1
|
Mukherjee S, Chakravarty S, Haldar J. Revitalizing Antibiotics with Macromolecular Engineering: Tackling Gram-Negative Superbugs and Mixed Species Bacterial Biofilm Infections In Vivo. Biomacromolecules 2025; 26:2211-2226. [PMID: 40040432 DOI: 10.1021/acs.biomac.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The escalating prevalence of multidrug-resistant Gram-negative pathogens, coupled with dwindling antibiotic development, has created a critical void in the clinical pipeline. This alarming issue is exacerbated by the formation of biofilms by these superbugs and their frequent coexistence in mixed-species biofilms, conferring extreme antibiotic tolerance. Herein, we present an amphiphilic cationic macromolecule, ACM-AHex, as an innovative antibiotic adjuvant to rejuvenate and repurpose resistant antibiotics, for instance, rifampicin, fusidic acid, erythromycin, and chloramphenicol. ACM-AHex mildly perturbs the bacterial membrane, enhancing antibiotic permeability, hampers efflux machinery, and produces reactive oxygen species, resulting in a remarkable 64-1024-fold potentiation in antibacterial activity. The macromolecule reduces bacterial virulence and macromolecule-drug cocktail significantly eradicate both mono- and multispecies bacterial biofilms, achieving >99.9% bacterial reduction in the murine biofilm infection model. Demonstrating potent biocompatibility across multiple administration routes, ACM-AHex offers a promising strategy to restore obsolete antibiotics and combat recalcitrant Gram-negative biofilm-associated infections, advocating for further clinical evaluation as a next-generation macromolecular antibiotic adjuvant.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sayan Chakravarty
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
2
|
Qiao W, Wang L, Luo Y, Yang T. Synthetic approaches and therapeutic applications of FDA-approved antibacterial agents: A comprehensive review from 2003 to 2023. Eur J Med Chem 2025; 285:117267. [PMID: 39808973 DOI: 10.1016/j.ejmech.2025.117267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The increasing threat of antibiotic resistance has necessitated the development of new antibacterial agents. 33 novel antibacterial agents have been approved by the U.S. Food and Drug Administration (FDA) within the two-decade timeframe from 2003 to 2023. These novel antibacterial agents included new chemical classes, such as lipopeptides, 18-membered macrolides, diaromatic quinolones, and nitroimidazoles, as well as modified existing classes, such as quinolones, tetracyclines, β-lactams, macrolides, oxazolidinones, and aminoglycosides. Nonetheless, during these twenty years, approval for new antibiotics was notably absent in 6 different years, and the total number of antibiotics approved was considerably less than that of other drug classes, including anticancer drugs. In this review, we provide an extensive analysis of the synthetic approaches and therapeutic applications of these approved antibacterial agents. We believe that this review will help further research on potential antibacterial agents for clinical use and development of next generation of antibacterial agents.
Collapse
Affiliation(s)
- Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijiao Wang
- College of Food and Bioengineering, Xihua University, Sichuan, 610039, China
| | - Youfu Luo
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tao Yang
- Lung Cancer Center, Laboratory of Lung Cancer, and Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Durham SH, Covington EW, Roberts MZ, Chahine EB. Rifampin in device-related infections: Assessing the modern evidence. Am J Health Syst Pharm 2025; 82:184-202. [PMID: 39324584 DOI: 10.1093/ajhp/zxae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 09/27/2024] Open
Abstract
PURPOSE Rifampin is commonly used to treat device-related infections (DRIs) due to its activity against biofilms, despite a history of limited clinical evidence to support its use. Evidence published since 2011 regarding rifampin use for DRIs is reviewed to describe the contemporary findings and ongoing considerations for rifampin use in these infections. SUMMARY A literature review was performed by searching PubMed and Google Scholar to identify relevant studies evaluating systemic rifampin use for the treatment of DRIs published from 2011 to 2023. References of identified studies were also screened for additional pertinent studies. Sixty-eight studies were identified, and 48 met the inclusion criteria. Rifampin efficacy was evaluated as both a primary outcome for cardiac device infections (n = 3) and prosthetic joint infections (n = 21) and as a nonprimary outcome (n = 24). Overall, the studies were primarily retrospective (n = 36) and small, with sample sizes ranging from 14 to 842 patients, and varied greatly with respect to prosthesis site, surgical intervention, pathogen, infection time frame, and antibiotic combination and duration. Efficacy outcome results varied greatly, with statistically significant evidence for the efficacy of rifampin combination in DRIs limited to a single study of prosthetic vascular graft infections and 13 studies of prosthetic joint infections. CONCLUSION The modern literature provides conflicting results regarding the benefit and lack of benefit with rifampin combination therapy in DRIs. Additional, robust research is imperative to solidify the ongoing role of rifampin in DRIs.
