1
|
Alzarea EA, Al-Kuraishy HM, Al-Gareeb AI, Alexiou A, Papadakis M, Beshay ON, Batiha GES. The Conceivable Role of Metabolic Syndrome in the Pathogenesis of Alzheimer's Disease: Cellular and Subcellular Alterations in Underpinning a Tale of Two. Neuromolecular Med 2025; 27:35. [PMID: 40379890 DOI: 10.1007/s12017-025-08832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/09/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD)is an age-related neurodegenerative disease characterized by memory decline and cognitive impairment .AD is common in people aged > 65 years, though most of AD cases are sporadic, which accounts for 95%, and 1-5% of AD is caused by familial causes . The causes of AD are aging, environmental toxins, and cardiometabolic factors that induce the degeneration of cholinergic neurons. It has been shown that the metabolic syndrome which is a clustering of dissimilar constituents including insulin resistance (IR), glucose intolerance, visceral obesity, hypertension, and dyslipidemia is implicated in the pathogenesis of AD. Metabolic syndrome disapprovingly affects cognitive function and the development in AD by inducing the development of oxidative stress, neuroinflammation, and brain IR. These changes, together with brain IR, impair cerebrovascular reactivity causing cognitive impairment and dementia. Nevertheless, the fundamental mechanism by which metabolic syndrome persuades AD risk is not entirely explicated. Accordingly, this review aims to discuss the connotation between metabolic syndrome and AD. In conclusion, metabolic syndrome is regarded as a possible risk factor for the initiation of AD neuropathology by diverse signaling pathways such as brain IR, activation of inflammatory signaling pathways, neuroinflammation, defective proteostasis, and dysregulation of lipid mediators.
Collapse
Affiliation(s)
- Ekremah A Alzarea
- Hematopathology, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO.Box13, Kufa, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, Australia
- Department of Research & Development, Funogen, Athens, Greece
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Olivia N Beshay
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Tasnády KR, Jehoul R, de Ravé MG, Gijbels MJ, Brône B, Dewachter I, Melotte V, Boesmans W. Gastrointestinal Dysfunction and Low-Grade Inflammation Associate With Enteric Neuronal Amyloid-β in a Model for Amyloid Pathology. Neurogastroenterol Motil 2025; 37:e15016. [PMID: 40051115 PMCID: PMC11996054 DOI: 10.1111/nmo.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Patients suffering from Alzheimer's disease, a progressive neurodegenerative disorder involving cognitive decline and memory impairment, often present with gastrointestinal comorbidities. Accumulating data also indicate that alterations in the gut can modulate Alzheimer's disease pathology, highlighting the need to better understand the link between gastrointestinal abnormalities and neurodegeneration in the brain. METHODS To disentangle the pathophysiology of gastrointestinal dysfunction in Alzheimer's disease, we conducted a detailed pathological characterization of the gastrointestinal tract of 5xFAD mice by performing histological analyses, gene expression studies, immunofluorescence labeling and gut function assays. RESULTS We found that 5xFAD mice have elevated levels of intestinal amyloid precursor protein and accumulate amyloid-β in enteric neurons. Histopathology revealed that this is associated with mild intestinal inflammation and fibrosis and accompanied by increased expression of proinflammatory cytokines. While overall enteric nervous system composition and organization appeared unaffected, 5xFAD mice have faster gastrointestinal transit. CONCLUSION Our findings indicate that amyloid-β accumulation in enteric neurons is associated with low-grade intestinal inflammation and altered motility and suggest that peripheral pathology may cause gastrointestinal dysfunction in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Kinga Réka Tasnády
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | | | - Marion J. Gijbels
- Department of Pathology, NUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Infection and Immunity, Amsterdam Cardiovascular SciencesAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Bert Brône
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Ilse Dewachter
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Veerle Melotte
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamthe Netherlands
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| |
Collapse
|
3
|
Li M, Wu X, Jiang L, Liu M, Yanju G, Li X, Tian F, Ye F, Wang J, Wang S, Qin C, Zhang L. Exploring the co-morbid relationship between Alzheimer's disease and lung cancer in the 5xFAD transgenic mouse model. Animal Model Exp Med 2025; 8:784-797. [PMID: 39930922 DOI: 10.1002/ame2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and lung cancer are leading causes of mortality among the older population. Epidemiological evidence suggests an antagonistic relationship between them, whereby patients with AD exhibit a reduced risk of developing cancer and vice versa. However, the precise mechanism by which AD antagonizes lung cancer progression warrants further elucidation. METHODS To this end, we established a co-morbidity model using 5xFAD transgenic mice induced with the carcinogen urethane. We visualized and quantified surface lung tumor colonies, assessed pathological parameters associated with lung cancer and AD using histopathological analysis, and employed single-cell sequencing and molecular pathological analyses to explore the mechanisms by which AD confers resistance to lung cancer. RESULTS Our findings revealed a significant reduction in lung tumor incidence in the AD group compared with that in the wild-type (WT) group. The results indicated a close association between AD-induced inhibition of lung tumor progression and iron homeostasis imbalance and increased oxidative stress. Moreover, greater CD8+ T cytotoxic lymphocyte and effector natural killer cell infiltration in the lung tumor tissues of AD mice and enhanced CD8+ T cytotoxic lymphocyte-mediated killing of target cells may be the primary factors contributing to the inhibition of lung tumor growth in the presence of AD. CONCLUSION This study identified essential mechanisms through which AD suppresses lung tumorigenesis, thereby providing targets for potential therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Mingfeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xinghan Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lin Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Min Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Gong Yanju
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaomeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Tian
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Ye
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Jinlong Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Siyuan Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Changping National Laboratory (CPNL), Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
4
|
Wolfe MS. Presenilin, γ-Secretase, and the Search for Pathogenic Triggers of Alzheimer's Disease. Biochemistry 2025; 64:1662-1672. [PMID: 39996369 DOI: 10.1021/acs.biochem.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cerebral plaques of the amyloid β-peptide (Aβ) are a defining pathology in Alzheimer's disease (AD). The amyloid hypothesis of AD pathogenesis has dominated the field for over 30 years, ostensibly validated by rare AD-causing mutations in the substrate and enzyme that produce Aβ. The γ-secretase complex carries out intramembrane proteolysis of the substrate derived from the amyloid precursor protein (APP). Mutations in APP and presenilin, the catalytic component of γ-secretase, typically increase the ratio of aggregation-prone 42-residue Aβ (Aβ42) over the more soluble 40-residue form (Aβ40). Nevertheless, the inability to clarify how Aβ aggregation leads to neurodegeneration, along with poor progress in developing effective AD therapeutics that target Aβ, raises concern about whether Aβ is the primary disease driver. γ-Secretase carries out processive proteolysis on the APP substrate, producing long Aβ peptides that are generally trimmed in tripeptide intervals to shorter secreted peptides. Recent studies on effects of AD-causing mutations on the complicated proteolytic processing of the APP substrate by γ-secretase has led to the discovery that these mutations reduce─but do not abolish─processive proteolysis. Reduced proteolysis is apparently due to stabilization of enzyme-substrate complexes, and these stalled substrate-bound γ-secretase complexes can trigger synaptic degeneration even in the absence of Aβ production. Thus, the stalled process rather than the proteolytic products may be a principal initiator of AD pathogenesis. This new amyloid-independent hypothesis suggests that pharmacological agents that rescue stalled γ-secretase enzyme-substrate complexes might be effective therapeutics for AD prevention and/or treatment.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
5
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Ivanov MV, Kopeykina AS, Kazakova EM, Tarasova IA, Sun Z, Postoenko VI, Yang J, Gorshkov MV. Modified Decision Tree with Custom Splitting Logic Improves Generalization across Multiple Brains' Proteomic Data Sets of Alzheimer's Disease. J Proteome Res 2025; 24:1053-1066. [PMID: 39984290 DOI: 10.1021/acs.jproteome.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Many factors negatively affect a generalization of the findings in discovery proteomics. They include differentiation between patient cohorts, a variety of experimental conditions, etc. We presented a machine-learning-based workflow for proteomics data analysis, aiming at improving generalizability across multiple data sets. In particular, we customized the decision tree model by introducing a new parameter, min_groups_leaf, which regulates the presence of the samples from each data set inside the model's leaves. Further, we analyzed a trend for the feature importance's curve as a function of the novel parameter for feature selection to a list of proteins with significantly improved generalization. The developed workflow was tested using five proteomic data sets obtained for post-mortem human brain samples of Alzheimer's disease. The data sets consisted of 535 LC-MS/MS acquisition files. The results were obtained for two different pipelines of data processing: (1) MS1-only processing based on DirectMS1 search engine and (2) a standard MS/MS-based one. Using the developed workflow, we found seven proteins with expression patterns that were unique for asymptomatic Alzheimer patients. Two of them, Serotransferrin TRFE and DNA repair nuclease APEX1, may be potentially important for explaining the lack of dementia in patients with the presence of neuritic plaques and neurofibrillary tangles.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna S Kopeykina
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elizaveta M Kazakova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Zhao Sun
