1
|
Mendez KM, Reinke SN, Kelly RS, Chen Q, Su M, McGeachie M, Weiss S, Broadhurst DI, Lasky-Su JA. A roadmap to precision medicine through post-genomic electronic medical records. Nat Commun 2025; 16:1700. [PMID: 39962039 PMCID: PMC11833060 DOI: 10.1038/s41467-025-56442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/17/2024] [Indexed: 02/20/2025] Open
Abstract
The promise of integrating Electronic Medical Records (EMR) and genetic data for precision medicine has largely fallen short due to its omission of environmental context over time. Post-genomic data can bridge this gap by capturing the real-time dynamic relationship between underlying genetics and the environment. This perspective highlights the pivotal role of integrating EMR and post-genomics for personalized health, reflecting on lessons from past efforts, and outlining a roadmap of challenges and opportunities that must be addressed to realize the potential of precision medicine.
Collapse
Affiliation(s)
- Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark Su
- Personal Care Physicians of Greater Newburyport, Newburyport, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia.
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Duong K, Moss E, Reichhardt C. Solid-state NMR compositional analysis of sputum from people with cystic fibrosis. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 134:101975. [PMID: 39489104 DOI: 10.1016/j.ssnmr.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
People with the genetic disease cystic fibrosis (CF) often have chronic airway infections and produce airway secretions called sputum. A better understanding of sputum composition is desired in order to track changes in response to CF therapeutics and to improve laboratory models for the study of CF airway infections. The glycosylated protein mucin is a primary component. Along with extracellular DNA, mucin gives rise to the high viscoelasticity of sputum, which inhibits airway clearance and is thought to promote chronic airway infections in people with CF. Past studies of sputum composition identified additional biomolecular components of sputum including other proteins, both glycosylated and not glycosylated, free amino acids, and lipids. Typically, studies of sputum, as well as other complex biological materials, have focused on soluble or isolated components. Solid-state NMR is not limited to the study of soluble components. Instead, it can provide molecular-level information about insoluble biological samples. Additionally, solid-state NMR can provide information about sample composition without requiring any processing of the sample, eliminating the possibility of misestimating certain components due to insolubility or potential sample loss in isolation steps. In this study, we used both 13C and 31P CPMAS to investigate the total composition of sputum samples obtained from six people with CF. We compared these spectra to those of commercially available mucin, DNA, and phospholipid samples. Lastly, we performed complementary biochemical analyses to identify specific proteins present in the sputum samples. Overall, our findings provide insight into the composition of unprocessed sputum samples from people with CF, which can be used as a benchmark for future investigations of CF and infections in the airways of people with CF. Further, this study provides opportunities to expand the solid-state NMR approach to include dynamic nuclear polarization (DNP) to obtain high-resolution information of sputum and similar biological samples that are not feasible to isotopically enrich.
Collapse
Affiliation(s)
- Kathy Duong
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Evan Moss
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States
| | - Courtney Reichhardt
- Department of Chemistry, Washington University, St. Louis, MO, 63130, United States.
| |
Collapse
|
3
|
Ayupova G, Litvinov S, Akhmetova V, Minniakhmetov I, Mokrysheva N, Khusainova R. Population Characteristics of the Spectrum and Frequencies of CFTR Gene Mutations in Patients with Cystic Fibrosis from the Republic of Bashkortostan (Russia). Genes (Basel) 2024; 15:1335. [PMID: 39457459 PMCID: PMC11507265 DOI: 10.3390/genes15101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cystic fibrosis (CF) is one of the most common autosomal-recessive disorders worldwide. The incidence of CF depends on the prevalence of cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations in the population, which is determined by genetic diversity and ethnicity. METHODS The search for the causes of mutations in the transmembrane conductance regulator gene (CFTR) was carried out using targeted next-generation sequencing (NGS) on the Illumina platform in patients with cystic fibrosis from the Republic of Bashkortostan (Russia), taking into account the ethnic structure of the sample. RESULTS A total of 35 distinct causal variants were found in 139 cases from 129 families. Five (F508del, E92K, 3849+10kbC>T, CFTRdele2.3, L138ins) explain 78.7% of identified CF causal alleles. Variants N13103K and 394delTT were found in four families each. Variants 2143delT, S1196X, W1282X, Y84X, G194R, and 1525-1G>A, as well as the two previously described complex alleles-c. [S466X; R1070Q] and str.[G509D;E217G]-were found in two or three families each. Twenty additional variants occurred only once. Variant c.3883_3888dup has not been described previously. Thus, regional and ethnic features were identified in the spectrum of frequencies of pathogenic variants of the CFTR gene in the three major sub-groups of patients-Russians, Tatars, and Bashkirs. CONCLUSIONS Taking into account these results, highlighting the genetic specificity of the region, a more efficient search for CFTR mutations in patients can be performed. In particular it is possible to choose certain test kits for quick and effective genetic screening before use of NGS sequencing.
Collapse
Affiliation(s)
- Guzel Ayupova
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia;
| | - Sergey Litvinov
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
| | - Vita Akhmetova
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
| | | | | | - Rita Khusainova
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia;
- Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (V.A.)
- Endocrinology Research Centre, 117292 Moscow, Russia; (I.M.); (N.M.)
| |
Collapse
|
4
|
Bakhat K, Mateen I, Saif H, Anwar K, Sarfraz S, Javaid S, Ur Rehman K, Arshad A, Mustafa M. CFTR Exon 10 deleterious mutations in patients with congenital bilateral absence of vas deferens in a cohort of Pakistani patients. Arch Ital Urol Androl 2024; 96:12464. [PMID: 39356031 DOI: 10.4081/aiua.2024.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 10/03/2024] Open
Abstract
Congenital bilateral absence of vas deferens (CBAVD) is a urological syndrome of Wolffian ducts and is responsible for male infertility and obstructive azoospermia. This study is designed to explore the integrity of exon 10 of CFTR and its role in male infertility in a cohort of CBVAD patients in Pakistan. Genomic DNA was extracted from 17 male patients with CBAVD having clinical symptoms, and 10 healthy controls via phenol-chloroform method. Exon 10 of the CFTR gene was amplified, using PCR with specific primers and DNA screening was done by Sanger sequencing. Sequencing results were analyzed using freeware Serial Cloner, SnapGene, BioEdit and FinchTV. Furthermore, bioinformatics tools were used to analyze the mutations and their impact on the protein function and stability. We have identified 4 mutations on exon 10 of CFTR in 6 out of 17 patients. Two of the mutations were missense variants V456A, K464E, and the other two were silent mutations G437G, S431S. The identified variant V456A was present in 4 of the studied patients. Whereas, the presence of K464E in our patients further weighs on the crucial importance for its strategic location to influence the gene function at post-transcriptional and protein level. Furthermore, Polyphen-2 and SIFT analyze the mutations as harmful and deleterious. The recurrence of V456A and tactically conserved locality of K464E are evidence of their potential role in CBAVD patients and in male infertility. The data can contribute in developing genetic testing and treatment of CBAVD.
Collapse
Affiliation(s)
- Khush Bakhat
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| | - Irsa Mateen
- School of Biochemistry, Minhaj University, Lahore.
| | - Hina Saif
- Department of Emerging Allied Health Technologies, University of Lahore.
| | - Kanwal Anwar
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| | - Sadaf Sarfraz
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| | - Sheza Javaid
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| | - Khaleeq Ur Rehman
- Department of Urology, Fatima Memorial Hospital College of Medicine & Dentistry, Lahore.
| | - Adnan Arshad
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| | - Muhammad Mustafa
- KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore.
