1
|
Fadgyas-Stanculete M, Capatina OO. Glutamate-Based Therapeutic Strategies for Schizophrenia: Emerging Approaches Beyond Dopamine. Int J Mol Sci 2025; 26:4331. [PMID: 40362567 PMCID: PMC12072206 DOI: 10.3390/ijms26094331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Schizophrenia is a complex neuropsychiatric disorder composed of primary cluster-positive symptoms, negative symptoms, disorganization, neurocognitive deficits, and social cognitive impairments. While traditional antipsychotics primarily target dopamine pathways, they provide limited efficacy against cognitive deficits and negative symptoms. Growing evidence implicates glutamatergic dysregulation, particularly N-methyl-D-aspartate receptor (NMDA-R) hypofunction, in the pathophysiology of schizophrenia, making glutamate modulation a promising therapeutic approach. This review explores emerging glutamate-based treatment strategies, including NMDA receptor modulators, metabotropic glutamate receptor (mGluR) agents, glutamate transporter regulators, and kynurenine pathway inhibitors. We summarize preclinical and clinical findings on NMDA co-agonists (D-serine and glycine), glycine transporter inhibitors, D-amino acid oxidase inhibitors, and mGluR-targeted therapies, highlighting their mechanisms, efficacy, and limitations. In addition, we discuss novel interventions aimed at restoring glutamate homeostasis, including neuroinflammatory modulation and synaptic plasticity enhancers. Despite promising results, many glutamate-targeting therapies have yielded inconsistent clinical outcomes, underscoring the need for biomarker-driven patient selection and optimized treatment protocols. We propose that integrating glutamate modulators with existing antipsychotic regimens may enhance therapeutic response while minimizing side effects. Future research should focus on refining glutamate-based interventions, identifying predictive biomarkers, and addressing the heterogeneity in schizophrenia pathology. With continued advancements, glutamate modulation has the potential to transform schizophrenia treatment, particularly for cognitive and negative symptoms that remain largely unaddressed by current therapies.
Collapse
Affiliation(s)
| | - Octavia Oana Capatina
- Department of Neurosciences, Discipline of Psychiatry and Pediatric Psychiatry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400394 Cluj-Napoca, Romania;
| |
Collapse
|
2
|
Qneibi M, Bdir S, Bdair M, Aldwaik SA, Heeh M, Sandouka D, Idais T. Exploring the role of AMPA receptor auxiliary proteins in synaptic functions and diseases. FEBS J 2025; 292:2433-2478. [PMID: 39394632 DOI: 10.1111/febs.17287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (AMPARs) mediate rapid excitatory synaptic transmission in the mammalian brain, primarily driven by the neurotransmitter glutamate. The modulation of AMPAR activity, particularly calcium-permeable AMPARs (CP-AMPARs), is crucially influenced by various auxiliary subunits. These subunits are integral membrane proteins that bind to the receptor's core and modify its functional properties, including ion channel kinetics and receptor trafficking. This review comprehensively catalogs all known AMPAR auxiliary proteins, providing vital insights into the biochemical mechanisms governing synaptic modulation and the specific impact of CP-AMPARs compared to their calcium-impermeable AMPA receptor (CI-AMPARs). Understanding the complex interplay between AMPARs and their auxiliary subunits in different brain regions is essential for elucidating their roles in cognitive functions such as learning and memory. Importantly, alterations in these auxiliary proteins' expression, function or interactions have been implicated in various neurological disorders. Aberrant signaling through CP-AMPARs, in particular, is associated with severe synaptic dysfunctions across neurodevelopmental, neurodegenerative and psychiatric conditions. Targeting the distinct properties of AMPAR-auxiliary subunit complexes, especially those involving CP-AMPARs, could disclose new therapeutic strategies, potentially allowing for more precise interventions in treating complex neuronal disorders.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Samia Ammar Aldwaik
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | - Dana Sandouka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
3
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
4
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of CaMKII predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. Front Synaptic Neurosci 2025; 17:1547948. [PMID: 40255983 PMCID: PMC12006173 DOI: 10.3389/fnsyn.2025.1547948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). A critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Bartol
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Terrence J. Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Dixit N, Pyari G, Bansal H, Roy S. Theoretical analysis of low power optogenetic control of synaptic plasticity with subcellular expression of CapChR2 at postsynaptic spine. Sci Rep 2025; 15:11166. [PMID: 40169824 PMCID: PMC11962105 DOI: 10.1038/s41598-025-95355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Precise control of intracellular calcium ([Formula: see text]) concentration at the synaptic neuron terminal can unravel the mechanism behind computation, learning, and memory formation inside the brain. Recently, the discovery of [Formula: see text]-permeable channelrhodopsins (CapChRs) has opened the opportunity to effectively control the intracellular [Formula: see text] concentration using optogenetics. Here, we present a new theoretical model for precise optogenetic control with newly discovered CapChR2 at postsynaptic neuron. A detailed theoretical analysis of coincident stimulation of presynaptic terminal, postsynaptic spine and optogenetic activation of CapChR2-expressing postsynaptic spine shows different ways to control postsynaptic intracellular [Formula: see text] concentration. Irradiance-dependent [Formula: see text] flow is an additional advantage of this novel method. The minimum threshold of light irradiance and optimal ranges of time lag among different stimulations and stimulation frequencies have also been determined. It is shown that synaptic efficacy occurs at 20 µW/mm2 at coincident electrical stimulation of presynaptic terminal and postsynaptic spine with optogenetic activation of CapChR2-expressed postsynaptic spine. The analysis provides a new means of direct optogenetic control of [Formula: see text]-based synaptic plasticity, better understanding of learning and memory processes, and opens prospects for targeted therapeutic interventions to modulate synaptic function and address various neurological disorders.
Collapse
Affiliation(s)
- Nripesh Dixit
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Gur Pyari
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Himanshu Bansal
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India
| | - Sukhdev Roy
- Department of Physics and Computer Science, Dayalbagh Educational Institute, Agra, 282005, India.
| |
Collapse
|
6
|
Kopalli SR, Behl T, Kyada A, Rekha MM, Kundlas M, Rani P, Nathiya D, Satyam Naidu K, Gulati M, Bhise M, Gupta P, Wal P, Fareed M, Ramniwas S, Koppula S, Gasmi A. Synaptic plasticity and neuroprotection: The molecular impact of flavonoids on neurodegenerative disease progression. Neuroscience 2025; 569:161-183. [PMID: 39922366 DOI: 10.1016/j.neuroscience.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/11/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Flavonoids are a broad family of polyphenolic chemicals that are present in a wide variety of fruits, vegetables, and medicinal plants. Because of their neuroprotective qualities, flavonoids have attracted a lot of interest. The potential of flavonoids to control synaptic plasticity-a crucial process underlying memory, learning, and cognitive function-is becoming more and more clear. Dysregulation of synaptic plasticity is a feature of neurodegenerative diseases such as amyotrophic lateral sclerosis (0.4 %), Parkinson's (1-2 %), Alzheimer's (5-7 %), and Huntington's ((0.2 %)). This review discusses the molecular mechanisms via which flavonoids influence synaptic plasticity as well as their therapeutic potential in neurodegenerative diseases. Flavonoids modulate key signaling pathways such as MAPK/ERK and PI3K/Akt/mTOR to support neuroprotection, synaptic plasticity, and neuronal health, while also influencing neurotrophic factors (BDNF, NGF) and their receptors (TrkB, TrkA). They regulate neurotransmitter receptors like GABA, AMPA, and NMDA to balance excitatory and inhibitory transmission, and exert antioxidant effects via the Nrf2-ARE pathway and anti-inflammatory actions by inhibiting NF-κB signaling, highlighting their potential for treating neurodegenerative diseases. These varied reactions support the preservation of synapse function and neuronal integrity in the face of neurodegenerative insults. Flavonoids can reduce the symptoms of neurodegeneration, prevent synaptic loss, and enhance cognitive function, according to experimental studies. However, there are still obstacles to using these findings in clinical settings, such as limited bioavailability and the need for consistent dose. The focus of future research should be on improving flavonoid delivery systems and combining them with conventional medications.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006 Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | | | | | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy Kanpur UP, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413 Punjab, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| | - Amin Gasmi
- Societe Francophone de Nutritherapie et de Nutrigenetique Appliquee, Villeurbanne, France; International Institute of Nutrition and Micronutrient Sciences, Saint-Etienne, France
| |
Collapse
|
7
|
Ben Ezzdine L, Dhahbi W, Dergaa I, Ceylan Hİ, Guelmami N, Ben Saad H, Chamari K, Stefanica V, El Omri A. Physical activity and neuroplasticity in neurodegenerative disorders: a comprehensive review of exercise interventions, cognitive training, and AI applications. Front Neurosci 2025; 19:1502417. [PMID: 40092068 PMCID: PMC11906675 DOI: 10.3389/fnins.2025.1502417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
This review aimed to elucidate the mechanisms through which (i) physical activity (PA) enhances neuroplasticity and cognitive function in neurodegenerative disorders, and (ii) identify specific PA interventions for improving cognitive rehabilitation programs. We conducted a literature search in PubMed, Medline, Scopus, Web of Science, and PsycINFO, covering publications from January 1990 to August 2024. The search strategy employed key terms related to neuroplasticity, physical exercise, cognitive function, neurodegenerative disorders, and personalized physical activity. Inclusion criteria included original research on the relationship between PA and neuroplasticity in neurodegenerative disorders, while exclusion criteria eliminated studies focusing solely on pharmacological interventions. The review identified multiple pathways through which PA may enhance neuroplasticity, including releasing neurotrophic factors, modulation of neuroinflammation, reduction of oxidative stress, and enhancement of synaptic connectivity and neurogenesis. Aerobic exercise was found to increase hippocampal volume by 1-2% and improve executive function scores by 5-10% in older adults. Resistance training enhanced cognitive control and memory performance by 12-18% in elderly individuals. Mind-body exercises, such as yoga and tai-chi, improved gray matter density in memory-related brain regions by 3-5% and enhanced emotional regulation scores by 15-20%. Dual-task training improved attention and processing speed by 8-14% in individuals with neurodegenerative disorders. We also discuss the potential role of AI-based exercise and AI cognitive training in preventing and rehabilitating neurodegenerative illnesses, highlighting innovative approaches to personalized interventions and improved patient outcomes. PA significantly enhances neuroplasticity and cognitive function in neurodegenerative disorders through various mechanisms. Aerobic exercise, resistance training, mind-body practices, and dual-task exercises each offer unique cognitive benefits. Implementing these activities in clinical settings can improve patient outcomes. Future research should focus on creating personalized interventions tailored to specific conditions, incorporating personalized physical exercise programs to optimize cognitive rehabilitation.