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou 450052, China
| | - Valeriy I Postoenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Jinghua Yang
- Clinical Systems Biology Key Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou 450052, China
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
7
|
Tremblay C, Rahayel S, Pastor-Bernier A, St-Onge F, Vo A, Rheault F, Daneault V, Morys F, Rajah N, Villeneuve S, Dagher A. Uncovering atrophy progression pattern and mechanisms in individuals at risk of Alzheimer's disease. Brain Commun 2025; 7:fcaf099. [PMID: 40092368 PMCID: PMC11906971 DOI: 10.1093/braincomms/fcaf099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Alzheimer's disease is associated with pre-symptomatic changes in brain morphometry and accumulation of abnormal tau and amyloid-beta pathology. Studying the development of brain changes prior to symptoms onset may lead to early diagnostic biomarkers and a better understanding of Alzheimer's disease pathophysiology. Alzheimer's disease pathology is thought to arise from a combination of protein accumulation and spreading via neural connections, but how these processes influence brain atrophy progression in the pre-symptomatic phases remains unclear. Individuals with a family history of Alzheimer's disease (FHAD) have an elevated risk of Alzheimer's disease, providing an opportunity to study the pre-symptomatic phase. Here, we used structural MRI from three databases (Alzheimer's Disease Neuroimaging Initiative, Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease and Montreal Adult Lifespan Study) to map atrophy progression in FHAD and Alzheimer's disease and assess the constraining effects of structural connectivity on atrophy progression. Cross-sectional and longitudinal data up to 4 years were used to perform atrophy progression analysis in FHAD and Alzheimer's disease compared with controls. PET radiotracers were also used to quantify the distribution of abnormal tau and amyloid-beta protein isoforms at baseline. We first derived cortical atrophy progression maps using deformation-based morphometry from 153 FHAD, 156 Alzheimer's disease and 116 controls with similar age, education and sex at baseline. We next examined the spatial relationship between atrophy progression and spatial patterns of tau aggregates and amyloid-beta plaques deposition, structural connectivity and neurotransmitter receptor and transporter distributions. Our results show that there were similar patterns of atrophy progression in FHAD and Alzheimer's disease, notably in the cingulate, temporal and parietal cortices, with more widespread and severe atrophy in Alzheimer's disease. Both tau and amyloid-beta pathology tended to accumulate in regions that were structurally connected in FHAD and Alzheimer's disease. The pattern of atrophy and its progression also aligned with existing structural connectivity in FHAD. In Alzheimer's disease, our findings suggest that atrophy progression results from pathology propagation that occurred earlier, on a previously intact connectome. Moreover, a relationship was found between serotonin receptor spatial distribution and atrophy progression in Alzheimer's disease. The current study demonstrates that regions showing atrophy progression in FHAD and Alzheimer's disease present with specific connectivity and cellular characteristics, uncovering some of the mechanisms involved in pre-clinical and clinical neurodegeneration.
Collapse
Affiliation(s)
- Christina Tremblay
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada, H4J 1C5
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Shady Rahayel
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada, H4J 1C5
- Department of Medicine, University of Montreal, Montreal, QC, Canada H3C 3J7
| | - Alexandre Pastor-Bernier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada, H4J 1C5
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
- Brain Imaging Centre, Douglas Institute Research Centre, Montreal, QC, Canada, H4H 1R3
| | - Frédéric St-Onge
- Integrated Program in Neurosciences, Faculty of Medicine, McGill University, Montreal, QC, Canada, H3G 2M1
| | - Andrew Vo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada, J1K 0A5
| | - Véronique Daneault
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada, H4J 1C5
| | - Filip Morys
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Natasha Rajah
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada, M5B 2K3
| | - Sylvia Villeneuve
- Brain Imaging Centre, Douglas Institute Research Centre, Montreal, QC, Canada, H4H 1R3
| | - Alain Dagher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, H3A 2B4
| |
Collapse
|
8
|
Tian Y, Felsky D, Gronsbell J, Park JY. Leveraging multimodal neuroimaging and GWAS for identifying modality-level causal pathways to Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25322897. [PMID: 40093259 PMCID: PMC11908268 DOI: 10.1101/2025.02.27.25322897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The UK Biobank study has produced thousands of brain imaging-driven phenotypes (IDPs) collected from more than 40,000 genotyped individuals so far, facilitating the investigation of genetic and imaging biomarkers for brain disorders. Motivated by efforts in genetics to integrate gene expression levels with genome-wide association studies (GWASs), recent methods in imaging genetics adopted an instrumental variable (IV) approach to identify causal IDPs for brain disorders. However, several methodological challenges arise with existing methods in achieving causality in imaging genetics, including horizontal pleiotropy and high dimensionality of candidate IVs. In this work, we propose testing the causality of each brain modality (i.e., structural, functional, and diffusion MRI) for each gene as a useful alternative, which offers an enhanced understanding of the roles of genetic variants and imaging features on behavior by controlling for the pleiotropic effects of IDPs from other imaging modalities. We demonstrate the utility of the proposed method by using Alzheimer's GWAS data from the UK Biobank and the International Genomics of Alzheimer's Project (IGAP) study. Our method is implemented using summary statistics, which is available on GitHub.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jessica Gronsbell
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Department of Family & Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jun Young Park
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. J Cell Commun Signal 2025; 19:e70006. [PMID: 40026671 PMCID: PMC11870853 DOI: 10.1002/ccs3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaques and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. Although neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cell-cell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and transcription factor activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Molecular, Cell and Developmental BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative BiologyHeersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
10
|
Alsaleem MA, Al‐Kuraishy HM, Al‐Gareeb AI, Abdel‐Fattah MM, Alrouji M, Al‐Harchan NA, Alruwaili M, Papadakis M, Alexiou A, Batiha GE. Decrypting the Possible Mechanistic Role of Fenofibrate in Alzheimer's Disease and Type 2 Diabetes: The Truth and Mystery. J Cell Mol Med 2025; 29:e70378. [PMID: 40040308 PMCID: PMC11880132 DOI: 10.1111/jcmm.70378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by the progressive deposition of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles (NFTs). Of note, metabolic disorders such as insulin resistance (IR) and type 2 diabetes (T2D) are associated with the development of brain IR and associated neurodegeneration. In addition, AD neuropathology and linked cognitive impairment accelerate the development of peripheral IR and the progression of T2D. Therefore, there is a bidirectional relationship between T2D and AD. It has been demonstrated that AD and T2D induce dysregulation of peroxisome proliferator-activated receptor alpha (PPAR-α) leading to the central and peripheral metabolic disturbances. Hence, dysregulated PPAR-α could be a shared mechanism in both AD and T2D, and restoration of PPAR-α signalling by PPAR-α agonist fenofibrate (FN) may alleviate T2D and AD. Therefore, this review aims to shed light on the potential involvement of PPAR-α in T2D and AD, and how FN could be effective in the management of AD. FN seems to be effective in both AD and T2D by dual neuroprotective and antidiabetic effects that can mitigate AD neuropathology and T2D-related complications by modulating various cellular processes and inflammatory signalling pathways. In conclusion, FN could be a possible candidate in the management of AD and T2D by modulating different signalling pathways involved in the pathogenesis of these conditions.
Collapse
Affiliation(s)
- Mansour A. Alsaleem
- Unit of Scientific Research, Applied CollegeQassim UniversityBuraydahSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical PharmacologyJabir Ibn Hayyan Medical UniversityKufaIraq
| | - Maha M. Abdel‐Fattah
- Department of Pharmacology and Toxicology, Faculty of PharmacyBeni‐Suef UniversityBeni‐SuefEgypt
| | - Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Nasser A. Al‐Harchan
- Department of Clinical Pharmacology, College of DentistryAl‐Rasheed UniversityBaghdadIraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Marios Papadakis
- University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationSydneyNew South WalesAustralia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhour, AlBeheiraEgypt
| |
Collapse
|
11
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Rob M, Yousef M, Lakshmanan AP, Mahboob A, Terranegra A, Chaari A. Microbial signatures and therapeutic strategies in neurodegenerative diseases. Biomed Pharmacother 2025; 184:117905. [PMID: 39933444 DOI: 10.1016/j.biopha.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), arise from complex interactions between genetic factors, environmental exposures, and aging. Additionally, gut dysbiosis has been linked to systemic inflammation and neurodegeneration. Advances in microbiome and metabolome profiling techniques have provided deeper insights into how alterations in gut microbiota and dietary patterns affect metabolic pathways and contribute to the progression of NDs. This review explores the profiles of gut microbiome and metabolome derived biomarkers and their roles in NDs. Across phyla, families, and genera, we identified 55 microbial alterations in PD, 24 in AD, 4 in ALS, and 17 in MS. Some notable results include an increase in Akkermansia in PD, AD, and MS and a decrease in short-chain fatty acids (SCFAs) in PD and AD. We examined the effects of probiotics, prebiotics, fecal microbiota transplants (FMT), sleep, exercise, and diet on the microbiota, all of which contributed to delayed onset and alleviation of symptoms. Further, artificial intelligence (AI) and machine learning (ML) algorithms applied to omics data have been crucial in identifying novel therapeutic targets, diagnosing and predicting prognosis, and enabling personalized medicine using microbiota-modulating therapies in NDs patients.