| |
Collapse
|
5
|
Nibali L, Divaris K, Lu EMC. The promise and challenges of genomics-informed periodontal disease diagnoses. Periodontol 2000 2024; 95:194-202. [PMID: 39072804 DOI: 10.1111/prd.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024]
Abstract
Recent advances in human genomics and the advent of molecular medicine have catapulted our ability to characterize human and health and disease. Scientists and healthcare practitioners can now leverage information on genetic variation and gene expression at the tissue or even individual cell level, and an enormous potential exists to refine diagnostic categories, assess risk in unaffected individuals, and optimize disease management among those affected. This review investigates the progress made in the domains of molecular medicine and genomics as they relate to periodontology. The review summarizes the current evidence of association between genomics and periodontal diseases, including the current state of knowledge that approximately a third of the population variance of periodontitis may be attributable to genetic variation and the management of several monogenic forms of the disease can be augmented by knowledge of the underlying genetic cause. Finally, the paper discusses the potential utility of polygenic risk scores and genetic testing for periodontitis diagnosis now and in the future, in light of applications that currently exist in other areas of medicine and healthcare.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Kimon Divaris
- Department of Pediatric Dentistry and Dental Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Emily Ming-Chieh Lu
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
6
|
Ferreira FC, Buarque CD, Lopes-Pacheco M. Organic Synthesis and Current Understanding of the Mechanisms of CFTR Modulator Drugs Ivacaftor, Tezacaftor, and Elexacaftor. Molecules 2024; 29:821. [PMID: 38398574 PMCID: PMC10891718 DOI: 10.3390/molecules29040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The monogenic rare disease Cystic Fibrosis (CF) is caused by mutations in the gene encoding the CF transmembrane conductance (CFTR) protein, an anion channel expressed at the apical plasma membrane of epithelial cells. The discovery and subsequent development of CFTR modulators-small molecules acting on the basic molecular defect in CF-have revolutionized the standard of care for people with CF (PwCF), thus drastically improving their clinical features, prognosis, and quality of life. Currently, four of these drugs are approved for clinical use: potentiator ivacaftor (VX-770) alone or in combination with correctors lumacaftor, (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). Noteworthily, the triple combinatorial therapy composed of ivacaftor, tezacaftor, and elexacaftor constitutes the most effective modulator therapy nowadays for the majority of PwCF. In this review, we exploit the organic synthesis of ivacaftor, tezacaftor, and elexacaftor by providing a retrosynthetic drug analysis for these CFTR modulators. Furthermore, we describe the current understanding of the mechanisms of action (MoA's) of these compounds by discussing several studies that report the key findings on the molecular mechanisms underlying their action on the CFTR protein.
Collapse
Affiliation(s)
- Filipa C. Ferreira
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Camilla D. Buarque
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22435-900, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Ondra M, Lenart L, Centorame A, Dumut DC, He A, Zaidi SSZ, Hanrahan JW, De Sanctis JB, Radzioch D, Hajduch M. CRISPR/Cas9 bioluminescence-based assay for monitoring CFTR trafficking to the plasma membrane. Life Sci Alliance 2024; 7:e202302045. [PMID: 37918963 PMCID: PMC10622324 DOI: 10.26508/lsa.202302045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
CFTR is a membrane protein that functions as an ion channel. Mutations that disrupt its biosynthesis, trafficking or function cause cystic fibrosis (CF). Here, we present a novel in vitro model system prepared using CRISPR/Cas9 genome editing with endogenously expressed WT-CFTR tagged with a HiBiT peptide. To enable the detection of CFTR in the plasma membrane of live cells, we inserted the HiBiT tag in the fourth extracellular loop of WT-CFTR. The 11-amino acid HiBiT tag binds with high affinity to a large inactive subunit (LgBiT), generating a reporter luciferase with bright luminescence. Nine homozygous clones with the HiBiT knock-in were identified from the 182 screened clones; two were genetically and functionally validated. In summary, this work describes the preparation and validation of a novel reporter cell line with the potential to be used as an ultimate building block for developing unique cellular CF models by CRISPR-mediated insertion of CF-causing mutations.
Collapse
Affiliation(s)
- Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Lukas Lenart
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Amanda Centorame
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | - Daciana C Dumut
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | | | | | - John W Hanrahan
- RI-MUHC, Montreal, Canada
- Physiology, McGill University, Montreal, Canada
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- RI-MUHC, Montreal, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Hills OJ, Noble IO, Heyam A, Scott AJ, Smith J, Chappell HF. Atomistic modelling and NMR studies reveal that gallium can target the ferric PQS uptake system in P. aeruginosa biofilms. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001422. [PMID: 38117289 PMCID: PMC10765035 DOI: 10.1099/mic.0.001422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Intravenous gallium nitrate therapy is a novel therapeutic strategy deployed to combat chronic Pseudomonas aeruginosa biofilm infections in the lungs of cystic fibrosis (CF) patients by interfering with iron (Fe3+) uptake. The therapy is a source of Ga3+, which competes with Fe3+ for siderophore binding, subsequently disrupting iron metabolism and inhibiting biofilm proliferation in vivo. It was recently demonstrated that the Pseudomonas quinolone signal (PQS) can chelate Fe3+ to assist in bacterial iron uptake. However, it is unknown whether exogenous gallium also targets [Fe(PQS)3] uptake, which, in turn, would extend the mechanism of gallium therapy beyond siderophore competition, potentially supporting use of the therapy against P. aeruginosa mutants deficient in siderophore uptake proteins. To that end, the thermodynamic feasibility of iron-for-gallium cation exchange into [Fe(PQS)3] was evaluated using quantum chemical density functional theory (DFT) modelling and verified experimentally using 1H nuclear magnetic resonance (NMR). We demonstrate here that Ga3+ can strongly bind to three PQS molecules and, furthermore, displace and substitute Fe3+ from the native chelate pocket within PQS complexes, through a Trojan horse mechanism, retaining the key structural features present within the native ferric complex. As such, [Fe(PQS)3] complexes, in addition to ferric-siderophore complexes, represent another target for gallium therapy.
Collapse
Affiliation(s)
- Oliver J. Hills
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Isaac O.K. Noble
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Alex Heyam
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J. Scott
- School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - James Smith
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Helen F. Chappell
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Bruno SM, Blaconà G, Lo Cicero S, Castelli G, Virgulti M, Testino G, Pierandrei S, Fuso A, Cimino G, Ferraguti G, Eramo A, Lucarelli M. Quantitative Evaluation of CFTR Gene Expression: A Comparison between Relative Quantification by Real-Time PCR and Absolute Quantification by Droplet Digital PCR. Genes (Basel) 2023; 14:1781. [PMID: 37761921 PMCID: PMC10531455 DOI: 10.3390/genes14091781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.
Collapse
Affiliation(s)
- Sabina Maria Bruno
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giovanna Blaconà
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Stefania Lo Cicero
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Germana Castelli
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Mariarita Virgulti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giancarlo Testino
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Silvia Pierandrei
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I University Hospital, 00161 Rome, Italy;
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| | - Adriana Eramo
- Department of Oncology and Molecular Medicine, National Institute of Health, Istituto Superiore di Sanità, ISS, 00161 Rome, Italy; (S.L.C.); (G.C.); (A.E.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (S.M.B.); (G.B.); (M.V.); (G.T.); (S.P.); (A.F.); (G.F.)
| |
Collapse
|
10
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Kerschner JL, Paranjapye A, Harris A. Cellular heterogeneity in the 16HBE14o - airway epithelial line impacts biological readouts. Physiol Rep 2023; 11:e15700. [PMID: 37269165 PMCID: PMC10238858 DOI: 10.14814/phy2.15700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
The airway epithelial cell line, 16HBE14o- , is an important cell model for studying airway disease. 16HBE14o- cells were originally generated from primary human bronchial epithelial cells by SV40-mediated immortalization, a process that is associated with genomic instability through long-term culture. Here, we explore the heterogeneity of these cells, with respect to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) transcript and protein. We isolate clones of 16HBE14o- with stably higher and lower levels of CFTR in comparison to bulk 16HBE14o- , designated CFTRhigh and CFTRlow . Detailed characterization of the CFTR locus in these clones by ATAC-seq and 4C-seq showed open chromatin profiles and higher order chromatin structure that correlate with CFTR expression levels. Transcriptomic profiling of CFTRhigh and CFTRlow cells showed that the CFTRhigh cells had an elevated inflammatory/innate immune response phenotype. These results encourage caution in interpreting functional data from clonal lines of 16HBE14o- cells, generated after genomic or other manipulations.
Collapse
Affiliation(s)
- Jenny L. Kerschner
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Alekh Paranjapye
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
- Present address:
Department of GeneticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ann Harris
- Department of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
12
|
Moni SS, Al Basheer A. Molecular targets for cystic fibrosis and therapeutic potential of monoclonal antibodies. Saudi Pharm J 2022; 30:1736-1747. [PMID: 36601503 PMCID: PMC9805982 DOI: 10.1016/j.jsps.2022.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that affects the exocrine glands and is caused by cystic fibrosis transmembrane conductance regulator gene (CFTR) mutations. Lung disease is the leading cause of morbidity in patients. Target-specific treatment of CF has been achieved using monoclonal antibodies (mAbs). The purpose of this article is to discuss the possibility of treating CF with mAbs through their significant target specificity. We searched electronic databases in Web of Science, PubMed, EMBASE, Scopus, and Google Scholar from 1984 to 2021. We discussed the critical role of targeted therapy in cystic fibrosis, as it will be more effective at suppressing the molecular networks. After conducting a critical review of the available literature, we concluded that it is critical to understand the fundamental molecular mechanisms underlying CF prior to incorporating biologics into the therapy regimen. Omalizumab, Mepolizumab, Benralizumab, Dupilumab and KB001-A have been successfully screened for asthma-complicated CF, and their efficacies have been well reported. Despite the availability of effective targeted biologics, treating CF has remained a difficult task, particularly when it comes to reduction of secondary inflammatory mediators. This review emphasizes the overall views on CF, the immunological mechanism of CF, and the prospective therapeutic use of mAbs as potential targeted biologics for enhancing the overall status of human health.