Collapse
Affiliation(s)
- Spencer H Durham
- Auburn University Harrison College of Pharmacy, Huntsville, AL, USA
| | | | - Megan Z Roberts
- Auburn University Harrison College of Pharmacy, Huntsville, AL, USA
| | - Elias B Chahine
- Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| |
Collapse
|
4
|
Caioni G, Reyes CP, Laurenti D, Chiaradia C, Dainese E, Mattioli R, Di Risola D, Santavicca E, Francioso A. Biochemistry and Future Perspectives of Antibiotic Resistance: An Eye on Active Natural Products. Antibiotics (Basel) 2024; 13:1071. [PMID: 39596764 PMCID: PMC11591525 DOI: 10.3390/antibiotics13111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic resistance poses a serious threat to the current healthcare system, negatively impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus, there is an urgent need for novel approaches to therapy to overcome established resistance mechanisms. Plants produce molecules capable of inhibiting bacterial growth in various ways, offering promising paths for the development of alternative antibiotic medicine. This review emphasizes the necessity of research efforts on plant-derived chemicals in the hopes of finding and creating novel drugs that can successfully target resistant bacterial populations. Investigating these natural chemicals allows us to improve our knowledge of novel antimicrobial pathways and also expands our antibacterial repertoire with novel molecules. Simultaneously, it is still necessary to utilize present antibiotics sparingly; prudent prescribing practices must be encouraged to extend the effectiveness of current medications. The combination of innovative drug research and responsible drug usage offers an integrated strategy for managing the antibiotic resistance challenge.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Carolina Pérez Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Instituto Universitario de Bio-Orgánica “Antonio González”, University of La Laguna, 38206 San Cristobal de La Laguna, Spain;
| | - Davide Laurenti
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Carmen Chiaradia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Roberto Mattioli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Daniel Di Risola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | | | - Antonio Francioso
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| |
Collapse
|
5
|
Wung JC, Hsu CC, Wang CE, Dong YH, Lin CC, Wang SY, Chang SL, Chang YL. Effectiveness and Safety of the Coadministration of Rifampin and Warfarin versus Direct Oral Anticoagulants: A Cohort Study. Adv Pharmacol Pharm Sci 2024; 2024:9694592. [PMID: 39359455 PMCID: PMC11446616 DOI: 10.1155/2024/9694592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Pharmacokinetic studies have shown that rifampin reduces the levels of oral anticoagulants during the initiation of coadministration, raising concerns about an increased thrombotic risk, but there are limited comparative clinical outcomes between rifampin and warfarin compared with direct oral anticoagulants (DOACs). This study aimed to evaluate the effectiveness and safety of concurrent use of rifampin and warfarin versus DOACs, with assessments of outcome-associated factors and oral anticoagulant (OAC) management quality. Methods A total of 142 patients given rifampin plus warfarin (n = 56) or DOACs (n = 86) for over 7 days were included, and their clinical data and outcomes were compared. Results The median Charlson Comorbidity Index and HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile INR, elderly, drugs/alcohol concomitantly) score of the two groups were 2 and 3, respectively. The incidence rate of composite ischemic or thromboembolic events was 2.16 and 1.44 per 10,000 patient-days in the warfarin and DOAC groups, respectively, with an adjusted hazard ratio (HR) of 0.41 (95% confidence interval [CI] 0.02-7.34). The incidence rate of composite major bleeding or clinically relevant nonmajor bleeding events was 1.58 and 1.52 per 10,000 patient-days in the warfarin and DOAC groups, respectively, with an adjusted HR of 1.12 (95% CI 0.32-4.45). The risk of composite bleeding events increased with a higher HAS-BLED score (HR: 1.62, 95% CI: 1.02-2.63). Moreover, 34.3% of warfarin users maintained a percent time in therapeutic range of above 50%. Furthermore, 77.9% of DOAC users received appropriate dosing. Conclusion No significant differences were observed in terms of the incidence of thrombotic or bleeding events between the two groups during coadministration. In addition, a higher HAS-BLED score was associated with a greater risk of bleeding events regardless of the class of OACs used. Finally, close monitoring of bleeding events should be considered.
Collapse
Affiliation(s)
- Ju-Chieh Wung
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Chen Hsu
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-En Wang
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yaa-Hui Dong
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health School of Medicine National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Chieh Lin
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Szu-Yu Wang
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Experimental Examination Healthcare and Services Center Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Pharmacy College of Pharmaceutical Sciences National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Pharmacology College of Medicine National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
6
|
Abichabki N, Gaspar GG, Zacharias LV, Pocente RHC, Lima DAFS, de Freitas NAB, Brancini GTP, Moreira NC, Braga GÚL, Bellissimo-Rodrigues F, Bollela VR, Darini ALC, Andrade LN. In Vitro Synergistic Activity of Rifampicin Combined with Minimal Effective Antibiotic Concentration (MEAC) of Polymyxin B Against Extensively Drug-Resistant, Carbapenem-, and Polymyxin B-Resistant Klebsiella pneumoniae Clinical Isolates. Curr Microbiol 2024; 81:371. [PMID: 39307852 DOI: 10.1007/s00284-024-03897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/11/2024] [Indexed: 10/22/2024]
Abstract
We investigated the in vitro antibacterial activity of the combination rifampicin (RIF) + polymyxin B (PB) against extensively drug-resistant (XDR) Klebsiella pneumoniae isolates. We evaluated clinical isolates co-resistant to PB (non-mcr carriers; eptB, mgrB, pmr operon, and ramA mutations) and to carbapenems (KPC, CTX-M, and SHV producers; including KPC + NDM co-producer), belonging to sequence types (ST) ST16, ST11, ST258, ST340, and ST437. We used the standard broth microdilution method to determine RIF and PB minimum inhibitory concentration (MIC) and the checkerboard assay to evaluate the fractional inhibitory concentration index (FICI) of RIF + PB as well as to investigate the lowest concentrations of RIF and PB that combined (RIF + PB) had antibacterial activity. Time-kill assays were performed to evaluate the synergistic effect of the combination against selected isolates. PB MIC (32-256 µg/mL) and RIF MIC (32-1024 µg/mL) were determined. FICI (<0.5) indicated a synergistic effect for all isolates evaluated for the combination RIF + PB. Our results showed that low concentrations of PB (PB minimal effective antibiotic concentration [MEAC], ≤0.25-1 µg/mL) favor RIF (≤0.03-0.125 µg/mL) to reach the bacterial target and exert antibacterial activity against PB-resistant isolates, and the synergistic effect was also observed in time-kill results. The combination of RIF + PB showed in vitro antibacterial activity against XDR, carbapenem-, and PB-resistant K. pneumoniae and could be further studied as a potential combination therapy, with cost-effectiveness and promising efficacy.