Collapse
Affiliation(s)
- Mlaak Rob
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | - Mahmoud Yousef
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | | | - Anns Mahboob
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar
| | - Annalisa Terranegra
- Research Department, Sidra Medicine, Education city, P.O.Box 26999, Doha, Qatar
| | - Ali Chaari
- Weill Cornell Medical College Qatar, Education city, P.O.Box 24144, Doha, Qatar.
| |
Collapse
|
13
|
K M N, Karmakar S, Sahoo B, Mishrra N, Moitra P. Use of Quantum Dots as Nanotheranostic Agents: Emerging Applications in Rare Genetic Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407353. [PMID: 39828615 DOI: 10.1002/smll.202407353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Rare genetic diseases (RGDs) affect a small percentage of the global population but collectively have a substantial impact due to their diverse manifestations. Although the precise reasons behind these diseases remain unclear, roughly 80% of cases are genetically linked. Recent efforts focus on understanding pathology and developing new diagnostic and therapeutic approaches for RGDs. However, there persists a gap between fundamental research and clinical therapeutic approaches, where advancements in nanotechnology offer promising improvements. In this context, nanosized light-emitting quantum dots (QDs), ranging from 2-10 nm, are promising materials for diverse applications. Their size-tunable light emission, high quantum yield, and photostability allow for precise tracking of cargo. Additionally, QDs can be functionalized with therapeutic agents, antibodies, or peptides to target specific cellular pathways, enhancing treatment efficacy while minimizing side effects. By combining diagnostic and therapeutic capabilities in a single platform, QDs thus offer a versatile and powerful approach to tackle rare genetic disorders. Despite several reviews on various therapeutic applications of QDs, their utilization in the specific domain of RGDs is not well documented. This review highlight QDs' potential in diagnosing and treating certain RGDs and addresses the challenges limiting their application.
Collapse
Affiliation(s)
- Neethu K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Shyamal Karmakar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Baishakhi Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Navniet Mishrra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| |
Collapse
|
14
|
Han S, Cho SA, Choi W, Eilbeck K, Coon H, Nho K, Lee Y. Interaction of genetic variants and methylation in transcript-level expression regulation in Alzheimer's disease by multi-omics data analysis. BMC Genomics 2025; 26:170. [PMID: 39979805 PMCID: PMC11844006 DOI: 10.1186/s12864-025-11362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant public health problem and major cause of dementia. Not only genetic but epigenetic factors contribute to complex and heterogeneous molecular mechanisms underlying AD risk; in particular, single nucleotide polymorphisms (SNPs) and DNA methylation can lead to dysregulation of gene expression in the AD brain. Each of these regulators has been independently studied well in AD progression, however, their interactive roles, particularly when they are located differently, still remains unclear. Here, we aimed to explore the interplay between SNPs and DNA methylation in regulating transcript expression levels in the AD brain through an integrative analysis of whole-genome sequencing, RNA-seq, and methylation data measured from the dorsolateral prefrontal cortex. RESULTS We identified 179 SNP-methylation combination pairs that showed statistically significant interactions associated with the expression of 67 transcripts (63 unique genes), enriched in functional pathways, including immune-related and post-synaptic assembly pathways. Particularly, a number of HLA family genes (HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DRB5, HLA-DPA1, HLA-K, HLA-DQB1, and HLA-DMA) were observed as having expression changes associated with the interplay. CONCLUSIONS Our findings especially implicate immune-related pathways as targets of these regulatory interactions. SNP-methylation interactions may thus contribute to the molecular complexity underlying immune-related pathogenies in AD patients. Our study provides a new molecular knowledge in the context of the interplay between genetic and epigenetic regulations, in that it concerns transcript expression status in AD.
Collapse
Affiliation(s)
- Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Soo-Ah Cho
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Wongyung Choi
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hilary Coon
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Younghee Lee
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
15
|
Yu H, Ren K, Jin Y, Zhang L, Liu H, Huang Z, Zhang Z, Chen X, Yang Y, Wei Z. Mitochondrial DAMPs: Key mediators in neuroinflammation and neurodegenerative disease pathogenesis. Neuropharmacology 2025; 264:110217. [PMID: 39557152 DOI: 10.1016/j.neuropharm.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are increasingly linked to mitochondrial dysfunction and neuroinflammation. Central to this link are mitochondrial damage-associated molecular patterns (mtDAMPs), including mitochondrial DNA, ATP, and reactive oxygen species, released during mitochondrial stress or damage. These mtDAMPs activate inflammatory pathways, such as the NLRP3 inflammasome and cGAS-STING, contributing to the progression of neurodegenerative diseases. This review delves into the mechanisms by which mtDAMPs drive neuroinflammation and discusses potential therapeutic strategies targeting these pathways to mitigate neurodegeneration. Additionally, it explores the cross-talk between mitochondria and the immune system, highlighting the complex interplay that exacerbates neuronal damage. Understanding the role of mtDAMPs could pave the way for novel treatments aimed at modulating neuroinflammation and slowing disease progression, ultimately improving patient outcome.
Collapse
Affiliation(s)
- Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Yage Jin
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China
| | - Hui Liu
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Zhen Huang
- Henan Key Laboratory of Immunology and Targeted Drug, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Ziheng Zhang
- College of Life Sciences, Xinjiang University, Urumqi, Xinjiang, 830046, PR China
| | - Xing Chen
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
16
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Chepyala SR, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human and mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. Nat Commun 2025; 16:1533. [PMID: 39934151 PMCID: PMC11814087 DOI: 10.1038/s41467-025-56853-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. Here we present the comprehensive, age-dependent brain proteome and phosphoproteome across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata and prioritized components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Our analysis of the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identifies potential targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh, India
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Surendhar R Chepyala
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xusheng Wang
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
- Department of Biomedical Informatics & Data Science, Yale University School of Medicine, West Haven, CT, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
Karagas N, Young JE, Blue EE, Jayadev S. The Spectrum of Genetic Risk in Alzheimer Disease. Neurol Genet 2025; 11:e200224. [PMID: 39885961 PMCID: PMC11781270 DOI: 10.1212/nxg.0000000000200224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025]
Abstract
Alzheimer disease (AD), the most common dementing syndrome in the United States, is currently established by the presence of amyloid-β and tau protein biomarkers in the setting of clinical cognitive impairment. These straightforward diagnostic parameters belie an immense complexity of genetic architecture underlying risk and presentation in AD. In this review, we provide a focused overview of the current state of AD genetics. We discuss the discovery of familial autosomal dominant genes, the identification of candidate genes associated with AD, and genetic variants conferring higher risk of developing AD compared with the general population. In particular, we discuss important features of AD risk due to the APOE ε4 allele. In addition to risk, we describe how the field has made headway understanding genetic factors that may protect from AD. The biological implications and practical limitations of information gleaned from genome-wide association studies in AD over the years are also discussed. The readers will have an up-to-date understanding of where we are in our efforts to understand the layers of genetic complexity in AD.
Collapse
Affiliation(s)
- Nicholas Karagas
- Department of Neurology, Adjunct Medicine, Division Medical Genetics, University of Washington, Seattle
| | - Jessica E Young
- Department of Lab Medicine and Pathology, University of Washington, Seattle; and
| | - Elizabeth E Blue
- Division Medical Genetics, Department of Medicine, University of Washington, Seattle
| | - Suman Jayadev
- Department of Neurology, Adjunct Medicine, Division Medical Genetics, University of Washington, Seattle
| |
Collapse
|
18
|
Tran KM, Kwang NE, Butler CA, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Barahona RA, Da Cunha C, Tsourmas KI, Shi Z, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Duong DM, Seyfried NT, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. Mol Neurodegener 2025; 20:9. [PMID: 39844286 PMCID: PMC11752804 DOI: 10.1186/s13024-024-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. METHODS We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial omics and bulk proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. RESULTS In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Bulk proteomics show upregulated mitochondrial protein abundance with ApoeCh in 5xFAD mice, but reductions in mitochondrial and translation associated proteins in PS19 mice. CONCLUSIONS These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M Tran
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Nellie E Kwang
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Claire A Butler
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Rocio A Barahona
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Kate I Tsourmas
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Joshua A Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA
| | | | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrea J Tenner
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Department of Molecular Biology & Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, 92697, USA
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Grant R MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA, 92697-2300, USA.
