(C) into β-sheet-rich PrP(Sc). PrP(Sc) is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrP(Sc) rather than on its truncated PrP27-30 product. We show that N-terminal PrP(Sc) epitopes are exposed in their physiological context and visualize, for the first time, PrP(Sc) in living cells. PrP(Sc) resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrP(Sc) amyloids.
Collapse
Affiliation(s)
- Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, Kong Q, Langeveld J, McKenzie D, Westaway D, Safar JG. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 2014; 124:847-58. [PMID: 24430187 DOI: 10.1172/jci72241] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains.
Collapse
|
49
|
Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 2014; 7:83-105. [DOI: 10.1586/14787210.7.1.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Silber BM, Gever JR, Rao S, Li Z, Renslo AR, Widjaja K, Wong C, Giles K, Freyman Y, Elepano M, Irwin JJ, Jacobson MP, Prusiner SB. Novel compounds lowering the cellular isoform of the human prion protein in cultured human cells. Bioorg Med Chem 2014; 22:1960-72. [PMID: 24530226 DOI: 10.1016/j.bmc.2014.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/23/2013] [Accepted: 01/01/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE Previous studies showed that lowering PrP(C) concomitantly reduced PrP(Sc) in the brains of mice inoculated with prions. We aimed to develop assays that measure PrP(C) on the surface of human T98G glioblastoma and IMR32 neuroblastoma cells. Using these assays, we sought to identify chemical hits, confirmed hits, and scaffolds that potently lowered PrP(C) levels in human brains cells, without lethality, and that could achieve drug concentrations in the brain after oral or intraperitoneal dosing in mice. METHODS We utilized HTS ELISA assays to identify small molecules that lower PrP(C) levels by ≥30% on the cell surface of human glioblastoma (T98G) and neuroblastoma (IMR32) cells. RESULTS From 44,578 diverse chemical compounds tested, 138 hits were identified by single point confirmation (SPC) representing 7 chemical scaffolds in T98G cells, and 114 SPC hits representing 6 scaffolds found in IMR32 cells. When the confirmed SPC hits were combined with structurally related analogs, >300 compounds (representing 6 distinct chemical scaffolds) were tested for dose-response (EC₅₀) in both cell lines, only studies in T98G cells identified compounds that reduced PrP(C) without killing the cells. EC₅₀ values from 32 hits ranged from 65 nM to 4.1 μM. Twenty-eight were evaluated in vivo in pharmacokinetic studies after a single 10 mg/kg oral or intraperitoneal dose in mice. Our results showed brain concentrations as high as 16.2 μM, but only after intraperitoneal dosing. CONCLUSIONS Our studies identified leads for future studies to determine which compounds might lower PrP(C) levels in rodent brain, and provide the basis of a therapeutic for fatal disorders caused by PrP prions.
Collapse
Affiliation(s)
- B Michael Silber
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| | - Joel R Gever
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Satish Rao
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Zhe Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Adam R Renslo
- Small Molecule Discovery Center, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Kartika Widjaja
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Casper Wong
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States
| | - Yevgeniy Freyman
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - Manuel Elepano
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Matthew P Jacobson
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Pharmaceutical Chemistry, University of California, San Francisco, United States
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, United States; Department of Neurology, University of California, San Francisco, United States.
| |
Collapse
|