Collapse
Affiliation(s)
- Nathália Abichabki
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto Gambero Gaspar
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Luísa Vieira Zacharias
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Renata Helena Cândido Pocente
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Denissani Aparecida Ferrari Santos Lima
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Natália Augusta Barbosa de Freitas
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Guilherme Thomaz Pereira Brancini
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Natália Columbaro Moreira
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Gilberto Úbida Leite Braga
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fernando Bellissimo-Rodrigues
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
| | - Valdes Roberto Bollela
- Ribeirão Preto Medical School (FMRP), University of São Paulo (USP), Av. Bandeirantes, 3900, Campus da USP - Cidade Universitária, Ribeirão Preto, SP, 14040-900, Brazil
- University Hospital of Ribeirão Preto Medical School (HCFMRP), University of São Paulo (USP), R. Ten. Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14015-010, Brazil
| | - Ana Lúcia Costa Darini
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leonardo Neves Andrade
- Department of Clinical Analyses, Toxicology and Food Science (DACTB), School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Av. Prof. Dr. Zeferino Vaz - Vila Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
7
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
8
|
Carrera-Aubesart A, Li J, Contreras E, Bello-Madruga R, Torrent M, Andreu D. From In Vitro Promise to In Vivo Reality: An Instructive Account of Infection Model Evaluation of Antimicrobial Peptides. Int J Mol Sci 2024; 25:9773. [PMID: 39337261 PMCID: PMC11431785 DOI: 10.3390/ijms25189773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial peptides (AMPs) are regarded as a promising alternative to traditional antibiotics in the face of ever-increasing resistance. However, many AMPs fail to progress into clinics due to unexpected difficulties found in preclinical in vivo phases. Our research has focused on crotalicidin (Ctn), an AMP from snake venom, and a fragment thereof, Ctn[15-34], with improved in vitro antimicrobial and anticancer activities and remarkable serum stability. As the retroenantio versions of both AMPs maintained favorable profiles, in this work, we evaluate the in vivo efficacy of both the native-sequence AMPs and their retroenantio counterparts in a murine infection model with Acinetobacter baumannii. A significant reduction in bacterial levels is found in the mice treated with Ctn[15-34]. However, contrary to expectations, the retroenantio analogs either exhibit toxicity or lack efficacy when administered to mice. Our findings underscore the critical importance of in vivo infection model evaluation to fully calibrate the therapeutic potential of AMPs.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Estefanía Contreras
- Integrated Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Roberto Bello-Madruga
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
9
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
10
|
Palme PR, Goddard R, Richter A, Imming P, Seidel RW. 3-[(Benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione: polymorphism and twinning of a precursor to an antimycobacterial squaramide. Acta Crystallogr C Struct Chem 2024; 80:375-382. [PMID: 38967633 PMCID: PMC11299207 DOI: 10.1107/s2053229624006211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
The title compound, 3-[(benzo-1,3-dioxol-5-yl)amino]-4-methoxycyclobut-3-ene-1,2-dione, C12H9NO5 (3), is a precursor to an antimycobacterial squaramide. Block-shaped crystals of a monoclinic form (3-I, space group P21/c, Z = 8, Z' = 2) and needle-shaped crystals of a triclinic form (3-II, space group P-1, Z = 4, Z' = 2) were found to crystallize concomitantly. In both crystal forms, R22(10) dimers assemble through N-H...O=C hydrogen bonds. These dimers are formed from crystallographically unique molecules in 3-I, but exhibit crystallographic Ci symmetry in 3-II. Twinning by pseudomerohedry was encountered in the crystals of 3-II. The conformations of 3 in the solid forms 3-I and 3-II are different from one another but are similar for the unique molecules in each polymorph. Density functional theory (DFT) calculations on the free molecule of 3 indicate that a nearly planar conformation is preferred.
