1
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, Jaeger MDC, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. Cells 2025; 14:72. [PMID: 39851500 PMCID: PMC11763699 DOI: 10.3390/cells14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre 90620-110, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX 77030, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX 77030, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre 90035-003, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
2
|
Freire NH, Herlinger AL, Vanini J, Dalmolin M, Fernandes MAC, Nör C, Ramaswamy V, de Farias CB, Brunetto AT, Brunetto AL, Gregianin LJ, da Cunha Jaeger M, Taylor MD, Roesler R. Modulation of Stemness and Differentiation Regulators by Valproic Acid in Medulloblastoma Neurospheres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614476. [PMID: 39386542 PMCID: PMC11463451 DOI: 10.1101/2024.09.23.614476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Changes in epigenetic processes such as histone acetylation are proposed as key events influencing cancer cell function and the initiation and progression of pediatric brain tumors. Valproic acid (VPA) is an antiepileptic drug that acts partially by inhibiting histone deacetylases (HDACs) and could be repurposed as an epigenetic anticancer therapy. Here, we show that VPA reduced medulloblastoma (MB) cell viability and led to cell cycle arrest. These effects were accompanied by enhanced H3K9 histone acetylation (H3K9ac) and decreased expression of the MYC oncogene. VPA impaired the expansion of MB neurospheres enriched in stemness markers and reduced MYC while increasing TP53 expression in these neurospheres. In addition, VPA induced morphological changes consistent with neuronal differentiation and the increased expression of differentiation marker genes TUBB3 and ENO2. The expression of stemness genes SOX2, NES, and PRTG was differentially affected by VPA in MB cells with different TP53 status. VPA increased H3K9 occupancy of the promoter region of TP53. Among the genes regulated by VPA, the stemness regulators MYC and NES showed an association with patient survival in specific MB subgroups. Our results indicate that VPA may exert antitumor effects in MB by influencing histone acetylation, which may result in the modulation of stemness, neuronal differentiation, and the expression of genes associated with patient prognosis in specific molecular subgroups. Importantly, the actions of VPA in MB cells and neurospheres include a reduction in the expression of MYC and an increase in TP53.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Julia Vanini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Caroline Brunetto de Farias
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Algemir Lunardi Brunetto
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Lauro José Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariane da Cunha Jaeger
- Children’s Cancer Institute (ICI), Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Texas Children’s Cancer and Hematology Center, Houston, TX, USA
- Department of Pediatrics—Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Texas Children’s Hospital, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Hematology-Oncology Section, Texas Children’s Cancer Center, Houston, TX, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, RS, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Purzner J, Brown AS, Purzner T, Ellis L, Broski S, Litzenburger U, Andrews K, Sharma A, Wang X, Taylor MD, Cho YJ, Fuller MT, Scott MP. Ezh2 Delays Activation of Differentiation Genes During Normal Cerebellar Granule Neuron Development and in Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624171. [PMID: 39605517 PMCID: PMC11601632 DOI: 10.1101/2024.11.21.624171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children. The Sonic Hedgehog (SHH)-medulloblastoma subtype arises from the cerebellar granule neuron lineage. Terminally differentiated neurons are incapable of undergoing further cell division, so an effective treatment for this tumour could be to force neuronal differentiation. Differentiation therapy provides a potential alternative for patients with medulloblastoma who harbor mutations that impair cell death pathways (TP53), which is associated a with high mortality. To this end, our goal was to explore epigenetic regulation of cerebellar granule neuron differentiation in medulloblastoma cells. Key regulators were discovered using chromatin immunoprecipitation with high-throughput sequencing. DNA-bound protein and chromatin protein modifications were investigated across all genes. We discovered that Ezh2-mediated tri-methylation of the H3 histone (H3K27me3), occurred on more than half of the 787 genes whose transcription normally increases as granule neurons terminally differentiate. Conditional knockout of Ezh2 led to early initiation of differentiation in granule neuron precursors (GNPs), but only after cell cycle exit had occurred. Similarly, in MB cells, neuronal differentiation could be induced by preventing H3K27me3 modifications using an Ezh2 inhibitor (UNC1999), but only when UNC1999 was combined with forced cell cycle exit driven by a CDK4/6 inhibitor (Palbociclib). Ezh2 emerges as a powerful restraint upon post-mitotic differentiation during normal GNP development and combination of Ezh2 inhibition with cell cycle exit leads to MB cell differentiation.
Collapse
Affiliation(s)
- James Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Alexander S. Brown
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- EditCo Bio, Redwood City, CA
| | - Teresa Purzner
- Division of Neurosurgery, Department of Surgery, Queen’s University, Kingston, ON
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Lauren Ellis
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara Broski
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Nura Bio, South San Francisco, CA
| | - Ulrike Litzenburger
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Therapeutic Oncology Research Lab Head, Nuvisan Pharma, Berlin, Germany
| | | | | | - Xin Wang
- Clinician-Scientist Training Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, ON
| | - Michael D. Taylor
- Pediatric Brain Tumor Research Program, Texas Children’s Hospital, Houston, TX
| | - Yoon-Jae Cho
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Matthew P. Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
4
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Reznicek J, Sharifai N, Jamshidi P, Wadhwani N, Ahrendsen JT. Embryonal and pineal tumours. Cytopathology 2024; 35:561-571. [PMID: 38100134 DOI: 10.1111/cyt.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 08/11/2024]
Abstract
Embryonal and pineal tumours represent a diverse group of central nervous system (CNS) neoplasms. While many of the small round blue cell tumours that make up the embryonal neoplasms share similar histologic qualities, there are several morphologic and cytologic characteristics that are useful in distinguishing different tumour types. Similarly, pineal parenchymal tumours represent clinically diverse tumours, ranging from benign to overtly malignant. The most recent iteration of the World Health Organization Classification of CNS Tumours expanded greatly on the significance of molecular alterations in brain tumour diagnostics. In this article, we summarize the salient cytologic and histologic features of CNS embryonal and pineal tumours, and highlight diagnostically relevant molecular alterations within each tumour type.