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| | - Kim N Green
- Department of Neurobiology and Behavior, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA, 92697-4545, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
19
|
Christodoulou CC, Pitsillides M, Hadjisavvas A, Zamba-Papanicolaou E. Dietary Intake, Mediterranean and Nordic Diet Adherence in Alzheimer's Disease and Dementia: A Systematic Review. Nutrients 2025; 17:336. [PMID: 39861466 PMCID: PMC11767999 DOI: 10.3390/nu17020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dementia is not a single disease but an umbrella term that encompasses a range of symptoms, such as memory loss and cognitive impairments, which are severe enough to disrupt daily life. One of the most common forms of dementia is Alzheimer's Disease (AD), a complex neurodegenerative condition influenced by both genetic and environmental factors. Recent research has highlighted diet as a potential modifiable risk factor for AD. Decades of research have explored the role of dietary patterns, including the Mediterranean Diet (MD) and its components, in neuroprotection and cognitive health. Systematic review examines studies investigating the impact of the Mediterranean Diet, Mediterranean-like diets, the Nordic Diet (ND), dietary intake patterns, and specific components such as extra virgin olive oil and rapeseed oil on cognitive function, disease onset, and progression in AD and dementia. METHODS A comprehensive search of PubMed, the Directory of Open Access Journals, and the Social Science Research Network was conducted independently by two reviewers using predefined search terms. The search period included studies from 2006 to 2024. Eligible studies meeting the inclusion criteria were systematically reviewed, yielding 88 studies: 85 focused on the MD and its relationship to AD and dementia, while only 3 investigated the ND. RESULTS The findings suggest that adherence to the Mediterranean and Nordic diets is generally associated with improved cognitive function and delayed cognitive decline and that adherence to both these diets can improve cognitive function. Some studies identified that higher legume consumption decreased dementia incidence, while fruits and vegetables, carbohydrates, and eggs lowered dementia prevalence. Most studies demonstrated that high MD or ND adherence was associated with better cognitive function and a lower risk of poor cognition in comparison to individuals with lower MD or ND adherence. However, some studies reported no significant benefits of the MD on cognitive outcomes, while two studies indicated that higher red meat consumption was linked to better cognitive function. CONCLUSION Despite promising trends, the evidence remains varying across studies, underscoring the need for further research to establish definitive associations between diet and cognitive function. These findings highlight the essential role of dietary interventions in the prevention and management of dementia and AD, therefore offering critical insights into the underlying mechanisms by which the diet may impact brain health.
Collapse
Affiliation(s)
- Christiana C. Christodoulou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| | - Michalis Pitsillides
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| | - Andreas Hadjisavvas
- Cancer Genetics, Therapeutics and Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Eleni Zamba-Papanicolaou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| |
Collapse
|
20
|
Sarma M, Chatterjee S. Machine Learning-Based Alzheimer's Disease Stage Diagnosis Utilizing Blood Gene Expression and Clinical Data: A Comparative Investigation. Diagnostics (Basel) 2025; 15:211. [PMID: 39857095 PMCID: PMC11765009 DOI: 10.3390/diagnostics15020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study presents a comparative analysis of the multistage diagnosis of Alzheimer's disease (AD), including mild cognitive impairment (MCI), utilizing two distinct types of biomarkers: blood gene expression and clinical biomarker samples. Both of these samples, obtained from participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI), were independently analyzed utilizing machine learning (ML)-based multiclassifiers. This study applied novel machine learning-based data augmentation techniques to gene expression profile data that are high-dimensional, low-sample-size (HDLSS) and inherently highly imbalanced. The investigation obtained the highest multiclassification performance to date in the multistage diagnosis of Alzheimer's disease utilizing the blood gene expression profiles of Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. Based on the performance results obtained, and other factors such as early prediction capabilities, this study compares the efficacies of the two types of biomarkers for multistage diagnosis. This study presents the sole investigation in which multiclassification-based AD stage diagnosis was conducted utilizing blood gene expression data. We obtained the best multiclassification result in both modalities of the ADNI data in terms of F1-score and were able to identify new genetic biomarkers. Methods: The combination of the XGBoost and SFBS (Sequential Floating Backward Selection) methods was used to select the features. We were able to select the 95 most effective gene probe sets out of 49,386. For the clinical study data, eight of the most effective biomarkers were selected using SFBS. A deep learning (DL) classifier was used to identify the stages-cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD)/dementia. DL, support vector machine (SVM), gradient boosting (GB), and random forest (RF) classifiers were used for the AD stage detection from gene expression profile data. Because of the high data imbalance in genomic data, borderline oversampling/data augmentation was applied in the model training and original samples for validation. Results: Utilizing clinical data, the highest ROC AUC scores attained were 0.989, 0.927, and 0.907 for the identification of the CN, MCI, and dementia stages, respectively. The highest F1 scores achieved were 0.971, 0.939, and 0.886. Employing gene expression data, we obtained ROC AUC scores of 0.763, 0.761, and 0.706 for the CN, MCI, and dementia stages, respectively, and F1 scores of 0.71, 0.77, and 0.53 for CN, MCI, and dementia, respectively. Conclusions: This represents the best outcome to date for AD stage diagnosis from ADNI blood gene expression profile data utilizing multiclassification techniques. The results indicated that our multiclassification model effectively manages the imbalanced data of a high-dimension, low-sample-size (HDLSS) nature to identify samples of the minority class. MAPK14, PLG, FZD2, FXYD6, and TEP1 are among the novel genes identified as being associated with AD risk.
Collapse
Affiliation(s)
- Manash Sarma
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, Technology Campus (Peenya Campus), Ramaiah University of Applied Sciences, Bengaluru 560058, India
| | | |
Collapse
|
21
|
Lathika Rajendrakumar A, Arbeev KG, Bagley O, Duan M, Yashin AI, Ukraintseva S, for the Alzheimer’s Disease Neuroimaging Initiative. APOE4 and infectious diseases jointly contribute to brain glucose hypometabolism, a biomarker of Alzheimer's pathology: New findings from the ADNI. PLoS One 2025; 20:e0316808. [PMID: 39774485 PMCID: PMC11706463 DOI: 10.1371/journal.pone.0316808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Impaired brain glucose metabolism is a preclinical feature of neurodegenerative diseases such as Alzheimer's disease (AD). Infections may promote AD-related pathology. Therefore, we investigated the interplay between infections and APOE4, a strong genetic risk factor for AD. METHODS We analyzed data on 1,509 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database using multivariate linear regression models. The outcomes were rank-normalized hypometabolic convergence index (HCI), statistical regions of interest (SROI) for AD, and mild cognitive impairment (MCI). Marginal mean estimates for infections, stratified by APOE4 carrier status, were then computed. RESULTS Prior infections were associated with greater HCI [β = 0.15, 95% CI: 0.03, 0.27, p = 0.01]. The combined effects of infections and APOE4 carriers on HCI levels were significantly greater than either variable alone. Among APOE4 carriers, the estimated marginal mean was 0.62, rising to 0.77, with infections (p<0.001), indicating an interaction effect. Carriers with multiple infections showed greater hypometabolism (higher HCI), with an estimate of 0.44 (p = 0.01) compared to 0.11 (p = 0.08) for those with a single infection, revealing a dose-response relationship. The estimates for the association of infections with SROI AD and SROI MCI were β = -0.01 (p = 0.02) and β = -0.01 (p = 0.04), respectively. CONCLUSION Our findings suggest that infections and APOE4 jointly contribute to brain glucose hypometabolism and AD pathology, supporting a "multi-hit" mechanism in AD development.
Collapse
Affiliation(s)
- Aravind Lathika Rajendrakumar
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Matt Duan
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina, United States of America
| | | |
Collapse
|
22
|
Valdes P, Caldwell AB, Liu Q, Fitzgerald MQ, Ramachandran S, Karch CM, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease. Alzheimers Res Ther 2025; 17:5. [PMID: 39754192 PMCID: PMC11699654 DOI: 10.1186/s13195-024-01659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP. METHODS We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1A79V, PSEN2N141I, and APPV717I and mechanistically characterized by integrating RNA-seq and ATAC-seq. RESULTS We identified common disease endotypes, such as dedifferentiation, dysregulation of synaptic signaling, repression of mitochondrial function and metabolism, and inflammation. We ascertained the master transcriptional regulators associated with these endotypes, including REST, ASCL1, and ZIC family members (activation), and NRF1 (repression). CONCLUSIONS FAD mutations share common regulatory changes within endotypes with varying severity, resulting in reversion to a less-differentiated state. The regulatory mechanisms described offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Phoebe Valdes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Q Fitzgerald
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, GRECC, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
23
|
Sampatakakis SN, Mourtzi N, Charisis S, Mamalaki E, Ntanasi E, Hatzimanolis A, Ramirez A, Lambert JC, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou G, Megalou M, Sakka P, Scarmeas N. Walking time and genetic predisposition for Alzheimer's disease: Results from the HELIAD study. Clin Neuropsychol 2025; 39:83-99. [PMID: 38741352 DOI: 10.1080/13854046.2024.2344869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Objective: Our study aimed to explore whether physical condition might affect the association between genetic predisposition for Alzheimer's Disease (AD) and AD incidence. Methods: The sample of participants consisted of 561 community-dwelling adults over 64 years old, without baseline dementia (508 cognitively normal and 53 with mild cognitive impairment), deriving from the HELIAD, an ongoing longitudinal study with follow-up evaluations every 3 years. Physical condition was assessed at baseline through walking time (WT), while a Polygenic Risk Score for late onset AD (PRS-AD) was used to estimate genetic predisposition. The association between WT and PRS-AD with AD incidence was evaluated with Cox proportional hazard models adjusted for age, sex, education years, global cognition score and APOE ε-4 genotype. Then, the association between WT and AD incidence was investigated after stratifying participants by low and high PRS-AD. Finally, we examined the association between PRS-AD and AD incidence after stratifying participants by WT. Results: Both WT and PRS-AD were connected with increased AD incidence (p < 0.05), after adjustments. In stratified analyses, in the slow WT group participants with a greater genetic risk had a 2.5-fold higher risk of developing AD compared to participants with lower genetic risk (p = 0.047). No association was observed in the fast WT group or when participants were stratified based on PRS-AD. Conclusions: Genetic predisposition for AD is more closely related to AD incidence in the group of older adults with slow WT. Hence, physical condition might be a modifier in the relationship of genetic predisposition with AD incidence.