Collapse
Affiliation(s)
- Lamia Ben Ezzdine
- High Institute of Sport and Physical Education of Ksar Said, University of Manouba, Manouba, Tunisia
| | - Wissem Dhahbi
- High Institute of Sport and Physical Education of El Kef, University of Jendouba, El Kef, Tunisia
- Training Department, Qatar Police Academy, Police College, Doha, Qatar
- Research Laboratory, Education, Motricity, Sport and Health, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Ismail Dergaa
- High Institute of Sport and Physical Education of El Kef, University of Jendouba, El Kef, Tunisia
- Research Laboratory, Education, Motricity, Sport and Health, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
- Primary Health Care Corporation, Doha, Qatar
| | | | - Noomen Guelmami
- High Institute of Sport and Physical Education of El Kef, University of Jendouba, El Kef, Tunisia
| | - Helmi Ben Saad
- Heart Failure Research Laboratory (LR12SP09), Farhat HACHED Hospital, University of Sousse, Sousse, Tunisia
| | - Karim Chamari
- Research and Education Department, Naufar, Wellness and Recovery Center, Doha, Qatar
| | - Valentina Stefanica
- Department of Physical Education and Sport, Faculty of Sciences, Physical Education and Informatics, National University of Science and Technology Politehnica Bucharest, Pitesti University Center, Pitesti, Romania
| | | |
Collapse
|
8
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
9
|
Bay S, Rodina A, Haut F, Roychowdhury T, Argyrousi EK, Staniszewski A, Han K, Sharma S, Chakrabarty S, Digwal CS, Stanisavljevic A, Labuza A, Alldred MJ, Panchal P, SanthaSeela A, Tuffery L, Li Z, Hashmi A, Rosiek E, Chan E, Monetti M, Sasaguri H, Saido TC, Schneider JA, Bennett DA, Fraser PE, Erdjument-Bromage H, Neubert TA, Ginsberg SD, Arancio O, Chiosis G. Systems-Level Interactome Mapping Reveals Actionable Protein Network Dysregulation Across the Alzheimer's Disease Spectrum. RESEARCH SQUARE 2025:rs.3.rs-5930673. [PMID: 39989971 PMCID: PMC11844643 DOI: 10.21203/rs.3.rs-5930673/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) progresses as a continuum, from preclinical stages to late-stage cognitive decline, yet the molecular mechanisms driving this progression remain poorly understood. Here, we provide a systems-level map of protein-protein interaction (PPI) network dysfunction across the AD spectrum and uncover epichaperomes-stable scaffolding platforms formed by chaperones and co-factors-as central drivers of this process. Using over 100 human brain specimens, mouse models, and human neurons, we show that epichaperomes emerge early, even in preclinical AD, and progressively disrupt multiple PPI networks critical for synaptic function and neuroplasticity. Glutamatergic neurons, essential for learning and memory, exhibit heightened vulnerability, with their dysfunction driven by protein sequestration into epichaperome scaffolds, independent of changes in protein expression. Notably, pharmacological disruption of epichaperomes with PU-AD restores PPI network integrity and reverses synaptic and cognitive deficits, directly linking epichaperome-driven network dysfunction to AD pathology. These findings establish epichaperomes as key mediators of molecular collapse in AD and identify network-centric intervention strategies as a promising avenue for disease-modifying therapies.
Collapse
Affiliation(s)
- Sadik Bay
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florence Haut
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Tanaya Roychowdhury
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elentina K Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
| | - Kyung Han
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Souparna Chakrabarty
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Amanda Labuza
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
| | - Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anand SanthaSeela
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Laura Tuffery
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arsalan Hashmi
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Chan
- Molecular Cytology Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mara Monetti
- Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medical Biophysics, University of Toronto, Toronto, ON M5R 0A3, Canada
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY 10032, USA
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Blanco FA, Saifullah MAB, Cheng JX, Abella C, Scala F, Firozi K, Niu S, Park J, Chin J, Tolias KF. Targeting Tiam1 Enhances Hippocampal-Dependent Learning and Memory in the Adult Brain and Promotes NMDA Receptor-Mediated Synaptic Plasticity and Function. J Neurosci 2025; 45:e0298242024. [PMID: 39725519 PMCID: PMC11800756 DOI: 10.1523/jneurosci.0298-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Excitatory synapses and the actin-rich dendritic spines on which they reside are indispensable for information processing and storage in the brain. In the adult hippocampus, excitatory synapses must balance plasticity and stability to support learning and memory. However, the mechanisms governing this balance remain poorly understood. Tiam1 is an actin cytoskeleton regulator prominently expressed in the dentate gyrus (DG) throughout life. Previously, we showed that Tiam1 promotes dentate granule cell synapse and spine stabilization during development, but its role in the adult hippocampus remains unclear. Here, we deleted Tiam1 from adult forebrain excitatory neurons (Tiam1fKO ) and assessed the effects on hippocampal-dependent behaviors. Adult male and female Tiam1fKO mice displayed enhanced contextual fear memory, fear extinction, and spatial discrimination. Investigation into underlying mechanisms revealed that dentate granule cells from Tiam1fKO brain slices exhibited augmented synaptic plasticity and N-methyl-D-aspartate-type glutamate receptor (NMDAR) function. Additionally, Tiam1 loss in primary hippocampal neurons blocked agonist-induced NMDAR internalization, reduced filamentous actin levels, and promoted activity-dependent spine remodeling. Notably, strong NMDAR activation in wild-type hippocampal neurons triggered Tiam1 loss from spines. Our results suggest that Tiam1 normally constrains hippocampal-dependent learning and memory in the adult brain by restricting NMDAR-mediated synaptic plasticity in the DG. We propose that Tiam1 achieves this by limiting NMDAR availability at synaptic membranes and stabilizing spine actin cytoskeleton and that these constraints can be alleviated by activity-dependent degradation of Tiam1. These findings reveal a previously unknown mechanism restricting hippocampal synaptic plasticity and highlight Tiam1 as a therapeutic target for enhancing cognitive function.
Collapse
Affiliation(s)
- Francisco A Blanco
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | - Jinxuan X Cheng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Carlota Abella
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Federico Scala
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Karen Firozi
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Sanyong Niu
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Memory & Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Memory & Brain Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
11
|
Lee ZH, Tung WS, Santhiran KAJ, Shahzad H, Giribabu N, Salleh N. Estrogen hindrance escalates inflammation and neurodegeneration in the hippocampal regions of collagen-induced arthritis female Sprague-Dawley rats. Pflugers Arch 2025; 477:317-332. [PMID: 39570400 DOI: 10.1007/s00424-024-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024]
Abstract
This study aims to investigate the effect of estrogen hindrance, i.e., menopause in women for instance with rheumatoid arthritis on the brain hippocampal region by using collagen-induced arthritis (CIA) female rat model (RA). CIA was induced in female rats by injecting bovine type II collagen and incomplete Freund's adjuvant. Estrogen receptor antagonist, fulvestrant (Ful), was given to RA rats to create estrogen hindrance. Control (C) and RA rats were injected with saline and DMSO, respectively, while RA + Ful rats received a 7-day fulvestrant injection. Following experiment completion, rats were sacrificed, and brains were harvested. Brains were stained with H&E and cresyl violet staining and morphological changes in the hippocampus were identified. Additionally, oxidative stress, inflammatory, and apoptosis markers' levels in the hippocampus were analyzed by qPCR, ELISA, and immunohistochemistry techniques. RA + Ful rats showed neuronal atrophy and reduced neurogenesis in the hippocampal regions. NOX4, NF-κB, IL-1β, IL-6, TNF-α, IKK-β, and Bax protein expression levels in the hippocampus were increased, whereas hippocampal Bcl-2, caspase-3, caspase-9, and IGF-1R protein expression levels were decreased. Furthermore, RA + Ful rats had lower levels of antioxidants PON-1 and catalase in the hippocampal regions. The changes in these molecular markers were statistically significant when compared to RA rats without Ful treatment (p < 0.05). Estrogen hindrance exaggerated oxidative stress, inflammation, and apoptosis which resulted in neuronal degeneration in the hippocampal regions in rheumatoid arthritis.