Collapse
Affiliation(s)
- Joseph Reznicek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nima Sharifai
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Salimian M, Viaene AN, Chiang J, Ho CY. CSF cytology of common primary CNS neoplasms categorized by CNS WHO 2021. Cytopathology 2024; 35:608-615. [PMID: 38078513 DOI: 10.1111/cyt.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/05/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The detection of neoplastic cells in cerebral spinal fluid (CSF) is pivotal for the management of patients with central nervous system (CNS) tumours. This article delves into the CSF cytological characteristics of common CNS neoplasms, aligning with the 2021 World Health Organization (WHO) classification of CNS tumours. METHODS A retrospective review of CSF specimens positive for primary CNS neoplasms was performed at three tertiary medical centres. Only cases that had histopathologic confirmation and/or molecular workup were included. RESULTS Common primary CNS neoplasms seen in CSF cytology specimens include medulloblastoma, (non-WNT/non-SHH as well as SHH-activated and TP53 mutant), pineoblastoma, atypical teratoid/rhabdoid tumour (AT/RT), IDH-wildtype glioblastoma, and primary diffuse large B-cell lymphoma of the CNS. Ependymomas and germinomas can also have CSF involvement but are less common. Although the typical histologic architecture of these tumours may not be preserved in the CSF, unique cytomorphologic features such as nuclear moulding, nuclear pleomorphism, rhabdoid cells, prominent nucleoli and rosette formation can still be appreciated. CONCLUSION Adopting the updated terminology and correlating cytologic observations with molecular findings will streamline the diagnostic process, reducing the complexities and ambiguities pathologists often encounter when analysing CSF specimens for potential primary CNS neoplasms.
Collapse
Affiliation(s)
- Mohammad Salimian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | - Angela N Viaene
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng-Ying Ho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| |
Collapse
|
7
|
G G, Bharti S, Jha VC, Nigam JS, Ganesh R A, Bhadani P. Immunoexpression of Survivin and P53 in the Histological Subtypes of Medulloblastoma: A Cross-Sectional Observational Study. Cureus 2024; 16:e65627. [PMID: 39205763 PMCID: PMC11350522 DOI: 10.7759/cureus.65627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Medulloblastoma (MB) is a common malignant intracranial neoplasms in children. The treatment and prognosis of this tumor depends on histology and molecular subtypes. Survivin, implicated in various malignancies, may hold prognostic significance. We investigated survivin and p53 immunoreactivity in different histological subtypes in 20 MB cases from January 2018 to June 2021. Immunohistochemistry revealed survivin expression in 75% (15/20) of cases, with cytoplasmic (10 cases), nuclear (four cases), or combined expression (one case). p53 nuclear expression was present in 35% (7/20) of cases. Classical variant MB exhibited predominant p53 and cytoplasmic survivin expression. Given the association of survivin and p53 expression with poor prognosis, especially in the prevalent classical variant, targeted therapies may hold promise for MB treatment advancement.
Collapse
Affiliation(s)
- Guralarasan G
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Shreekant Bharti
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Vikas C Jha
- Neurosurgery, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Jitendra S Nigam
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Bibinagar, Bibinagar, IND
| | - Abhirami Ganesh R
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Punam Bhadani
- Pathology and Lab Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| |
Collapse
|
8
|
McSwain LF, Pillsbury CE, Haji-Seyed-Javadi R, Rath SK, Chen V, Huang T, Shahab SW, Kunhiraman H, Ross J, Price GA, Dey A, Hambardzumyan D, MacDonald T, Yu DS, Porter CC, Kenney AM. YB1 modulates the DNA damage response in medulloblastoma. Sci Rep 2023; 13:8087. [PMID: 37208357 DOI: 10.1038/s41598-023-35220-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Y-box binding protein 1 (YBX1 or YB1) is a therapeutically relevant oncoprotein capable of RNA and DNA binding and mediating protein-protein interactions that drive proliferation, stemness, and resistance to platinum-based therapies. Given our previously published findings, the potential for YB1-driven cisplatin resistance in medulloblastoma (MB), and the limited studies exploring YB1-DNA repair protein interactions, we chose to investigate the role of YB1 in mediating radiation resistance in MB. MB, the most common pediatric malignant brain tumor, is treated with surgical resection, cranio-spinal radiation, and platinum-based chemotherapy, and could potentially benefit from YB1 inhibition. The role of YB1 in the response of MB to ionizing radiation (IR) has not yet been studied but remains relevant for determining potential anti-tumor synergy of YB1 inhibition with standard radiation therapy. We have previously shown that YB1 drives proliferation of cerebellar granular neural precursor cells (CGNPs) and murine Sonic Hedgehog (SHH) group MB cells. While others have demonstrated a link between YB1 and homologous recombination protein binding, functional and therapeutic implications remain unclear, particularly following IR-induced damage. Here we show that depleting YB1 in both SHH and Group 3 MB results not only in reduced proliferation but also synergizes with radiation due to differential response dynamics. YB1 silencing through shRNA followed by IR drives a predominantly NHEJ-dependent repair mechanism, leading to faster γH2AX resolution, premature cell cycle re-entry, checkpoint bypass, reduced proliferation, and increased senescence. These findings show that depleting YB1 in combination with radiation sensitizes SHH and Group 3 MB cells to radiation.
Collapse
Affiliation(s)
- Leon F McSwain
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Claire E Pillsbury
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | | | | | - Victor Chen
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Tiffany Huang
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Haritha Kunhiraman
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - James Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Gabrielle A Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abhinav Dey
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Dolores Hambardzumyan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tobey MacDonald
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - David S Yu
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Christopher C Porter
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna M Kenney
- Department of Pediatrics, Emory University, 1760 Haygood Dr., Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
9
|
Fratini L, Dalmolin MGS, Sinigaglia M, da Silveira Perla A, de Farias CB, Brunetto AL, Brunetto AT, da Cunha Jaeger M, Roesler R. ZEB1 is a Subgroup-Specific Marker of Prognosis and Potential Drug Target in Medulloblastoma. Neuromolecular Med 2023; 25:64-74. [PMID: 35716340 DOI: 10.1007/s12017-022-08716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.
Collapse
Affiliation(s)
- Livia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Matheus Gibeke Siqueira Dalmolin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Alexandre da Silveira Perla
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Neurology Service, São José Hospital, Santa Casa de Misericórdia Porto Alegre Hospital Complex, Porto Alegre, RS, 90020-090, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
10
|
Marney CB, Anderson ES, Baum R, Schmitt AM. A Unique Spectrum of Spontaneous Tumors in Dino Knockout Mice Identifies Tissue-Specific Requirements for Tumor Suppression. Cells 2022; 11:1818. [PMID: 35681513 PMCID: PMC9180304 DOI: 10.3390/cells11111818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
Here, we report that Dino, a lncRNA required for p53 signaling, suppresses spontaneous tumorigenesis in mice. Dino-/- mice develop significantly more malignant tumors than Dino+/+ littermate controls, consisting predominantly of sarcomas, B cell lymphomas and additional rare tumors. While the prevalence of lymphomas and sarcomas in Dino-/- mice is similar to that of mice with p53 loss, important distinctions emerged. p53-null mice predominantly develop T cell lymphomas; however, no spontaneous T cell lymphoma was observed in Dino-/- mice. Rather than being a phenocopy of the p53-null tumor spectrum, spontaneous tumors in Dino-/- mice resemble the spectrum of human cancers in which DINO is recurrently silenced by methylation in a manner that is mutually exclusive with TP53 alterations, suggesting that similar tissues in human and mouse require DINO for tumor suppression. Consistent with a tissue-specific role for Dino in tumor suppression, loss of Dino had no impact on the development of radiation-induced T cell lymphoma and oncogene-driven medulloblastoma, tumors that are accelerated by the loss of p53. Taken together, these data indicate that Dino serves as a potent tumor suppressor molecule specific to a select subset of tissues in mice and humans.