Collapse
Affiliation(s)
- Stefanos N Sampatakakis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Sokratis Charisis
- Department of Neurology, UT Health San Antonio, San Antonio, TX, USA
| | - Eirini Mamalaki
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alex Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Aiginition Hospital, Athens, Greece
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Charles Lambert
- U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liés au vieillissement, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | | | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Granov R, Vedad S, Wang SH, Durham A, Shah D, Pasinetti GM. The Role of the Neural Exposome as a Novel Strategy to Identify and Mitigate Health Inequities in Alzheimer's Disease and Related Dementias. Mol Neurobiol 2025; 62:1205-1224. [PMID: 38967905 PMCID: PMC11711138 DOI: 10.1007/s12035-024-04339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
With the continuous increase of the elderly population, there is an urgency to understand and develop relevant treatments for Alzheimer's disease and related dementias (ADRD). In tandem with this, the prevalence of health inequities continues to rise as disadvantaged communities fail to be included in mainstream research. The neural exposome poses as a relevant mechanistic approach and tool for investigating ADRD onset, progression, and pathology as it accounts for several different factors: exogenous, endogenous, and behavioral. Consequently, through the neural exposome, health inequities can be addressed in ADRD research. In this paper, we address how the neural exposome relates to ADRD by contributing to the discourse through defining how the neural exposome can be developed as a tool in accordance with machine learning. Through this, machine learning can allow for developing a greater insight into the application of transferring and making sense of experimental mouse models exposed to health inequities and potentially relate it to humans. The overall goal moving beyond this paper is to define a multitude of potential factors that can increase the risk of ADRD onset and integrate them to create an interdisciplinary approach to the study of ADRD and subsequently translate the findings to clinical research.
Collapse
Affiliation(s)
- Ravid Granov
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Skyler Vedad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Shu-Han Wang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Andrea Durham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Divyash Shah
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10019, USA.
- Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
25
|
Radosinska D, Radosinska J. The Link Between Matrix Metalloproteinases and Alzheimer's Disease Pathophysiology. Mol Neurobiol 2025; 62:885-899. [PMID: 38935232 PMCID: PMC11711632 DOI: 10.1007/s12035-024-04315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) is a major contributor to dementia and the most common neurodegenerative disorder. In AD pathophysiology, matrix metalloproteinases (MMPs)-proteolytic enzymes, best known to be responsible for remodeling and degradation of the extracellular matrix-were suggested to play an important role. Due to the diverse nature of the published data and frequent inconsistent results presented in available papers, it was considered essential to analyze all aspects of MMP literature with respect to AD pathophysiology and attempt to outline a unifying concept for understanding their role in AD. Thus, the main contribution of this review article is to summarize the most recent research on the participation of MMP in AD pathophysiology obtained using the cell cultures to understand the molecular principles of their action. Furthermore, an updated comprehensive view regarding this topic based exclusively on papers from human studies is provided as well. It can be concluded that determining the exact role of any particular MMPs in the AD pathophysiology holds promise for establishing their role as potential biomarkers reflecting the severity or progression of this disease or for developing new therapeutic agents targeting the processes that lead to AD.
Collapse
Affiliation(s)
- Dominika Radosinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372, Bratislava, Slovak Republic.
| |
Collapse
|
26
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
27
|
Qian Y, Tang X, Shen R, Lu Y, Ding J, Qian X, Zhang C. Graph Convolutional Network for AD and MCI Diagnosis Utilizing Peripheral DNA Methylation: Réseau de neurones en graphes pour le diagnostic de la MA et du TCL à l'aide de la méthylation de l'ADN périphérique. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024; 69:869-879. [PMID: 39584743 PMCID: PMC11590088 DOI: 10.1177/07067437241300947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
OBJECTIVE Blood DNA methylation (DNAm) alterations have been widely reported in the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, DNAm is underutilized as a diagnostic biomarker for these diseases. We aimed to evaluate the diagnostic performance of DNAm for MCI and AD, both individually and in combination with well-established AD biosignatures. METHODS A total of 1,891 blood samples from Alzheimer's Disease Neuroimaging Initiative (ADNI) studies were used to identify potential candidate DNAm biomarkers. Multimodal clinical data from 635 samples (normal control (NC), n = 193; MCI, n = 352; AD, n = 90) in the TADPOLE dataset were utilized to construct eight different classification models using a graph convolutional network, a machine learning framework. RESULTS After feature selection, 17 DNAm sites were selected for subsequent analysis. Remarkable differences in DNAm levels were observed at the screened DNAm loci in all three cohorts. Adopting DNAm features into multimodal models significantly improved the classification performance for three dichotomous subtasks (NC vs. non-NC, MCI vs. non-MCI, and AD vs. non-AD), especially when combined with cerebrospinal fluid (CSF) features for NC (area under the curve (AUC): 0.8534) and MCI classification (AUC: 0.7675). A weak correlation between DNAm and both magnetic resonance imaging and CSF features in the NC and MCI cohorts suggests good complementarity between modalities (correlation coefficient ≤0.2). CONCLUSIONS Our study offers new insights into peripheral DNAm in MCI and AD and suggests promising diagnostic performance of models integrating epigenomics, imaging, or CSF biomarkers. PLAIN LANGUAGE SUMMARY TITLE Using Machine Learning and Blood-Based Genetic Markers to Help Diagnose Mild Cognitive Impairment and Alzheimer's Disease.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinlu Tang
- Medical Image and Health Informatics Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ruinan Shen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Lu
- Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Qian
- Medical Image and Health Informatics Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Zhang
- Clinical Neuroscience Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| |
Collapse
|
28
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
29
|
Tenchov R, Sasso JM, Zhou QA. Alzheimer's Disease: Exploring the Landscape of Cognitive Decline. ACS Chem Neurosci 2024; 15:3800-3827. [PMID: 39392435 PMCID: PMC11587518 DOI: 10.1021/acschemneuro.4c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. The pathology of AD is marked by the accumulation of amyloid beta plaques and tau protein tangles in the brain, along with neuroinflammation and synaptic dysfunction. Genetic factors, such as mutations in APP, PSEN1, and PSEN2 genes, as well as the APOE ε4 allele, contribute to increased risk of acquiring AD. Currently available treatments provide symptomatic relief but do not halt disease progression. Research efforts are focused on developing disease-modifying therapies that target the underlying pathological mechanisms of AD. Advances in identification and validation of reliable biomarkers for AD hold great promise for enhancing early diagnosis, monitoring disease progression, and assessing treatment response in clinical practice in effort to alleviate the burden of this devastating disease. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in Alzheimer's disease. We examine the publication landscape in effort to provide insights into current knowledge advances and developments. We also review the most discussed and emerging concepts and assess the strategies to combat the disease. We explore the genetic risk factors, pharmacological targets, and comorbid diseases. Finally, we inspect clinical applications of products against AD with their development pipelines and efforts for drug repurposing. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding AD, to outline challenges, and to evaluate growth opportunities to further efforts in combating the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus Ohio 43210, United States
| | | |
Collapse
|
30
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
31
|
Rahimi A, Sameei P, Mousavi S, Ghaderi K, Hassani A, Hassani S, Alipour S. Application of CRISPR/Cas9 System in the Treatment of Alzheimer's Disease and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9416-9431. [PMID: 38639864 DOI: 10.1007/s12035-024-04143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Alzheimer's, Parkinson's, and Huntington's are some of the most common neurological disorders, which affect millions of people worldwide. Although there have been many treatments for these diseases, there are still no effective treatments to treat or completely stop these disorders. Perhaps the lack of proper treatment for these diseases can be related to various reasons, but the poor results related to recent clinical research also prompted doctors to look for new treatment approaches. In this regard, various researchers from all over the world have provided many new treatments, one of which is CRISPR/Cas9. Today, the CRISPR/Cas9 system is mostly used for genetic modifications in various species. In addition, by using the abilities available in the CRISPR/Cas9 system, researchers can either remove or modify DNA sequences, which in this way can establish a suitable and useful treatment method for the treatment of genetic diseases that have undergone mutations. We conducted a non-systematic review of articles and study results from various databases, including PubMed, Medline, Web of Science, and Scopus, in recent years. and have investigated new treatment methods in neurodegenerative diseases with a focus on Alzheimer's disease. Then, in the following sections, the treatment methods were classified into three groups: anti-tau, anti-amyloid, and anti-APOE regimens. Finally, we discussed various applications of the CRISPR/Cas-9 system in Alzheimer's disease. Today, using CRISPR/Cas-9 technology, scientists create Alzheimer's disease models that have a more realistic phenotype and reveal the processes of pathogenesis; following the screening of defective genes, they establish treatments for this disease.