Collapse
Affiliation(s)
- Zuo Hao Lee
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Wong Siew Tung
- Department of Pathology & Microbiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | | | - Huma Shahzad
- Department of Human Biology, School of Medicine, International Medical University, No.1, Persiaran Jalil 1, Bandar Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
- Human Reproduction Research Group, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Lembah Pantai, 50603, Kuala Lumpur, Malaysia.
- Human Reproduction Research Group, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Park HB, Kim H, Han D. In-Depth Proteome Profiling of the Hippocampus of LDLR Knockout Mice Reveals Alternation in Synaptic Signaling Pathway. Proteomics 2025; 25:e202400152. [PMID: 39548955 DOI: 10.1002/pmic.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
The low-density lipoprotein receptor (LDLR) is a major apolipoprotein receptor that regulates cholesterol homeostasis. LDLR deficiency is associated with cognitive impairment by the induction of synaptopathy in the hippocampus. Despite the close relationship between LDLR and neurodegenerative disorders, proteomics research for protein profiling in the LDLR knockout (KO) model remains insufficient. Therefore, understanding LDLR KO-mediated differential protein expression within the hippocampus is crucial for elucidating a role of LDLR in neurodegenerative disorders. In this study, we conducted first-time proteomic profiling of hippocampus tissue from LDLR KO mice using tandem mass tag (TMT)-based MS analysis. LDLR deficiency induces changes in proteins associated with the transport of diverse molecules, and activity of kinase and catalyst within the hippocampus. Additionally, significant alterations in the expression of components in the major synaptic pathways were found. Furthermore, these synaptic effects were verified using a data-independent acquisition (DIA)-based proteomic method. Our data will serve as a valuable resource for further studies to discover the molecular function of LDLR in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Kale MB, Wankhede NL, Bishoyi AK, Ballal S, Kalia R, Arya R, Kumar S, Khalid M, Gulati M, Umare M, Taksande BG, Upaganlawar AB, Umekar MJ, Kopalli SR, Fareed M, Koppula S. Emerging biophysical techniques for probing synaptic transmission in neurodegenerative disorders. Neuroscience 2025; 565:63-79. [PMID: 39608699 DOI: 10.1016/j.neuroscience.2024.11.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Plethora of research has shed light on the critical role of synaptic dysfunction in various neurodegenerative disorders (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Synapses, the fundamental units for neural communication in the brain, are highly vulnerable to pathological conditions and are central to the progression of neurological diseases. The presynaptic terminal, a key component of synapses responsible for neurotransmitter release and synaptic communication, undergoes structural and functional alterations in these disorders. Understanding synaptic transmission abnormalities is crucial for unravelling the pathophysiological mechanisms underlying neurodegeneration. In the quest to probe synaptic transmission in NDDs, emerging biophysical techniques play a pivotal role. These advanced methods offer insights into the structural and functional changes occurring at nerve terminals in conditions like AD, PD, HD & ALS. By investigating synaptic plasticity and alterations in neurotransmitter release dynamics, researchers can uncover valuable information about disease progression and potential therapeutic targets. The review articles highlighted provide a comprehensive overview of how synaptic vulnerability and pathology are shared mechanisms across a spectrum of neurological disorders. In major neurodegenerative diseases, synaptic dysfunction is a common thread linking these conditions. The intricate molecular machinery involved in neurotransmitter release, synaptic vesicle dynamics, and presynaptic protein regulation are key areas of focus for understanding synaptic alterations in neurodegenerative diseases.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rishiv Kalia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Mohit Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box- 71666, Riyadh 11597, Saudi Arabia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
15
|
Hosseini E, Sepehrinezhad A, Momeni J, Ascenzi BM, Gorji A, Sahab-Negah S. The Telencephalon. FROM ANATOMY TO FUNCTION OF THE CENTRAL NERVOUS SYSTEM 2025:401-427. [DOI: 10.1016/b978-0-12-822404-5.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
He CW, Díaz E. Loss of SynDIG4/PRRT1 alters distribution of AMPA receptors in Rab4- and Rab11-positive endosomes and impairs basal AMPA receptor recycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630674. [PMID: 39764059 PMCID: PMC11703197 DOI: 10.1101/2024.12.29.630674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear. In this study, we characterized the endocytosis and recycling of GluA1-containing AMPARs under basal conditions. We did not observe any change in baseline endocytosis; however, we did observe a significant decrease in recycling of GluA1-containing AMPARs in cultured hippocampal neurons from mice lacking SynDIG4. This resulted in a significant increase in the levels of internal GluA1 and GluA2, along with greater colocalization of these subunits with Rab4-positive recycling endosomes in hippocampal neurons lacking SynDIG4. Notably, the overlap between Rab4- and Rab11-positive vesicles was elevated in hippocampal neurons lacking SynDIG4, suggesting an impairment in the trafficking between Rab4 and Rab11 compartments. Furthermore, our findings revealed a reduction in surface GluA1 within synaptic regions of hippocampal neurons lacking SynDIG4. Collectively, these results indicate that SynDIG4 regulates the distribution of GluA1-containing AMPARs via the Rab4-dependent endosomal recycling pathway, thereby maintaining AMPAR levels at synaptic regions under baseline conditions. This regulatory function of SynDIG4 may contribute to the deficits in GluA1-dependent synaptic plasticity and impairment of hippocampal-dependent learning and memory behaviors observed in SynDIG4 deficient mice.
Collapse
Affiliation(s)
- Chun-Wei He
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Elva Díaz
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
17
|
Sadegh-Zadeh SA, Hazegh P. Advancing neural computation: experimental validation and optimization of dendritic learning in feedforward tree networks. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2024; 13:49-69. [PMID: 39850544 PMCID: PMC11751443 DOI: 10.62347/fiqw7087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVES This study aims to explore the capabilities of dendritic learning within feedforward tree networks (FFTN) in comparison to traditional synaptic plasticity models, particularly in the context of digit recognition tasks using the MNIST dataset. METHODS We employed FFTNs with nonlinear dendritic segment amplification and Hebbian learning rules to enhance computational efficiency. The MNIST dataset, consisting of 70,000 images of handwritten digits, was used for training and testing. Key performance metrics, including accuracy, precision, recall, and F1-score, were analysed. RESULTS The dendritic models significantly outperformed synaptic plasticity-based models across all metrics. Specifically, the dendritic learning framework achieved a test accuracy of 91%, compared to 88% for synaptic models, demonstrating superior performance in digit classification. CONCLUSIONS Dendritic learning offers a more powerful computational framework by closely mimicking biological neural processes, providing enhanced learning efficiency and scalability. These findings have important implications for advancing both artificial intelligence systems and computational neuroscience.
Collapse
Affiliation(s)
| | - Pooya Hazegh
- Department of Radiology, Carver College of Medicine, University of IowaIowa, IA 52242, USA
| |
Collapse
|
18
|
Bartol TM, Ordyan M, Sejnowski TJ, Rangamani P, Kennedy MB. A spatial model of autophosphorylation of Ca 2+/calmodulin-dependent protein kinase II (CaMKII) predicts that the lifetime of phospho-CaMKII after induction of synaptic plasticity is greatly prolonged by CaM-trapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578696. [PMID: 38352446 PMCID: PMC10862815 DOI: 10.1101/2024.02.02.578696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Long-term potentiation (LTP) is a biochemical process that underlies learning in excitatory glutamatergic synapses in the Central Nervous System (CNS). The critical early driver of LTP is autophosphorylation of the abundant postsynaptic enzyme, Ca2+/calmodulin-dependent protein kinase II (CaMKII). Autophosphorylation is initiated by Ca2+ flowing through NMDA receptors activated by strong synaptic activity. Its lifetime is ultimately determined by the balance of the rates of autophosphorylation and of dephosphorylation by protein phosphatase 1 (PP1). Here we have modeled the autophosphorylation and dephosphorylation of CaMKII during synaptic activity in a spine synapse using MCell4, an open source computer program for creating particle-based stochastic, and spatially realistic models of cellular microchemistry. The model integrates four earlier detailed models of separate aspects of regulation of spine Ca2+ and CaMKII activity, each of which incorporate experimentally measured biochemical parameters and have been validated against experimental data. We validate the composite model by showing that it accurately predicts previous experimental measurements of effects of NMDA receptor activation, including high sensitivity of induction of LTP to phosphatase activity in vivo, and persistence of autophosphorylation for a period of minutes after the end of synaptic stimulation. We then use the model to probe aspects of the mechanism of regulation of autophosphorylation of CaMKII that are difficult to measure in vivo. We examine the effects of "CaM-trapping," a process in which the affinity for Ca2+/CaM increases several hundred-fold after autophosphorylation. We find that CaM-trapping does not increase the proportion of autophosphorylated subunits in holoenzymes after a complex stimulus, as previously hypothesized. Instead, CaM-trapping may dramatically prolong the lifetime of autophosphorylated CaMKII through steric hindrance of dephosphorylation by protein phosphatase 1. The results provide motivation for experimental measurement of the extent of suppression of dephosphorylation of CaMKII by bound Ca2+/CaM. The composite MCell4 model of biochemical effects of complex stimuli in synaptic spines is a powerful new tool for realistic, detailed dissection of mechanisms of synaptic plasticity.