Collapse
Affiliation(s)
| | | | | | - Adam M. Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (C.B.M.); (E.S.A.); (R.B.)
| |
Collapse
|
11
|
Gringmuth M, Walther J, Greiser S, Toussaint M, Schwalm B, Kool M, Kortmann RD, Glasow A, Patties I. Enhanced Survival of High-Risk Medulloblastoma-Bearing Mice after Multimodal Treatment with Radiotherapy, Decitabine, and Abacavir. Int J Mol Sci 2022; 23:ijms23073815. [PMID: 35409174 PMCID: PMC8998934 DOI: 10.3390/ijms23073815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Children with high-risk SHH/TP53-mut and Group 3 medulloblastoma (MB) have a 5-year overall survival of only 40%. Innovative approaches to enhance survival while preventing adverse effects are urgently needed. We investigated an innovative therapy approach combining irradiation (RT), decitabine (DEC), and abacavir (ABC) in a patient-derived orthotopic SHH/TP53-mut and Group 3 MB mouse model. MB-bearing mice were treated with DEC, ABC and RT. Mouse survival, tumor growth (BLI, MRT) tumor histology (H/E), proliferation (Ki-67), and endothelial (CD31) staining were analyzed. Gene expression was examined by microarray and RT-PCR (Ki-67, VEGF, CD31, CD15, CD133, nestin, CD68, IBA). The RT/DEC/ABC therapy inhibited tumor growth and enhanced mouse survival. Ki-67 decreased in SHH/TP53-mut MBs after RT, DEC, RT/ABC, and RT/DEC/ABC therapy. CD31 was higher in SHH/TP53-mut compared to Group 3 MBs and decreased after RT/DEC/ABC. Microarray analyses showed a therapy-induced downregulation of cell cycle genes. By RT-PCR, no therapy-induced effect on stem cell fraction or immune cell invasion/activation could be shown. We showed for the first time that RT/DEC/ABC therapy improves survival of orthotopic SHH/TP53-mut and Group 3 MB-bearing mice without inducing adverse effects suggesting the potential for an adjuvant application of this multimodal therapy approach in the human clinic.
Collapse
Affiliation(s)
- Marieke Gringmuth
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Jenny Walther
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Sebastian Greiser
- Fraunhofer Center for Microelectronic and Optical Systems for Biomedicine, Herman-Hollerith-Straße 3, 99099 Erfurt, Germany; (J.W.); (S.G.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, Permoserstraße 15, 04318 Leipzig, Germany;
| | - Benjamin Schwalm
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Im Neuenheimer Feld 430, 69120 Heidelberg, Germany; (B.S.); (M.K.)
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Rolf-Dieter Kortmann
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Annegret Glasow
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
| | - Ina Patties
- Department of Radiation Oncology, University of Leipzig, Stephanstraße 9a, 04103 Leipzig, Germany; (M.G.); (R.-D.K.); (A.G.)
- Correspondence:
| |
Collapse
|
12
|
Naeem A, Harish V, Coste S, Parasido EM, Choudhry MU, Kromer LF, Ihemelandu C, Petricoin EF, Pierobon M, Noon MS, Yenugonda VM, Avantaggiati M, Kupfer GM, Fricke S, Rodriguez O, Albanese C. Regulation of Chemosensitivity in Human Medulloblastoma Cells by p53 and the PI3 Kinase Signaling Pathway. Mol Cancer Res 2022; 20:114-126. [PMID: 34635507 PMCID: PMC8738155 DOI: 10.1158/1541-7786.mcr-21-0277] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
In medulloblastoma, p53 expression has been associated with chemoresistance and radiation resistance and with poor long-term outcomes in the p53-mutated sonic hedgehog, MYC-p53, and p53-positive medulloblastoma subgroups. We previously established a direct role for p53 in supporting drug resistance in medulloblastoma cells with high basal protein expression levels (D556 and DAOY). We now show that p53 genetic suppression in medulloblastoma cells with low basal p53 protein expression levels (D283 and UW228) significantly reduced drug responsiveness, suggesting opposing roles for low p53 protein expression levels. Mechanistically, the enhanced cell death by p53 knockdown in high-p53 cells was associated with an induction of mTOR/PI3K signaling. Both mTOR inhibition and p110α/PIK3CA induction confirmed these findings, which abrogated or accentuated the enhanced chemosensitivity response in D556 cells respectively while converse was seen in D283 cells. Co-treatment with G-actin-sequestering peptide, thymosin β4 (Tβ4), induced p-AKTS473 in both p53-high and p53-low cells, enhancing chemosensitivity in D556 cells while enhancing chemoresistance in D283 and UW228 cells. IMPLICATIONS: Collectively, we identified an unexpected role for the PI3K signaling in enhancing cell death in medulloblastoma cells with high basal p53 expression. These studies indicate that levels of p53 immunopositivity may serve as a diagnostic marker of chemotherapy resistance and for defining therapeutic targeting.
Collapse
Affiliation(s)
- Aisha Naeem
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Health Research Governance Department, Ministry of Public Health, Doha, Qatar
| | - Varsha Harish
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Sophie Coste
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Erika M. Parasido
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Muhammad Umer Choudhry
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Lawrence F. Kromer
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Chukuemeka Ihemelandu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Emanuel F. Petricoin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | - Mariaelena Pierobon
- George Mason University, Center for Applied Proteomics and Molecular Medicine, Manassas, Virginia
| | | | | | - Maria Avantaggiati
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Gary M. Kupfer
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Pediatrics, Georgetown University Medical Center, Washington, DC
| | - Stanley Fricke
- Department of Radiology, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC.,Department of Radiology, Georgetown University Medical Center, Washington, DC.,Center for Translational Imaging, Georgetown University Medical Center, Washington, DC.,Corresponding Author: Chris Albanese, Department of OncologyGeorgetown University Medical Center, Lombardi Cancer Center, NRB W417, Washington, DC 20007. Phone: 202-687-3305; E-mail:
| |
Collapse
|
13
|
Abstract
In 2016, medulloblastoma classification was restructured to allow for incorporation of updated data about medulloblastoma biology, genomics, and clinical behavior. For the first time, medulloblastomas were classified according to molecular characteristics ("genetically defined" categories) as well as histologic characteristics ("histologically defined" categories). Current genetically-defined categories include WNT-activated, SHH-activated TP53 wildtype, SHH-activated TP53-mutant, and non-WNT/non-SHH. In this article, we review the most recent update to the classification of medulloblastomas, provide a practical approach to immunohistochemical and molecular testing for these tumors, and demonstrate how to use key molecular genetic findings to develop an integrated diagnosis.