Collapse
|
13
|
Jilani M, Turcan A, Haspel N, Jagodzinski F. Elucidating the Structural Impacts of Protein InDels. Biomolecules 2022; 12:1435. [PMID: 36291643 PMCID: PMC9599607 DOI: 10.3390/biom12101435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 09/17/2023] Open
Abstract
The effects of amino acid insertions and deletions (InDels) remain a rather under-explored area of structural biology. These variations oftentimes are the cause of numerous disease phenotypes. In spite of this, research to study InDels and their structural significance remains limited, primarily due to a lack of experimental information and computational methods. In this work, we fill this gap by modeling InDels computationally; we investigate the rigidity differences between the wildtype and a mutant variant with one or more InDels. Further, we compare how structural effects due to InDels differ from the effects of amino acid substitutions, which are another type of amino acid mutation. We finish by performing a correlation analysis between our rigidity-based metrics and wet lab data for their ability to infer the effects of InDels on protein fitness.
Collapse
Affiliation(s)
- Muneeba Jilani
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alistair Turcan
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| | - Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
14
|
Al-Ali S, Jeffries L, Faustino EVS, Ji W, Mis E, Konstantino M, Zerillo C, Jiang YH, Spencer-Manzon M, Bale A, Zhang H, McGlynn J, McGrath JM, Tremblay T, Brodsky NN, Lucas CL, Pierce R, Deniz E, Khokha MK, Lakhani SA. A retrospective cohort analysis of the Yale pediatric genomics discovery program. Am J Med Genet A 2022; 188:2869-2878. [PMID: 35899841 PMCID: PMC9474639 DOI: 10.1002/ajmg.a.62918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/29/2022] [Accepted: 07/10/2022] [Indexed: 01/31/2023]
Abstract
The Pediatric Genomics Discovery Program (PGDP) at Yale uses next-generation sequencing (NGS) and translational research to evaluate complex patients with a wide range of phenotypes suspected to have rare genetic diseases. We conducted a retrospective cohort analysis of 356 PGDP probands evaluated between June 2015 and July 2020, querying our database for participant demographics, clinical characteristics, NGS results, and diagnostic and research findings. The three most common phenotypes among the entire studied cohort (n = 356) were immune system abnormalities (n = 105, 29%), syndromic or multisystem disease (n = 103, 29%), and cardiovascular system abnormalities (n = 62, 17%). Of 216 patients with final classifications, 77 (36%) received new diagnoses and 139 (64%) were undiagnosed; the remaining 140 patients were still actively being investigated. Monogenetic diagnoses were found in 67 (89%); the largest group had variants in known disease genes but with new contributions such as novel variants (n = 31, 40%) or expanded phenotypes (n = 14, 18%). Finally, five PGDP diagnoses (8%) were suggestive of novel gene-to-phenotype relationships. A broad range of patients can benefit from single subject studies combining NGS and functional molecular analyses. All pediatric providers should consider further genetics evaluations for patients lacking precise molecular diagnoses.
Collapse
Affiliation(s)
- Samir Al-Ali
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E. Vincent S. Faustino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Monica Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cynthia Zerillo
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yong-hui Jiang
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Michele Spencer-Manzon
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Allen Bale
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Hui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Julie McGlynn
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - James M. McGrath
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | | | - Nina N. Brodsky
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carrie L. Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Pierce
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Engin Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mustafa K. Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, US
| | - Saquib A. Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Allbee Q, Barber R. Writing python programs to map alleles related to genetic disease. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:677-678. [PMID: 33991167 DOI: 10.1002/bmb.21528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Biology is a data-driven discipline facilitated greatly by computer programming skills. This article describes an introductory experiential programming activity that can be integrated into distance learning environments. Students are asked to develop their own Python programs to identify the nature of alleles linked to disease. This activity effectively engages students in a problem solving exercise that provides an opportunity for application of basic programming skills as well as understanding eukaryotic gene structure. We provide sets of mapped alleles for two well-known genes, CFTR and HFE, as well as a suite of relevant Python programs to achieve these outcomes or allow subsequent exercise modifications.
Collapse
Affiliation(s)
- Quinn Allbee
- University of Wisconsin-Parkside, Kenosha, Wisconsin, USA
| | - Robert Barber
- University of Wisconsin-Parkside, Kenosha, Wisconsin, USA
| |
Collapse
|
16
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
17
|
Kerschner JL, Paranjapye A, NandyMazumdar M, Yin S, Leir SH, Harris A. OTX2 regulates CFTR expression during endoderm differentiation and occupies 3' cis-regulatory elements. Dev Dyn 2021; 250:684-700. [PMID: 33386644 PMCID: PMC11227118 DOI: 10.1002/dvdy.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cell-specific and developmental mechanisms contribute to expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however, its developmental regulation is poorly understood. Here we use human induced pluripotent stem cells differentiated into pseudostratified airway epithelial cells to study these mechanisms. RESULTS Changes in gene expression and open chromatin profiles were investigated by RNA-seq and ATAC-seq, and revealed that alterations in CFTR expression are associated with differences in stage-specific open chromatin. Additionally, two novel open chromatin regions, at +19.6 kb and +22.6 kb 3' to the CFTR translational stop signal, were observed in definitive endoderm (DE) cells, prior to an increase in CFTR expression in anterior foregut endoderm (AFE) cells. Chromatin studies in DE and AFE cells revealed enrichment of active enhancer marks and occupancy of OTX2 at these sites in DE cells. Loss of OTX2 in DE cells alters histone modifications across the CFTR locus and results in a 2.5-fold to 5-fold increase in CFTR expression. However, deletion of the +22.6 kb site alone does not affect CFTR expression in DE or AFE cells. CONCLUSIONS These results suggest that a network of interacting cis-regulatory elements recruit OTX2 to the locus to impact CFTR expression during early endoderm differentiation.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shiyi Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Mekki C, Aissat A, Mirlesse V, Mayer Lacrosniere S, Eche E, Le Floch A, Whalen S, Prud’Homme C, Remus C, Funalot B, Castaigne V, Fanen P, de Becdelièvre A. Prenatal Ultrasound Suspicion of Cystic Fibrosis in a Multiethnic Population: Is Extensive CFTR Genotyping Needed? Genes (Basel) 2021; 12:genes12050670. [PMID: 33946859 PMCID: PMC8145404 DOI: 10.3390/genes12050670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022] Open
Abstract
In families without a Cystic Fibrosis (CF) history, fetal ultrasound bowel abnormalities can unexpectedly reveal the disease. Isolated or in association, the signs can be fetal bowel hyperechogenicity, intestinal loop dilatation and non-visualization of fetal gallbladder. In these cases, search for CF transmembrane conductance regulator (CFTR) gene mutations is part of the recommended diagnostic practices, with a search for frequent mutations according to ethnicity, and, in case of the triad of signs, with an exhaustive study of the gene. However, the molecular diagnosis remains a challenge in populations without well-known frequent pathogenic variants. We present a multiethnic cohort of 108 pregnancies with fetal bowel abnormalities in which the parents benefited from an exhaustive study of the CFTR gene. We describe the new homozygous p.Cys1410* mutation in a fetus of African origin. We did not observe the most frequent p.Phe508del mutation in our cohort but evidenced variants undetected by our frequent mutations kit. Thanks to the progress of sequencing techniques and despite the difficulties of interpretation occasionally encountered, we discuss the need to carry out a comprehensive CFTR study in all patients in case of fetal bowel abnormalities.
Collapse
Affiliation(s)
- Chadia Mekki
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
| | - Abdel Aissat
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France
| | - Véronique Mirlesse
- Service D’echographie Gynecologique et Obstetricale, GH Bichat-C Bernard, AP-HP, F-75018 Paris, France; (V.M.); (E.E.)