Collapse
Affiliation(s)
| | - Mariam Ordyan
- The Salk Institute for Biological Studies, La Jolla, CA
| | - Terrence J Sejnowski
- The Salk Institute for Biological Studies, La Jolla, CA
- Department of Neurobiology, University of California at San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Mary B Kennedy
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
19
|
Gerasimov E, Pchitskaya E, Vlasova O, Bezprozvanny I. Dynamic changes in the hippocampal neuronal circuits activity following acute stress revealed by miniature fluorescence microscopy imaging. Mol Brain 2024; 17:92. [PMID: 39695833 DOI: 10.1186/s13041-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Coordinated activity of neuronal ensembles is a basis for information processing in the brain. Recent development of miniscope imaging technology enabled recordings of neuronal circuits activity in vivo in freely behaving animals. Acute stress is believed to affect various hippocampal functions, especially memory. In the current study, we utilized miniscope imaging to investigate the hippocampal neuronal circuits properties in a mouse as function of time and immediately in response to an acute stress, induced by passive restraint, 3 h and 10 days after. Comprehensive quantitative analysis of network activity changes at the neuronal ensembles level revealed highly stable neuronal activity parameters, which exhibited a rapid and robust shift in response to acute stress stimulation. This shift was accompanied by the restructuring of the pairwise-correlated neuronal pairs. Remarkably, we discovered that ensembles activity characteristics returned to the initial state following recovery period, demonstrating hippocampal homeostatic stability at the neuronal circuits level. Obtained results provide an evidence about hippocampal neuronal ensembles activity in response to acute stress over time.
Collapse
Affiliation(s)
- Evgenii Gerasimov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| | - Ekaterina Pchitskaya
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Olga Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia
| | - Ilya Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya St. 29, 195220, St. Petersburg, Russia.
| |
Collapse
|
20
|
Mohammadi H, Jamshidi S, Khajehpour H, Adibi I, Rahimiforoushani A, Karimi S, Dadashi Serej N, Riyahi Alam N. Unveiling Glutamate Dynamics: Cognitive Demands in Human Short-Term Memory Learning Across Frontal and Parieto-Occipital Cortex: A Functional MRS Study. J Biomed Phys Eng 2024; 14:519-532. [PMID: 39726886 PMCID: PMC11668935 DOI: 10.31661/jbpe.v0i0.2407-1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 12/28/2024]
Abstract
Background Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate's involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks. Objective This study aimed to investigate glutamate modulation during memory tasks in the right Dorsolateral Prefrontal Cortex (DLPFC) and parieto-occipital regions using functional Magnetic Resonance Spectroscopy (fMRS). Material and Methods This experimental research applied fMRS acquisition concurrently with a modified Sternberg's verbal working memory task for fourteen healthy right-handed participants (5 females, mean age=30.64±4.49). The glutamate/total-creatine (Glu/tCr) ratio was quantified by LCModel in the DLPFC and parieto-occipital voxels while applying the tissue corrections. Results The significantly higher Glu/tCr modulation was observed during the task with a trend of increased modulation with memory load in both the DLPFC (19.9% higher, P-value=0.018) and parieto-occipital (33% higher, P-value=0.046) regions compared to the rest. Conclusion Our pioneering fMRS study has yielded groundbreaking insights into brain functions during S-term Memory (STM) and learning. This research provides valuable methodological advancements for investigating the metabolic functions of both healthy and disordered brains. Based on the findings, cognitive demands directly correlate with glutamate levels, highlighting the neurochemical underpinnings of cognitive processing. Additionally, the obtained results potentially challenge the traditional left-hemisphere-centric model of verbal working memory, leading to the deep vision of hemispheric contributions to cognitive functions.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Shahriyar Jamshidi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Hassan Khajehpour
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Rahimiforoushani
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shaghayegh Karimi
- Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasim Dadashi Serej
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
- School of Computing and Engineering, University of West London, UK
| | - Nader Riyahi Alam
- Department of Medical Physics & Biomedical Eng., School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Concordia University, PERFORM Center, School of Health, Montreal, Quebec, Canada
- Magnetic Resonance Imaging Lab, National Brain Mapping Laboratory (NBML), Tehran, Iran
| |
Collapse
|
21
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404254. [PMID: 39445520 PMCID: PMC11633526 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hannah Thomson
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergHenkestraße 9191052ErlangenGermany
| | - Hadi Heidari
- Microelectronics Lab (meLAB)James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
22
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
23
|
Flores AI, Liester MB. The Role of Cells in Encoding and Storing Information: A Narrative Review of Cellular Memory. Cureus 2024; 16:e73063. [PMID: 39640131 PMCID: PMC11620785 DOI: 10.7759/cureus.73063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Memory, a fundamental aspect of human cognition and consciousness, is multifaceted and extends beyond traditional conceptualizations of mental recall. This review article explores memory through various lenses, including brain-based, body-based, and cellular mechanisms. At its core, memory involves the encoding, storage, and retrieval of information. Advances in neuroscience reveal that synaptic changes and molecular modifications, particularly in the hippocampus, are crucial for memory consolidation. Additionally, body memory, or somatic memory, highlights how sensory experiences and traumatic events are stored and influence behavior, underscoring the role of implicit memory. Multiple studies have demonstrated that memories can be encoded and stored in cells. Evidence suggests that these memories can then be transferred between individuals through organ transplantation. Additionally, observations in organisms that lack a nervous system, such as bacteria, fungi, and plants, expand traditional memory concepts. This review highlights and compiles novel research from the last few decades that explores information encoding and storage at a cellular level across a wide variety of disciplines. Our aim is to integrate these findings into a cohesive framework that helps explain the role of cellular processes in memory retention and transfer. By compiling research across diverse fields, this review aims to establish a foundation for future investigation into the physiological and psychological significance of cellular memory. Despite substantial progress, critical gaps persist in our understanding of how cellular memory interfaces with neural memory systems and the precise pathways through which information is encoded, stored, retrieved, and transferred at the cellular level. There has been a noticeable lack of research focused on cellular memory, and more rigorous investigations are needed to uncover how cells participate in memory and the extent to which these processes influence human behavior and cognition.