Collapse
Affiliation(s)
- Jennifer A Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Westphal MS, Lee E, Schadt EE, Sholler GS, Zhu J. Identification of Let-7 miRNA Activity as a Prognostic Biomarker of SHH Medulloblastoma. Cancers (Basel) 2021; 14:cancers14010139. [PMID: 35008302 PMCID: PMC8750188 DOI: 10.3390/cancers14010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric embryonal brain tumor. The current consensus classifies MB into four molecular subgroups: sonic hedgehog-activated (SHH), wingless-activated (WNT), Group 3, and Group 4. MYCN and let-7 play a critical role in MB. Thus, we inferred the activity of miRNAs in MB by using the ActMiR procedure. SHH-MB has higher MYCN expression than the other subgroups. We showed that high MYCN expression with high let-7 activity is significantly associated with worse overall survival, and this association was validated in an independent MB dataset. Altogether, our results suggest that let-7 activity and MYCN can further categorize heterogeneous SHH tumors into more and less-favorable prognostic subtypes, which provide critical information for personalizing treatment options for SHH-MB. Comparing the expression differences between the two SHH-MB prognostic subtypes with compound perturbation profiles, we identified FGFR inhibitors as one potential treatment option for SHH-MB patients with the less-favorable prognostic subtype.
Collapse
Affiliation(s)
| | - Eunjee Lee
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Eric E. Schadt
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Giselle S. Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jun Zhu
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
15
|
Role of MicroRNAs in the Development and Progression of the Four Medulloblastoma Subgroups. Cancers (Basel) 2021; 13:cancers13246323. [PMID: 34944941 PMCID: PMC8699467 DOI: 10.3390/cancers13246323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/21/2022] Open
Abstract
Medulloblastoma is the most frequent malignant brain tumour in children. Medulloblastoma originate during the embryonic stage. They are located in the cerebellum, which is the area of the central nervous system (CNS) responsible for controlling equilibrium and coordination of movements. In 2012, medulloblastoma were divided into four subgroups based on a genome-wide analysis of RNA expression. These subgroups are named Wingless, Sonic Hedgehog, Group 3 and Group 4. Each subgroup has a different cell of origin, prognosis, and response to therapies. Wingless and Sonic Hedgehog medulloblastoma are so named based on the main mutation originating these tumours. Group 3 and Group 4 have generic names because we do not know the key mutation driving these tumours. Gene expression at the post-transcriptional level is regulated by a group of small single-stranded non-coding RNAs. These microRNA (miRNAs or miRs) play a central role in several cellular functions such as cell differentiation and, therefore, any malfunction in this regulatory system leads to a variety of disorders such as cancer. The role of miRNAs in medulloblastoma is still a topic of intense clinical research; previous studies have mostly concentrated on the clinical entity of the single disease rather than in the four molecular subgroups. In this review, we summarize the latest discoveries on miRNAs in the four medulloblastoma subgroups.
Collapse
|
16
|
Liang KH, Chang CC, Wu KS, Yu AL, Sung SY, Lee YY, Liang ML, Chen HH, Fen JJ, Chao ME, Liao YT, Wong TT. Notch signaling and natural killer cell infiltration in tumor tissues underlie medulloblastoma prognosis. Sci Rep 2021; 11:23282. [PMID: 34857809 PMCID: PMC8639846 DOI: 10.1038/s41598-021-02651-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma is the most common embryonic brain tumor in children. We investigated a cohort of 52 Asian medulloblastoma patients aged between 0 and 19 years old, who received surgical resections and post-resection treatments in the Taipei Medical University Hospital and the Taipei Veterans General Hospital. Genome-wide RNA sequencing was performed on fresh-frozen surgical tissues. These data were analyzed using the CIBERSORTx immune deconvolution software. Two external clinical and molecular datasets from United States (n = 62) and Canada (n = 763) were used to evaluate the transferability of the gene-signature scores across ethnic populations. The abundance of 13 genes, including DLL1, are significantly associated with overall survival (All Cox regression P < 0.001). A gene-signature score was derived from the deep transcriptome, capable of indicating patients’ subsequent tumor recurrence (Hazard Ratio [HR] 1.645, confidence interval [CI] 1.337–2.025, P < 0.001) and mortality (HR 2.720, CI 1.798–4.112, P < 0.001). After the adjustment of baseline clinical factors, the score remains indicative of recurrence-free survival (HR 1.604, CI 1.292–1.992, P < 0.001) and overall survival (HR 2.781, CI 1.762–4.390, P < 0.001). Patients stratified by this score manifest not only distinct prognosis but also different molecular characteristics: Notch signaling ligands and receptors are comparatively overexpressed in patients with poorer prognosis, while tumor infiltrating natural killer cells are more abundant in patients with better prognosis. Additionally, immunohistochemical staining showed the DLL1 protein, a major ligand in the Notch signaling pathway, and the NCAM1 protein, a representative biomarker of natural killer cells, are present in the surgical tissues of patients of four molecular subgroups, WNT, SHH, Group 3 and Group 4. NCAM1 RNA level is also positively associated with the mutation burden in tumor (P = 0.023). The gene-signature score is validated successfully in the Canadian cohort (P = 0.009) as well as its three molecular subgroups (SHH, Group 3 and Group 4; P = 0.047, 0.018 and 0.040 respectively). In conclusion, pediatric medullablastoma patients can be stratified by gene-signature scores with distinct prognosis and molecular characteristics. Ligands and receptors of the Notch signaling pathway are overexpressed in the patient stratum with poorer prognosis. Tumor infiltrating natural killer cells are more abundant in the patient stratum with better prognosis.
