1
|
de Barros Cardoso CR, Cerqueira-Silva T, Barral-Netto M, Boaventura VS. Dengue Dilemma: Navigating Cross-Reactivity and Immune Challenges. Curr Top Microbiol Immunol 2025. [PMID: 40360744 DOI: 10.1007/82_2025_294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
This chapter examines the immunological mechanisms underlying the cross-reactivity and immune enhancement in dengue and how they influence the clinical outcomes. The four DENV serotypes (DENV-1 to DENV-4) share high genetic and antigenic similarity, leading to antibodies and T cells that can recognize multiple serotypes. While this cross-reactive immunity can confer partial or transient protection, it can also result in antibody-dependent enhancement (ADE), wherein non-neutralizing antibodies facilitate viral entry into immune cells, increasing the likelihood of severe disease in secondary infections and in infants carrying maternal anti-DENV antibodies. Furthermore, cross-reactivity with other flaviviruses, such as ZIKV, complicates serological diagnosis by producing false-positive results and uncertain prior exposure histories. These complexities extend to vaccine design, which must induce effective immunity against all four DENV serotypes while minimizing ADE risk. Epidemiological studies confirm that secondary infections, especially when antibody levels have waned, carry an elevated risk of severe clinical manifestations. However, the timing between infections and the specific serotype involved can modulate these outcomes. A thorough understanding of cross-reactivity and immune enhancement is therefore pivotal for advancing diagnostic accuracy, guiding patient care, and informing vaccine strategies and public health policies to better control dengue globally.
Collapse
Affiliation(s)
- Cristina R de Barros Cardoso
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Thiago Cerqueira-Silva
- Medicine and Precision Public Health Laboratory (MeSP2), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Salvador, Brazil
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Manoel Barral-Netto
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
- Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Viviane S Boaventura
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.
- Instituto de Investigação em Imunologia (iii-INCT), São Paulo, Brazil.
- Faculty of Medicine, Federal University of Bahia, Salvador, Brazil.
| |
Collapse
|
2
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
3
|
Cenci Dietrich V, Costa JMC, Oliveira MMGL, Aguiar CEO, Silva LGDO, Luz MS, Lemos FFB, de Melo FF. Pathogenesis and clinical management of arboviral diseases. World J Virol 2025; 14:100489. [PMID: 40134841 PMCID: PMC11612872 DOI: 10.5501/wjv.v14.i1.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Arboviral diseases are viral infections transmitted to humans through the bites of arthropods, such as mosquitoes, often causing a variety of pathologies associated with high levels of morbidity and mortality. Over the past decades, these infections have proven to be a significant challenge to health systems worldwide, particularly following the considerable geographic expansion of the dengue virus (DENV) and its most recent outbreak in Latin America as well as the difficult-to-control outbreaks of yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV), leaving behind a substantial portion of the population with complications related to these infections. Currently, the world is experiencing a period of intense globalization, which, combined with global warming, directly contributes to wider dissemination of arbovirus vectors across the globe. Consequently, all continents remain on high alert for potential new outbreaks. Thus, this review aims to provide a comprehensive understanding of the pathogenesis of the four main arboviruses today (DENV, ZIKV, YFV, and CHIKV) discussing their viral characteristics, immune responses, and mechanisms of viral evasion, as well as important clinical aspects for patient management. This includes associated symptoms, laboratory tests, treatments, existing or developing vaccines and the main associated complications, thus integrating a broad historical, scientific and clinical approach.
Collapse
Affiliation(s)
- Victoria Cenci Dietrich
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Juan Marcos Caram Costa
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
4
|
Hardy CSC, Wegman AD, Waldran MJ, Chan GC, Waickman AT. Conventional and antibody-enhanced DENV infection of human macrophages induces differential immunotranscriptomic profiles. J Virol 2025; 99:e0196224. [PMID: 39902963 PMCID: PMC11915858 DOI: 10.1128/jvi.01962-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus which coexists as four genetically and immunologically distinct serotypes (DENV-1 to -4). In secondary heterologous DENV infection, pre-existing immunity is believed to contribute to severe disease through antibody-dependent enhancement (ADE). Although the elevated pathology observed in ADE conditions has been described, the cell-intrinsic mechanisms governing this process remain unclear. Using single-cell RNA sequencing (scRNAseq), we investigated the transcriptomic profiles of human monocyte-derived macrophages infected by DENV-2 in ADE compared to conventional infection conditions. Unsupervised analysis of scRNAseq data enabled the identification of two distinct cell populations in a heterogeneous cell culture, likely representing infected and bystander/uninfected cells. Differential gene expression and ingenuity pathway analyses revealed a number of significantly upregulated and downregulated genes and gene networks between cells infected by ADE compared to conventional infection. Specifically, these pathways indicated mechanisms such as suppressed interferon signaling and inflammatory chemokine transcription in cells infected via ADE. Further analysis revealed that transcriptomic changes were independent of viral RNA within infected cells, suggesting that the observed changes are reflective of cell-intrinsic responses and not simply a function of per-cell viral burden. The interpreted "bystander" cell population also demonstrated distinct profiles in ADE conditions, indicating an immunologically activated phenotype enriched for the expression of gene networks involved with protein translation, cytokine production, and antigen presentation. Together, these findings support the concept that DENV infection via ADE induces a qualitatively different transcriptomic response in infected cells, contributing to our understanding of ADE as a mechanistic driver of disease and pathogenesis.IMPORTANCEDengue virus (DENV) is a mosquito-borne human pathogen with a significant and growing global health burden. Although correlates of severe dengue disease are poorly understood, pre-existing immunity to DENV has been associated with severe disease risk and known to contribute to an alternative route of viral entry termed antibody-dependent enhancement (ADE). Using single-cell RNA sequencing, we identified distinct transcriptomic processes involved in antibody-mediated DENV entry compared to conventional receptor-mediated entry. These data provide meaningful insight into the discrete processes contributing to DENV pathogenesis in ADE conditions.