Collapse
Affiliation(s)
- Ana I Flores
- Department of Psychology, University of California San Diego, San Diego, USA
| | - Mitchell B Liester
- Department of Psychiatry, University of Colorado School of Medicine, Colorado Springs, USA
| |
Collapse
|
24
|
Gupta JK, Singh K, Bhatt A, Porwal P, Rani R, Dubey A, Jain D, Rai SN. Recent advances in the synthesis of antidepressant derivatives: pharmacologic insights for mood disorders. 3 Biotech 2024; 14:260. [PMID: 39376479 PMCID: PMC11456089 DOI: 10.1007/s13205-024-04104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
Mood disorders, including depression, remain a significant global health concern, necessitating continuous efforts to develop novel and more effective antidepressant therapies. Although there have been significant advancements in comprehending the biology of Major Depressive Disorder (MDD), a considerable number of people suffering from depression do not exhibit positive responses to the pharmacologic treatments now available. This study specifically examines emerging targets and potential future approaches for pharmaceutical interventions in the treatment of MDD. The discussion revolves around novel therapeutic agents and their effectiveness in treating depression. The focus is on the specific pathophysiological pathways targeted by these agents and the amount of evidence supporting their use. While conventional antidepressants are anticipated to continue being the primary treatment for MDD in the foreseeable future, there is currently extensive research being conducted on numerous new compounds to determine their effectiveness in treating MDD. Many of these compounds have shown encouraging results. This review highlighted the recent advances in the synthesis of antidepressant derivatives and explores their pharmacologic insights for the treatment of mood disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand India
| | - Prateek Porwal
- FS College of Pharmacy and Research Centre, FS University, Near Balaji Mandir, ShikohabadFirozabad, Uttar Pradesh India
| | - Rekha Rani
- Department of Chemistry, School of Pharmacy, ITM University, Gwalior, Madhya Pradesh India
| | - Anubhav Dubey
- Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007 India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
25
|
Mohammad A, Ruegsegger GN, Olver TD, MacPherson REK. Gestational physical activity alters offspring brain APP processing in an age-specific manner. Appl Physiol Nutr Metab 2024; 49:1507-1516. [PMID: 39038365 DOI: 10.1139/apnm-2024-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Maternal exercise is beneficial for offspring brain development. Amyloid precursor protein (APP) influences neurogenesis and synaptic plasticity. Cleavage products of APP are implicated in the proliferation of neural progenitor cells and neuronal network development. Our study aimed to investigate differences in APP processing in active or sedentary offspring of dams who were exposed to voluntary wheel running with and without a western diet throughout gestation. Female Wistar rats (7-8 weeks old) were fed a normal chow or western diet and randomized into voluntary wheel run or sedentary conditions. Dams returned to sedentary conditions post-parturition. The pups were weaned at 6 weeks after which point half of the samples were collected, while the rest of the pups remained on a normal diet, separated into sedentary or voluntary wheel run groups, and collected 12 weeks later. In utero exposure to maternal exercise was associated with higher neuronal nuclear protein, higher soluble APPα and lower soluble APPβ in offspring prefrontal cortex tissue at 6, but not 18 weeks of age. Neuronal nuclear protein is exclusive to mature neurons implying that offspring of mothers who exercised could have more neuron maturation potentially influenced by the higher APPα content at this early developmental stage. The voluntary wheel run offspring groups had a higher mature/pro brain derived neurotrophic factor ratio compared to the sedentary counterparts. The maternal effects were isolated to the juvenile 6-week-old pups, while the differences in the adult offspring were caused by their own exercise status.
Collapse
Affiliation(s)
- A Mohammad
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| | - G N Ruegsegger
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Colombia, MO, US
| | - T D Olver
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - R E K MacPherson
- Department of Health Sciences, Brock University, St Catharines, ON, Canada
| |
Collapse
|
26
|
Higginson LA, Wang X, He K, Torstrick M, Kim M, Benayoun BA, MacLean A, Chanfreau GF, Morton DJ. The RNA exosome maintains cellular RNA homeostasis by controlling transcript abundance in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620488. [PMID: 39554067 PMCID: PMC11565928 DOI: 10.1101/2024.10.30.620488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Intracellular ribonucleases (RNases) are essential in all aspects of RNA metabolism, including maintaining accurate RNA levels. Inherited mutations in genes encoding ubiquitous RNases are associated with human diseases, primarily affecting the nervous system. Recessive mutations in genes encoding an evolutionarily conserved RNase complex, the RNA exosome, lead to syndromic neurodevelopmental disorders characterized by progressive neurodegeneration, such as Pontocerebellar Hypoplasia Type 1b (PCH1b). We establish a CRISPR/Cas9-engineered Drosophila model of PCH1b to study cell-type-specific post-transcriptional regulatory functions of the nuclear RNA exosome complex within fly head tissue. Here, we report that pathogenic RNA exosome mutations alter activity of the complex, causing widespread dysregulation of brain-enriched cellular transcriptomes, including rRNA processing defects-resulting in tissue-specific, progressive neurodegenerative effects in flies. These findings provide a comprehensive understanding of RNA exosome function within a developed animal brain and underscore the critical role of post-transcriptional regulatory machinery in maintaining cellular RNA homeostasis within the brain.
Collapse
|
27
|
Zemke NR, Lee S, Mamde S, Yang B, Berchtold N, Maximiliano Garduño B, Indralingam HS, Bartosik WM, Lau PK, Dong K, Yang A, Tani Y, Chen C, Zeng Q, Ajith V, Tong L, Seng C, Li D, Wang T, Xu X, Ren B. Epigenetic and 3D genome reprogramming during the aging of human hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618338. [PMID: 39463924 PMCID: PMC11507755 DOI: 10.1101/2024.10.14.618338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Age-related cognitive decline is associated with altered physiology of the hippocampus. While changes in gene expression have been observed in aging brain, the regulatory mechanisms underlying these changes remain underexplored. We generated single-nucleus gene expression, chromatin accessibility, DNA methylation, and 3D genome data from 40 human hippocampal tissues spanning adult lifespan. We observed a striking loss of astrocytes, OPC, and endothelial cells during aging, including astrocytes that play a role in regulating synapses. Microglia undergo a dramatic switch from a homeostatic state to a primed inflammatory state through DNA methylome and 3D genome reprogramming. Aged cells experience erosion of their 3D genome architecture. Our study identifies age-associated changes in cell types/states and gene regulatory features that provide insight into cognitive decline during human aging.
Collapse
Affiliation(s)
- Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nicole Berchtold
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- Immunis Inc, 18301 Von Karman Ave; Irvine, CA, USA
| | - B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Hannah S. Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Amanda Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Yasmine Tani
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Chumo Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Qiurui Zeng
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Varun Ajith
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Liqi Tong
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
| | - Chanrung Seng
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Daofeng Li
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine; St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine; St. Louis, MO, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine School of Medicine; Irvine, CA, USA
- The Center for Neural Circuit Mapping, University of California; Irvine, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| |
Collapse
|
28
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
29
|
El Din DMA, Moenkemoeller L, Loeffler A, Habibollahi F, Schenkman J, Mitra A, van der Molen T, Ding L, Laird J, Schenke M, Johnson EC, Kagan BJ, Hartung T, Smirnova L. Human Neural Organoid Microphysiological Systems Show the Building Blocks Necessary for Basic Learning and Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613333. [PMID: 39345518 PMCID: PMC11429697 DOI: 10.1101/2024.09.17.613333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Leah Moenkemoeller
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
| | | | | | - Jack Schenkman
- Department of Electrical and Computer Engineering, Princeton University, Princeton NJ
| | - Amitav Mitra
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore MD
| | - Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Lixuan Ding
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
| | - Jason Laird
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Maren Schenke
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Erik C Johnson
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Brett J Kagan
- Cortical Labs Pty Ltd; Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
- CAAT-Europe, University of Konstanz, Konstanz, Germany
- Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| |
Collapse
|
30
|
Das K, Sen J, Borode AS. Ketamine and α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptor Potentiation in the Somatosensory Cortex: A Comprehensive Review. Cureus 2024; 16:e69261. [PMID: 39398836 PMCID: PMC11470829 DOI: 10.7759/cureus.69261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Ketamine, a dissociative anesthetic primarily recognized for its antagonism of N-methyl-D-aspartate (NMDA) receptors, has gained significant attention for its rapid antidepressant effects and potential in treating mood disorders. However, recent research indicates that ketamine's influence extends beyond NMDA receptor inhibition, affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and sensory processing. This review delves into ketamine's role in enhancing AMPA receptor function and its implications for sensory processing within the somatosensory cortex. AMPA receptors, essential for fast excitatory neurotransmission and synaptic plasticity, play a key role in sensory perception and integration. By examining preclinical and clinical studies, this review sheds light on how ketamine's modulation of AMPA receptors may improve sensory processing and contribute to its therapeutic effects. Additionally, the review explores the potential for ketamine-based therapies to treat sensory processing disorders and refine current treatment strategies. A deeper understanding of ketamine's complex effects on AMPA receptors and sensory processing could provide valuable insights for developing targeted interventions and advancing clinical applications.