Collapse
Affiliation(s)
- Araz Rahimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Parsa Sameei
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sana Mousavi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Kimia Ghaderi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sepideh Hassani
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University Medical Sciences (UMSU), Urmia, Iran.
- Department of Clinical Biochemistry and Applied Cell Sciences, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
32
|
Jakubowski H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants (Basel) 2024; 13:1292. [PMID: 39594433 PMCID: PMC11591180 DOI: 10.3390/antiox13111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The anti-oxidative and anti-inflammatory properties of high-density lipoprotein (HDL) are thought to be mediated by paraoxonase 1 (PON1), a calcium-dependent hydrolytic enzyme carried on a subfraction of HDL that also carries other anti-oxidative and anti-inflammatory proteins. In humans and mice, low PON1 activity is associated with elevated oxidized lipids and homocysteine (Hcy)-thiolactone, as well as proteins that are modified by these metabolites, which can cause oxidative stress and inflammation. PON1-dependent metabolic changes can lead to atherothrombotic cardiovascular disease, Alzheimer's disease, and cancer. The molecular bases underlying these associations are not fully understood. Biochemical, proteomic, and metabolic studies have significantly expanded our understanding of the mechanisms by which low PON1 leads to disease and high PON1 is protective. The studies discussed in this review highlight the changes in gene expression affecting proteostasis as a cause of the pro-oxidative and pro-inflammatory phenotypes associated with attenuated PON1 activity. Accumulating evidence supports the conclusion that PON1 regulates the expression of anti-oxidative and anti-inflammatory proteins, and that the disruption of these processes leads to disease.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +1-973-972-8733; Fax: 973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
33
|
Yarbro JM, Han X, Dasgupta A, Yang K, Liu D, Shrestha HK, Zaman M, Wang Z, Yu K, Lee DG, Vanderwall D, Niu M, Sun H, Xie B, Chen PC, Jiao Y, Zhang X, Wu Z, Fu Y, Li Y, Yuan ZF, Wang X, Poudel S, Vagnerova B, He Q, Tang A, Ronaldson PT, Chang R, Yu G, Liu Y, Peng J. Human-mouse proteomics reveals the shared pathways in Alzheimer's disease and delayed protein turnover in the amyloidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620263. [PMID: 39484428 PMCID: PMC11527136 DOI: 10.1101/2024.10.25.620263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. We comprehensively profiled age-dependent brain proteome and phosphoproteome (n > 10,000 for both) across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata, and prioritized novel components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Determining the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aβ-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identify potential new targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.
Collapse
Affiliation(s)
- Jay M Yarbro
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Xian Han
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Abhijit Dasgupta
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Current address: Department of Computer Science and Engineering, SRM University AP, Andhra Pradesh 522240, India
- These authors contributed equally
| | - Ka Yang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- These authors contributed equally
| | - Danting Liu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Him K Shrestha
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Masihuz Zaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhen Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dong Geun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Vanderwall
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Huan Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ping-Chung Chen
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xue Zhang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yingxue Fu
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Barbora Vagnerova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Qianying He
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Andrew Tang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Rui Chang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yansheng Liu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cancer Research Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
34
|
Bhandari UR, Danish SM, Ahmad S, Ikram M, Nadaf A, Hasan N, Kesharwani P, Ahmad FJ. New opportunities for antioxidants in amelioration of neurodegenerative diseases. Mech Ageing Dev 2024; 221:111961. [PMID: 38960099 DOI: 10.1016/j.mad.2024.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.
Collapse
Affiliation(s)
- Uttam Raj Bhandari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mohammad Danish
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
35
|
Taylor JL, Baudel MMA, Nieves-Cintron M, Navedo MF. Vascular Function and Ion Channels in Alzheimer's Disease. Microcirculation 2024; 31:e12881. [PMID: 39190776 PMCID: PMC11498901 DOI: 10.1111/micc.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
This review paper explores the critical role of vascular ion channels in the regulation of cerebral artery function and examines the impact of Alzheimer's disease (AD) on these processes. Vascular ion channels are fundamental in controlling vascular tone, blood flow, and endothelial function in cerebral arteries. Dysfunction of these channels can lead to impaired cerebral autoregulation, contributing to cerebrovascular pathologies. AD, characterized by the accumulation of amyloid beta (Aβ) plaques and neurofibrillary tangles, has been increasingly linked to vascular abnormalities, including altered vascular ion channel activity. Here, we briefly review the role of vascular ion channels in cerebral blood flow control and neurovascular coupling. We then examine the vascular defects in AD, the current understanding of how AD pathology affects vascular ion channel function, and how these changes may lead to compromised cerebral blood flow and neurodegenerative processes. Finally, we provide future perspectives and conclusions. Understanding this topic is important as ion channels may be potential therapeutic targets for improving cerebrovascular health and mitigating AD progression.
Collapse
Affiliation(s)
- Jade L. Taylor
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| | | | | | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis CA, 95616, USA
| |
Collapse
|
36
|
Soelter TM, Howton TC, Wilk EJ, Whitlock JH, Clark AD, Birnbaum A, Patterson DC, Cortes CJ, Lasseigne BN. Evaluation of altered cell-cell communication between glia and neurons in the hippocampus of 3xTg-AD mice at two time points. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595199. [PMID: 38826305 PMCID: PMC11142088 DOI: 10.1101/2024.05.21.595199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by progressive memory loss and cognitive decline, affecting behavior, speech, and motor abilities. The neuropathology of AD includes the formation of extracellular amyloid-β plaque and intracellular neurofibrillary tangles of phosphorylated tau, along with neuronal loss. While neuronal loss is an AD hallmark, cell-cell communication between neuronal and non-neuronal cell populations maintains neuronal health and brain homeostasis. To study changes in cellcell communication during disease progression, we performed snRNA-sequencing of the hippocampus from female 3xTg-AD and wild-type littermates at 6 and 12 months. We inferred differential cell-cell communication between 3xTg-AD and wild-type mice across time points and between senders (astrocytes, microglia, oligodendrocytes, and OPCs) and receivers (excitatory and inhibitory neurons) of interest. We also assessed the downstream effects of altered glia-neuron communication using pseudobulk differential gene expression, functional enrichment, and gene regulatory analyses. We found that glia-neuron communication is increasingly dysregulated in 12-month 3xTg-AD mice. We also identified 23 AD-associated ligand-receptor pairs that are upregulated in the 12-month-old 3xTg-AD hippocampus. Our results suggest increased AD association of interactions originating from microglia. Signaling mediators were not significantly differentially expressed but showed altered gene regulation and TF activity. Our findings indicate that altered glia-neuron communication is increasingly dysregulated and affects the gene regulatory mechanisms in neurons of 12-month-old 3xTg-AD mice.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Allison Birnbaum
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Dalton C. Patterson
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Constanza J. Cortes
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
37
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
38
|
Abbott A. Blood tests could soon predict your risk of Alzheimer's. Nature 2024; 632:243-245. [PMID: 39112619 DOI: 10.1038/d41586-024-02535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
|
39
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
40
|
Filomena E, Picardi E, Tullo A, Pesole G, D’Erchia AM. Identification of deregulated lncRNAs in Alzheimer's disease: an integrated gene co-expression network analysis of hippocampus and fusiform gyrus RNA-seq datasets. Front Aging Neurosci 2024; 16:1437278. [PMID: 39086756 PMCID: PMC11288953 DOI: 10.3389/fnagi.2024.1437278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The deregulation of lncRNAs expression has been associated with neuronal damage in Alzheimer's disease (AD), but how or whether they can influence its onset is still unknown. We investigated 2 RNA-seq datasets consisting, respectively, of the hippocampal and fusiform gyrus transcriptomic profile of AD patients, matched with non-demented controls. Methods We performed a differential expression analysis, a gene correlation network analysis (WGCNA) and a pathway enrichment analysis of two RNA-seq datasets. Results We found deregulated lncRNAs in common between hippocampus and fusiform gyrus and deregulated gene groups associated to functional pathways related to neurotransmission and memory consolidation. lncRNAs, co-expressed with known AD-related coding genes, were identified from the prioritized modules of both brain regions. Discussion We found common deregulated lncRNAs in the AD hippocampus and fusiform gyrus, that could be considered common signatures of AD pathogenesis, providing an important source of information for understanding the molecular changes of AD.