Collapse
Affiliation(s)
- Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao-Tung University, Taipei, Taiwan. .,Institute of Biomedical Informatics, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
| | - Che-Chang Chang
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- The PhD Program for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Yen Lee
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Muh-Lii Liang
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Hung Chen
- Division of Paediatric Neurosurgery, the Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Jun-Jeng Fen
- Department of Informatics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Meng-En Chao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yi-Ting Liao
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan. .,Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, 110, Taiwan. .,Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
| |
Collapse
|
17
|
Aras Y, Dölen D, İribas Çelik A, Kılıç G, Kebudi R, Ünverengil G, Sabancı PA, İzgi AN. Effects of different molecular subtypes and tumor biology on the prognosis of medulloblastoma. Childs Nerv Syst 2021; 37:3733-3742. [PMID: 34550414 DOI: 10.1007/s00381-021-05350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Medulloblastoma is one of the most common malignant brain tumors in the pediatric population. Recent studies identified four distinct medulloblastoma subgroups with different molecular alterations and pathways, and natural courses and outcomes. To evaluate the results of surgical and medical treatments of patients with medulloblastoma and compare them among the medulloblastoma subgroups. METHODS The clinical and radiological features, medical and surgical management and treatment outcomes and their correlation with molecular subgroups of 58 patients treated for medulloblastoma in the last 20 years were evaluated. RESULTS Fifty-eight patients, of whom 35 were male and 23 were female, were evaluated. The median age was 6 years (range, 1-19 years). The most common symptoms were nausea and vomiting (60%). Forty-three percent of the patients had headache and 40% had ataxia. Previous pathology reports revealed that 43 (74%), eight (14%), five (8%), and two (3%) had classic, desmoplastic, desmoplastic/nodular, and anaplastic morphologies, respectively. After the subgroup analyses, five patients (12%) were attributed to the wingless subgroup (WNT) group; 14 (32.5%), to the sonic hedgehog subgroup (SHH) group; and 24 (56%), to the non-WNT non-SHH group. On the basis of immunohistochemical analysis results, 15 patients could not be attributed to any subgroups. The clinical risk groups (average vs high-risk) and age at diagnosis (≥ 3 years vs < 3 years of age) were significant for 5-year event free survival (86% vs 43%, p:0.011 and 59% vs 36%, p:0.039). There was no significant difference in survival or event free survival according to molecular subtypes in this cohort. CONCLUSION In corporation of molecular features to the clinicopathologic classification leads to risk-adapted treatment. Although the molecular subgroups did not affect outcome significantly in this study, more studies with larger numbers of patients are needed to understand the tumor pathophysiology of medulloblastoma and design the future medical practice.
Collapse
Affiliation(s)
- Yavuz Aras
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| | - Duygu Dölen
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey.
| | - Ayca İribas Çelik
- Istanbul Faculty of Medicine, Radiation Oncology Department, Istanbul University, Istanbul, Turkey
| | - Gozde Kılıç
- Istanbul Faculty of Medicine, Pathology Department, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Institute of Oncology, Pediatric Hematology-Oncology Department, Istanbul University, Istanbul, Turkey
| | - Gökçen Ünverengil
- Istanbul Faculty of Medicine, Pathology Department, Istanbul University, Istanbul, Turkey
| | - Pulat Akın Sabancı
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| | - Ali Nail İzgi
- Istanbul Faculty of Medicine, Neurosurgery Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
18
|
Lhermitte B, Blandin AF, Coca A, Guerin E, Durand A, Entz-Werlé N. Signaling pathway deregulation and molecular alterations across pediatric medulloblastomas. Neurochirurgie 2021; 67:39-45. [PMID: 29776650 DOI: 10.1016/j.neuchi.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/06/2018] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
Medulloblastomas (MBs) account for 15% of brain tumors in children under the age of 15. To date, the overall 5-year survival rate for all children is only around 60%. Recent advances in cancer genomics have led to a fundamental change in medulloblastoma classification and is evolving along with the genomic discoveries, allowing to regularly reclassify this disease. The previous molecular classification defined 4 groups (WNT-activated MB, SHH-activated MB and the groups 3 and 4 characterized partially by NMYC and MYC driven MBs). This stratification moved forward recently to better define these groups and their correlation to outcome. This new stratification into 7 novel subgroups was helpful to lay foundations and complementary data on the understanding regarding molecular pathways and gene mutations underlying medulloblastoma biology. This review was aimed at answering the recent key questions on MB genomics and go further in the relevance of those genes in MB development as well as in their targeted therapies.
Collapse
Affiliation(s)
- B Lhermitte
- Laboratoire de Pathologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A F Blandin
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - A Coca
- Service de Neurochirurgie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - E Guerin
- Laboratoire de biologie moléculaire et plateforme régionale d'oncobiologie d'Alsace, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France
| | - A Durand
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France
| | - N Entz-Werlé
- EA3430, Progression tumorale et microenvironnement, approches translationnelles et épidémiologie, université de Strasbourg, 3, avenue Molière, 67000 Strasbourg, France; Service de pédiatrie onco-hématologie, CHU Hautepierre, 1, avenue Molière, 67098 Strasbourg, France.
| |
Collapse
|
19
|
Stem-Like Cell Populations, p53-Pathway Activation and Mechanisms of Recurrence in Sonic Hedgehog Medulloblastoma. Neuromolecular Med 2021; 24:13-17. [PMID: 34165693 DOI: 10.1007/s12017-021-08673-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022]
Abstract
While most Sonic Hedgehog-associated medulloblastomas (SHH-MBs) respond to therapeutic intervention, radiation therapy often causes deleterious long-term neurocognitive defects, especially in infants and young children. To limit neurological comorbidities, the development of a reduction-of-therapy treatment or de-escalation approach was investigated. Although retrospective analysis of MBs indicated low-dose therapy was potentially effective, clinical de-escalation trials showed poor outcomes in infant SHH-MBs and was prematurely terminated. Recent studies suggest the existence of cancer-stem-cell (CSC)-like cell populations that are more resistant to therapies and drive tumor recurrence. This review will discuss the mechanism of these CSC-like cells in SHH-MBs in resisting to p53-pathway activation, which may contribute to the disappointing outcomes of the recent de-escalation trials.
Collapse
|
20
|
Sawyer JL, Mishna F, Bouffet E, Saini M, Zlotnik-Shaul R. Bridging the Gap: Exploring the Impact of Hospital Isolation on Peer Relationships Among Children and Adolescents with a Malignant Brain Tumor. CHILD & ADOLESCENT SOCIAL WORK JOURNAL : C & A 2021; 40:91-105. [PMID: 34025015 PMCID: PMC8130807 DOI: 10.1007/s10560-021-00764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Children and adolescents with complex medical conditions are often uprooted from their environments and isolated in hospital while undergoing treatment. Little is known about how they perceive this isolation and its subsequent impact on their relationships with peers, both during and after isolation for treatment. This study describes the experience of hospital isolation from the perspectives of children and adolescents with a malignant brain tumor. The use and impact of information and communication technologies (ICT) as a possible bridge for contact is also explored. Following a qualitative approach utilizing interpretive phenomenological analysis, in-depth interviews were conducted with eight youth participants who had undergone treatment for medulloblastoma. Data analysis generated three main themes: (1) transforming children and relationships, (2) hospitalization in a digital world, and (3) ICTs as a promising bridge back to school. Study findings provide insight into the experience of hospital isolation for children and adolescents, while highlighting the positive social as well as academic outcomes of frequent, open ended ICT use throughout hospital isolation. This is timely, given the context of the COVID-19 pandemic and its resulting isolation. Considerations for hospital social workers to promote relationships and connection, while facilitating a smooth transition as these children return to school are included.