Collapse
Affiliation(s)
- Kaustuv Das
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayshree Sen
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aishwarya S Borode
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Islam MA, Sultana OF, Bandari M, Kshirsagar S, Manna PR, Reddy PH. MicroRNA-455-3P as a peripheral biomarker and therapeutic target for mild cognitive impairment and Alzheimer's disease. Ageing Res Rev 2024; 100:102459. [PMID: 39153602 PMCID: PMC11383742 DOI: 10.1016/j.arr.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs are small non-coding RNAs evolutionary conserved molecules. They regulate cellular processes, including RNA silencing, post-translational gene expression and neurodegeneration. MicroRNAs are involved with human diseases such as cancer, Alzheimer's disease (AD) and others. Interestingly, cerebrospinal fluids (CSF) and the blood of AD patients have altered expressions of many RNAs, which may serve as potential peripheral biomarkers. The intensive investigation from our lab revealed that microRNA-455-3 P (miR-455-3p) is a strong candidate as a potential biomarker and therapeutic target for AD. Several genes implicated in the pathogenesis of AD are directly targeted by miR-455-3p. Several years of our lab research revealed that miR-455-3p regulates important physiological processes associated with AD, such as the processing of the amyloid precursor protein (APP), TGF-β signaling, the regulation of oxidative stress, mitochondrial biogenesis, and synaptic damages. The expression of miR-455-3p in mild cognitive impaired subjects and AD patients pointed out its involvement in AD progression. Recently, our lab generated both transgenic and knockout mice for miR-455-3p. Interestingly miR-455-3p transgenic mice showed superior cognitive learning, improved memory and extended lifespan compared to age matched wild-type mice, whereas miR-455-3-p knockout mice showed cognitive decline and reduced lifespan. Information derived from mouse models further demonstrated the advantageous impact of miR-455-3p on dendritic growth, synaptogenesis, and mitochondrial biogenesis in preventing the onset and progression of AD. The identification of miR-455-3p as a biomarker was suggested by its presence in postmortem AD brains, B-lymphocytes, and fibroblasts. Our hypothesis that miR-455-3p could be a peripheral biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandari
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
32
|
Dalal S, Ramirez-Gomez J, Sharma B, Devara D, Kumar S. MicroRNAs and synapse turnover in Alzheimer's disease. Ageing Res Rev 2024; 99:102377. [PMID: 38871301 DOI: 10.1016/j.arr.2024.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain, leading to synaptic dysfunction and cognitive decline. Healthy synapses are the crucial for normal brain function, memory restoration and other neurophysiological function. Synapse loss and synaptic dysfunction are two primary events that occur during AD initiation. Synapse lifecycle and/or synapse turnover is divided into five key stages and several sub-stages such as synapse formation, synapse assembly, synapse maturation, synapse transmission and synapse termination. In normal state, the synapse turnover is regulated by various biological and molecular factors for a healthy neurotransmission. In AD, the different stages of synapse turnover are affected by AD-related toxic proteins. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and have been implicated in various neurological diseases, including AD. Deregulation of miRNAs modulate the synaptic proteins and affect the synapse turnover at different stages. In this review, we discussed the key milestones of synapse turnover and how they are affected in AD. Further, we discussed the involvement of miRNAs in synaptic turnover, focusing specifically on their role in AD pathogenesis. We also emphasized the regulatory mechanisms by which miRNAs modulate the synaptic turnover stages in AD. Current studies will help to understand the synaptic life-cycle and role of miRNAs in each stage that is deregulated in AD, further allowing for a better understanding of the pathogenesis of devastating disease.
Collapse
Affiliation(s)
- Sarthak Dalal
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jaime Ramirez-Gomez
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Bhupender Sharma
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA; L. Frederick Francis Graduate School of Biomedicael Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
33
|
Wu J, Zhang J, Chen X, Wettschurack K, Que Z, Deming BA, Olivero-Acosta MI, Cui N, Eaton M, Zhao Y, Li SM, Suzuki M, Chen I, Xiao T, Halurkar MS, Mandal P, Yuan C, Xu R, Koss WA, Du D, Chen F, Wu LJ, Yang Y. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. Mol Psychiatry 2024; 29:2424-2437. [PMID: 38499656 DOI: 10.1038/s41380-024-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Kyle Wettschurack
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Brody A Deming
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria I Olivero-Acosta
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ningren Cui
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuanrui Zhao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Sophia M Li
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew Suzuki
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Ian Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Manasi S Halurkar
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Purba Mandal
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ranjie Xu
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
34
|
Mahmood N, Choi JH, Wu PY, Dooling SW, Watkins TA, Huang Z, Lipman J, Zhao H, Yang A, Silversmith J, Inglebert Y, Koumenis C, Sharma V, Lacaille JC, Sossin WS, Khoutorsky A, McKinney RA, Costa-Mattioli M, Sonenberg N. The ISR downstream target ATF4 represses long-term memory in a cell type-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2407472121. [PMID: 39047038 PMCID: PMC11295034 DOI: 10.1073/pnas.2407472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Trent A. Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Ziying Huang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jesse Lipman
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Hanjie Zhao
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Anqi Yang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jake Silversmith
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104-5156
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, ONN9B 3P4, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QCH3A 2B4, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QCH4A3J1, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QCH3A 2B4, Canada
| | - R. Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX77030
- Altos Labs Inc., Bay Area Institute of Science, Redwood City, CA94065
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| |
Collapse
|
35
|
Kim Y, Lee Y, Yoo J, Nam KS, Jeon W, Lee S, Park S. Multifunctional and Flexible Neural Probe with Thermally Drawn Fibers for Bidirectional Synaptic Probing in the Brain. ACS NANO 2024; 18:13277-13285. [PMID: 38728175 PMCID: PMC11112973 DOI: 10.1021/acsnano.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Synapses in the brain utilize two distinct communication mechanisms: chemical and electrical. For a comprehensive investigation of neural circuitry, neural interfaces should be capable of both monitoring and stimulating these types of physiological interactions. However, previously developed interfaces for neurotransmitter monitoring have been limited in interaction modality due to constraints in device size, fabrication techniques, and the usage of flexible materials. To address this obstacle, we propose a multifunctional and flexible fiber probe fabricated through the microwire codrawing thermal drawing process, which enables the high-density integration of functional components with various materials such as polymers, metals, and carbon fibers. The fiber enables real-time monitoring of transient dopamine release in vivo, real-time stimulation of cell-specific neuronal populations via optogenetic stimulation, single-unit electrophysiology of individual neurons localized to the tip of the neural probe, and chemical stimulation via drug delivery. This fiber will improve the accessibility and functionality of bidirectional interrogation of neurochemical mechanisms in implantable neural probes.
Collapse
Affiliation(s)
- Yeji Kim
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yunheum Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeongeun Yoo
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kum Seok Nam
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woojin Jeon
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungmin Lee
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongjun Park
- Department
of Bio and Brain Engineering, Korea Advanced
Institute of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department
of Materials Science, Korea Advanced Institute
of Science and Technology (KAIST), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
- KAIST
Institute for NanoCentury (KINC), 291 Daehak-road, Yuseong-gu, Daejeon 34141, Republic
of Korea
| |
Collapse
|
36
|
Scognamiglio S, Aljohani YM, Olson TT, Forcelli PA, Dezfuli G, Kellar KJ. Restoration of norepinephrine release, cognitive performance, and dendritic spines by amphetamine in aged rat brain. Aging Cell 2024; 23:e14087. [PMID: 38332648 PMCID: PMC11019150 DOI: 10.1111/acel.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
Age-related dysfunctions in specific neurotransmitter systems likely play an important role in cognitive decline even in its most subtle forms. Therefore, preservation or improvement of cognition via augmentation of neurotransmission is a potential therapeutic strategy to prevent further cognitive deficits. Here we identified a particular neuronal vulnerability in the aged Fischer 344 rat brain, an animal model of neurocognitive aging. Specifically, we demonstrated a marked impairment in glutamate-stimulated release of norepinephrine (NE) in the hippocampus and cerebral cortex of aged rats, and established that this release was mediated by N-methyl-D-aspartate (NMDA) receptors. Further, we also demonstrated that this decrease in NE release is fully rescued by the psychostimulant drug amphetamine (AMPH). Moreover, we showed that AMPH increases dendritic spine maturation, and importantly shows preclinical efficacy in restoring memory deficits in the aged rat through its actions to potentiate NE neurotransmission at β-adrenergic receptors. Taken together, our results suggest that deficits in glutamate-stimulated release of NE may contribute to and possibly be a determinant of neuronal vulnerability underlying cognitive decline during aging, and that these deficits can be corrected with currently available drugs. Overall these studies suggest that repurposing of psychostimulants for age-associated cognitive deficits is a potential avenue to delay or prevent cognitive decline and/or frank dementia later in life.
Collapse
Affiliation(s)
- Serena Scognamiglio
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Yousef M. Aljohani
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Thao T. Olson
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Patrick A. Forcelli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Ghazaul Dezfuli
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| | - Kenneth J. Kellar
- Department of Pharmacology & PhysiologyGeorgetown University Medical CenterWashington, DCUSA
| |
Collapse
|
37
|
Toth K, Wilson D. The influence of synaptic plasticity on critical coupling estimates for neural populations. J Math Biol 2024; 88:39. [PMID: 38441655 DOI: 10.1007/s00285-024-02061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/07/2024]
Abstract
The presence or absence of synaptic plasticity can dramatically influence the collective behavior of populations of coupled neurons. In this work, we consider spike-timing dependent plasticity (STDP) and its resulting influence on phase cohesion in computational models of heterogeneous populations of conductance-based neurons. STDP allows for the influence of individual synapses to change over time, strengthening or weakening depending on the relative timing of the relevant action potentials. Using phase reduction techniques, we derive an upper bound on the critical coupling strength required to retain phase cohesion for a network of synaptically coupled, heterogeneous neurons with STDP. We find that including STDP can significantly alter phase cohesion as compared to a network with static synaptic connections. Analytical results are validated numerically. Our analysis highlights the importance of the relative ordering of action potentials emitted in a population of tonically firing neurons and demonstrates that order switching can degrade the synchronizing influence of coupling when STDP is considered.