Collapse
Affiliation(s)
- Ermes Filomena
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Anna Maria D’Erchia
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
41
|
McManus RM, Latz E. NLRP3 inflammasome signalling in Alzheimer's disease. Neuropharmacology 2024; 252:109941. [PMID: 38565393 DOI: 10.1016/j.neuropharm.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Every year, 10 million people develop dementia, the most common of which is Alzheimer's disease (AD). To date, there is no way to prevent cognitive decline and therapies are limited. This review provides a neuroimmunological perspective on the progression of AD, and discusses the immune-targeted therapies that are in preclinical and clinical trials that may impact the development of this disease. Specifically, we look to the role of the NLRP3 inflammasome, its triggers in the brain and how its activation can contribute to the progression of dementia. We summarise the range of inhibitors targeting the NLRP3 inflammasome and its downstream pathways that are under investigation, and discuss future therapeutic perspectives for this devastating condition.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127, Bonn, Germany; Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, 01605, USA; Deutsches Rheuma-Forschungszentrum (DRFZ), Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
42
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
43
|
Kreutzer E, Short JL, Nicolazzo JA. Effect of Apolipoprotein E isoforms on the Abundance and Function of P-glycoprotein in Human Brain Microvascular Endothelial Cells. Pharm Res 2024; 41:1427-1441. [PMID: 38937373 PMCID: PMC11263236 DOI: 10.1007/s11095-024-03731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Individuals with Alzheimer's disease (AD) often require many medications; however, these medications are dosed using regimens recommended for individuals without AD. This is despite reduced abundance and function of P-glycoprotein (P-gp) at the blood-brain barrier (BBB) in AD, which can impact brain exposure of drugs. The fundamental mechanisms leading to reduced P-gp abundance in sporadic AD remain unknown; however, it is known that the apolipoprotein E (apoE) gene has the strongest genetic link to sporadic AD development, and apoE isoforms can differentially alter BBB function. The aim of this study was to assess if apoE affects P-gp abundance and function in an isoform-dependent manner using a human cerebral microvascular endothelial cell (hCMEC/D3) model. METHODS This study assessed the impact of apoE isoforms on P-gp abundance (by western blot) and function (by rhodamine 123 (R123) uptake) in hCMEC/D3 cells. Cells were exposed to recombinant apoE3 and apoE4 at 2 - 10 µg/mL over 24 - 72 hours. hCMEC/D3 cells were also exposed for 72 hours to astrocyte-conditioned media (ACM) from astrocytes expressing humanised apoE isoforms. RESULTS P-gp abundance in hCMEC/D3 cells was not altered by recombinant apoE4 relative to recombinant apoE3, nor did ACM containing human apoE isoforms alter P-gp abundance. R123 accumulation in hCMEC/D3 cells was also unchanged with recombinant apoE isoform treatments, suggesting no change to P-gp function, despite both abundance and function being altered by positive controls SR12813 (5 µM) and PSC 833 (5 µM), respectively. CONCLUSIONS Different apoE isoforms have no direct influence on P-gp abundance or function within this model, and further in vivo studies would be required to address whether P-gp abundance or function are reduced in sporadic AD in an apoE isoform-specific manner.
Collapse
Affiliation(s)
- Ethan Kreutzer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jennifer L Short
- Monash Centre for Advanced mRNA Medicines Manufacturing and Workforce Training, Monash University, Clayton, Victoria, 3800, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
44
|
Rodriguez MJ, Mendoza L, Garcia P, Duarte A, Padron D, Marsiske M, Fiala J, Gonzalez J, Duara R. Functional measures and AD biomarkers among Hispanic and White non-Hispanic older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12632. [PMID: 39130803 PMCID: PMC11316142 DOI: 10.1002/dad2.12632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Poorer baseline functioning is associated with long-term cognitive decline among Hispanic older adults, but little is known about associations of these factors with Alzheimer's disease (AD) neuroimaging biomarkers. METHODS A total of 461 Hispanic and White non-Hispanic (NHW) older adults who are cognitively normal (n = 76), had impaired cognition without mild cognitive impairment (MCI) (n = 41), or carried a diagnosis of MCI (n = 253) or dementia (n = 91) completed neuropsychological and functional assessment, genetic testing, and brain magnetic resonance imaging (MRI). Structural equation modeling (SEM) was used to examine predictive associations between functional and cognitive measures of AD neuroimaging biomarkers. RESULTS MRI volumes significantly predicted functional limitations in both groups. Sex and amyloid load significantly predicted functional limitations among the Hispanic group only. Years of education and MRI regional volume were the strongest predictors of cognition among both groups. DISCUSSION Results indicate that functional performance is associated with early AD biomarkers among Hispanic older adults. Clinical implications are discussed. Highlights The current study addresses health disparities in Alzheimer's disease (AD) and related dementia assessment among Hispanics by identifying measures sensitive to early AD biomarkers.Associations of functional measures with AD genetic and neuroimaging biomarkers revealed that similarities in these associations exist between Hispanic and White non-Hispanic individuals, but biological sex and amyloid load significantly predicted functional limitations among the Hispanic group only.These results have clinical implications for physicians who treat Hispanic AD patients and indicate that when compared to traditional diagnostic assessments, functional assessments may better aid in AD diagnostic precision among Hispanics.
Collapse
Affiliation(s)
- Miriam J. Rodriguez
- Albizu University‐Miami CampusDoralFloridaUSA
- Indiana University‐BloomingtonBloomingtonIndianaUSA
| | | | | | | | - Dilianna Padron
- Albizu University‐Miami CampusDoralFloridaUSA
- Central Virginia VA Healthcare SystemRichmondVirginiaUSA
| | | | | | | | | |
Collapse
|
45
|
de Lourdes Signorini-Souza I, Tureck LV, Batistela MS, Coutinho de Almeida R, Monteiro de Almeida S, Furtado-Alle L, Lehtonen Rodrigues Souza R. The potential of five c-miRNAs as serum biomarkers for Late-Onset Alzheimer's disease diagnosis: miR-10a-5p, miR-29b-2-5p, miR-125a-5p, miR-342-3p, and miR-708-5p. Brain Res 2024; 1841:149090. [PMID: 38880411 DOI: 10.1016/j.brainres.2024.149090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The nervous system is rich in miRNAs, indicating an important role of these molecules in regulating processes associated with cognition, memory, and others. Therefore, qualitative and quantitative imbalances involving such miRNAs may be involved in dementia contexts, including Late-Onset Alzheimer's Disease (LOAD). To test the viability of circulating miRNAs (c-miRNAs) as biomarkers for LOAD, we proceed accordingly to the following reasoning. The first stage was to discover and identify profile of c-miRNAs by RNA sequencing (RNA-Seq). For this purpose, blood serum samples were used from LOAD patients (n = 5) and cognitively healthy elderly control group (CTRL_CH) (n = 5), all over 70 years old. We identified seven c-miRNAs differentially expressed (p ≤ 0.05) in the serum of LOAD patients compared to CTRL_CH (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p, miR-380-5p and miR-340-3p). Of these, five (p ≤ 0.01) were selected for in silico analysis (miR-10a-5p; miR-29b-2-5p; miR-125a-5p; miR-342-3p, miR-708-5p), for which 44 relevant target genes were found regulated by these c-miRNAs and related to LOAD. Through the analysis of these target genes in databases, it was possible to observe that they have functions related to the development and progress of LOAD, directly or indirectly connecting the different Alzheimer's pathways. Thus, this work found five promising serum c-miRNAs as options for biomarkers contributing to LOAD diagnosis. Our study shows the complex network between these molecules and LOAD, supporting the relevance of studies using c-miRNAs in dementia contexts.
Collapse
Affiliation(s)
- Isadora de Lourdes Signorini-Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Luciane Viater Tureck
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Meire Silva Batistela
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, LUMC, Leiden, the Netherlands
| | | | - Lupe Furtado-Alle
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Postgraduate Program in Genetics. Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990 Curitiba, Paraná State, Brazil.
| |
Collapse
|
46
|
Zhang B, Xu M, Wu Q, Ye S, Zhang Y, Li Z, for the Alzheimer’s Disease Neuroimaging Initiative. Definition and analysis of gray matter atrophy subtypes in mild cognitive impairment based on data-driven methods. Front Aging Neurosci 2024; 16:1328301. [PMID: 38894849 PMCID: PMC11183285 DOI: 10.3389/fnagi.2024.1328301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Mild cognitive impairment (MCI) is an important stage in Alzheimer's disease (AD) research, focusing on early pathogenic factors and mechanisms. Examining MCI patient subtypes and identifying their cognitive and neuropathological patterns as the disease progresses can enhance our understanding of the heterogeneous disease progression in the early stages of AD. However, few studies have thoroughly analyzed the subtypes of MCI, such as the cortical atrophy, and disease development characteristics of each subtype. Methods In this study, 396 individuals with MCI, 228 cognitive normal (CN) participants, and 192 AD patients were selected from ADNI database, and a semi-supervised mixture expert algorithm (MOE) with multiple classification boundaries was constructed to define AD subtypes. Moreover, the subtypes of MCI were obtained by using the multivariate linear boundary mapping of support vector machine (SVM). Then, the gray matter atrophy regions and severity of each MCI subtype were analyzed and the features of each subtype in demography, pathology, cognition, and disease progression were explored combining the longitudinal data collected for 2 years and analyzed important factors that cause conversion of MCI were analyzed. Results Three MCI subtypes were defined by MOE algorithm, and the three subtypes exhibited their own features in cortical atrophy. Nearly one-third of patients diagnosed with MCI have almost no significant difference in cerebral cortex from the normal aging population, and their conversion rate to AD are the lowest. The subtype characterized by severe atrophy in temporal lobe and frontal lobe have a faster decline rate in many cognitive manifestations than the subtype featured with diffuse atrophy in the whole cortex. APOE ε4 is an important factor that cause the conversion of MCI to AD. Conclusion It was proved through the data-driven method that MCI collected by ADNI baseline presented different subtype features. The characteristics and disease development trajectories among subtypes can help to improve the prediction of clinical progress in the future and also provide necessary clues to solve the classification accuracy of MCI.