- Service Medecine Fœtale, Centre Hospitalo Universitaire de Geneve (HUG), S-1205 Geneve, Switzerland
| | - Sophie Mayer Lacrosniere
- Département de Gastro-Enterologie, Pneumologie, Mucoviscidose et Nutrition Pediatrique, CRCM, Université Paris 7, Hopital Robert Debre, AP-HP, F-75019 Paris, France;
| | - Elsa Eche
- Service D’echographie Gynecologique et Obstetricale, GH Bichat-C Bernard, AP-HP, F-75018 Paris, France; (V.M.); (E.E.)
| | - Annick Le Floch
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
| | - Sandra Whalen
- Service de Genetique, Hopital Trousseau, AP-HP, F-75012 Paris, France; (S.W.); (C.P.)
| | - Cecile Prud’Homme
- Service de Genetique, Hopital Trousseau, AP-HP, F-75012 Paris, France; (S.W.); (C.P.)
| | - Christelle Remus
- Service de Genetique, Centre Hospitalier Intercommunal de Creteil, F-94010 Creteil, France;
| | - Benoit Funalot
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France
- Service de Genetique, Centre Hospitalier Intercommunal de Creteil, F-94010 Creteil, France;
| | - Vanina Castaigne
- Service d’Obstetrique et Gynecologie, Centre Hospitalier Intercommunal de Creteil, F-94010 Creteil, France;
| | - Pascale Fanen
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France
| | - Alix de Becdelièvre
- Departement de Genetique, DMU Biologie-Pathologie, GH Mondor-Chenevier, AP-HP, F-94010 Creteil, France; (C.M.); (A.A.); (A.L.F.); (B.F.); (P.F.)
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France
- Correspondence:
| |
Collapse
|
19
|
Zhang H, Hanson A, de Almeida TS, Emfinger C, McClenaghan C, Harter T, Yan Z, Cooper PE, Brown GS, Arakel EC, Mecham RP, Kovacs A, Halabi CM, Schwappach B, Remedi MS, Nichols CG. Complex consequences of Cantu syndrome SUR2 variant R1154Q in genetically modified mice. JCI Insight 2021; 6:145934. [PMID: 33529173 PMCID: PMC8021106 DOI: 10.1172/jci.insight.145934] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Cantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene. Along with minimal CS disease features, R1154Q cardiomyocytes and vascular smooth muscle showed much lower KATP current density and pinacidil activation than WT cells. Almost complete loss of SUR2-dependent protein and KATP in homozygous R1154Q ventricles revealed underlying diazoxide-sensitive SUR1-dependent KATP channel activity. Surprisingly, sequencing of SUR2 cDNA revealed 2 distinct transcripts, one encoding full-length SUR2 protein; and the other with an in-frame deletion of 93 bases (corresponding to 31 amino acids encoded by exon 28) that was present in approximately 40% and approximately 90% of transcripts from hetero- and homozygous R1154Q tissues, respectively. Recombinant expression of SUR2A protein lacking exon 28 resulted in nonfunctional channels. CS tissue from SUR2[R1154Q] mice and human induced pluripotent stem cell-derived (hiPSC-derived) cardiomyocytes showed only full-length SUR2 transcripts, although further studies will be required in order to fully test whether SUR2[R1154Q] or other CS mutations might result in aberrant splicing and variable expressivity of disease features in human CS.
Collapse
Affiliation(s)
- Haixia Zhang
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Alex Hanson
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Tobias Scherf de Almeida
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Christopher Emfinger
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Conor McClenaghan
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Theresa Harter
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Zihan Yan
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Department of Medicine, Division of Endocrinology, Metabolism and Lipid Research
| | - Paige E Cooper
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - G Schuyler Brown
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eric C Arakel
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Blanche Schwappach
- Department of Molecular Biology, Center for Biochemistry and Molecular Cell Biology, Heart Research Center Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Maria S Remedi
- Center for the Investigation of Membrane Excitability Diseases and.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Colin G Nichols
- Center for the Investigation of Membrane Excitability Diseases and.,Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, Strug LJ, Rommens JM, Ballmann M, Sorscher EJ, Oliver KE, Ignatova Z. Positive epistasis between disease-causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci U S A 2021; 118:e2010612118. [PMID: 33468668 PMCID: PMC7848603 DOI: 10.1073/pnas.2010612118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epistasis refers to the dependence of a mutation on other mutation(s) and the genetic context in general. In the context of human disorders, epistasis complicates the spectrum of disease symptoms and has been proposed as a major contributor to variations in disease outcome. The nonadditive relationship between mutations and the lack of complete understanding of the underlying physiological effects limit our ability to predict phenotypic outcome. Here, we report positive epistasis between intragenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR)-the gene responsible for cystic fibrosis (CF) pathology. We identified a synonymous single-nucleotide polymorphism (sSNP) that is invariant for the CFTR amino acid sequence but inverts translation speed at the affected codon. This sSNP in cis exhibits positive epistatic effects on some CF disease-causing missense mutations. Individually, both mutations alter CFTR structure and function, yet when combined, they lead to enhanced protein expression and activity. The most robust effect was observed when the sSNP was present in combination with missense mutations that, along with the primary amino acid change, also alter the speed of translation at the affected codon. Functional studies revealed that synergistic alteration in ribosomal velocity is the underlying mechanism; alteration of translation speed likely increases the time window for establishing crucial domain-domain interactions that are otherwise perturbed by each individual mutation.
Collapse
Affiliation(s)
- Robert Rauscher
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Giovana B Bampi
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Marta Guevara-Ferrer
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Disha Joshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - David Mark
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Lisa J Strug
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Statistical Sciences, Computer Science and Division of Biostatistics, University of Toronto, Toronto M5G 0A4, Canada
| | - Johanna M Rommens
- Program in Genetics & Genome Biology, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | | | - Eric J Sorscher
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Kathryn E Oliver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
- Children's Healthcare of Atlanta, Atlanta, GA 30322
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, 20146 Hamburg, Germany;
| |
Collapse
|
21
|
Quantitative Evaluation of CFTR Pre-mRNA Splicing Dependent on the (TG)mTn Poly-Variant Tract. Diagnostics (Basel) 2021; 11:diagnostics11020168. [PMID: 33504063 PMCID: PMC7911278 DOI: 10.3390/diagnostics11020168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic analysis in cystic fibrosis (CF) is a difficult task. Within the many causes of variability and uncertainty, a major determinant is poor knowledge of the functional effect of most DNA variants of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. In turn, knowledge of the effect of a CFTR variant has dramatic diagnostic, prognostic and, in the era of CF precision medicine, also therapeutic consequences. One of the most challenging CFTR variants is the (TG)mTn haplotype, which has variable functional effect and controversial clinical consequences. The exact quantification of the anomalous splicing of CFTR exon 10 (in the HGVS name; exon 9 in the legacy name) and, consequently, of the residual wild-type functional CFTR mRNA, should be mandatory in clinical assessment of patients with potentially pathological haplotype of this tract. Here, we present a real time-based assay for the quantification of the proportion of exon 10+/exon 10− CFTR mRNA, starting from nasal brushing. Our assay proved rapid, economic and easy to perform. Specific primers used for this assay are either disclosed or commercially available, allowing any laboratory to easily perform it. A simplified analysis of the data is provided, facilitating the interpretation of the results. This method helps to enhance the comprehension of the genotype–phenotype relationship in CF and CFTR-related disorders (CFTR-RD), crucial for the diagnosis, prognosis and personalized therapy of CF.
Collapse
|
22
|
Farley H, Poole S, Chapman S, Flight W. Diagnosis of cystic fibrosis in adulthood and eligibility for novel CFTR modulator therapy. Postgrad Med J 2021; 98:341-345. [PMID: 33452147 DOI: 10.1136/postgradmedj-2020-139278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is an autosomal recessive condition that primarily manifests as a chronic respiratory disease. CF is usually diagnosed in early childhood or through newborn screening although in a small but important group, diagnosis is not made until adulthood. Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies are now available for most genetic causes of CF highlighting the importance of identifying people with late presentations of CF. AIM We aimed to identify the clinical characteristics of people diagnosed with CF in adulthood and their resulting eligibility for novel CFTR modulator therapies. DESIGN Retrospective single-centre cohort study. METHODS Patients diagnosed with CF at age 18 years or older were identified from a patient database. Paper and electronic medical records were reviewed and clinical, microbiological and radiological data at diagnosis were recorded. RESULTS Nineteen patients were identified. Median age at diagnosis was 38 years (range: 19-71) and 9 (47%) were female. All patients had a history of chronic respiratory symptoms and 18/19 (94%) had radiological evidence of bronchiectasis. All patients had two pathogenic CFTR mutations identified with 16/19 (84%) compound heterozygotes for the F508del mutation. The majority of patients had a CFTR genotype considered eligible for CFTR modulator therapy (84% and 89% according to European and US licences, respectively). CONCLUSIONS Adult patients with unexplained chronic bronchiectasis should be thoroughly investigated for CF. A low index of suspicion will help to identify adults with undiagnosed CF who are likely to benefit from CFTR modulator therapy.