Collapse
Affiliation(s)
- Paul R. Palme
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Richard Goddard
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Rüdiger W. Seidel
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
11
|
Bibire T, Dănilă R, Yilmaz CN, Verestiuc L, Nacu I, Ursu RG, Ghiciuc CM. In Vitro Biological Evaluation of an Alginate-Based Hydrogel Loaded with Rifampicin for Wound Care. Pharmaceuticals (Basel) 2024; 17:943. [PMID: 39065793 PMCID: PMC11280071 DOI: 10.3390/ph17070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
We report a biocompatible hydrogel dressing based on sodium alginate-grafted poly(N-vinylcaprolactam) prepared by encapsulation of Rifampicin as an antimicrobial drug and stabilizing the matrix through the repeated freeze-thawing method. The hydrogel structure and polymer-drug compatibility were confirmed by FTIR, and a series of hydrogen-bond-based interactions between alginate and Rifampicin were identified. A concentration of 0.69% Rifampicin was found in the polymeric matrix using HPLC analysis and spectrophotometric UV-Vis methods. The hydrogel's morphology was evaluated by scanning electron microscopy, and various sizes and shapes of pores, ranging from almost spherical geometries to irregular ones, with a smooth surface of the pore walls and high interconnectivity in the presence of the drug, were identified. The hydrogels are bioadhesive, and the adhesion strength increased after Rifampicin was encapsulated into the polymeric matrix, which suggests that these compositions are suitable for wound dressings. Antimicrobial activity against S. aureus and MRSA, with an increased effect in the presence of the drug, was also found in the newly prepared hydrogels. In vitro biological evaluation demonstrated the cytocompatibility of the hydrogels and their ability to stimulate cell multiplication and mutual cell communication. The in vitro scratch assay demonstrated the drug-loaded alginate-grafted poly(N-vinylcaprolactam) hydrogel's ability to stimulate cell migration and wound closure. All of these results suggest that the prepared hydrogels can be used as antimicrobial materials for wound healing and care applications.
Collapse
Affiliation(s)
- Tudor Bibire
- Doctoral School, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
| | - Radu Dănilă
- St. Spiridon County Clinical Emergency Hospital, 1 Independentei Blvd., 700111 Iasi, Romania;
- Department of Surgery, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania
| | - Cătălina Natalia Yilmaz
- Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylül University, Kültür Mah. Cumhuriyet Bulv. No:144 Alsancak, 35210 Izmir, Turkey
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Ramona Gabriela Ursu
- Department of Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
| | - Cristina Mihaela Ghiciuc
- Department of Pharmacology, Faculty of Medicine, Clinical Pharmacology and Algeziology, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700116 Iasi, Romania;
- St. Maria Clinical Emergency Hospital for Children, 62 Vasile Lupu Street, 700309 Iasi, Romania
| |
Collapse
|
12
|
Calcagno A, Coppola N, Sarmati L, Tadolini M, Parrella R, Matteelli A, Riccardi N, Trezzi M, Di Biagio A, Pirriatore V, Russo A, Gualano G, Pontali E, Surace L, Falbo E, Mencarini J, Palmieri F, Gori A, Schiuma M, Lapadula G, Goletti D. Drugs for treating infections caused by non-tubercular mycobacteria: a narrative review from the study group on mycobacteria of the Italian Society of Infectious Diseases and Tropical Medicine. Infection 2024; 52:737-765. [PMID: 38329686 PMCID: PMC11142973 DOI: 10.1007/s15010-024-02183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) are generally free-living organism, widely distributed in the environment, with sporadic potential to infect. In recent years, there has been a significant increase in the global incidence of NTM-related disease, spanning across all continents and an increased mortality after the diagnosis has been reported. The decisions on whether to treat or not and which drugs to use are complex and require a multidisciplinary approach as well as patients' involvement in the decision process. METHODS AND RESULTS This review aims at describing the drugs used for treating NTM-associated diseases emphasizing the efficacy, tolerability, optimization strategies as well as possible drugs that might be used in case of intolerance or resistance. We also reviewed data on newer compounds highlighting the lack of randomised clinical trials for many drugs but also encouraging preliminary data for others. We also focused on non-pharmacological interventions that need to be adopted during care of individuals with NTM-associated diseases CONCLUSIONS: Despite insufficient efficacy and poor tolerability this review emphasizes the improvement in patients' care and the needs for future studies in the field of anti-NTM treatments.
Collapse
Affiliation(s)
- A Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy.
- Stop TB Italy, Milan, Italy.