Collapse
Affiliation(s)
- Baiwen Zhang
- Institute of Information and Artificial Intelligence Technology, Beijing Academy of Science and Technology, Beijing, China
| | - Meng Xu
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Qing Wu
- Institute of Information and Artificial Intelligence Technology, Beijing Academy of Science and Technology, Beijing, China
| | - Sicheng Ye
- International College, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Zhang
- Institute of Information and Artificial Intelligence Technology, Beijing Academy of Science and Technology, Beijing, China
| | - Zufei Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | | |
Collapse
|
47
|
Tran KM, Kwang N, Gomez-Arboledas A, Kawauchi S, Mar C, Chao D, Da Cunha C, Wang S, Collins S, Walker A, Shi KX, Alcantara JA, Neumann J, Tenner AJ, LaFerla FM, Hohsfield LA, Swarup V, MacGregor GR, Green KN. APOE Christchurch enhances a disease-associated microglial response to plaque but suppresses response to tau pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597211. [PMID: 38895362 PMCID: PMC11185750 DOI: 10.1101/2024.06.03.597211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Apolipoprotein E ε4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). A recent case report identified a rare variant in APOE, APOE3-R136S (Christchurch), proposed to confer resistance to autosomal dominant Alzheimer's Disease (AD). However, it remains unclear whether and how this variant exerts its protective effects. Methods We introduced the R136S variant into mouse Apoe (ApoeCh) and investigated its effect on the development of AD-related pathology using the 5xFAD model of amyloidosis and the PS19 model of tauopathy. We used immunohistochemical and biochemical analysis along with single-cell spatial transcriptomics and proteomics to explore the impact of the ApoeCh variant on AD pathological development and the brain's response to plaques and tau. Results In 5xFAD mice, ApoeCh enhances a Disease-Associated Microglia (DAM) phenotype in microglia surrounding plaques, and reduces plaque load, dystrophic neurites, and plasma neurofilament light chain. By contrast, in PS19 mice, ApoeCh suppresses the microglial and astrocytic responses to tau-laden neurons and does not reduce tau accumulation or phosphorylation, but partially rescues tau-induced synaptic and myelin loss. We compared how microglia responses differ between the two mouse models to elucidate the distinct DAM signatures induced by ApoeCh. We identified upregulation of antigen presentation-related genes in the DAM response in a PS19 compared to a 5xFAD background, suggesting a differential response to amyloid versus tau pathology that is modulated by the presence of ApoeCh. Conclusions These findings highlight the ability of the ApoeCh variant to modulate microglial responses based on the type of pathology, enhancing DAM reactivity in amyloid models and dampening neuroinflammation to promote protection in tau models. This suggests that the Christchurch variant's protective effects likely involve multiple mechanisms, including changes in receptor binding and microglial programming.
Collapse
Affiliation(s)
- Kristine M. Tran
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Nellie Kwang
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Angela Gomez-Arboledas
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Cassandra Mar
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Donna Chao
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Shuling Wang
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Sherilyn Collins
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Amber Walker
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Kai-Xuan Shi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Joshua A. Alcantara
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Jonathan Neumann
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
| | - Andrea J. Tenner
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Frank M. LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| |
Collapse
|
48
|
Mesa H, Zhang EY, Wang Y, Zhang Q. Human neurons lacking amyloid precursor protein exhibit cholesterol-associated developmental and presynaptic deficits. J Cell Physiol 2024; 239:e30999. [PMID: 36966431 DOI: 10.1002/jcp.30999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/27/2023]
Abstract
Amyloid precursor protein (APP) produces aggregable β-amyloid peptides and its mutations are associated with familial Alzheimer's disease (AD), which makes it one of the most studied proteins. However, APP's role in the human brain remains unclear despite years of investigation. One problem is that most studies on APP have been carried out in cell lines or model organisms, which are physiologically different from human neurons in the brain. Recently, human-induced neurons (hiNs) derived from induced pluripotent stem cells (iPSCs) provide a practical platform for studying the human brain in vitro. Here, we generated APP-null iPSCs using CRISPR/Cas9 genome editing technology and differentiate them into matured human neurons with functional synapses using a two-step procedure. During hiN differentiation and maturation, APP-null cells exhibited less neurite growth and reduced synaptogenesis in serum-free but not serum-containing media. We have found that cholesterol (Chol) remedies those developmental defects in APP-null cells, consistent with Chol's role in neurodevelopment and synaptogenesis. The phenotypic rescue was also achieved by coculturing those cells with wild-type mouse astrocytes, suggesting that APP's developmental role is likely astrocytic. Next, we examined matured hiNs using patch-clamp recording and detected reduced synaptic transmission in APP-null cells. This change was largely due to decreased synaptic vesicle (SV) release and retrieval, which was confirmed by live-cell imaging using two SV-specific fluorescent reporters. Adding Chol shortly before stimulation mitigated the SV deficits in APP-null iNs, indicating that APP facilitates presynaptic membrane Chol turnover during the SV exo-/endocytosis cycle. Taken together, our study in hiNs supports the notion that APP contributes to neurodevelopment, synaptogenesis, and neurotransmission via maintaining brain Chol homeostasis. Given the vital role of Chol in the central nervous system, the functional connection between APP and Chol bears important implications in the pathogenesis of AD.
Collapse
Affiliation(s)
- Haylee Mesa
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| | - Elaine Y Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Brentwood High School, Brentwood, Tennessee, USA
| | - Yingcai Wang
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - Qi Zhang
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
49
|
Bhole RP, Chikhale RV, Rathi KM. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci Rep 2024; 16:8-42. [PMID: 38169888 PMCID: PMC10758887 DOI: 10.1016/j.ibneur.2023.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Alzheimer's disease (AD), a progressive degenerative disorder first identified by Alois Alzheimer in 1907, poses a significant public health challenge. Despite its prevalence and impact, there is currently no definitive ante mortem diagnosis for AD pathogenesis. By 2050, the United States may face a staggering 13.8 million AD patients. This review provides a concise summary of current AD biomarkers, available treatments, and potential future therapeutic approaches. The review begins by outlining existing drug targets and mechanisms in AD, along with a discussion of current treatment options. We explore various approaches targeting Amyloid β (Aβ), Tau Protein aggregation, Tau Kinases, Glycogen Synthase kinase-3β, CDK-5 inhibitors, Heat Shock Proteins (HSP), oxidative stress, inflammation, metals, Apolipoprotein E (ApoE) modulators, and Notch signaling. Additionally, we examine the historical use of Estradiol (E2) as an AD therapy, as well as the outcomes of Randomized Controlled Trials (RCTs) that evaluated antioxidants (e.g., vitamin E) and omega-3 polyunsaturated fatty acids as alternative treatment options. Notably, positive effects of docosahexaenoic acid nutriment in older adults with cognitive impairment or AD are highlighted. Furthermore, this review offers insights into ongoing clinical trials and potential therapies, shedding light on the dynamic research landscape in AD treatment.
Collapse
Affiliation(s)
- Ritesh P. Bhole
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India
| | | | - Karishma M. Rathi
- Department of Pharmacy Practice, Dr. D. Y. Patil institute of Pharmaceutical Sciences & Research, Pimpri, Pune, India
| |
Collapse
|
50
|
Moore A, Ritchie MD. Cross-phenotype associations between Alzheimer's Disease and its comorbidities may provide clues to progression. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE PROCEEDINGS. AMIA JOINT SUMMITS ON TRANSLATIONAL SCIENCE 2024; 2024:623-631. [PMID: 38827078 PMCID: PMC11141840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, with one in nine people over the age of 65 living with the disease in 2023. In this study, we used a phenome wide association study (PheWAS) approach to identify cross-phenotype between previously identified genetic associations for AD and electronic health record (EHR) diagnoses from the UK Biobank (UKBB) (n=361,194 of European ancestry) and the eMERGE Network (n=105,108 of diverse ancestry). Based on 497 previously identified AD-associated variants from the Alzheimer's Disease Variant Portal (ADVP), we found significant associations primarily in immune and cardiac related diseases in our PheWAS. Replicating variants have widespread impacts on immune genes in diverse tissue types. This study demonstrates the potential of using the PheWAS strategy to improve our understanding of AD progression as well as identify potential drug repurposing opportunities for new treatment and disease prevention strategies.
Collapse
Affiliation(s)
- Anni Moore
- Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA
| | - Marylyn D Ritchie
- Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA
- Institute of Biomedical Informatics, University of Pennsylvania, Philadelphia, PA
- Division of Informatics, DBEI, Perelman School of Medicine., University of Pennsylvania, Philadelphia, PA
| |
Collapse
|