Collapse
Affiliation(s)
- Céline S. C. Hardy
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Adam D. Wegman
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Mitchell J. Waldran
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Gary C. Chan
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
| | - Adam T. Waickman
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, USA
- Institute for Global Health and Translational Sciences, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
5
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. J Virol 2024; 98:e0158224. [PMID: 39377586 DOI: 10.1128/jvi.01582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Under some conditions, dengue virus (DENV) can hijack IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR)-a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this unusual IgG-mediated infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout (KO) screens in an in vitro system poorly permissive to infection in the absence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates the binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired the binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that promote efficient ADE of DENV infection. Our findings represent a first step toward advancing fundamental knowledge behind the biology of a non-canonical infection route implicated in disease.IMPORTANCEAntibodies can paradoxically enhance rather than inhibit dengue virus (DENV) infection in some cases. To advance knowledge of the functional requirements of antibody-dependent enhancement (ADE) of infection beyond existing descriptive studies, we performed a genome-scale CRISPR knockout (KO) screen in an optimized in vitro system permissive to efficient DENV infection only in the presence of IgG. In addition to FcgRIIa, a known receptor that facilitates IgG-mediated uptake of IgG-bound, but not naked DENV particles, our screens identified TBC1D24 and SV2B, cellular factors with no known role in DENV infection. We validated a functional role for TBC1D24 and SV2B in mediating ADE of all four DENV serotypes in different cell lines and using various antibodies. Thus, we identify cellular factors beyond Fc gamma receptors that promote ADE mechanisms. This study represents a first step toward advancing fundamental knowledge beyond a poorly understood non-canonical viral entry mechanism.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
6
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
7
|
Dash MK, Samal S, Rout S, Behera CK, Sahu MC, Das B. Immunomodulation in dengue: towards deciphering dengue severity markers. Cell Commun Signal 2024; 22:451. [PMID: 39327552 PMCID: PMC11425918 DOI: 10.1186/s12964-024-01779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Dengue is a vector-borne debilitating disease that is manifested as mild dengue fever, dengue with warning signs, and severe dengue. Dengue infection provokes a collective immune response; in particular, the innate immune response plays a key role in primary infection and adaptive immunity during secondary infection. In this review, we comprehensively walk through the various markers of immune response against dengue pathogenesis and outcome. MAIN BODY Innate immune response against dengue involves a collective response through the expression of proinflammatory cytokines, such as tumor necrosis factors (TNFs), interferons (IFNs), and interleukins (ILs), in addition to anti-inflammatory cytokines and toll-like receptors (TLRs) in modulating viral pathogenesis. Monocytes, dendritic cells (DCs), and mast cells are the primary innate immune cells initially infected by DENV. Such immune cells modulate the expression of various markers, which can influence disease severity by aiding virus entry and proinflammatory responses. Adaptive immune response is mainly aided by B and T lymphocytes, which stimulate the formation of germinal centers for plasmablast development and antibody production. Such antibodies are serotype-dependent and can aid in virus entry during secondary infection, mediated through a different serotype, such as in antibody-dependent enhancement (ADE), leading to DENV severity. The entire immunological repertoire is exhibited differently depending on the immune status of the individual. SHORT CONCLUSION Dengue fever through severe dengue proceeds along with the modulated expression of several immune markers. In particular, TLR2, TNF-α, IFN-I, IL-6, IL-8, IL-17 and IL-10, in addition to intermediate monocytes (CD14+CD16+) and Th17 (CD4+IL-17+) cells are highly expressed during severe dengue. Such markers could assist greatly in severity assessment, prompt diagnosis, and treatment.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Shailesh Rout
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Chinmay Kumar Behera
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | | | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
8
|
Pathak B, Chakarvarty A, Rani NV, Krishnan A. Serological immune biomarker for disease severity in dengue-infected pediatric hospitalized patients. J Med Virol 2024; 96:e29779. [PMID: 38975640 DOI: 10.1002/jmv.29779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Clinical manifestation of dengue disease ranges from asymptomatic, febrile fever without warning sign (DOS) to serious outcome dengue with warning sign (DWS) and severe disease (SD) leading to shock syndrome and death. The role of antibody response in natural dengue infection is complex and not completely understood. Here, we aimed to assess serological marker for disease severity. Antibody response of dengue-confirmed pediatric patients with acute secondary infection were evaluated against infecting virus, immature virus, and recombinant envelop protein. Immature virus antibody titers were significantly higher in DWS as compared to DOS (p = 0.0006). However, antibody titers against recombinant envelop protein were higher in DOS as compared to DWS, and antibody avidity was significantly higher against infecting virus in DOS. Serum samples of DOS patients displayed higher in vitro neutralization potential in plaque assay as compared to DWS, whereas DWS serum samples showed higher antibody-dependent enhancement in the in vitro enhancement assays. Thus, antibodies targeting immature virus can predict disease severity and could be used in early forecast of disease outcome using an enzyme-linked immunoassay assay system which is less laborious and cheaper than plaque assay system for correlates of protection and could help optimize medical care and resources.
Collapse
Affiliation(s)
- Bharti Pathak
- Department of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Aparna Chakarvarty
- Department of Paediatrics, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
- Department of Paediatrics, Amrita Institute of Medical Sciences, Faridabad, Haryana, India
| | | | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| |
Collapse
|
9
|
Zhang L, Feng X, Chen W, Wang B, He S, Fan H, Liu D. Non-infectious immune complexes downregulate the production of interferons and tumor necrosis factor-α in primary porcine alveolar macrophages in vitro. Front Vet Sci 2024; 11:1420466. [PMID: 38962699 PMCID: PMC11221350 DOI: 10.3389/fvets.2024.1420466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) has been harming the pig industry worldwide for nearly 40 years. Although scientific researchers have made substantial efforts to explore PRRSV pathogenesis, the immune factors influencing PRRSV infection still need to be better understood. Infectious virus-antibody immune complexes (ICs) formed by PRRSV and sub-or non-neutralizing antibodies specific for PRRSV may significantly promote the development of PRRS by enhancing PRRSV replication through antibody-dependent enhancement. However, nothing is known about whether PRRSV infection is affected by non-infectious ICs (NICs) formed by non-pathogenic/infectious antigens and corresponding specific antibodies. Here, we found that PRRSV significantly induced the transcripts and proteins of interferon-α (IFN-α), IFN-β, IFN-γ, IFN-λ1, and tumor necrosis factor-α (TNF-α) in vitro primary porcine alveolar macrophages (PAMs) in the early stage of infection. Our results showed that NICs formed by rabbit-negative IgG (RNI) and pig anti-RNI specific IgG significantly reduced the transcripts and proteins of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α in vitro PAMs and significantly elevated the transcripts and proteins of interleukine-10 (IL-10) and transforming growth factor-β1 (TGF-β1) in vitro PAMs. NICs-mediated PRRSV infection showed that NICs not only significantly decreased the induction of IFN-α, IFN-β, IFN-γ, IFN-λ1, and TNF-α by PRRSV but also significantly increased the induction of IL-10 and TGF-β1 by PRRSV and considerably enhanced PRRSV replication in vitro PAMs. Our data suggested that NICs could downregulate the production of antiviral cytokines (IFN-α/β/γ/λ1 and TNF-α) during PRRSV infection in vitro and facilitated PRRSV proliferation in its host cells by inhibiting innate antiviral immune response. This study elucidated one novel immune response to PRRSV infection, which would enhance our understanding of the pathogenesis of PRRSV.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongjie Fan
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Deyi Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
10
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
11
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Belmont L, Contreras M, Cartwright-Acar CH, Marceau CD, Agrawal A, Levoir LM, Lubow J, Goo L. Functional genomics screens reveal a role for TBC1D24 and SV2B in antibody-dependent enhancement of dengue virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591029. [PMID: 38712102 PMCID: PMC11071485 DOI: 10.1101/2024.04.26.591029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Dengue virus (DENV) can hijack non-neutralizing IgG antibodies to facilitate its uptake into target cells expressing Fc gamma receptors (FcgR) - a process known as antibody-dependent enhancement (ADE) of infection. Beyond a requirement for FcgR, host dependency factors for this non-canonical infection route remain unknown. To identify cellular factors exclusively required for ADE, here, we performed CRISPR knockout screens in an in vitro system permissive to infection only in the presence of IgG antibodies. Validating our approach, a top hit was FcgRIIa, which facilitates binding and internalization of IgG-bound DENV but is not required for canonical infection. Additionally, we identified host factors with no previously described role in DENV infection, including TBC1D24 and SV2B, both of which have known functions in regulated secretion. Using genetic knockout and trans-complemented cells, we validated a functional requirement for these host factors in ADE assays performed with monoclonal antibodies and polyclonal sera in multiple cell lines and using all four DENV serotypes. We show that knockout of TBC1D24 or SV2B impaired binding of IgG-DENV complexes to cells without affecting FcgRIIa expression levels. Thus, we identify cellular factors beyond FcgR that are required for ADE of DENV infection. Our findings represent a first step towards advancing fundamental knowledge behind the biology of ADE that can ultimately be exploited to inform vaccination and therapeutic approaches.
Collapse
Affiliation(s)
- Laura Belmont
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Maya Contreras
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | | | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Lisa M. Levoir
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jay Lubow
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Leslie Goo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
13
|
Plaça DR, Fonseca DLM, Marques AHC, Zaki Pour S, Usuda JN, Baiocchi GC, Prado CADS, Salgado RC, Filgueiras IS, Freire PP, Rocha V, Camara NOS, Catar R, Moll G, Jurisica I, Calich VLG, Giil LM, Rivino L, Ochs HD, Cabral-Miranda G, Schimke LF, Cabral-Marques O. Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection. Front Immunol 2024; 15:1282754. [PMID: 38444851 PMCID: PMC10912564 DOI: 10.3389/fimmu.2024.1282754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.