Collapse
Affiliation(s)
| | - Sarah Poole
- Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Stephen Chapman
- Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - William Flight
- Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| |
Collapse
|
23
|
Cui X, Wu X, Li Q, Jing X. Mutations of the cystic fibrosis transmembrane conductance regulator gene in males with congenital bilateral absence of the vas deferens: Reproductive implications and genetic counseling (Review). Mol Med Rep 2020; 22:3587-3596. [PMID: 33000223 PMCID: PMC7533508 DOI: 10.3892/mmr.2020.11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 11/05/2022] Open
Abstract
Congenital bilateral absence of the vas deferens (CBAVD) is predominantly caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CBAVD accounts for 2–6% of male infertility cases and up to 25% of cases of obstructive azoospermia. With the use of pre-implantation genetic diagnosis, testicular or epididymal sperm aspiration, intracytoplasmic sperm injection and in vitro fertilization, patients affected by CBAVD are able to have children who do not carry CFTR gene mutations, thereby preventing disease. Therefore, genetic counseling should be provided to couples receiving assisted reproductive techniques to discuss the impact of CFTR gene mutations on reproductive health. In the present article, the current literature concerning the CFTR gene and its association with CBAVD is reviewed.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Qiang Li
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women's Health Center of Shanxi, Taiyuan, Shanxi 030001, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
24
|
AlMaghamsi T, Iqbal N, Al-Esaei NA, Mohammed M, Eddin KZ, Ghurab F, Moghrabi N, Heaphy E, Junaid I. Cystic fibrosis gene mutations and polymorphisms in Saudi men with infertility. Ann Saudi Med 2020; 40:321-329. [PMID: 32757986 PMCID: PMC7410224 DOI: 10.5144/0256-4947.2020.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Some mutations of the cystic fibrosis transmembrane regulator (CFTR) gene may impair spermatogenesis or cause a congenital absence of the vas deferens that manifests as isolated male infertility. OBJECTIVE Assess the frequency and analyze the spectrum of CFTR gene variations in Saudi men with primary infertility. DESIGN Prospective, cross-sectional. SETTING Tertiary care specialist hospital in Jeddah. PATIENTS AND METHODS Genomic DNA was extracted from peripheral blood samples of Saudi men who presented with primary infertility to the outpatient andrology clinic with either azoospermia or oligoasthenoteratozoospermia. Polymerase chain reaction and direct sequencing were used to identify all variants of the CFTR gene. MAIN OUTCOME MEASURES Proportion of the patients with a mutant CFTR gene and the spectrum of CFTR gene variations. SAMPLE SIZE 50 infertile Saudi men. RESULTS This study identified 10 CFTR gene variants in 7 (14%) subjects (100 chromosomes). The detected variants and polymorphisms were: c.1408G>A, c.4389G>A, c.2562T>G, c.869+11C>T, c.2909-92G>A, c.3469-65C>A, c.1210-6delT, c.1210-6T>A, c.2988+1G>A, and c.1210-13GT>TG. CONCLUSION We demonstrated that 14% of the study subjects had one or more CFTR mutations and these were compounded in most of the affected patients. The spectrum of CFTR gene mutations in these subjects was similar to the mutations reported in other studies throughout the world. LIMITATIONS Small sample size and the lack of a control group. CONFLICTS OF INTEREST None.
Collapse
Affiliation(s)
- Talal AlMaghamsi
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Naeem Iqbal
- From the Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Nabil Abdullrahman Al-Esaei
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Muhsina Mohammed
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Kamel Zein Eddin
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Fatima Ghurab
- From the Department of Pediatrics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Nabil Moghrabi
- From the Department of Genetics, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Emily Heaphy
- From the Research Center, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| | - Islam Junaid
- From the Department of Surgery, King Faisal Specialist Hospital and Research Center-Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Rimessi A, Pozzato C, Carparelli L, Rossi A, Ranucci S, De Fino I, Cigana C, Talarico A, Wieckowski MR, Ribeiro CMP, Trapella C, Rossi G, Cabrini G, Bragonzi A, Pinton P. Pharmacological modulation of mitochondrial calcium uniporter controls lung inflammation in cystic fibrosis. SCIENCE ADVANCES 2020; 6:eaax9093. [PMID: 32494695 PMCID: PMC7202873 DOI: 10.1126/sciadv.aax9093] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/20/2020] [Indexed: 06/01/2023]
Abstract
Mitochondria physically associate with the endoplasmic reticulum to coordinate interorganelle calcium transfer and regulate fundamental cellular processes, including inflammation. Deregulated endoplasmic reticulum-mitochondria cross-talk can occur in cystic fibrosis, contributing to hyperinflammation and disease progression. We demonstrate that Pseudomonas aeruginosa infection increases endoplasmic reticulum-mitochondria associations in cystic fibrosis bronchial cells by stabilizing VAPB-PTPIP51 (vesicle-associated membrane protein-associated protein B-protein tyrosine phosphatase interacting protein 51) tethers, affecting autophagy. Impaired autophagy induced mitochondrial unfolding protein response and NLRP3 inflammasome activation, contributing to hyperinflammation. The mechanism by which VAPB-PTPIP51 tethers regulate autophagy in cystic fibrosis involves calcium transfer via mitochondrial calcium uniporter. Mitochondrial calcium uniporter inhibition rectified autophagy and alleviated the inflammatory response in vitro and in vivo, resulting in a valid therapeutic strategy for cystic fibrosis pulmonary disease.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Pozzato
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Carparelli
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Alice Rossi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Serena Ranucci
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Ida De Fino
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Cristina Cigana
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Anna Talarico
- Department of Chemistry and Pharmaceutical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Carla M. P. Ribeiro
- Department of Medicine/Pulmonary Division, Marsico Lung Institute and Cystic Fibrosis Center, Chapel Hill, NC 27599-7248, USA
| | - Claudio Trapella
- Department of Chemistry and Pharmaceutical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Macerata, Italy
| | - Giulio Cabrini
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Department of Neurosurgery, Biomedicine and Movement, University of Verona, 37126 Verona, Italy
| | - Alessandra Bragonzi
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Paolo Pinton
- Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Center of research on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
26
|
Murillo J, Spetale F, Guillaume S, Bulacio P, Garcia Labari I, Cailloux O, Destercke S, Tapia E. Consistency of the Tools That Predict the Impact of Single Nucleotide Variants (SNVs) on Gene Functionality: The BRCA1 Gene. Biomolecules 2020; 10:E475. [PMID: 32244891 PMCID: PMC7175253 DOI: 10.3390/biom10030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide variants (SNVs) occurring in a protein coding gene may disrupt its function in multiple ways. Predicting this disruption has been recognized as an important problem in bioinformatics research. Many tools, hereafter p-tools, have been designed to perform these predictions and many of them are now of common use in scientific research, even in clinical applications. This highlights the importance of understanding the semantics of their outputs. To shed light on this issue, two questions are formulated, (i) do p-tools provide similar predictions? (inner consistency), and (ii) are these predictions consistent with the literature? (outer consistency). To answer these, six p-tools are evaluated with exhaustive SNV datasets from the BRCA1 gene. Two indices, called K a l l and K s t r o n g , are proposed to quantify the inner consistency of pairs of p-tools while the outer consistency is quantified by standard information retrieval metrics. While the inner consistency analysis reveals that most of the p-tools are not consistent with each other, the outer consistency analysis reveals they are characterized by a low prediction performance. Although this result highlights the need of improving the prediction performance of individual p-tools, the inner consistency results pave the way to the systematic design of truly diverse ensembles of p-tools that can overcome the limitations of individual members.