| | - N Coppola
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - L Sarmati
- Department of System Medicine, Tor Vergata University and Infectious Disease Clinic, Policlinico Tor Vergata, Rome, Italy
| | - M Tadolini
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - R Parrella
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, Cotugno Hospital, A. O. R. N. dei Colli, Naples, Italy
| | - A Matteelli
- Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB Prevention, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - N Riccardi
- Stop TB Italy, Milan, Italy
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | - M Trezzi
- Stop TB Italy, Milan, Italy
- Infectious and Tropical Diseases Unit, Department of Medical Sciences, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - A Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - V Pirriatore
- Stop TB Italy, Milan, Italy
- Unit of Infectious Diseases, "DivisioneA", Ospedale Amedeo di Savoia, ASL CIttà di Torino, Turin, Italy
| | - A Russo
- Infectious Diseases Unit, Section of Infectious Diseases, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - G Gualano
- Stop TB Italy, Milan, Italy
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - E Pontali
- Department of Infectious Diseases, Galliera Hospital, Genoa, Italy
| | - L Surace
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - E Falbo
- Stop TB Italy, Milan, Italy
- Dipartimento Di Prevenzione, Azienda Sanitaria Provinciale di Catanzaro, Centro di Medicina del Viaggiatore e delle Migrazioni, P. O. Giovanni Paolo II, Lamezia Terme, CZ, Italy
| | - J Mencarini
- Infectious and Tropical Diseases Unit, Careggi University Hospital, Florence, Italy
| | - F Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - A Gori
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - M Schiuma
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, ASST Fatebenefratelli Sacco-Ospedale Luigi Sacco-Polo Universitario and Università Degli Studi di Milano, Milano, Italy
| | - G Lapadula
- Infectious Diseases Unit, Fondazione IRCCS San Gerardo dei Tintori, University of Milano-Bicocca, Monza, Italy
| | - D Goletti
- Stop TB Italy, Milan, Italy
- Translational Research Unit, Epidemiology Department, National Institute for Infectious Diseases-IRCCS L. Spallanzani, Rome, Italy
| |
Collapse
|
13
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
14
|
Zhang Y, Wu W, Li Q, Zhou P, Wen K, Shen J, Wang Z. The hapten rigidity improves antibody performances in immunoassay for rifamycins: Immunovalidation and molecular mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133977. [PMID: 38492395 DOI: 10.1016/j.jhazmat.2024.133977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
The immunogenicity of haptens determines the performance of the resultant antibody for small molecules. Rigidity is one of the basic physicochemical properties of haptens. However, few studies have investigated the effect of hapten rigidity on the strength of an immune response and overall antibody performance. Herein, we introduce three molecular descriptors that quantify hapten rigidity. By using of these descriptors, four rifamycin haptens with varied rigidity were designed. The structural and physicochemical feasibility of the designed haptens was then assessed by computational chemistry. Immunization demonstrated that the strength of induced immune responses, i.e., the titer and affinity of antiserum, was significantly increased with increased rigidity of haptens. Furthermore, molecular dynamic simulations demonstrated conformation constraint of rigid haptens contributed to the initial binding and activation of naïve B cells. Finally, a highly sensitive indirect competitive enzyme-linked immunosorbent assay was developed for detection of rifaximin, with an IC50 of 1.1 μg/L in buffer and a limit of detection of 0.2-11.3 μg/L in raw milk, river water, and soil samples. This work provides new insights into the effect of hapten rigidity on immunogenicity and offers new hapten design strategies for antibody discovery and vaccine development of small molecules.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Weilin Wu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Penghui Zhou
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
15
|
Chen JX, Dong HM, Cai YX, Tian LX, Yang ZC. Synthesis of narrow-spectrum anti-mycobacterial molecules without effect on the diversity of gut microbiota in mice based on the structure of rifampicin. Bioorg Chem 2024; 146:107282. [PMID: 38537334 DOI: 10.1016/j.bioorg.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Rifampicin (RIF) is a broad-spectrum antimicrobial agent that is also a first-line drug for treating tuberculosis (TB). Based on the naphthyl ring structure of RIF this study synthesized 16 narrow-spectrum antimicrobial molecules that were specifically anti-Mycobacterium tuberculosis (Mtb). The most potent candidate was 2-((6-hydroxynaphthalen-2-yl) methylene) hydrazine-1-carbothioamide (compound 3c) with minimum inhibitory concentration (MIC) of 1 μg/mL against Mtb. Synergistic anti-Mtb test indicated that none of the combinations of 3c with the major anti-TB drugs are antagonistic. Consistent with RIF, compound 3c induced large amounts of reactive oxygen radicals (ROS) in the cells of Mtb. The killing kinetics of compound 3c and RIF are very similar. Furthermore, molecular docking showed that compound 3c was able to access the RIF binding pocket of the β subunit of Mtb RNA polymerase (RNAP). Experiments in mice showed that compound 3c increased the variety of intestinal flora in mice, while RIF significantly decreased the diversity of intestinal flora in mice. In addition, compound 3c is non-toxic to animal cells with a selection index (SI) much more than 10. The evidence from this study suggests that the further development of 3c could contribute to the development of novel drug for TB treatment.
Collapse
Affiliation(s)
- Jun-Xian Chen
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Hong-Mei Dong
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Li-Xia Tian
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Guiyang 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
16
|
Cimino C, Rivera CG, Pearson JC, Colton B, Slain D, Mahoney MV. Pharmacotherapeutic Considerations in the Treatment of Nontuberculous Mycobacterial Infections: A Primer for Clinicians. Open Forum Infect Dis 2024; 11:ofae128. [PMID: 38560605 PMCID: PMC10977864 DOI: 10.1093/ofid/ofae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) can cause a variety of infections, including serious pulmonary disease. Treatment encompasses polypharmacy, with a targeted regimen of 2-5 active medications, depending on site of infection, species, and clinical characteristics. Medications may include oral, intravenous, and inhalational routes. Medication acquisition can be challenging for numerous reasons, including investigational status, limited distribution models, and insurance prior authorization. Additionally, monitoring and managing adverse reactions and drug interactions is a unique skill set. While NTM is primarily medically managed, clinicians may not be familiar with the intricacies of medication selection, procurement, and monitoring. This review offers insights into the pharmacotherapeutic considerations of this highly complex disease state, including regimen design, medication acquisition, safety monitoring, relevant drug-drug interactions, and adverse drug reactions.