Collapse
Affiliation(s)
- Jami-Leigh Sawyer
- Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor Street West, Toronto, ON M5S1V4 Canada
| | - Faye Mishna
- Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor Street West, Toronto, ON M5S1V4 Canada
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, ON Canada
- Department of Paediatrics, University of Toronto, Toronto, ON Canada
| | - Michael Saini
- Factor-Inwentash Faculty of Social Work, University of Toronto, 246 Bloor Street West, Toronto, ON M5S1V4 Canada
| | | |
Collapse
|
21
|
Retrospective investigation of hereditary syndromes in patients with medulloblastoma in a single institution. Childs Nerv Syst 2021; 37:411-417. [PMID: 32930885 DOI: 10.1007/s00381-020-04885-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the incidence rate of hereditary disease in patients with medulloblastoma. METHODS The genetic reports of 129 patients with medulloblastoma from January 2016 to December 2019 were retrospectively analyzed. A panel sequence of 39 genes (Genetron Health) were used for all patients to evaluate the tumor subgroup. Four genes (TP53, APC, PTCH1, SUFU) were screened to routinely rule out germline mutation. RESULTS Five patients (3.9%) were found with hereditary disease, and all belonged to the sonic hedgehog (SHH) subgroup. Two patients were retrospectively diagnosed with Gorlin-Goltz disease with germline PTCH1 and SUFU mutations. One patient (PTCH1 mutation) accepted whole craniospinal irradiation and had scalp nevoid basal cell carcinoma 5 years later. The other patient (SUFU mutation) accepted chemotherapy and had local tumor relapse 1 year later. Three patients were diagnosed with Li-Fraumeni syndrome and carried the TP53 mutation; all three patients died. One of the patients had bone osteosarcoma, while all three had early tumor relapse. CONCLUSION Patients with SHH medulloblastoma should routinely undergo genetic testing. We propose that whole genome, whole exome sequence, or custom-designed panel-targeted exome sequencing should be performed.
Collapse
|
22
|
Onodera S, Nakamura Y, Azuma T. Gorlin Syndrome: Recent Advances in Genetic Testing and Molecular and Cellular Biological Research. Int J Mol Sci 2020; 21:E7559. [PMID: 33066274 PMCID: PMC7590212 DOI: 10.3390/ijms21207559] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Gorlin syndrome is a skeletal disorder caused by a gain of function mutation in Hedgehog (Hh) signaling. The Hh family comprises of many signaling mediators, which, through complex mechanisms, play several important roles in various stages of development. The Hh information pathway is essential for bone tissue development. It is also the major driver gene in the development of basal cell carcinoma and medulloblastoma. In this review, we first present the recent advances in Gorlin syndrome research, in particular, the signaling mediators of the Hh pathway and their functions at the genetic level. Then, we discuss the phenotypes of mutant mice and Hh signaling-related molecules in humans revealed by studies using induced pluripotent stem cells.
Collapse
Affiliation(s)
- Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Yuriko Nakamura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba 272-8513, Japan;
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho Chiyoda-ku, Tokyo 101-0061, Japan;
| |
Collapse
|
23
|
Non-coding RNAs in Brain Tumors, the Contribution of lncRNAs, circRNAs, and snoRNAs to Cancer Development-Their Diagnostic and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21197001. [PMID: 32977537 PMCID: PMC7582339 DOI: 10.3390/ijms21197001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/17/2022] Open
Abstract
Brain tumors are one of the most frightening ailments that afflict human beings worldwide. They are among the most lethal of all adult and pediatric solid tumors. The unique cell-intrinsic and microenvironmental properties of neural tissues are some of the most critical obstacles that researchers face in the diagnosis and treatment of brain tumors. Intensifying the search for potential new molecular markers in order to develop new effective treatments for patients might resolve this issue. Recently, the world of non-coding RNAs (ncRNAs) has become a field of intensive research since the discovery of their essential impact on carcinogenesis. Some of the most promising diagnostic and therapeutic regulatory RNAs are long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs). Many recent reports indicate the important role of these molecules in brain tumor development, as well as their implications in metastasis. In the following review, we summarize the current state of knowledge about regulatory RNAs, namely lncRNA, circRNAs, and snoRNAs, and their impact on the development of brain tumors in children and adults with particular emphasis on malignant primary brain tumors-gliomas and medulloblastomas (MB). We also provide an overview of how these different ncRNAs may act as biomarkers in these tumors and we present their potential clinical implications.
Collapse
|
24
|
Łastowska M, Karkucińska-Więckowska A, Waschek JA, Niewiadomski P. Differential Expression of Mitochondrial Biogenesis Markers in Mouse and Human SHH-Subtype Medulloblastoma. Cells 2019; 8:E216. [PMID: 30841515 PMCID: PMC6468894 DOI: 10.3390/cells8030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is a brain tumor that arises predominantly in infants and children. It is the most common pediatric brain malignancy. Around 25% of medulloblastomas are driven by constitutive activation of the Hedgehog signaling pathway. Hedgehog-driven medulloblastoma is often studied in the laboratory using genetic mouse models with overactive Hedgehog signaling, which recapitulate many of the pathological features of human Hedgehog-dependent tumors. However, we show here that on a molecular level the human and mouse HH-dependent MB are quite distinct, with human, but not mouse, tumors characterized by the presence of markers of increased oxidative phosphorylation and mitochondrial biogenesis. The latter suggests that, unlike for many other types of tumors, a switch to glycolytic metabolism might not be co-opted by human SHH-MB to perpetuate their survival and growth. This needs to be taken into consideration and could potentially be exploited in the design of therapies.
Collapse
Affiliation(s)
- Maria Łastowska
- Department of Pathology, The Children's Memorial Health Institute, Dzieci Polskich 20, 04-730 Warsaw, Poland.
- Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre Polish Academy of Sciences, A. Pawińskiego 5, 02-106 Warsaw, Poland.
| | | | - James A Waschek
- Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Paweł Niewiadomski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
25
|
Doussouki ME, Gajjar A, Chamdine O. Molecular genetics of medulloblastoma in children: diagnostic, therapeutic and prognostic implications. FUTURE NEUROLOGY 2019. [DOI: 10.2217/fnl-2018-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Medulloblastoma is the most common embryonal tumor in children. The current standard of care comprises surgical resection, radiation and chemotherapy. Patients are stratified into standard and high risk based on the degree of resection, presence of metastatic disease and histopathology. Cure rates dramatically improved during the past decades reaching 70–80% (high and average risk, respectively). Infant medulloblastoma has a worse outcome as the use of radiation therapy is very limited, a group of patients still has dismal outcome despite appropriate therapy, and the unacceptable long-term therapy side effects in survivors. Advanced molecular techniques have allowed scientists to discover four distinct molecular subgroups and correlate them with multiple factors such as histopathology, clinical behavior and possible therapeutic targets.