Collapse
Affiliation(s)
- Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Crispim Baiocchi
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ranieri Coelho Salgado
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
- Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Niels Olsen Saraiva Camara
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vera Lúcia Garcia Calich
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Research Institute, Seattle, WA, United States
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
14
|
Xu L, Li M, Zhang J, Li D, Tao J, Zhang F, Jin X, Lu J, Liu T. Metabolomic landscape of macrophage discloses an anabolic signature of dengue virus infection and antibody-dependent enhancement of viral infection. PLoS Negl Trop Dis 2024; 18:e0011923. [PMID: 38306392 PMCID: PMC10866464 DOI: 10.1371/journal.pntd.0011923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/14/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Dengue virus (DENV) infection causes dengue fever, the most prevalent arthropod-transmitted viral disease worldwide. Viruses are acellular parasites and obligately rely on host cell machinery for reproduction. Previous studies have indicated metabolomic changes in endothelial cell models and sera of animal models and patients with dengue fever. To probe the immunometabolic mechanism of DENV infection, here, we report the metabolomic landscape of a human macrophage cell model of DENV infection and its antibody-dependent enhancement. DENV infection of THP-1-derived macrophages caused 202 metabolic variants, of which amino acids occupied 23.7%, fatty acids 21.78%, carbohydrates 10.4%, organic acids 13.37%, and carnitines 10.4%. These metabolomic changes indicated an overall anabolic signature, which was characterized by the global exhaustion of amino acids, increases of cellular fatty acids, carbohydrates and pentoses, but decreases of acylcarnitine. Significant activation of metabolic pathways of glycolysis, pentose phosphate, amino acid metabolism, and tricarboxylic acid cycle collectively support the overall anabolism to meet metabolic demands of DENV replication and immune activation by viral infection. Totally 88 of 202 metabolic variants were significantly changed by DENV infection, 36 of which met the statistical standard (P<0.05, VIP>1.5) of differentially expressed metabolites, which were the predominantly decreased variants of acylcarnitine and the increased variants of fatty acids and carbohydrates. Remarkably, 11 differentially expressed metabolites were significantly distinct between DENV only infection and antibody-dependent enhancement of viral infection. Our data suggested that the anabolic activation by DENV infection integrates the viral replication and anti-viral immune activation.
Collapse
Affiliation(s)
- Li Xu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Li
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jingpu Zhang
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dongxiao Li
- Metabo-Profile Biotechnology Company, Shanghai, China
| | - Jie Tao
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fuchun Zhang
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xia Jin
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiahai Lu
- Key Laboratory for Tropical Disease Control, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou 510080, China
- Hainan Key Novel Thinktank "Hainan Medical University ’One Health’ Research Center", Haikou 571199, China
- Institute of One Health, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tiefu Liu
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Estofolete CF, Versiani AF, Dourado FS, Milhim BHGA, Pacca CC, Silva GCD, Zini N, dos Santos BF, Gandolfi FA, Mistrão NFB, Garcia PHC, Rocha RS, Gehrke L, Bosch I, Marques RE, Teixeira MM, da Fonseca FG, Vasilakis N, Nogueira ML. Influence of previous Zika virus infection on acute dengue episode. PLoS Negl Trop Dis 2023; 17:e0011710. [PMID: 37943879 PMCID: PMC10662752 DOI: 10.1371/journal.pntd.0011710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/21/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The co-circulation of flaviviruses in tropical regions has led to the hypothesis that immunity generated by a previous dengue infection could promote severe disease outcomes in subsequent infections by heterologous serotypes. This study investigated the influence of antibodies generated by previous Zika infection on the clinical outcomes of dengue infection. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 1,043 laboratory confirmed dengue patients and investigated their prior infection to Zika or dengue. Severe forms of dengue disease were more frequent in patients with previous Zika infection, but not in those previously exposed to dengue. CONCLUSIONS/SIGNIFICANCE Our findings suggest that previous Zika infection may represent a risk factor for subsequent severe dengue disease, but we did not find evidence of antibody-dependent enhancement (higher viral titer or pro-inflammatory cytokine overexpression) contributing to exacerbation of the subsequent dengue infection.
Collapse
Affiliation(s)
- Cassia F. Estofolete
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Alice F. Versiani
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Fernanda S. Dourado
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Bruno H. G. A. Milhim
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Carolina C. Pacca
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Gislaine C. D. Silva
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Nathalia Zini
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Barbara F. dos Santos
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Flora A. Gandolfi
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Natalia F. B. Mistrão
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Pedro H. C. Garcia
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Rodrigo S. Rocha
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School; Boston, Massachusetts, United States of America
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, Massachusetts, United States of America
| | - Rafael E. Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM); Campinas, Sao Paulo, Brazil
| | - Mauro M. Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Flavio G. da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
- Centro de Tecnoogia em Vacinas da UFMG, Universidade Federal de Minas Gerais; Belo Horizonte, Minas Gerais, Brazil
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Tropical Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Maurício L. Nogueira
- Laboratório de Pesquisas em Virologia (LPV), Faculdade de Medicina de São José do Rio Preto (FAMERP); São José do Rio Preto, Sao Paulo, Brazil
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
18
|
Dobrzyńska M, Moniuszko-Malinowska A, Skrzydlewska E. Metabolic response to CNS infection with flaviviruses. J Neuroinflammation 2023; 20:218. [PMID: 37775774 PMCID: PMC10542253 DOI: 10.1186/s12974-023-02898-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Flaviviruses are arthropod-borne RNA viruses found worldwide that, when introduced into the human body, cause diseases, including neuroinfections, that can lead to serious metabolic consequences and even death. Some of the diseases caused by flaviviruses occur continuously in certain regions, while others occur intermittently or sporadically, causing epidemics. Some of the most common flaviviruses are West Nile virus, dengue virus, tick-borne encephalitis virus, Zika virus and Japanese encephalitis virus. Since all the above-mentioned viruses are capable of penetrating the blood-brain barrier through different mechanisms, their actions also affect the central nervous system (CNS). Like other viruses, flaviviruses, after entering the human body, contribute to redox imbalance and, consequently, to oxidative stress, which promotes inflammation in skin cells, in the blood and in CNS. This review focuses on discussing the effects of oxidative stress and inflammation resulting from pathogen invasion on the metabolic antiviral response of the host, and the ability of viruses to evade the consequences of metabolic changes or exploit them for increased replication and further progression of infection, which affects the development of sequelae and difficulties in therapy.
Collapse
Affiliation(s)
- Marta Dobrzyńska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Zurawia 14, 15-540, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
19
|
Salgado DM, Rivera GM, Pinto WA, Rodríguez J, Acosta G, Castañeda DM, Vega R, Perdomo-Celis F, Bosch I, Narváez CF. Unique Immune Blood Markers Between Severe Dengue and Sepsis in Children. Pediatr Infect Dis J 2023; 42:792-800. [PMID: 37463399 DOI: 10.1097/inf.0000000000003990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Pediatric dengue and sepsis share clinical and pathophysiologic aspects. Multiple inflammatory and regulatory cytokines, decoy receptors and vascular permeability factors have been implicated in the pathogenesis of both diseases. The differential pattern and dynamic of these soluble factors, and the relationship with clinical severity between pediatric dengue and sepsis could offer new diagnosis and therapeutic strategies. METHODS We evaluated the concentration levels of 11 soluble factors with proinflammatory, regulatory and vascular permeability involvement, in plasma from children with dengue or sepsis, both clinically ranging from mild to severe, in the early, late and convalescence phases of the disease. RESULTS During early acute infection, children with sepsis exhibited specific higher concentration levels of IL-6, vascular endothelial growth factor (VEGF), and its soluble decoy receptor II (sVEGFR2) and lower concentration levels of IL-10 and the soluble tumor necrosis factor receptor 2 (sTNFR2), in comparison with children with severe dengue. In addition, the circulating amounts of soluble ST2, and VEGF/sVEGFR2 were widely associated with clinical and laboratory indicators of dengue severity, whereas secondary dengue virus infections were characterized by an enhanced cytokine response, relative to primary infections. In severe forms of dengue, or sepsis, the kinetics and the cytokines response during the late and convalescence phases of the disease also differentiate. CONCLUSIONS Dengue virus infection and septic processes in children are characterized by cytokine responses of a specific magnitude, pattern and kinetics, which are implicated in the pathophysiology and clinical outcome of these diseases.