Collapse
Affiliation(s)
- Christo Cimino
- Department of Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Jeffrey C Pearson
- Department of Pharmacy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Benjamin Colton
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland, USA
| | - Douglas Slain
- Department of Clinical Pharmacy, School of Pharmacy and Section of Infectious Diseases, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Monica V Mahoney
- Department of Pharmacy, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Eshboev F, Mamadalieva N, Nazarov PA, Hussain H, Katanaev V, Egamberdieva D, Azimova S. Antimicrobial Action Mechanisms of Natural Compounds Isolated from Endophytic Microorganisms. Antibiotics (Basel) 2024; 13:271. [PMID: 38534706 DOI: 10.3390/antibiotics13030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Infectious diseases are a significant challenge to global healthcare, especially in the face of increasing antibiotic resistance. This urgent issue requires the continuous exploration and development of new antimicrobial drugs. In this regard, the secondary metabolites derived from endophytic microorganisms stand out as promising sources for finding antimicrobials. Endophytic microorganisms, residing within the internal tissues of plants, have demonstrated the capacity to produce diverse bioactive compounds with substantial pharmacological potential. Therefore, numerous new antimicrobial compounds have been isolated from endophytes, particularly from endophytic fungi and actinomycetes. However, only a limited number of these compounds have been subjected to comprehensive studies regarding their mechanisms of action against bacterial cells. Furthermore, the investigation of their effects on antibiotic-resistant bacteria and the identification of biosynthetic gene clusters responsible for synthesizing these secondary metabolites have been conducted for only a subset of these promising compounds. Through a comprehensive analysis of current research findings, this review describes the mechanisms of action of antimicrobial drugs and secondary metabolites isolated from endophytes, antibacterial activities of the natural compounds derived from endophytes against antibiotic-resistant bacteria, and biosynthetic gene clusters of endophytic fungi responsible for the synthesis of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Nilufar Mamadalieva
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent 100000, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
| | - Pavel A Nazarov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1/40 Leninskie Gory, Moscow 119991, Russia
| | - Hidayat Hussain
- Leibniz Institute of Plant Biochemistry, Department of Bioorganic Chemistry, Weinberg 3, D-06120 Halle, Germany
| | - Vladimir Katanaev
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Dilfuza Egamberdieva
- Institute of Fundamental and Applied Research, National Research University TIIAME, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Shakhnoz Azimova
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| |
Collapse
|
18
|
Brunner VM, Fowler PW. Compensatory mutations are associated with increased in vitro growth in resistant clinical samples of Mycobacterium tuberculosis. Microb Genom 2024; 10:001187. [PMID: 38315172 PMCID: PMC10926696 DOI: 10.1099/mgen.0.001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Mutations in Mycobacterium tuberculosis associated with resistance to antibiotics often come with a fitness cost for the bacteria. Resistance to the first-line drug rifampicin leads to lower competitive fitness of M. tuberculosis populations when compared to susceptible populations. This fitness cost, introduced by resistance mutations in the RNA polymerase, can be alleviated by compensatory mutations (CMs) in other regions of the affected protein. CMs are of particular interest clinically since they could lock in resistance mutations, encouraging the spread of resistant strains worldwide. Here, we report the statistical inference of a comprehensive set of CMs in the RNA polymerase of M. tuberculosis, using over 70 000 M. tuberculosis genomes that were collated as part of the CRyPTIC project. The unprecedented size of this data set gave the statistical tests more power to investigate the association of putative CMs with resistance-conferring mutations. Overall, we propose 51 high-confidence CMs by means of statistical association testing and suggest hypotheses for how they exert their compensatory mechanism by mapping them onto the protein structure. In addition, we were able to show an association of CMs with higher in vitro growth densities, and hence presumably with higher fitness, in resistant samples in the more virulent M. tuberculosis lineage 2. Our results suggest the association of CM presence with significantly higher in vitro growth than for wild-type samples, although this association is confounded with lineage and sub-lineage affiliation. Our findings emphasize the integral role of CMs and lineage affiliation in resistance spread and increases the urgency of antibiotic stewardship, which implies accurate, cheap and widely accessible diagnostics for M. tuberculosis infections to not only improve patient outcomes but also prevent the spread of resistant strains.
Collapse
Affiliation(s)
| | - Philip W. Fowler
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute of Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford, UK
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Hasanuzzaman M, Bang CS, Gong EJ. Antibiotic Resistance of Helicobacter pylori: Mechanisms and Clinical Implications. J Korean Med Sci 2024; 39:e44. [PMID: 38288543 PMCID: PMC10825452 DOI: 10.3346/jkms.2024.39.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium associated with various gastrointestinal diseases, including chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. The increasing rates of H. pylori antibiotic resistance and the emergence of multidrug-resistant strains pose significant challenges to its treatment. This comprehensive review explores the mechanisms underlying the resistance of H. pylori to commonly used antibiotics and the clinical implications of antibiotic resistance. Additionally, potential strategies for overcoming antibiotic resistance are discussed. These approaches aim to improve the treatment outcomes of H. pylori infections while minimizing the development of antibiotic resistance. The continuous evolution of treatment perspectives and ongoing research in this field are crucial for effectively combating this challenging infection.