Collapse
Affiliation(s)
- Kaitlyn Toth
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37966, USA
| | - Dan Wilson
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37966, USA.
| |
Collapse
|
38
|
Mezo-González CE, García-Santillán JA, Kaeffer B, Gourdel M, Croyal M, Bolaños-Jiménez F. Adult rats sired by obese fathers present learning deficits associated with epigenetic and neurochemical alterations linked to impaired brain glutamatergic signaling. Acta Physiol (Oxf) 2024; 240:e14090. [PMID: 38230587 DOI: 10.1111/apha.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
AIM Offspring of obese mothers are at high risk of developing metabolic syndrome and cognitive disabilities. Impaired metabolism has also been reported in the offspring of obese fathers. However, whether brain function can also be affected by paternal obesity has barely been examined. This study aimed to characterize the learning deficits resulting from paternal obesity versus those induced by maternal obesity and to identify the underlying mechanisms. METHODS Founder control and obese female and male Wistar rats were mated to constitute three first-generation (F1) experimental groups: control mother/control father, obese mother/control father, and obese father/control mother. All F1 animals were weaned onto standard chow and underwent a learning test at 4 months of age, after which several markers of glutamate-mediated synaptic plasticity together with the expression of miRNAs targeting glutamate receptors and the concentration of kynurenic and quinolinic acids were quantified in the hippocampus and frontal cortex. RESULTS Maternal obesity induced a severe learning deficit by impairing memory encoding and memory consolidation. The offspring of obese fathers also showed reduced memory encoding but not impaired long-term memory formation. Memory deficits in offspring of obese fathers and obese mothers were associated with a down-regulation of genes encoding NMDA glutamate receptors subunits and several learning-related genes along with impaired expression of miR-296 and miR-146b and increased concentration of kynurenic acid. CONCLUSION Paternal and maternal obesity impair offspring's learning abilities by affecting different processes of memory formation. These cognitive deficits are associated with epigenetic and neurochemical alterations leading to impaired glutamate-mediated synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Bertrad Kaeffer
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Nantes Université, Nantes, France
| | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | | |
Collapse
|
39
|
Zhao K, Huang S, Lin C, Sham PC, So HC, Lin Z. INSIDER: Interpretable sparse matrix decomposition for RNA expression data analysis. PLoS Genet 2024; 20:e1011189. [PMID: 38484017 DOI: 10.1371/journal.pgen.1011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/26/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
RNA sequencing (RNA-Seq) is widely used to capture transcriptome dynamics across tissues, biological entities, and conditions. Currently, few or no methods can handle multiple biological variables (e.g., tissues/ phenotypes) and their interactions simultaneously, while also achieving dimension reduction (DR). We propose INSIDER, a general and flexible statistical framework based on matrix factorization, which is freely available at https://github.com/kai0511/insider. INSIDER decomposes variation from different biological variables and their interactions into a shared low-rank latent space. Particularly, it introduces the elastic net penalty to induce sparsity while considering the grouping effects of genes. It can achieve DR of high-dimensional data (of > = 3 dimensions), as opposed to conventional methods (e.g., PCA/NMF) which generally only handle 2D data (e.g., sample × expression). Besides, it enables computing 'adjusted' expression profiles for specific biological variables while controlling variation from other variables. INSIDER is computationally efficient and accommodates missing data. INSIDER also performed similarly or outperformed a close competing method, SDA, as shown in simulations and can handle complex missing data in RNA-Seq data. Moreover, unlike SDA, it can be used when the data cannot be structured into a tensor. Lastly, we demonstrate its usefulness via real data analysis, including clustering donors for disease subtyping, revealing neuro-development trajectory using the BrainSpan data, and uncovering biological processes contributing to variables of interest (e.g., disease status and tissue) and their interactions.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sen Huang
- Department of System Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Cuichan Lin
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pak Chung Sham
- Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
- State Key Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hon-Cheong So
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong, China
| | - Zhixiang Lin
- Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
40
|
Li G, McLaughlin DW, Peskin CS. A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds. Proc Natl Acad Sci U S A 2024; 121:e2311709121. [PMID: 38324573 PMCID: PMC10873618 DOI: 10.1073/pnas.2311709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
Collapse
Affiliation(s)
- Guanchun Li
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
| | - David W. McLaughlin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
- Institute of Mathematical Science, Mathematics Department, New York University-Shanghai, Shanghai200122, China
- Neuroscience Institute of New York University Langone Health, New York University, New York, NY10016
| | - Charles S. Peskin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
| |
Collapse
|
41
|
Kwon JY, Kim JE, Kim JS, Chun SY, Soh K, Yoon JH. Artificial sensory system based on memristive devices. EXPLORATION (BEIJING, CHINA) 2024; 4:20220162. [PMID: 38854486 PMCID: PMC10867403 DOI: 10.1002/exp.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
In the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real-time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal-processing functions such as selective adaption in receptors, leaky integrate-and-fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by "artificial receptors," encoded into spike signals via "artificial neurons," and integrated and stored through "artificial synapses." The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high-performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real-time detection and processing of environmental information. This review explores the recent advances in memristor-based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in-depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor-based artificial sensory systems are discussed.
Collapse
Affiliation(s)
- Ju Young Kwon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Ji Eun Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong Sung Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Suk Yeop Chun
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulRepublic of Korea
| | - Keunho Soh
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jung Ho Yoon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| |
Collapse
|
42
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
43
|
Melo GM, Capucho AM, Sacramento JF, Ponce-de-Leão J, Fernandes MV, Almeida IF, Martins FO, Conde SV. Overnutrition during Pregnancy and Lactation Induces Gender-Dependent Dysmetabolism in the Offspring Accompanied by Heightened Stress and Anxiety. Nutrients 2023; 16:67. [PMID: 38201896 PMCID: PMC10781034 DOI: 10.3390/nu16010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Maternal obesity and gestational diabetes predispose the next generation to metabolic disturbances. Moreover, the lactation phase also stands as a critical phase for metabolic programming. Nevertheless, the precise mechanisms originating these changes remain unclear. Here, we investigate the consequences of a maternal lipid-rich diet during gestation and lactation and its impact on metabolism and behavior in the offspring. Two experimental groups of Wistar female rats were used: a control group (NC) that was fed a standard diet during the gestation and lactation periods and an overnutrition group that was fed a high-fat diet (HF, 60% lipid-rich) during the same phases. The offspring were analyzed at postnatal days 21 and 28 and at 2 months old (PD21, PD28, and PD60) for their metabolic profiles (weight, fasting glycemia insulin sensitivity, and glucose tolerance) and euthanized for brain collection to evaluate metabolism and inflammation in the hypothalamus, hippocampus, and prefrontal cortex using Western blot markers of synaptic dynamics. At 2 months old, behavioral tests for anxiety, stress, cognition, and food habits were conducted. We observed that the female offspring born from HF mothers exhibited increased weight gain and decreased glucose tolerance that attenuated with age. In the offspring males, weight gain increased at P21 and worsened with age, while glucose tolerance remained unchanged. The offspring of the HF mothers exhibited elevated levels of anxiety and stress during behavioral tests, displaying decreased predisposition for curiosity compared to the NC group. In addition, the offspring from mothers with HF showed increased food consumption and a lower tendency towards food-related aggression. We conclude that exposure to an HF diet during pregnancy and lactation induces dysmetabolism in the offspring and is accompanied by heightened stress and anxiety. There was sexual dimorphism in the metabolic traits but not behavioral phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Rua Camara Pestana, 6, Edificio 2, 1150-082 Lisboa, Portugal; (G.M.M.); (A.M.C.); (J.F.S.); (J.P.-d.-L.); (M.V.F.); (I.F.A.); (F.O.M.)
| |
Collapse
|
44
|
de Veij Mestdagh CF, Smit AB, Henning RH, van Kesteren RE. Mitochondrial Targeting against Alzheimer's Disease: Lessons from Hibernation. Cells 2023; 13:12. [PMID: 38201215 PMCID: PMC10778235 DOI: 10.3390/cells13010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients. However, therapies targeting the mitochondria in AD have proven unsuccessful so far, and out-of-the-box options, such as hibernation-derived mitochondrial mechanisms, may provide valuable new insights. Hibernators uniquely and rapidly alternate between suppression and re-activation of the mitochondria while maintaining a sufficient energy supply and without acquiring ROS damage. Here, we briefly give an overview of mitochondrial dysfunction in AD, how it affects synaptic function, and why mitochondrial targeting in AD has remained unsuccessful so far. We then discuss mitochondria in hibernation and daily torpor in mice, covering current advancements in hibernation-derived mitochondrial targeting strategies. We conclude with new ideas on how hibernation-derived dual mitochondrial targeting of both the ATP and ROS pathways may boost mitochondrial health and induce local synaptic protein translation to increase synaptic function and plasticity. Further exploration of these mechanisms may provide more effective treatment options for AD in the future.