Collapse
Affiliation(s)
- Doris M Salgado
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Gina M Rivera
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - William A Pinto
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Jairo Rodríguez
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Gladys Acosta
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Diana M Castañeda
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Rocío Vega
- From the Departamento de Pediatría, Universidad Surcolombiana, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Irene Bosch
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA
| | - Carlos F Narváez
- División de Inmunología, Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
20
|
Sawant J, Patil A, Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines (Basel) 2023; 11:1240. [PMID: 37515055 PMCID: PMC10384352 DOI: 10.3390/vaccines11071240] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody Dependent Enhancement (ADE) of an infection has been of interest in the investigation of many viruses. It is associated with the severity of the infection. ADE is mediated by non-neutralizing antibodies, antibodies at sub-neutralizing concentrations, or cross-reactive non-neutralizing antibodies. Treatments like plasma therapy, B cell immunizations, and antibody therapies may trigger ADE. It is seen as an impediment to vaccine development as well. In viruses including the Dengue virus (DENV), severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, and influenza virus, the likely mechanisms of ADE are postulated and described. ADE improves the likelihood of productively infecting cells that are expressing the complement receptor or the Fc receptor (FcR) rather than the viral receptors. ADE occurs when the FcR, particularly the Fc gamma receptor, and/or complement system, particularly Complement 1q (C1q), allow the entry of the virus-antibody complex into the cell. Moreover, ADE alters the innate immune pathways to escape from lysis, promoting viral replication inside the cell that produces viral particles. This review discusses the involvement of FcR and the downstream immunomodulatory pathways in ADE, the complement system, and innate antiviral signaling pathways modification in ADE and its impact on facilitating viral replication. Additionally, we have outlined the modes of ADE in the cases of different viruses reported until now.
Collapse
Affiliation(s)
- Jyoti Sawant
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Ajit Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Swarali Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| |
Collapse
|
21
|
Mosquera-Sulbaran JA, Pedreañez A, Hernandez-Fonseca JP, Hernandez-Fonseca H. Angiotensin II and dengue. Arch Virol 2023; 168:191. [PMID: 37368044 DOI: 10.1007/s00705-023-05814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/09/2023] [Indexed: 06/28/2023]
Abstract
Dengue is a disease caused by a flavivirus that is transmitted principally by the bite of an Aedes aegypti mosquito and represents a major public-health problem. Many studies have been carried out to identify soluble factors that are involved in the pathogenesis of this infection. Cytokines, soluble factors, and oxidative stress have been reported to be involved in the development of severe disease. Angiotensin II (Ang II) is a hormone with the ability to induce the production of cytokines and soluble factors related to the inflammatory processes and coagulation disorders observed in dengue. However, a direct involvement of Ang II in this disease has not been demonstrated. This review primarily summarizes the pathophysiology of dengue, the role of Ang II in various diseases, and reports that are highly suggestive of the involvement of this hormone in dengue.
Collapse
Affiliation(s)
- Jesus A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela.
| | - Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, 4001-A, Venezuela
- Servicio de Microscopia Electronica del Centro Nacional de Biotecnologia (CNB- CSIC) Madrid, Madrid, España
| | - Hugo Hernandez-Fonseca
- Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, Saint George's University, True Blue, West Indies, Grenada
| |
Collapse
|
22
|
Sarkar MMH, Rahman MS, Islam MR, Rahman A, Islam MS, Banu TA, Akter S, Goswami B, Jahan I, Habib MA, Uddin MM, Mia MZ, Miah MI, Shaikh AA, Khan MS. Comparative phylogenetic analysis and transcriptomic profiling of Dengue (DENV-3 genotype I) outbreak in 2021 in Bangladesh. Virol J 2023; 20:127. [PMID: 37337232 PMCID: PMC10278332 DOI: 10.1186/s12985-023-02030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/04/2023] [Indexed: 06/21/2023] Open
Abstract
Background The next-generation sequencing (NGS) technology facilitates in-depth study of host-pathogen metatranscriptome. We, therefore, implicated phylodynamic and transcriptomic approaches through NGS technology to know/understand the dengue virus (DENV) origin and host response with dengue fever. Methods In this study, blood serum RNA was extracted from 21 dengue patients and 3 healthy individuals. Total transcriptomic data were analyzed for phylogenetic, phylodynamic, differential express gene (DEG), and gene ontology (GO) using respective bioinformatics tools. Results The viral genome sequence revealed dengue viral genome size ranges 10647 to 10707 nucleotide. Phylogenetic and phylodynamic analysis showed that the 2021 epidemic isolates were DENV-3 genotype-I and maintained as a new clade in compared to 2019 epidemic. Transcriptome analysis showed a total of 2686 genes were DEG in dengue patients compared to control with a q-value < 0.05. DESeq2 plot counts function of the top 24 genes with the smallest q-values of differential gene expression of RNA-seq data showed that 11 genes were upregulated, whereas 13 genes were downregulated. GO analysis showed a significant upregulation (p = < 0.001) in a process of multicellular organismal, nervous system, sensory perception of chemical stimulus, and G protein-coupled receptor signaling pathways in the dengue patients. However, there were a significant downregulation (p = < 0.001) of intracellular component, cellular anatomical entity, and protein-containing complex in dengue patients. Most importantly, there was a significant increase of a class of immunoregulatory proteins in dengue patients in compared to the controls, with increased GO of immune system process. In addition, upregulation of toll receptor (TLR) signaling pathways were found in dengue patients. These TLR pathways were particularly involved for the activation of innate system coupled with adaptive immune system that probably involved the rapid elimination of dengue virus infected cells. These differentially expressed genes could be further investigated for target based prophylactic interventions for dengue. Conclusion This is a first report describing DENV complete genomic features and differentially expressed genes in patients in Bangladesh. These genes may have diagnostic and therapeutic values for dengue infection. Continual genomic surveillance is required to further investigate the shift in dominant genotypes in relation to viral pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-023-02030-1.
Collapse
Affiliation(s)
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Arafat Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Tanjina Akhtar Banu
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shahina Akter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barna Goswami
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Iffat Jahan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Ahashan Habib
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mohammad Mohi Uddin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Zakaria Mia
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Ibrahim Miah
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Salim Khan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.
| |
Collapse
|
23
|
Sarker A, Dhama N, Gupta RD. Dengue virus neutralizing antibody: a review of targets, cross-reactivity, and antibody-dependent enhancement. Front Immunol 2023; 14:1200195. [PMID: 37334355 PMCID: PMC10272415 DOI: 10.3389/fimmu.2023.1200195] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Dengue is the most common viral infection spread by mosquitoes, prevalent in tropical countries. The acute dengue virus (DENV) infection is a benign and primarily febrile illness. However, secondary infection with alternative serotypes can worsen the condition, leading to severe and potentially fatal dengue. The antibody raised by the vaccine or the primary infections are frequently cross-reactive; however, weakly neutralizing, and during subsequent infection, they may increase the odds of antibody-dependent enhancement (ADE). Despite that, many neutralizing antibodies have been identified against the DENV, which are thought to be useful in reducing dengue severity. Indeed, an antibody must be free from ADE for therapeutic application, as it is pretty common in dengue infection and escalates disease severity. Therefore, this review has described the critical characteristics of DENV and the potential immune targets in general. The primary emphasis is given to the envelope protein of DENV, where potential epitopes targeted for generating serotype-specific and cross-reactive antibodies have critically been described. In addition, a novel class of highly neutralizing antibodies targeted to the quaternary structure, similar to viral particles, has also been described. Lastly, we have discussed different aspects of the pathogenesis and ADE, which would provide significant insights into developing safe and effective antibody therapeutics and equivalent protein subunit vaccines.