Collapse
Affiliation(s)
- Md Hasanuzzaman
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Chang Seok Bang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jeong Gong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
20
|
Hashim Z, Tyagi R, Singh GV, Nath A, Kant S. Preventive treatment for latent tuberculosis from Indian perspective. Lung India 2024; 41:47-54. [PMID: 38160459 PMCID: PMC10883444 DOI: 10.4103/lungindia.lungindia_336_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024] Open
Abstract
The persistent morbidity and mortality associated with tuberculosis (TB), despite our continued efforts, has been long recognized, and the rise in the incidence of drug-resistant TB adds to the preexisting concern. The bulk of the TB burden is confined to low-income countries, and rigorous efforts are made to detect, notify, and systematically treat TB. Efforts have been infused with renewed vigor and determination by the World Health Organization (WHO) to eliminate tuberculosis in the near future. Different health agencies worldwide are harvesting all possible strategies apart from consolidating ongoing practices, including prevention of the development of active disease by treating latent TB infection (LTBI). The guidelines for the same were already provided by the WHO and were then adapted in the Indian guidelines for the treatment of LTBI in 2021. While the long-term impact of TBI treatment is awaited, in this article, we aim to discuss the implications in the Indian context.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Richa Tyagi
- Department of Pulmonary Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Gajendra Vikram Singh
- Department of Respiratory Medicine, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George’s Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Kuo CJ, Bui NN, Ke JN, Lin CY, Lin WR, Chang ML, Wu HY, Huang MZ, Chiu CH, Chiu CT, Lai CH. Molecular characterization of rifabutin-resistance in refractory Helicobacter pylori infection in Taiwan. Int J Infect Dis 2024; 138:25-28. [PMID: 37956898 DOI: 10.1016/j.ijid.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023] Open
Abstract
OBJECTIVES To explore the molecular characteristics of rpoB, encoding β-subunit of DNA-directed RNA polymerase, and unravel the link to rifabutin-resistance in patients with refractory Helicobacter pylori infection. METHODS From January 2018-March 2021, a total of 1590 patients were screened for eligibility to participate in the study. Patients with refractory H. pylori infection were confirmed by using the (13C)-urea breath assay. All enrolled patients underwent esophagogastroduodenoscopy, and biopsies were taken for H. pylori culture and antibacterial susceptibility testing. Sequence analysis of rpoB was conducted for all rifabutin-resistant isolates. RESULTS In total, 70 patients were diagnosed with refractory H. pylori infection, and 39 isolates were successfully cultured. Amongst, 10 isolates were identified as rifabutin-resistance and nine isolates exhibited at least one amino acid substitution in RpoB. Isolates with a minimal inhibitory concentration >32 mg/l displayed a higher number of mutational changes in RpoB than the others. Additionally, more amino acid substitutions in RpoB correlated with developing a higher minimal inhibitory concentration for H. pylori rifabutin-resistance. CONCLUSION Our findings highlight the relationship between rifabutin-resistance in refractory H. pylori infection and specific mutations in RpoB, which will aid the clinical selection of appropriate antibacterial agents with better therapeutic effects.
Collapse
Affiliation(s)
- Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ngoc-Niem Bui
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Viet Nam
| | - Jun-Nong Ke
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Ling Chang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Zi Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Tang Chiu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Research, School of Medicine, China Medical University and Hospital, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Adhyapak P, Liang K, Duan M, Kapoor S. Effect of Host Cholesterol on the Membrane Dynamics of Outer Membrane Lipids of Mycobacteria. Chem Asian J 2023; 18:e202300697. [PMID: 37846643 PMCID: PMC7616960 DOI: 10.1002/asia.202300697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The ability of Mycobacterium tuberculosis to remain dormant after primary infection represents the prime cause of new TB cases throughout the world. Hence, diagnosis and treatment of individuals hosting dormant mycobacterium is one of the crucial strategies to be adopted for the prevention of Tuberculosis. Among many strategies unleashed by the latent bacterium, one of them is scavenging host cholesterol for carbon source. Cholesterol modifies lipid membranes over many scales and here, its effect on mycobacterial membrane biophysics and the subsequent effect on partitioning of antibiotics into cholesterol- enriched mycobacterial membranes was investigated. Our research showed that cholesterol alters the phase state behavior of mycobacterial outer membrane lipids by enhancing the overall membrane order at the headgroup and acyl chain region and is integrated into both ordered and disordered domains/phases, with a preference for the latter. Exogenous cholesterol further alters the drug partitioning behavior of structurally different drugs, pointing to a larger clinical potential of using more hydrophobic medications to target dormant bacteria.
Collapse
Affiliation(s)
- Pranav Adhyapak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076 (India)
| | - Kuan Liang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071 Hubei (China)
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071 Hubei (China)
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076 (India)
| |
Collapse
|
23
|
Sachan RK, Mistry V, Dholaria M, Rana A, Devgon I, Ali I, Iqbal J, Eldin SM, Mohammad Said Al-Tawaha AR, Bawazeer S, Dutta J, Karnwal A. Overcoming Mycobacterium tuberculosis Drug Resistance: Novel Medications and Repositioning Strategies. ACS OMEGA 2023; 8:32244-32257. [PMID: 37720746 PMCID: PMC10500578 DOI: 10.1021/acsomega.3c02563] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is a global health concern, affecting millions worldwide. This bacterium has earned a reputation as a formidable adversary due to its multidrug-resistant nature, allowing it to withstand many antibiotics. The development of this drug resistance in Mycobacterium tuberculosis is attributed to innate and acquired mechanisms. In the past, rifampin was considered a potent medication for treating tuberculosis infections. However, the rapid development of resistance to this drug by the bacterium underscores the pressing need for new therapeutic agents. Fortunately, several other medications previously overlooked for tuberculosis treatment are already available in the market. Moreover, several innovative drugs are under clinical investigation, offering hope for more effective treatments. To enhance the effectiveness of these drugs, it is recommended that researchers concentrate on identifying unique target sites within the bacterium during the drug development process. This strategy could potentially circumvent the issues presented by Mycobacterium drug resistance. This review primarily focuses on the characteristics of novel drug resistance mechanisms in Mycobacterium tuberculosis. It also discusses potential medications being repositioned or sourced from novel origins. The ultimate objective of this review is to discover efficacious treatments for tuberculosis that can successfully tackle the hurdles posed by Mycobacterium drug resistance.