Collapse
Affiliation(s)
- Javier Murillo
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Flavio Spetale
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Serge Guillaume
- ITAP, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France;
| | - Pilar Bulacio
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Ignacio Garcia Labari
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| | - Olivier Cailloux
- Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016 Paris, France;
| | | | - Elizabeth Tapia
- Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas (CIFASIS-CONICET), Universidad Nacional de Rosario, CP 2000 Rosario, Santa Fe, Argentina; (F.S.); (P.B.); (I.G.L.); (E.T.)
| |
Collapse
|
27
|
Guo J, Rackham OJL, Sandholm N, He B, Österholm AM, Valo E, Harjutsalo V, Forsblom C, Toppila I, Parkkonen M, Li Q, Zhu W, Harmston N, Chothani S, Öhman MK, Eng E, Sun Y, Petretto E, Groop PH, Tryggvason K. Whole-Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants associated with Diabetic Nephropathy. J Am Soc Nephrol 2020; 31:309-323. [PMID: 31919106 DOI: 10.1681/asn.2019030289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.
Collapse
Affiliation(s)
- Jing Guo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Owen J L Rackham
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bing He
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anne-May Österholm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Erkka Valo
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Chronic Disease Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iiro Toppila
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija Parkkonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland.,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Qibin Li
- Complex Disease Research Center, BGI Genomics, Shenzhen, China
| | - Wenjuan Zhu
- Complex Disease Research Center, BGI Genomics, Shenzhen, China
| | - Nathan Harmston
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore.,Science Division, Yale-National University of Singapore College, National University of Singapore, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Miina K Öhman
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Eudora Eng
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Yang Sun
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore; .,MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Centre, Helsinki, Finland; .,Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; .,Cardiovascular and Metabolic Disorders Programme, Duke-National University of Singapore Medical School, Singapore.,Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
28
|
Predictive value of genomic screening: cross-sectional study of cystic fibrosis in 50,788 electronic health records. NPJ Genom Med 2019; 4:21. [PMID: 31508243 PMCID: PMC6726623 DOI: 10.1038/s41525-019-0095-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Doubts have been raised about the value of DNA-based screening for low-prevalence monogenic conditions following reports of testing this approach using available electronic health record (EHR) as the sole phenotyping source. We hypothesized that a better model for EHR-focused examination of DNA-based screening is Cystic Fibrosis (CF) since the diagnosis is proactively sought within the healthcare system. We reviewed CFTR variants in 50,778 exomes. In 24 cases with bi-allelic pathogenic CFTR variants, there were 21 true-positives. We considered three cases "potential" false-positives due to limitations in available EHR phenotype data. This genomic screening exhibited a positive predictive value of 87.5%, negative predictive value of 99.9%, sensitivity of 95.5%, and a specificity of 99.9%. Despite EHR-based phenotyping limitations in three cases, the presence or absence of pathogenic CFTR variants has strong predictive value for CF diagnosis when EHR data is used as the sole phenotyping source. Accurate ascertainment of the predictive value of DNA-based screening requires condition-specific phenotyping beyond available EHR data.
Collapse
|
29
|
Sadik I, Pérez de Algaba I, Jiménez R, Benito C, Blasco-Alonso J, Caro P, Navas-López VM, Pérez-Frías J, Pérez E, Serrano J, Yahyaoui R. Initial Evaluation of Prospective and Parallel Assessments of Cystic Fibrosis Newborn Screening Protocols in Eastern Andalusia: IRT/IRT versus IRT/PAP/IRT. Int J Neonatal Screen 2019; 5:32. [PMID: 33072991 PMCID: PMC7510193 DOI: 10.3390/ijns5030032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/01/2019] [Indexed: 11/16/2022] Open
Abstract
Identifying newborns at risk for cystic fibrosis (CF) by newborn screening (NBS) using dried blood spot (DBS) specimens provides an opportunity for presymptomatic detection. All NBS strategies for CF begin with measuring immunoreactive trypsinogen (IRT). Pancreatitis-associated protein (PAP) has been suggested as second-tier testing. The main objective of this study was to evaluate the analytical performance of an IRT/PAP/IRT strategy versus the current IRT/IRT strategy over a two-year pilot study including 68,502 newborns. The design of the study, carried out in a prospective and parallel manner, allowed us to compare four different CF-NBS protocols after performing a post hoc analysis. The best PAP cutoff point and the potential sources of PAP false positive results in our non-CF newborn population were also studied. 14 CF newborns were detected, resulting in an overall CF prevalence of 1/4, 893 newborns. The IRT/IRT algorithm detected all CF cases, but the IRT/PAP/IRT algorithm failed to detect one case of CF. The IRT/PAP/IRT with an IRT-dependent safety net protocol was a good alternative to improve sensitivity to 100%. The IRT × PAP/IRT strategy clearly performed better, with a sensitivity of 100% and a positive predictive value (PPV) of 39%. Our calculated optimal cutoffs were 2.31 µg/L for PAP and 167.4 µg2/L2 for IRT × PAP. PAP levels were higher in females and newborns with low birth weight. PAP false positive results were found mainly in newborns with conditions such as prematurity, sepsis, and hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Ilham Sadik
- Clinical Laboratory, Hospital La Línea de la Concepción, 11300 Cádiz, Spain
| | - Inmaculada Pérez de Algaba
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Avenida Arroyo de los Angeles s/n, 29011 Málaga, Spain
| | - Rocío Jiménez
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Avenida Arroyo de los Angeles s/n, 29011 Málaga, Spain
| | - Carmen Benito
- Department of Genetics, Málaga Regional University Hospital, 29011 Málaga, Spain
| | - Javier Blasco-Alonso
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
| | - Pilar Caro
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
- Department of Pharmacology and Pediatrics, University of Málaga, 29071 Málaga, Spain
| | - Víctor M. Navas-López
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
| | - Javier Pérez-Frías
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
- Department of Pharmacology and Pediatrics, University of Málaga, 29071 Málaga, Spain
| | - Estela Pérez
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
- Department of Pharmacology and Pediatrics, University of Málaga, 29071 Málaga, Spain
| | - Juliana Serrano
- Department of Pediatrics, Málaga Regional University Hospital, 29011 Málaga, Spain
| | - Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, Avenida Arroyo de los Angeles s/n, 29011 Málaga, Spain
- Institute of Biomedical Research in Málaga-IBIMA, 29010 Málaga, Spain
| |
Collapse
|
30
|
Cabrini G. Innovative Therapies for Cystic Fibrosis: The Road from Treatment to Cure. Mol Diagn Ther 2019; 23:263-279. [PMID: 30478715 DOI: 10.1007/s40291-018-0372-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF), a life-threatening multiorgan genetic disease, is facing a new era of research and development using innovative gene-directed personalized therapies. The priority organ to cure is the lung, which suffers recurrent and chronic bacterial infection and inflammation since infancy, representing the main cause of morbidity and precocious mortality of these individuals. After the disappointing failure of gene-replacement approaches using gene therapy vectors, no single drug is presently available to repair all the CF gene defects. The impressive number of different CF gene mutations is now tackled with different chemical and biotechnological tools tailored to the specific molecular derangements, thanks to the extensive knowledge acquired over many years on the mechanisms of CF cell and organ pathology. This review provides an overview and recalls both the successes and limitations of the different experimental approaches, such as high-throughput screening on chemical libraries to discover CF gene correctors and potentiators, dual-acting compounds, read-through molecules, splicing defect repairing tools, cystic fibrosis transmembrane conductance regulator (CFTR) "amplifiers," CFTR interactome modulators and the first gene editing attempts.
Collapse
Affiliation(s)
- Giulio Cabrini
- Laboratory of Molecular Pathology, University Hospital, Verona, Italy. .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
31
|
Lessons learned from two decades of BRCA1 and BRCA2 genetic testing: the evolution of data sharing and variant classification. Genet Med 2019; 21:1476-1480. [PMID: 30474649 PMCID: PMC9936330 DOI: 10.1038/s41436-018-0370-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/06/2018] [Indexed: 02/02/2023] Open
|
32
|
Hodges CA, Conlon RA. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis 2018; 6:97-108. [PMID: 31193992 PMCID: PMC6545485 DOI: 10.1016/j.gendis.2018.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022] Open
Abstract
In this review, we describe a path for translation of gene editing into therapy for cystic fibrosis (CF). Cystic fibrosis results from mutations in the CFTR gene, with one allele predominant in patient populations. This simple, genetic etiology makes gene editing appealing for treatment of this disease. There already have been success in applying this approach to cystic fibrosis in cell and animal models, although these advances have been modest in comparison to advances for other disease. Less than six years after its first demonstration in animals, CRISPR/Cas gene editing is in early clinical trials for several disorders. Most clinical trials, thus far, attempt to edit genes in cells of the blood lineages. The advantage of the blood is that the stem cells are known, can be isolated, edited, selected, expanded, and returned to the body. The likely next trials will be in the liver, which is accessible to many delivery methods. For cystic fibrosis, the biggest hurdle is to deliver editors to other, less accessible organs. We outline a path by which delivery can be improved. The translation of new therapies doesn't occur in isolation, and the development of gene editors is occurring as advances in gene therapy and small molecule therapeutics are being made. The advances made in gene therapy may help develop delivery vehicles for gene editing, although major improvements are needed. Conversely, the approval of effective small molecule therapies for many patients with cystic fibrosis will raise the bar for translation of gene editing.