Collapse
|
24
|
Zhang L, Feng X, Wang H, He S, Fan H, Liu D. Antibody-dependent enhancement of porcine reproductive and respiratory syndrome virus infection downregulates the levels of interferon-gamma/lambdas in porcine alveolar macrophages in vitro. Front Vet Sci 2023; 10:1150430. [PMID: 37008366 PMCID: PMC10050554 DOI: 10.3389/fvets.2023.1150430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Fc gamma receptor-mediated antibody-dependent enhancement (ADE) can promote virus invasion of target cells, sometimes exacerbating the severity of the disease. ADE may be an enormous hurdle to developing efficacious vaccines for certain human and animal viruses. ADE of porcine reproductive and respiratory syndrome virus (PRRSV) infection has been demonstrated in vivo and in vitro. However, the effect of PRRSV-ADE infection on the natural antiviral immunity of the host cells is yet to be well investigated. Specifically, whether the ADE of PRRSV infection affects the levels of type II (interferon-gamma, IFN-γ) and III (interferon-lambdas, IFN-λs) interferons (IFNs) remains unclear. In this study, our results showed that PRRSV significantly induced the secretion of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in porcine alveolar macrophages (PAMs) in early infection, and weakly inhibited the production of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 in PAMs in late infection. Simultaneously, PRRSV infection significantly increased the transcription of interferon-stimulated gene 15 (ISG15), ISG56, and 2′, 5′-oligoadenylate synthetase 2 (OAS2) in PAMs. In addition, our results showed that PRRSV infection in PAMs via the ADE pathway not only significantly decreased the synthesis of IFN-γ, IFN-λ1, IFN-λ3, and IFN-λ4 but also significantly enhanced the generation of transforming growth factor-beta1 (TGF-β1). Our results also showed that the ADE of PRRSV infection significantly reduced the mRNAs of ISG15, ISG56, and OAS2 in PAMs. In conclusion, our studies indicated that PRRSV-ADE infection suppressed innate antiviral response by downregulating the levels of type II and III IFNs, hence facilitating viral replication in PAMs in vitro. The ADE mechanism demonstrated in the present study furthered our understanding of persistent pathogenesis following PRRSV infection mediated by antibodies.
Collapse
|
25
|
Pradhan A, Aneja A, Ghosh S, Devvanshi H, C D, Sahu R, Ross C, Kshetrapal P, Maitra A, Das S. Association of exosomal miR-96-5p and miR-146a-5p with the disease severity in dengue virus infection. J Med Virol 2023; 95:e28614. [PMID: 36840403 DOI: 10.1002/jmv.28614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Exosomes are small extracellular vesicles secreted by cells and have a major role in cell-to-cell signaling. As dengue infection progresses from a mild to a severe form of infection, the exosome's microRNA (miRNA) composition might change, which may contribute to pathogenesis. In this study, a comprehensive analysis of serum exosomal miRNAs was performed and their involvement in dengue virus-induced disease progression in an Indian cohort was assessed. Small RNA-seq showed 50 differentially expressed exosomal miRNAs that were significantly dysregulated during dengue infection. After extensive validation, miR-96-5p was found to be significantly upregulated, whereas miR-146a-5p was significantly downregulated with the progression of disease to severe form. Interestingly, a strong positive correlation was found between the expression levels of miR-96-5p and miR-146a-5p and the platelet levels of the patients. Further, study of miR-146a-5p showed that it regulates the expression of the proteins which are involved in the immune responses. These results suggest that miR-96-5p and miR-146a-5p could be used as diagnostic and prognostic markers for dengue disease progression, in addition to the already available biochemical and pathological parameters.
Collapse
Affiliation(s)
- Aunji Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ashish Aneja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | - Himadri Devvanshi
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepika C
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Risabh Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Celil Ross
- St. John's Medical College, Bangalore, India
| | | | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
26
|
King SM, Bryan SP, Hilchey SP, Wang J, Zand MS. First Impressions Matter: Immune Imprinting and Antibody Cross-Reactivity in Influenza and SARS-CoV-2. Pathogens 2023; 12:169. [PMID: 36839441 PMCID: PMC9967769 DOI: 10.3390/pathogens12020169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Many rigorous studies have shown that early childhood infections leave a lasting imprint on the immune system. The understanding of this phenomenon has expanded significantly since 1960, when Dr. Thomas Francis Jr first coined the term "original antigenic sin", to account for all previous pathogen exposures, rather than only the first. Now more commonly referred to as "immune imprinting", this effect most often focuses on how memory B-cell responses are shaped by prior antigen exposure, and the resultant antibodies produced after subsequent exposure to antigenically similar pathogens. Although imprinting was originally observed within the context of influenza viral infection, it has since been applied to the pandemic coronavirus SARS-CoV-2. To fully comprehend how imprinting affects the evolution of antibody responses, it is necessary to compare responses elicited by pathogenic strains that are both antigenically similar and dissimilar to strains encountered previously. To accomplish this, we must be able to measure the antigenic distance between strains, which can be easily accomplished using data from multidimensional immunological assays. The knowledge of imprinting, combined with antigenic distance measures, may allow for improvements in vaccine design and development for both influenza and SARS-CoV-2 viruses.
Collapse
Affiliation(s)
- Samantha M. King
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shane P. Bryan
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shannon P. Hilchey
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jiong Wang
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Martin S. Zand
- Department of Medicine, Division of Nephrology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Clinical and Translational Science Institute, University of Rochester Medical Center, Rochester, NY 14618, USA
| |
Collapse
|
27
|
Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324:199018. [PMID: 36493993 DOI: 10.1016/j.virusres.2022.199018] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/19/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The transmission of dengue virus (DENV) from an infected Aedes mosquito to a human, causes illness ranging from mild dengue fever to fatal dengue shock syndrome. The similar conserved structure and sequence among distinct DENV serotypes or different flaviviruses has resulted in the occurrence of cross reaction followed by antibody-dependent enhancement (ADE). Thus far, the vaccine which can provide effective protection against infection by different DENV serotypes remains the biggest hurdle to overcome. Therefore, deep investigation is crucial for the potent and effective therapeutic drugs development. In addition, the cross-reactivity of flaviviruses that leads to false diagnosis in clinical settings could result to delay proper intervention management. Thus, the accurate diagnostic with high specificity and sensitivity is highly required to provide prompt diagnosis in respect to render early treatment for DENV infected individuals. In this review, the recent development of neutralizing antibodies, antiviral agents, and vaccine candidates in therapeutic platform for DENV infection will be discussed. Moreover, the discovery of antigenic cryptic epitopes, principle of molecular mimicry, and application of single-chain or single-domain antibodies towards DENV will also be presented.
Collapse
|
28
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
29
|
Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, Guan X, Qiu HJ, Li Y. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses 2022; 14:v14081739. [PMID: 36016361 PMCID: PMC9412366 DOI: 10.3390/v14081739] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
The pandemics caused by emerging viruses such as severe acute respiratory syndrome coronavirus 2 result in severe disruptions to public health. Vaccines and antibody drugs play essential roles in the control and prevention of emerging infectious diseases. However, in contrast with the neutralizing antibodies (NAbs), sub- or non-NAbs may facilitate the virus to enter the cells and enhance viral infection, which is termed antibody-dependent enhancement (ADE). The ADE of most virus infections is mediated by the Fc receptors (FcRs) expressed on the myeloid cells, while others are developed by other mechanisms, such as complement receptor-mediated ADE. In this review, we comprehensively analyzed the characteristics of the viruses inducing FcRs-mediated ADE and the new molecular mechanisms of ADE involved in the virus entry, immune response, and transcription modulation, which will provide insights into viral pathogenicity and the development of safer vaccines and effective antibody drugs against the emerging viruses inducing ADE.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kehui Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jingwen Dai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangyu Guan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence: (H.-J.Q.); (Y.L.)