Collapse
Affiliation(s)
- Maher El Doussouki
- Department of Pediatric Hematology Oncology, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Omar Chamdine
- Department of Pediatric Hematology Oncology, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Rodriguez-Blanco J, Li B, Long J, Shen C, Yang F, Orton D, Collins S, Kasahara N, Ayad NG, McCrea HJ, Roussel MF, Weiss WA, Capobianco AJ, Robbins DJ. A CK1α Activator Penetrates the Brain and Shows Efficacy Against Drug-resistant Metastatic Medulloblastoma. Clin Cancer Res 2018; 25:1379-1388. [PMID: 30487124 DOI: 10.1158/1078-0432.ccr-18-1319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/28/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Although most children with medulloblastoma are cured of their disease, Sonic Hedgehog (SHH) subgroup medulloblastoma driven by TRP53 mutations is essentially lethal. Casein kinase 1α (CK1α) phosphorylates and destabilizes GLI transcription factors, thereby inhibiting the key effectors of SHH signaling. We therefore tested a second-generation CK1α activator against TRP53-mutant, MYCN-amplified medulloblastoma. EXPERIMENTAL DESIGN The ability of this CK1α activator to block SHH signaling was determined in vitro using GLI reporter cells, granular precursor primary cultures, and PATCHED1 (PTCH1)-mutant sphere cultures. While in vivo efficacy was tested using 2 different medulloblastoma mouse models: PTCH1 and ND2:SMOA1. Finally, the clinical relevance of CK1α activators was demonstrated using a TRP53-mutant, MYCN-amplified patient-derived xenograft. RESULTS SSTC3 inhibited SHH activity in vitro, acting downstream of the vismodegib target SMOOTHENED (SMO), and reduced the viability of sphere cultures derived from SHH medulloblastoma. SSTC3 accumulated in the brain, inhibited growth of SHH medulloblastoma tumors, and blocked metastases in a genetically engineered vismodegib-resistant mouse model of SHH medulloblastoma. Importantly, SSTC3 attenuated growth and metastasis of orthotopic patient-derived TRP53-mutant, MYCN-amplified, SHH subgroup medulloblastoma xenografts, increasing overall survival. CONCLUSIONS Using a newly described small-molecule, SSTC3, we show that CK1a activators could address a significant unmet clinical need for patients with SMO inhibitor-resistant medulloblastoma, including those harboring mutations in TRP53.
Collapse
Affiliation(s)
- Jezabel Rodriguez-Blanco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Bin Li
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jun Long
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Chen Shen
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Fan Yang
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | | | - Sara Collins
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Noriyuki Kasahara
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - Nagi G Ayad
- Sylvester Comprehensive Cancer Center, University of Miami, Florida.,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami, Miller School of Medicine, Miami, Florida
| | - Heather J McCrea
- Department of Clinical Neurological Surgery, University of Miami, Florida
| | - Martine F Roussel
- Department of Tumor Cell Biology, St Jude Children's Research Hospital (SJCRH), Memphis, Tennessee
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California
| | - Anthony J Capobianco
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| | - David J Robbins
- Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami, Florida
| |
Collapse
|
27
|
TP53 Mutation, MYCN Amplification, and Large Cell/Anaplastic Histology in Medulloblastoma. Indian J Pediatr 2018; 85:684-685. [PMID: 29139064 DOI: 10.1007/s12098-017-2527-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
|
28
|
Abstract
INTRODUCTION Integrated genomics has significantly advanced our understanding of medulloblastoma heterogeneity. It is now clear that it actually comprises at least four distinct molecular subgroups termed Wnt/Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4 with stark clinical and biological differences. Areas covered: This paper reviews advances in the classification and risk stratification of medulloblastoma, specifically integrating subgroup with clinical and cytogenetic risk factors, with a summary of the potential to lead to more precise therapies. Moreover, the current state of preclinical modeling is summarized with respect to their utility in generating new treatments and correlation with genomic discoveries. Opportunities and challenges in developing new treatment paradigms are summarized and discussed, specifically new therapies for very high-risk metastatic/MYC-amplified Group 3 and TP53-mutant SHH and reductions in therapy for lower risk groups. Expert commentary: Survival across medulloblastoma has been stagnant for over 30 years, and new treatment paradigms are urgently required. Current therapy significantly over treats a high proportion of patients leaving them with lifelong side effects; while many patients still succumb to their disease. Applying biological advances could improve quality of life for a significant proportion of patients while offering new upfront approaches to the highest risk patients.
Collapse
Affiliation(s)
- Carolina Nör
- a Programme in Developmental and Stem Cell Biology , Hospital for Sick Children , Toronto , ON , Canada.,b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada
| | - Vijay Ramaswamy
- b Labatt Brain Tumour Research Centre , Hospital for Sick Children , Toronto , ON , Canada.,c Division of Haematology/Oncology , Hospital for Sick Children , Toronto , ON , Canada
| |
Collapse
|
29
|
Miranda Kuzan-Fischer C, Juraschka K, Taylor MD. Medulloblastoma in the Molecular Era. J Korean Neurosurg Soc 2018; 61:292-301. [PMID: 29742881 PMCID: PMC5957312 DOI: 10.3340/jkns.2018.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/14/2018] [Accepted: 03/03/2018] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.
Collapse
Affiliation(s)
- Claudia Miranda Kuzan-Fischer
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Kyle Juraschka
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Division of Neurosurgery, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Sankar S, Patterson E, Lewis EM, Waller LE, Tong C, Dearborn J, Wozniak D, Rubin JB, Kroll KL. Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors. Genes Cancer 2017; 8:725-744. [PMID: 29234490 PMCID: PMC5724806 DOI: 10.18632/genesandcancer.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ethan Patterson
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Emily M Lewis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura E Waller
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Caili Tong
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua Dearborn
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - David Wozniak
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kristen L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
31
|
Inactivation of Ezh2 Upregulates Gfi1 and Drives Aggressive Myc-Driven Group 3 Medulloblastoma. Cell Rep 2017; 18:2907-2917. [PMID: 28329683 DOI: 10.1016/j.celrep.2017.02.073] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/30/2017] [Accepted: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
The most aggressive of four medulloblastoma (MB) subgroups are cMyc-driven group 3 (G3) tumors, some of which overexpress EZH2, the histone H3K27 mono-, di-, and trimethylase of polycomb-repressive complex 2. Ezh2 has a context-dependent role in different cancers as an oncogene or tumor suppressor and retards tumor progression in a mouse model of G3 MB. Engineered deletions of Ezh2 in G3 MBs by gene editing nucleases accelerated tumorigenesis, whereas Ezh2 re-expression reversed attendant histone modifications and slowed tumor progression. Candidate oncogenic drivers suppressed by Ezh2 included Gfi1, a proto-oncogene frequently activated in human G3 MBs. Gfi1 disruption antagonized the tumor-promoting effects of Ezh2 loss; conversely, Gfi1 overexpression collaborated with Myc to bypass effects of Trp53 inactivation in driving MB progression in primary cerebellar neuronal progenitors. Although negative regulation of Gfi1 by Ezh2 may restrain MB development, Gfi1 activation can bypass these effects.