Collapse
Affiliation(s)
- Craig A Hodges
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ronald A Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Kerschner JL, Ghosh S, Paranjapye A, Cosme WR, Audrézet MP, Nakakuki M, Ishiguro H, Férec C, Rommens J, Harris A. Screening for Regulatory Variants in 460 kb Encompassing the CFTR Locus in Cystic Fibrosis Patients. J Mol Diagn 2018; 21:70-80. [PMID: 30296588 DOI: 10.1016/j.jmoldx.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
It is estimated that up to 5% of cystic fibrosis transmembrane conductance regulator (CFTR) pathogenic alleles are unidentified. Some of these errors may lie in noncoding regions of the locus and affect gene expression. To identify regulatory element variants in the CFTR locus, SureSelect targeted enrichment of 460 kb encompassing the gene was optimized to deep sequence genomic DNA from 80 CF patients with an unequivocal clinical diagnosis but only one or no CFTR-coding region pathogenic variants. Bioinformatics tools were used to identify sequence variants and predict their impact, which were then assayed in transient reporter gene luciferase assays. The effect of five variants in the CFTR promoter and four in an intestinal enhancer of the gene were assayed in relevant cell lines. The initial analysis of sequence data revealed previously known CF-causing variants, validating the robustness of the SureSelect design, and showed that 85 of 160 CF alleles were undefined. Of a total 1737 variants revealed across the extended 460-kb CFTR locus, 51 map to known CFTR cis-regulatory elements, and many of these are predicted to alter transcription factor occupancy. Four promoter variants and all those in the intestinal enhancer significantly repress reporter gene activity. These data suggest that CFTR regulatory elements may harbor novel CF disease-causing variants that warrant further investigation, both for genetic screening protocols and functional assays.
Collapse
Affiliation(s)
- Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sujana Ghosh
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Wilmel R Cosme
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | | | - Miyuki Nakakuki
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Ishiguro
- Department of Human Nutrition, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Johanna Rommens
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio; Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, Illinois; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
34
|
Dechecchi MC, Tamanini A, Cabrini G. Molecular basis of cystic fibrosis: from bench to bedside. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:334. [PMID: 30306073 PMCID: PMC6174194 DOI: 10.21037/atm.2018.06.48] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF), is an autosomal recessive disease affecting different organs. The lung disease, characterized by recurrent and chronic bacterial infection and inflammation since infancy, is the main cause of morbidity and precocious mortality of these individuals. The innovative therapies directed to repair the defective CF gene should account for the presence of more than 200 disease-causing mutations of the CF transmembrane conductance regulator (CFTR) gene. The review will recall the different experimental approaches in discovering CFTR protein targeted molecules, such as the high throughput screening on chemical libraries to discover correctors and potentiators of CFTR protein, dual-acting compounds, read-through molecules, splicing defects repairing tools, CFTR "amplifiers".
Collapse
Affiliation(s)
- Maria Cristina Dechecchi
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Anna Tamanini
- Laboratory of Analysis, Section of Molecular Pathology, University Hospital of Verona, Verona, Italy
| | - Giulio Cabrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
35
|
Accelerating evidence gathering and approval of precision medicine therapies: the FDA takes aim at rare mutations. Genet Med 2018; 21:542-544. [PMID: 29988078 PMCID: PMC6752286 DOI: 10.1038/s41436-018-0099-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/07/2018] [Indexed: 11/25/2022] Open
|
36
|
Karimi N, Alibakhshi R, Almasi S. CFTR Mutation Analysis in Western Iran: Identification of Two Novel Mutations. J Reprod Infertil 2018; 19:3-9. [PMID: 29850441 PMCID: PMC5960049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is one of the most common autosomal recessive disorders in Caucasian population. The incidence of disorder varies among different religious, ethnic and geographical isolates. The aim of this study was to identify the spectrum and the frequency of known and unknown disease-causing mutations in Iranian CF patients. METHODS Genomic DNA was extracted from peripheral whole blood with a QIAamp DNA Mini-Kit. Mutation analysis was done in the CFTR gene including complete coding region and intron/exon boundaries using a direct sequencing method. RESULTS In general, ten mutations were identified in 27 CF cases. Two out of 10 mutations, 754delT and GGTGGCdel/TTGins, were reported as novel mutations. The most common observed mutations in patients were R334W (40.74%), ΔF508 (18.5%), K710X (12.96%) and D110H (5.5%), 1897C>G (1.85%), R1162X (1.85%), S466X (1.85%) and T1036I (1.85%). CONCLUSION The finding indicated a unique mutation panel which can be used in genetic counseling, prenatal diagnosis and future screening of CF in Iran. Although ΔF508 is the most common mutation in other populations including Caucasian, this mutation seem not to have an important role in Iranian CF patients. Findings suggest that a different approach in molecular genetics diagnostic strategies in Middle Eastern countries including Iran should be considered.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Alibakhshi
- Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding Author: Reza Alibakhshi, Department of Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran, E-mail:, ,
| | - Shekoufeh Almasi
- Department of Biology, Faculty of Life Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
37
|
Macedo A, Mathiaparanam S, Brick L, Keenan K, Gonska T, Pedder L, Hill S, Britz-McKibbin P. The Sweat Metabolome of Screen-Positive Cystic Fibrosis Infants: Revealing Mechanisms beyond Impaired Chloride Transport. ACS CENTRAL SCIENCE 2017; 3:904-913. [PMID: 28852705 PMCID: PMC5571457 DOI: 10.1021/acscentsci.7b00299] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 05/27/2023]
Abstract
The sweat chloride test remains the gold standard for confirmatory diagnosis of cystic fibrosis (CF) in support of universal newborn screening programs. However, it provides ambiguous results for intermediate sweat chloride cases while not reflecting disease progression when classifying the complex CF disease spectrum given the pleiotropic effects of gene modifiers and environment. Herein we report the first characterization of the sweat metabolome from screen-positive CF infants and identify metabolites associated with disease status that complement sweat chloride testing. Pilocarpine-stimulated sweat specimens were collected independently from two CF clinics, including 50 unaffected infants (e.g., carriers) and 18 confirmed CF cases. Nontargeted metabolite profiling was performed using multisegment injection-capillary electrophoresis-mass spectrometry as a high throughput platform for analysis of polar/ionic metabolites in volume-restricted sweat samples. Amino acids, organic acids, amino acid derivatives, dipeptides, purine derivatives, and unknown exogenous compounds were identified in sweat when using high resolution tandem mass spectrometry, including metabolites associated with affected yet asymptomatic CF infants, such as asparagine and glutamine. Unexpectedly, a metabolite of pilocarpine, used to stimulate sweat secretion, pilocarpic acid, and a plasticizer metabolite from environmental exposure, mono(2-ethylhexyl)phthalic acid, were secreted in the sweat of CF infants at significantly lower concentrations relative to unaffected CF screen-positive controls. These results indicated a deficiency in human paraoxonase, an enzyme unrelated to mutations to the cystic fibrosis transmembrane conductance regulator (CFTR) and impaired chloride transport, which is a nonspecific arylesterase/lactonase known to mediate inflammation, bacterial biofilm formation, and recurrent lung infections in affected CF children later in life. This work sheds new light into the underlying mechanisms of CF pathophysiology as required for new advances in precision medicine of orphan diseases that benefit from early detection and intervention, including new molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Adriana
N. Macedo
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Stellena Mathiaparanam
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Lauren Brick
- Department
of Pediatrics, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Katherine Keenan
- Program
in Translational Medicine, The Hospital
for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Tanja Gonska
- Program
in Translational Medicine, The Hospital
for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department
of Pediatrics, University of Toronto, Toronto, Ontario M5G 1E2, Canada
| | - Linda Pedder
- Department
of Pediatrics, McMaster University, Hamilton, Ontario L8S 3Z5, Canada
| | - Stephen Hill
- Department
of Pathology and Molecular Medicine, McMaster
University, Hamilton, Ontario L8S 3Z5, Canada
| | - Philip Britz-McKibbin
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
38
|
In silico search for modifier genes associated with pancreatic and liver disease in Cystic Fibrosis. PLoS One 2017; 12:e0173822. [PMID: 28339466 PMCID: PMC5365109 DOI: 10.1371/journal.pone.0173822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes. Our objective was to highlight new modifier genes with potential implications in the lung, pancreatic and liver outcomes of the disease. For this purpose we performed a system biology approach which combined, database mining, literature mining, gene expression study and network analysis as well as pathway enrichment analysis and protein-protein interactions. We found that IFI16, CCNE2 and IGFBP2 are potential modifiers in the altered lung function in Cystic Fibrosis. We also found that EPHX1, HLA-DQA1, HLA-DQB1, DSP and SLC33A1, GPNMB, NCF2, RASGRP1, LGALS3 and PTPN13, are potential modifiers in pancreas and liver, respectively. Associated pathways indicate that immune system is likely involved and that Ubiquitin C is probably a central node, linking Cystic Fibrosis to liver and pancreatic disease. We highlight here new modifier genes with potential implications in Cystic Fibrosis. Nevertheless, our in silico analysis requires functional analysis to give our results a physiological relevance.