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Correspondence: (H.-J.Q.); (Y.L.)
| |
Collapse
|
30
|
Thavorasak T, Chulanetra M, Glab-ampai K, Mahasongkram K, Sae-lim N, Teeranitayatarn K, Songserm T, Yodsheewan R, Nilubol D, Chaicumpa W, Sookrung N. Enhancing epitope of PEDV spike protein. Front Microbiol 2022; 13:933249. [PMID: 35935230 PMCID: PMC9355140 DOI: 10.3389/fmicb.2022.933249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the causative agent of a highly contagious enteric disease of pigs characterized by diarrhea, vomiting, and severe dehydration. PEDV infects pigs of all ages, but neonatal pigs during the first week of life are highly susceptible; the mortality rates among newborn piglets may reach 80–100%. Thus, PEDV is regarded as one of the most devastating pig viruses that cause huge economic damage to pig industries worldwide. Vaccination of sows and gilts at the pre-fertilization or pre-farrowing stage is a good strategy for the protection of suckling piglets against PEDV through the acquisition of the lactating immunity. However, vaccination of the mother pigs for inducing a high level of virus-neutralizing antibodies is complicated with unstandardized immunization protocol and unreliable outcomes. Besides, the vaccine may also induce enhancing antibodies that promote virus entry and replication, so-called antibody-dependent enhancement (ADE), which aggravates the disease upon new virus exposure. Recognition of the virus epitope that induces the production of the enhancing antibodies is an existential necessity for safe and effective PEDV vaccine design. In this study, the enhancing epitope of the PEDV spike (S) protein was revealed for the first time, by using phage display technology and mouse monoclonal antibody (mAbG3) that bound to the PEDV S1 subunit of the S protein and enhanced PEDV entry into permissive Vero cells that lack Fc receptor. The phages displaying mAbG3-bound peptides derived from the phage library by panning with the mAbG3 matched with several regions in the S1-0 sub-domain of the PEDV S1 subunit, indicating that the epitope is discontinuous (conformational). The mAbG3-bound phage sequence also matched with a linear sequence of the S1-BCD sub-domains. Immunological assays verified the phage mimotope results. Although the molecular mechanism of ADE caused by the mAbG3 via binding to the newly identified S1 enhancing epitope awaits investigation, the data obtained from this study are helpful and useful in designing a safe and effective PEDV protein subunit/DNA vaccine devoid of the enhancing epitope.
Collapse
Affiliation(s)
- Techit Thavorasak
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nawannaporn Sae-lim
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Thaweesak Songserm
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Rungrueang Yodsheewan
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Dachrit Nilubol
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Swine Viral Evolution and Vaccine Development Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubation Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Nitat Sookrung,
| |
Collapse
|
31
|
Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, Zhang Y, Larsson M, Shankar EM. Dengue Infection - Recent Advances in Disease Pathogenesis in the Era of COVID-19. Front Immunol 2022; 13:889196. [PMID: 35874775 PMCID: PMC9299105 DOI: 10.3389/fimmu.2022.889196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The dynamics of host-virus interactions, and impairment of the host’s immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Collapse
Affiliation(s)
- Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ramachandran Vignesh
- Preclinical Department, Royal College of Medicine Perak (UniKL RCMP), Universiti Kuala Lumpur, Ipoh, Malaysia
| | - Indranil Chattopadhyay
- Cancer and Microbiome Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory National Primate Research Center, Emory University, Atlanta GA, United States
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
- *Correspondence: Esaki M. Shankar, ; Yean Kong Yong,
| |
Collapse
|
32
|
Rong H, Qi M, Pan J, Sun Y, Gao J, Zhang X, Li W, Zhang B, Zhang XE, Cui Z. Self-Assembling Nanovaccine Confers Complete Protection Against Zika Virus Without Causing Antibody-Dependent Enhancement. Front Immunol 2022; 13:905431. [PMID: 35615356 PMCID: PMC9124840 DOI: 10.3389/fimmu.2022.905431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 01/20/2023] Open
Abstract
The Zika virus (ZIKV) epidemic poses a substantial threat to the public, and the development of safe and effective vaccines is a demanding challenge. In this study, we constructed a kind of self-assembling nanovaccine which confers complete protection against ZIKV infection. The ZIKV envelop protein domain III (zEDIII) was presented on recombinant human heavy chain ferritin (rHF) to form the zEDIII-rHF nanoparticle. Immunization of mice with zEDIII-rHF nanoparticle in the absence of an adjuvant induced robust humoral and cellular immune responses. zEDIII-rHF vaccination conferred complete protection against lethal infection with ZIKV and eliminated pathological symptoms in the brain. Importantly, the zEDIII-rHF nanovaccine induced immune response did not cross-react with dengue virus-2, overcoming the antibody-dependent enhancement (ADE) problem that is a safety concern for ZIKV vaccine development. Our constructed zEDIII-rHF nanovaccine, with superior protective performance and avoidance of ADE, provides an effective and safe vaccine candidate against ZIKV.
Collapse
Affiliation(s)
- Heng Rong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawang Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zongqiang Cui,
| |
Collapse
|
33
|
Santiago HC, Pereira-Neto TA, Gonçalves-Pereira MH, Terzian ACB, Durbin AP. Peculiarities of Zika Immunity and Vaccine Development: Lessons from Dengue and the Contribution from Controlled Human Infection Model. Pathogens 2022; 11:pathogens11030294. [PMID: 35335618 PMCID: PMC8951202 DOI: 10.3390/pathogens11030294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
The Zika virus (ZIKV) was first isolated from a rhesus macaque in the Zika forest of Uganda in 1947. Isolated cases were reported until 2007, when the first major outbreaks of Zika infection were reported from the Island of Yap in Micronesia and from French Polynesia in 2013. In 2015, ZIKV started to circulate in Latin America, and in 2016, ZIKV was considered by WHO to be a Public Health Emergency of International Concern due to cases of Congenital Zika Syndrome (CZS), a ZIKV-associated complication never observed before. After a peak of cases in 2016, the infection incidence dropped dramatically but still causes concern because of the associated microcephaly cases, especially in regions where the dengue virus (DENV) is endemic and co-circulates with ZIKV. A vaccine could be an important tool to mitigate CZS in endemic countries. However, the immunological relationship between ZIKV and other flaviviruses, especially DENV, and the low numbers of ZIKV infections are potential challenges for developing and testing a vaccine against ZIKV. Here, we discuss ZIKV vaccine development with the perspective of the immunological concerns implicated by DENV-ZIKV cross-reactivity and the use of a controlled human infection model (CHIM) as a tool to accelerate vaccine development.
Collapse
Affiliation(s)
- Helton C. Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
- Correspondence: ; Tel.: +55-31-3409-2664
| | - Tertuliano A. Pereira-Neto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Marcela H. Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 30270-901, MG, Brazil; (T.A.P.-N.); (M.H.G.-P.)
| | - Ana C. B. Terzian
- Laboratory of Cellular Immunology, Rene Rachou Institute, Fiocruz, Belo Horizonte 30190-002, MG, Brazil;
| | - Anna P. Durbin
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
34
|
Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research? Pathogens 2021; 10:pathogens10101233. [PMID: 34684182 PMCID: PMC8537471 DOI: 10.3390/pathogens10101233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022] Open
Abstract
In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an in-scale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defects.