Collapse
Affiliation(s)
- Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
- Alzheimer Center Amsterdam, Amsterdam UMC Location VUmc, 1081 HV Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ronald E. van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.B.S.); (R.E.v.K.)
| |
Collapse
|
45
|
Chandravanshi LP, Agrawal P, Darwish HW, Trigun SK. Impairments of Spatial Memory and N-methyl-d-aspartate Receptors and Their Postsynaptic Signaling Molecules in the Hippocampus of Developing Rats Induced by As, Pb, and Mn Mixture Exposure. Brain Sci 2023; 13:1715. [PMID: 38137163 PMCID: PMC10742016 DOI: 10.3390/brainsci13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to metal mixtures is recognized as a real-life scenario, needing novel studies that can assess their complex effects on brain development. There is still a significant public health concern associated with chronic low levels of metal exposure. In contrast to other metals, these three metals (As, Pb, and Mn) are commonly found in various environmental and industrial contexts. In addition to additive or synergistic interactions, concurrent exposure to this metal mixture may also have neurotoxic effects that differ from those caused by exposure to single components. The NMDA receptor and several important signaling proteins are involved in learning, memory, and synaptic plasticity in the hippocampus, including CaMKII, postsynaptic density protein-95 (PSD-95), synaptic Ras GTPase activating protein (SynGAP), a negative regulator of Ras-MAPK activity, and CREB. We hypothesized that alterations in the above molecular players may contribute to metal mixture developmental neurotoxicity. Thus, the aim of this study was to investigate the effect of these metals and their mixture at low doses (As 4 mg, Pb 4 mg, and Mn 10 mg/kg bw/p.o) on NMDA receptors and their postsynaptic signaling proteins during developing periods (GD6 to PD59) of the rat brain. Rats exposed to As, Pb, and Mn individually or at the same doses in a triple-metal mixture (MM) showed impairments in learning and memory functions in comparison to the control group rats. Declined protein expressions of NR2A, PSD-95, p- CaMKII, and pCREB were observed in the metal mix-exposed rats, while the expression of SynGAP was found to be enhanced in the hippocampus as compared to the controls on PD60. Thereby, our data suggest that alterations in the NMDA receptor complex and postsynaptic signaling proteins could explain the cognitive dysfunctions caused by metal-mixture-induced developmental neurotoxicity in rats. These outcomes indicate that incessant metal mixture exposure may have detrimental consequences on brain development.
Collapse
Affiliation(s)
- Lalit P. Chandravanshi
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Prashant Agrawal
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
46
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
47
|
Lin YK, Lin YH, Chiang CF, Jingling L. Effectiveness of Fish Roe, Snow Fungus, and Yeast Supplementation for Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:4221. [PMID: 37836504 PMCID: PMC10574613 DOI: 10.3390/nu15194221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The brain is one of the most critical organs in the human body, regulating functions such as thinking, memory, learning, and perception. Studies have indicated that fish roe, snow fungus, and yeast may have the potential to modulate cognitive, memory, and emotional functions. However, more relevant clinical research in this area still needs to be conducted. This study explored the cognition-enhancing potential of a formula beverage including fish roe, snow fungus, and yeast. Sixty-four subjects were divided into a placebo group (n = 32) and a formula-drink group (n = 32), who consumed the product for 8 weeks. Cognitive tests were administered and analyzed at weeks 0, 4, and 8. After 4 and 8 weeks, there was a significant increase in the number of memory cards, and the response times among those who consumed the formula beverage were significantly faster than those in the placebo group. The subjects remembered the old items better and were more impressed with similar items based on the week effect. There was a significant increase in the cue effect of happy facial expressions after the subjects consumed the formula beverage for 8 weeks. In addition, there was a significant decrease in anxiety and fatigue, and improved quality of life. This formula beverage is a promising option that could be used to prevent further cognitive decline in adults with subjective cognitive complaints.
Collapse
Affiliation(s)
- Yung-Kai Lin
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yung-Hsiang Lin
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Chi-Fu Chiang
- Research & Design Center, TCI Co., Ltd., Taipei 11494, Taiwan; (Y.-H.L.); (C.-F.C.)
| | - Li Jingling
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
48
|
Yang Y, Wu J, Zhang J, Chen X, Que Z, Wettschurack K, Deming B, Acosta M, Cui N, Eaton M, Zhao Y, Halurkar M, Purba M, Chen I, Xiao T, Suzuki M, Yuan C, Xu R, Koss W, Du D, Chen F, Wu LJ, Clinic M. Microglial over-pruning of synapses during development in autism-associated SCN2A-deficient mice and human cerebral organoids. RESEARCH SQUARE 2023:rs.3.rs-3270664. [PMID: 37841865 PMCID: PMC10571631 DOI: 10.21203/rs.3.rs-3270664/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus to understand ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglial-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.
Collapse
Affiliation(s)
- Yang Yang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jiaxiang Wu
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Jingliang Zhang
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Xiaoling Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Zhefu Que
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Kyle Wettschurack
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Brody Deming
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Maria Acosta
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ningren Cui
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Muriel Eaton
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Yuanrui Zhao
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Manasi Halurkar
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Mandal Purba
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | - Ian Chen
- Purdue University College of Pharmacy & Purdue Institute for Integrative Neuroscience (PIIN)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Batabyal RA, Bansal A, Cechinel LR, Authelet K, Goldberg M, Nadler E, Keene CD, Jayadev S, Domoto-Reilly K, Li G, Peskind E, Hashimoto-Torii K, Buchwald D, Freishtat RJ. Adipocyte-Derived Small Extracellular Vesicles from Patients with Alzheimer Disease Carry miRNAs Predicted to Target the CREB Signaling Pathway in Neurons. Int J Mol Sci 2023; 24:14024. [PMID: 37762325 PMCID: PMC10530811 DOI: 10.3390/ijms241814024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer disease (AD) is characterized by amyloid-β (Aβ) plaques, neurofibrillary tangles, synaptic dysfunction, and progressive dementia. Midlife obesity increases the risk of developing AD. Adipocyte-derived small extracellular vesicles (ad-sEVs) have been implicated as a mechanism in several obesity-related diseases. We hypothesized that ad-sEVs from patients with AD would contain miRNAs predicted to downregulate pathways involved in synaptic plasticity and memory formation. We isolated ad-sEVs from the serum and cerebrospinal fluid (CSF) of patients with AD and controls and compared miRNA expression profiles. We performed weighted gene co-expression network analysis (WGCNA) on differentially expressed miRNAs to identify highly interconnected clusters correlating with clinical traits. The WGCNA identified a module of differentially expressed miRNAs, in both the serum and CSF, that was inversely correlated with the Mini-Mental State Examination scores. Within this module, miRNAs that downregulate CREB signaling in neurons were highly represented. These results demonstrate that miRNAs carried by ad-sEVs in patients with AD may downregulate CREB signaling and provide a potential mechanistic link between midlife obesity and increased risk of AD.
Collapse
Affiliation(s)
- Rachael A. Batabyal
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| | - Ankush Bansal
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Laura Reck Cechinel
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Kayla Authelet
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Madeleine Goldberg
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
| | - Evan Nadler
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Division of Pediatric Surgery, Children’s National Hospital, Washington, DC 20010, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98104, USA;
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Kimiko Domoto-Reilly
- Department of Neurology, University of Washington, Seattle, WA 98104, USA; (S.J.)
| | - Gail Li
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elaine Peskind
- Department of Psychology and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA 98104, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Kazue Hashimoto-Torii
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC 20010, USA
| | - Dedra Buchwald
- Institute for Research Education to Advance Community Health, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Robert J. Freishtat
- Center for Genetic Medicine, Children’s National Hospital, Washington, DC 20012, USA (M.G.); (R.J.F.)
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (E.N.)
| |
Collapse
|
50
|
Liu C, Gao X, Shi R, Wang Y, He X, Du H, Hu B, Jiao J, Liu C, Teng Z. Microglial transglutaminase 2 deficiency causes impaired synaptic remodelling and cognitive deficits in mice. Cell Prolif 2023; 56:e13439. [PMID: 36878712 PMCID: PMC10472527 DOI: 10.1111/cpr.13439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Microglia are the primary source of transglutaminase 2 (TGM2) in the brain; however, the roles of microglial TGM2 in neural development and disease are still not well known. The aim of this study is to elucidate the role and mechanisms of microglial TGM2 in the brain. A mouse line with a specific knockout of Tgm2 in microglia was generated. Immunohistochemistry, Western blot and qRT-PCR assays were performed to evaluate the expression levels of TGM2, PSD-95 and CD68. Confocal imaging, immunofluorescence staining and behavioural analyses were conducted to identify phenotypes of microglial TGM2 deficiency. Finally, RNA sequencing, qRT-PCR and co-culture of neurons and microglia were used to explore the potential mechanisms. Deletion of microglial Tgm2 causes impaired synaptic pruning, reduced anxiety and increased cognitive deficits in mice. At the molecular level, the phagocytic genes, such as Cq1a, C1qb and Tim4, are significantly down-regulated in TGM2-deficient microglia. This study elucidates a novel role of microglial TGM2 in regulating synaptic remodelling and cognitive function, indicating that microglia Tgm2 is essential for proper neural development.
Collapse
Affiliation(s)
- Cong Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Xing Gao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruo‐Xi Shi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Ying‐Ying Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuan‐Cheng He
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Hong‐Zhen Du
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Chang‐Mei Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhao‐Qian Teng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|