Collapse
|
39
|
Calumenin contributes to ER-Ca 2+ homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention. Cell Calcium 2017; 62:47-59. [PMID: 28189267 DOI: 10.1016/j.ceca.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca2+) homeostasis. In this study, we discovered that the Ca2+ binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca2+ calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca2+ concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.
Collapse
|
40
|
Dujardin G, Daguenet É, Bernard DG, Flodrops M, Durand S, Chauveau A, El Khoury F, Le Jossic-Corcos C, Corcos L. L’épissage des ARN pré-messagers : quand le splicéosome perd pied. Med Sci (Paris) 2017; 32:1103-1110. [DOI: 10.1051/medsci/20163212014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
41
|
|
42
|
Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2016; 60:6726-6734. [PMID: 27572404 DOI: 10.1128/aac.00724-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023] Open
Abstract
The chronic airway infections with Pseudomonas aeruginosa in people with cystic fibrosis (CF) are treated with aerosolized antibiotics, oral fluoroquinolones, and/or intravenous combination therapy with aminoglycosides and β-lactam antibiotics. An international strain collection of 361 P. aeruginosa isolates from 258 CF patients seen at 30 CF clinics was examined for mutations in 17 antimicrobial susceptibility and resistance loci that had been identified as hot spots of mutation by genome sequencing of serial isolates from a single CF clinic. Combinatorial amplicon sequencing of pooled PCR products identified 1,112 sequence variants that were not present in the genomes of representative strains of the 20 most common clones of the global P. aeruginosa population. A high frequency of singular coding variants was seen in spuE, mexA, gyrA, rpoB, fusA1, mexZ, mexY, oprD, ampD, parR, parS, and envZ (amgS), reflecting the pressure upon P. aeruginosa in lungs of CF patients to generate novel protein variants. The proportion of nonneutral amino acid exchanges was high. Of the 17 loci, mexA, mexZ, and pagL were most frequently affected by independent stop mutations. Private and de novo mutations seem to play a pivotal role in the response of P. aeruginosa populations to the antimicrobial load and the individual CF host.
Collapse
|
43
|
Straniero L, Soldà G, Costantino L, Seia M, Melotti P, Colombo C, Asselta R, Duga S. Whole-gene CFTR sequencing combined with digital RT-PCR improves genetic diagnosis of cystic fibrosis. J Hum Genet 2016; 61:977-984. [PMID: 27488443 DOI: 10.1038/jhg.2016.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022]
Abstract
Despite extensive screening, 1-5% of cystic fibrosis (CF) patients lack a definite molecular diagnosis. Next-generation sequencing (NGS) is making affordable genetic testing based on the identification of variants in extended genomic regions. In this frame, we analyzed 23 CF patients and one carrier by whole-gene CFTR resequencing: 4 were previously characterized and served as controls; 17 were cases lacking a complete diagnosis after a full conventional CFTR screening; 3 were consecutive subjects referring to our centers, not previously submitted to any screening. We also included in the custom NGS design the coding portions of the SCNN1A, SCNN1B and SCNN1G genes, encoding the subunits of the sodium channel ENaC, which were found to be mutated in CF-like patients. Besides 2 novel SCNN1B missense mutations, we identified 22 previously-known CFTR mutations, including 2 large deletions (whose breakpoints were precisely mapped), and novel deep-intronic variants, whose role on splicing was excluded by ex-vivo analyses. Finally, for 2 patients, compound heterozygotes for a CFTR mutation and the intron-9c.1210-34TG[11-12]T5 allele-known to be associated with decreased CFTR mRNA levels-the molecular diagnosis was implemented by measuring the residual level of wild-type transcript by digital reverse transcription polymerase chain reaction performed on RNA extracted from nasal brushing.
Collapse
Affiliation(s)
- Letizia Straniero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Lucy Costantino
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Seia
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Carla Colombo
- Cystic Fibrosis Center of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
44
|
Ben Amar M, Bianca C. Towards a unified approach in the modeling of fibrosis: A review with research perspectives. Phys Life Rev 2016; 17:61-85. [DOI: 10.1016/j.plrev.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022]
|
45
|
Wong MKS, Pipil S, Kato A, Takei Y. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions. Comp Biochem Physiol A Mol Integr Physiol 2016; 199:130-141. [PMID: 27322796 DOI: 10.1016/j.cbpa.2016.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.
Collapse
Affiliation(s)
| | - Supriya Pipil
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| | - Akira Kato
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshio Takei
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan
| |
Collapse
|
46
|
Moisan S, Berlivet S, Ka C, Le Gac G, Dostie J, Férec C. Analysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements. Nucleic Acids Res 2015; 44:2564-76. [PMID: 26615198 PMCID: PMC4824072 DOI: 10.1093/nar/gkv1300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022] Open
Abstract
A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.
Collapse
Affiliation(s)
- Stéphanie Moisan
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Soizik Berlivet
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Chandran Ka
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Gérald Le Gac
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Claude Férec
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Inserm U1078, Université de Brest, SFR ScInBioS, CHRU de Brest, Établissement Français du Sang - Bretagne, Brest, France
| |
Collapse
|
47
|
Abstract
The human transcriptome is composed of a vast RNA population that undergoes further diversification by splicing. Detecting specific splice sites in this large sequence pool is the responsibility of the major and minor spliceosomes in collaboration with numerous splicing factors. This complexity makes splicing susceptible to sequence polymorphisms and deleterious mutations. Indeed, RNA mis-splicing underlies a growing number of human diseases with substantial societal consequences. Here, we provide an overview of RNA splicing mechanisms followed by a discussion of disease-associated errors, with an emphasis on recently described mutations that have provided new insights into splicing regulation. We also discuss emerging strategies for splicing-modulating therapy.
Collapse
Affiliation(s)
- Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-3610 USA
| |
Collapse
|
48
|
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0140885. [PMID: 26480348 PMCID: PMC4610675 DOI: 10.1371/journal.pone.0140885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation.
Collapse
|
49
|
Abstract
Metabolites as an end product of metabolism possess a wealth of information about altered metabolic control and homeostasis that is dependent on numerous variables including age, sex, and environment. Studying significant changes in the metabolite patterns has been recognized as a tool to understand crucial aspects in drug development like drug efficacy and toxicity. The inclusion of metabonomics into the OMICS study platform brings us closer to define the phenotype and allows us to look at alternatives to improve the diagnosis of diseases. Advancements in the analytical strategies and statistical tools used to study metabonomics allow us to prevent drug failures at early stages of drug development and reduce financial losses during expensive phase II and III clinical trials. This chapter introduces metabonomics along with the instruments used in the study; in addition relevant examples of the usage of metabonomics in the drug development process are discussed along with an emphasis on future directions and the challenges it faces.
Collapse
Affiliation(s)
- Pranov Ramana
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2 PB 923, Herestraat 49, 3000, Leuven, Belgium
| | | | | | | |
Collapse
|
50
|
Gallati S. Disease-modifying genes and monogenic disorders: experience in cystic fibrosis. APPLICATION OF CLINICAL GENETICS 2014; 7:133-46. [PMID: 25053892 PMCID: PMC4104546 DOI: 10.2147/tacg.s18675] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.
Collapse
Affiliation(s)
- Sabina Gallati
- Division of Human Genetics, Department of Pediatrics, and Department of Clinical Research, Inselspital, University of Berne, Berne, Switzerland
| |
Collapse
|