Collapse
|
32
|
Niklison-Chirou MV, Erngren I, Engskog M, Haglöf J, Picard D, Remke M, McPolin PHR, Selby M, Williamson D, Clifford SC, Michod D, Hadjiandreou M, Arvidsson T, Pettersson C, Melino G, Marino S. TAp73 is a marker of glutamine addiction in medulloblastoma. Genes Dev 2017; 31:1738-1753. [PMID: 28971956 PMCID: PMC5666673 DOI: 10.1101/gad.302349.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Medulloblastoma is the most common solid primary brain tumor in children. Remarkable advancements in the understanding of the genetic and epigenetic basis of these tumors have informed their recent molecular classification. However, the genotype/phenotype correlation of the subgroups remains largely uncharacterized. In particular, the metabolic phenotype is of great interest because of its druggability, which could lead to the development of novel and more tailored therapies for a subset of medulloblastoma. p73 plays a critical role in a range of cellular metabolic processes. We show overexpression of p73 in a proportion of non-WNT medulloblastoma. In these tumors, p73 sustains cell growth and proliferation via regulation of glutamine metabolism. We validated our results in a xenograft model in which we observed an increase in survival time in mice on a glutamine restriction diet. Notably, glutamine starvation has a synergistic effect with cisplatin, a component of the current medulloblastoma chemotherapy. These findings raise the possibility that glutamine depletion can be used as an adjuvant treatment for p73-expressing medulloblastoma.
Collapse
Affiliation(s)
- Maria Victoria Niklison-Chirou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Ida Erngren
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Mikael Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Jakob Haglöf
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany.,Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Phelim Hugh Redmond McPolin
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Matthew Selby
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - David Michod
- University College London, Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Michalis Hadjiandreou
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Torbjörn Arvidsson
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden.,Medical Product Agency, SE-751 03 Uppsala, Sweden
| | - Curt Pettersson
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden
| | - Gerry Melino
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, United Kingdom
| | - Silvia Marino
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| |
Collapse
|
33
|
Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, Kool M, Dufour C, Vassal G, Milde T, Witt O, von Hoff K, Pietsch T, Northcott PA, Gajjar A, Robinson GW, Padovani L, André N, Massimino M, Pizer B, Packer R, Rutkowski S, Pfister SM, Taylor MD, Pomeroy SL. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 2016; 131:821-31. [PMID: 27040285 DOI: 10.1007/s00401-016-1569-6] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/31/2022]
Abstract
Historical risk stratification criteria for medulloblastoma rely primarily on clinicopathological variables pertaining to age, presence of metastases, extent of resection, histological subtypes and in some instances individual genetic aberrations such as MYC and MYCN amplification. In 2010, an international panel of experts established consensus defining four main subgroups of medulloblastoma (WNT, SHH, Group 3 and Group 4) delineated by transcriptional profiling. This has led to the current generation of biomarker-driven clinical trials assigning WNT tumors to a favorable prognosis group in addition to clinicopathological criteria including MYC and MYCN gene amplifications. However, outcome prediction of non-WNT subgroups is a challenge due to inconsistent survival reports. In 2015, a consensus conference was convened in Heidelberg with the objective to further refine the risk stratification in the context of subgroups and agree on a definition of risk groups of non-infant, childhood medulloblastoma (ages 3-17). Published and unpublished data over the past 5 years were reviewed, and a consensus was reached regarding the level of evidence for currently available biomarkers. The following risk groups were defined based on current survival rates: low risk (>90 % survival), average (standard) risk (75-90 % survival), high risk (50-75 % survival) and very high risk (<50 % survival) disease. The WNT subgroup and non-metastatic Group 4 tumors with whole chromosome 11 loss or whole chromosome 17 gain were recognized as low-risk tumors that may qualify for reduced therapy. High-risk strata were defined as patients with metastatic SHH or Group 4 tumors, or MYCN-amplified SHH medulloblastomas. Very high-risk patients are Group 3 with metastases or SHH with TP53 mutation. In addition, a number of consensus points were reached that should be standardized across future clinical trials. Although we anticipate new data will emerge from currently ongoing and recently completed clinical trials, this consensus can serve as an outline for prioritization of certain molecular subsets of tumors to define and validate risk groups as a basis for future clinical trials.
Collapse
Affiliation(s)
- Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Marc Remke
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, University Hospital Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
- Department of Pediatric Neuro-Oncogenomics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Düsseldorf, Germany.
| | - Eric Bouffet
- Division of Haematology/Oncology, Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Simon Bailey
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Steven C Clifford
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - Francois Doz
- Department of Paediatric, Adolescents and Young Adults Oncology, Curie Institute, and University Paris Descartes, Paris, France
| | - Marcel Kool
- Division of Pediatric Neurooncology (B062), DKFZ, and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Institut Gustave-Roussy, Villejuif, France
| | - Gilles Vassal
- Department of Pediatric and Adolescent Oncology, Institut Gustave-Roussy, Villejuif, France
| | - Till Milde
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (G340), DKFZ, Heidelberg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology (G340), DKFZ, Heidelberg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Amar Gajjar
- St. Jude's Research Hospital, Memphis, TN, USA
| | | | - Laetitia Padovani
- Aix-Marseille Université, Inserm, CRO2 UMR_S 911, 27 bd Jean Moulin, 13385, Marseille Cedex 05, France
| | - Nicolas André
- Department of Pediatric Hematology and Oncology, AP-HM, Marseille, France
| | - Maura Massimino
- Fondazione IRCCS "Istituto Nazionale dei Tumori", Milan, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Roger Packer
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology (B062), DKFZ, and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael D Taylor
- Division of Neurosurgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Scott L Pomeroy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Abstract
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lukas Tamayo-Orrego
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Shannon M Swikert
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada
| | - Frédéric Charron
- a Molecular Biology of Neural Development , Institut de Recherches Cliniques de Montréal (IRCM) , Montreal , Quebec , Canada.,b Integrated Program in Neuroscience , McGill University , Montreal , Quebec , Canada.,c Department of Medicine , University of Montreal , Montreal , Quebec , Canada.,d Division of Experimental Medicine , Department of Medicine, Department of Anatomy and Cell Biology, Department of Biology , McGill University , Quebec , Canada
| |
Collapse
|