Collapse
|
35
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. Recent Insights Into the Molecular Mechanism of Toll-Like Receptor Response to Dengue Virus Infection. Front Microbiol 2021; 12:744233. [PMID: 34603272 PMCID: PMC8483762 DOI: 10.3389/fmicb.2021.744233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease caused by dengue virus (DENV). Recently, DENV has been affecting humans within an expanding geographic range due to the warming of the earth. Innate immune responses play a significant role in antiviral defense, and Toll-like receptors (TLRs) are key regulators of innate immunity. Therefore, a detailed understanding of TLR and DENV interactions is important for devising therapeutic and preventive strategies. Several studies have indicated the ability of DENV to modulate the TLR signaling pathway and host immune response. Vaccination is considered one of the most successful medical interventions for preventing viral infections. However, only a partially protective dengue vaccine, the first licensed dengue vaccine CYD-TDV, is available in some dengue-endemic countries to protect against DENV infection. Therefore, the development of a fully protective, durable, and safe DENV vaccine is a priority for global health. Here, we demonstrate the progress made in our understanding of the host response to DENV infection, with a particular focus on TLR response and how DENV avoids the response toward establishing infection. We also discuss dengue vaccine candidates in late-stage development and the issues that must be overcome to enable their success.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
36
|
Abstract
Dengue is a vector-borne viral disease caused by the flavivirus dengue virus (DENV). Approximately 400 million cases and 22 000 deaths occur due to dengue worldwide each year. It has been reported in more than 100 countries in tropical and subtropical regions. A positive-stranded enveloped RNA virus (DENV) is principally transmitted by Aedes mosquitoes. It has four antigenically distinct serotypes, DENV-1 to DENV-4, with different genotypes and three structural proteins and seven non-structural proteins. Clinical symptoms of dengue range from mild fever to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS), with thrombocytopenia, leucopenia, and increased vascular permeability. Although primary infection causes activation of immune responses against DENV serotypes, the severity of the disease is enhanced via heterotypic infection by various serotypes as well as antibody-dependent enhancement (ADE). The first licensed DENV vaccine was tetravalent CYD Denvaxia, but it has not been approved in all countries. The lack of a suitable animal model, a proper mechanistic study in pathogenesis, and ADE are the main hindrances in vaccine development. This review summarizes the current knowledge on DENV epidemiology, biology, and disease aetiology in the context of prevention and protection from dengue virus disease.
Collapse
Affiliation(s)
- Sudipta Kumar Roy
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India.,Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Rammohunpur, P.O. North Bengal University, Raja Rammohunpur, District: Darjeeling, West Bengal, 734 013, India
| |
Collapse
|
37
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
38
|
Lidbury BA. Ross River Virus Immune Evasion Strategies and the Relevance to Post-viral Fatigue, and Myalgic Encephalomyelitis Onset. Front Med (Lausanne) 2021; 8:662513. [PMID: 33842517 PMCID: PMC8024622 DOI: 10.3389/fmed.2021.662513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Ross River virus (RRV) is an endemic Australian arbovirus, and member of the Alphavirus family that also includes Chikungunya virus (CHIK). RRV is responsible for the highest prevalence of human disease cases associated with mosquito-borne transmission in Australia, and has long been a leading suspect in cases of post-viral fatigue syndromes, with extrapolation of this link to Myalgic Encephalomyelitis (ME). Research into RRV pathogenesis has revealed a number of immune evasion strategies, impressive for a virus with a genome size of 12 kb (plus strand RNA), which resonate with insights into viral pathogenesis broadly. Drawing from observations on RRV immune evasion, mechanisms of relevance to long term idiopathic fatigue are featured as a perspective on infection and eventual ME symptoms, which include considerations of; (1) selective pro-inflammatory gene suppression post antibody-dependent enhancement (ADE) of RRV infection, (2) Evidence from other virus families of immune disruption and evasion post-ADE, and (3) how virally-driven immune evasion may impact on mitochondrial function via target of rapamycin (TOR) complexes. In light of these RRV measures to counter the host immune - inflammatory responses, links to recent discoveries explaining cellular, immune and metabolomic markers of ME will be explored and discussed, with the implications for long-COVID post SARS-CoV-2 also considered. Compelling issues on the connections between virally-induced alterations in cytokine expression, for example, will be of particular interest in light of energy pathways, and how these perturbations manifest clinically.
Collapse
Affiliation(s)
- Brett A Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
39
|
Instability of the NS1 Glycoprotein from La Reunion 2018 Dengue 2 Virus (Cosmopolitan-1 Genotype) in Huh7 Cells Is Due to Lysine Residues on Positions 272 and 324. Int J Mol Sci 2021; 22:ijms22041951. [PMID: 33669407 PMCID: PMC7920422 DOI: 10.3390/ijms22041951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.
Collapse
|
40
|
Wollner CJ, Richner JM. mRNA Vaccines against Flaviviruses. Vaccines (Basel) 2021; 9:148. [PMID: 33673131 PMCID: PMC7918459 DOI: 10.3390/vaccines9020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous vaccines have now been developed using the mRNA platform. In this approach, mRNA coding for a viral antigen is in vitro synthesized and injected into the host leading to exogenous protein expression and robust immune responses. Vaccines can be rapidly developed utilizing the mRNA platform in the face of emerging pandemics. Additionally, the mRNA coding region can be easily manipulated to test novel hypotheses in order to combat viral infections which have remained refractory to traditional vaccine approaches. Flaviviruses are a diverse family of viruses that cause widespread disease and have pandemic potential. In this review, we discuss the mRNA vaccines which have been developed against diverse flaviviruses.
Collapse
Affiliation(s)
| | - Justin M. Richner
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| |
Collapse
|
41
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
42
|
King CA, Wegman AD, Endy TP. Mobilization and Activation of the Innate Immune Response to Dengue Virus. Front Cell Infect Microbiol 2020; 10:574417. [PMID: 33224897 PMCID: PMC7670994 DOI: 10.3389/fcimb.2020.574417] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Dengue virus is an important human pathogen, infecting an estimated 400 million individuals per year and causing symptomatic disease in a subset of approximately 100 million. Much of the effort to date describing the host response to dengue has focused on the adaptive immune response, in part because of the well-established roles of antibody-dependent enhancement and T cell original sin as drivers of severe dengue upon heterotypic secondary infection. However, the innate immune system is a crucial factor in the host response to dengue, as it both governs the fate and vigor of the adaptive immune response, and mediates the acute inflammatory response in tissues. In this review, we discuss the innate inflammatory response to dengue infection, focusing on the role of evolutionarily conserved innate immune cells, their effector functions, and clinical course.
Collapse
Affiliation(s)
- Christine A. King
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | | | | |
Collapse
|
43
|
Malavige GN, Jeewandara C, Ogg GS. Dysfunctional Innate Immune Responses and Severe Dengue. Front Cell Infect Microbiol 2020; 10:590004. [PMID: 33194836 PMCID: PMC7644808 DOI: 10.3389/fcimb.2020.590004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Although infection with the dengue virus (DENV) causes severe dengue, it causes a mild self-limiting illness in the majority of individuals. There is emerging evidence that an aberrant immune response in the initial stages of infection lead to severe disease. Many inflammatory cytokines, chemokines, and lipid mediators are significantly higher in patients with severe dengue compared to those who develop mild infection, during febrile phase of illness. Monocytes, mast cells, and many other cells of the immune system, when infected with the DENV, especially in the presence of poorly neutralizing antibodies, leads to production of pro-inflammatory cytokines and inhibition of interferon signaling pathways. In addition, production of immunosuppressive cytokines such as IL-10 further leads to inhibition of cellular antiviral responses. This dysregulated and aberrant immune response leads to reduced clearance of the virus, and severe dengue by inducing a vascular leak and excessive inflammation due to high levels of inflammatory cytokines. Individuals with comorbid illnesses could be prone to more severe dengue due to low grade endotoxemia, gut microbial dysbiosis and an altered phenotype of innate immune cells. The immunosuppressive and inflammatory lipid mediators and altered phenotype of monocytes are likely to further act on T cells and B cells leading to an impaired adaptive immune response to the virus. Therefore, in order to identify therapeutic targets for treatment of dengue, it would be important to further characterize these mechanisms in order for early intervention. In this review, we discuss the differences in the innate immune responses in those who progress to develop severe dengue, compared to those with milder disease in order to understand the mechanisms that lead to severe dengue.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Narayan R, Tripathi S. Intrinsic ADE: The Dark Side of Antibody Dependent Enhancement During Dengue Infection. Front Cell Infect Microbiol 2020; 10:580096. [PMID: 33123500 PMCID: PMC7573563 DOI: 10.3389/fcimb.2020.580096] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 01/14/2023] Open
Abstract
Dengue fever is an Aedes mosquito-borne illness caused by any one of the four different dengue virus (DENV) serotypes (1–4) and manifests in the form of symptoms ranging from mild or asymptomatic to severe disease with vascular leakage, leading to shock, and viral hemorrhagic syndrome. Increased risk of severe disease occurs during secondary infection with a virus serotype distinct from that of prior dengue infection. This occurs by antibody dependent enhancement (ADE) of infection, wherein sub-neutralizing antibodies against the virus particles opsonize dengue virus entry via formation of immune complexes that interact with fragment crystallizable gamma receptors (FcγR) on monocytes, dendritic cells, and macrophages. The ADE phenomenon has two components: Extrinsic and Intrinsic ADE. While extrinsic ADE contributes to enhanced virus entry, intrinsic ADE results in heightened virus production by inhibition of type1 interferon and activation of interleukin-10 biosynthesis, thereby favoring a Th2 type immune response. Intrinsic ADE has greater contribution in enhancing Dengue replication as compared to extrinsic ADE. Detailed elucidation of intrinsic ADE during secondary dengue infection can increase our understanding of DENV-pathogenesis and aid in the development of host-targeting antivirals. Here we review literature focusing on intrinsic factors contributing to severe dengue pathology and suggest possible avenues for further research.
Collapse
Affiliation(s)
- Rohan Narayan
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
45
|
Harapan H, Michie A, Sasmono RT, Imrie A. Dengue: A Minireview. Viruses 2020; 12:v12080829. [PMID: 32751561 PMCID: PMC7472303 DOI: 10.3390/v12080829] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dengue, caused by infection of any of four dengue virus serotypes (DENV-1 to DENV-4), is a mosquito-borne disease of major public health concern associated with significant morbidity, mortality, and economic cost, particularly in developing countries. Dengue incidence has increased 30-fold in the last 50 years and over 50% of the world’s population, in more than 100 countries, live in areas at risk of DENV infection. We reviews DENV biology, epidemiology, transmission dynamics including circulating serotypes and genotypes, the immune response, the pathogenesis of the disease as well as updated diagnostic methods, treatments, vector control and vaccine developments.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia;
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia;
- Correspondence: (H.H.); (A.I.); Tel.: +62-(0)-651-7551843 (H.H.)
| |
Collapse
|
46
|
Izmirly AM, Alturki SO, Alturki SO, Connors J, Haddad EK. Challenges in Dengue Vaccines Development: Pre-existing Infections and Cross-Reactivity. Front Immunol 2020; 11:1055. [PMID: 32655548 PMCID: PMC7325873 DOI: 10.3389/fimmu.2020.01055] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
Dengue is one of the most frequently transmitted mosquito-borne diseases in the world, which creates a significant public health concern globally, especially in tropical and subtropical countries. It is estimated that more than 390 million people are infected with dengue virus each year and around 96 million develop clinical pathologies. Dengue infections are not only a health problem but also a substantial economic burden. To date, there are no effective antiviral therapies and there is only one licensed dengue vaccine that only demonstrated protection in the seropositive (Immune), naturally infected with dengue, but not dengue seronegative (Naïve) vaccines. In this review, we address several immune components and their interplay with the dengue virus. Additionally, we summarize the literature pertaining to current dengue vaccine development and advances. Moreover, we review some of the factors affecting vaccine responses, such as the pre-vaccination environment, and provide an overview of the significant challenges that face the development of an efficient/protective dengue vaccine including the presence of multiple serotypes, antibody-dependent enhancement (ADE), as well as cross-reactivity with other flaviviruses. Finally, we discuss targeting T follicular helper cells (Tfh), a significant cell population that is essential for the production of high-affinity antibodies, which might be one of the elements needed to be specifically targeted to enhance vaccine precision to dengue regardless of dengue serostatus.
Collapse
Affiliation(s)
- Abdullah M Izmirly
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sana O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sawsan O Alturki
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medical Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jennifer Connors
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
47
|
Gonçalves Pereira MH, Figueiredo MM, Queiroz CP, Magalhães TVB, Mafra A, Diniz LMO, da Costa ÚL, Gollob KJ, Antonelli LRDV, Santiago HDC. T-cells producing multiple combinations of IFNγ, TNF and IL10 are associated with mild forms of dengue infection. Immunology 2020; 160:90-102. [PMID: 32128816 DOI: 10.1111/imm.13185] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
Multifunctional interleukin 10 (IL10)+ Th1 cells have been implicated in favorable evolution of many infectious diseases, promoting an efficacious immune response while limiting immunopathology. Here, we investigated the presence of multifunctional CD4+ and CD8+ T-cells that expressed interferon gamma (IFNγ), IL10 and tumor necrosis factor (TNF), or its combinations during dengue infection. Peripheral blood mononuclear cells (PBMCs) from outpatients with dengue (mild dengue forms) and hospitalized patients (or patients with dengue with warning signs and severe dengue) were cultured in the presence of envelope (ENV) or NS3 peptide libraries of DENV during critical (hospitalization period) and convalescence phases. The production of IFNγ, IL10 and TNF by CD4+ and CD8+ T-cells was assessed by flow cytometry. Our data show that patients with mild dengue, when compared with patients with dengue with warning signs and severe dengue, presented higher frequencies of multifunctional T-cells like NS3-specific IFNγ/IL10-producing CD4+ T-cells in critical phase and NS3- and ENV-specific CD8+ T-cells producing IFNγ/IL10. In addition, NS3-specific CD8+ T-cells producing high levels of IFNγ/TNF and IFNγ/TNF/IL10 were also observed in the mild dengue group. We observed that multifunctional T-cells produced higher levels of cytokines as measured by intracellular content when compared with single producer T-cells. Importantly, multifunctional CD4+ and CD8+ T-cells producing IFNγ, TNF and IL10 simultaneously displayed positive correlation with platelet levels, suggesting a protective role of this population. The presence of IL10+ Th1 and IL10+ Tc1 multifunctional cells was associated with mild dengue presentation, suggesting that these cells play a role in clinical evolution of dengue infection.
Collapse
Affiliation(s)
| | | | - Camila Pereira Queiroz
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Adriana Mafra
- Hospital Metropolitano Odilon Behrens, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Kenneth J Gollob
- International Research Center, A. C. Camargo Câncer Center, São Paulo, Brazil
| | | | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Center for Immunization Research, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
48
|
Biobanking in amphibian and reptilian conservation and management: opportunities and challenges. CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01142-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
|
50
|
Antibody-Mediated Porcine Reproductive and Respiratory Syndrome Virus Infection Downregulates the Production of Interferon-α and Tumor Necrosis Factor-α in Porcine Alveolar Macrophages via Fc Gamma Receptor I and III. Viruses 2020; 12:v12020187. [PMID: 32046249 PMCID: PMC7077232 DOI: 10.3390/v12020187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022] Open
Abstract
Antibody-dependent enhancement (ADE) contributes to the pathogenesis of porcine reproductive and respiratory syndrome virus (PRRSV)-persistent infection. However, the mechanisms of PRRSV-ADE infection are still confusing. A clear understanding of the event upon virus infection by the ADE pathway has become crucial for developing efficient intervention of the PRRSV infection. In this study, an ADE assay showed that PRRSV-ADE infection in porcine alveolar macrophages (AMs) significantly decreased the production of interferon-α (IFN-α) and tumor necrosis factor-α (TNF-α), and significantly increased the production of interleukine-10 (IL-10). A gene knockdown assay based on small interfering RNA (siRNA) showed that both Fc gamma receptor I (FcγRI) and FcγRIII in porcine AMs were involved in PRRSV-ADE infection. An activation assay showed that specific activation of FcγRI or FcγRIII in porcine AMs during PRRSV infection not only significantly decreased the production of IFN-α and TNF-α, but also significantly increased the production of IL-10 and significantly facilitated PRRSV replication. In conclusion, our studies suggested that ADE downregulated the production of IFN-α and TNF-α in porcine AMs maybe via FcγRI and FcγRIII, thereby leading to enhanced PRRSV infection.
Collapse
|