Collapse
Affiliation(s)
| | - Vyoma Mistry
- C.
G. Bhakta Institute of Biotechnology, Uka
Tarsadia University, Bardoli 394350, Surat, India
| | - Mayuri Dholaria
- Naran
Lala College of Professional and Applied Sciences, Navsari 396450, Gujarat, India
| | - Abhishek Rana
- Jindal
Global Law School, OP Jindal Global University, Sonepat 131001, Haryana, India
| | - Inderpal Devgon
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Iftikhar Ali
- Center
for Plant Science and Biodiversity, University
of Swat, Charbagh 19120, Pakistan
- Department
of Genetics and Development, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Javed Iqbal
- Department
of Botany, Bacha Khan University, Charsadda, 24420 Khyber Pakhtunkhwa, Pakistan
| | - Sayed M. Eldin
- Center
of Research, Faculty of Engineering, Future
University in Egypt, New Cairo 11835, Egypt
| | | | - Sami Bawazeer
- Faculty
of Pharmacy, Department of Pharmacognosy, Umm Al-Qura University, Makkah 4041-4152, Kingdom of Saudi Arabia
| | - Joydeep Dutta
- Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Arun Karnwal
- Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
24
|
Ramirez DM, Ramirez D, Dhiman S, Arora R, Lozeau C, Arthur G, Zhanel G, Schweizer F. Guanidinylated Amphiphilic Tobramycin Derivatives Synergize with β-Lactam/β-Lactamase Inhibitor Combinations against Pseudomonas aeruginosa. ACS Infect Dis 2023; 9:1754-1768. [PMID: 37603592 DOI: 10.1021/acsinfecdis.3c00217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) was designated as a critical priority pathogen by the World Health Organization for which new therapeutic solutions are required. With the rapid dissemination of β-lactamases in P. aeruginosa, β-lactam (BL) antibiotics are used in conjunction with β-lactamase inhibitors (BLI). The effectiveness of the BL/BLI combination could be further enhanced with the inclusion of an outer membrane (OM) permeabilizer, such as aminoglycosides and aminoglycoside-based adjuvants. Thus, the development of seven tobramycin derivatives reported herein focused on improving OM permeabilizing capabilities and reducing associated toxicity. The structure-activity relationship studies emphasized the effects of the nature of the cationic group; the number of polar head groups and positive charges; and flexibility, length, and steric bulk of the hydrophobic moiety. The optimized guanidinylated tobramycin-biphenyl derivative was noncytotoxic and demonstrated the ability to potentiate ceftazidime and aztreonam monotherapy and in dual combinations with avibactam against multidrug-resistant (MDR) and β-lactamase harboring isolates of P. aeruginosa. The triple combination of ceftazidime/avibactam plus guanidinylated tobramycin-biphenyl resulted in rapid bactericidal activity within 4-8 h of treatment, demonstrating the potential application of these guanidinylated amphiphilic tobramycin derivatives in augmenting BL/BLI combinations.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Shiv Dhiman
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Christian Lozeau
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MBR3E 0J9, Canada
| |
Collapse
|
25
|
Gifford DR, Berríos-Caro E, Joerres C, Suñé M, Forsyth JH, Bhattacharyya A, Galla T, Knight CG. Mutators can drive the evolution of multi-resistance to antibiotics. PLoS Genet 2023; 19:e1010791. [PMID: 37311005 DOI: 10.1371/journal.pgen.1010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Antibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair. Unexpectedly, mutators not only allowed multi-resistance to evolve under combination treatment where it was favoured, but also under single-drug treatments. Using simulations, we show that the increase in mutation rate of the two canonical resistance targets is sufficient to permit multi-resistance evolution in both single-drug and combination treatments. Under both conditions, the mutator allele swept to fixation through hitch-hiking with single-drug resistance, enabling subsequent resistance mutations to emerge. Ultimately, our results suggest that mutators may hinder the utility of combination therapy when mutators are present. Additionally, by raising the rates of genetic mutation, selection for multi-resistance may have the unwanted side-effect of increasing the potential to evolve resistance to future antibiotic treatments.
Collapse
Affiliation(s)
- Danna R Gifford
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Ernesto Berríos-Caro
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christine Joerres
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Marc Suñé
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jessica H Forsyth
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Anish Bhattacharyya
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tobias Galla
- Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, Palma de Mallorca, Spain
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Moshnenko N, Kazantsev A, Chupakhin E, Bakulina O, Dar'in D. Synthetic Routes to Approved Drugs Containing a Spirocycle. Molecules 2023; 28:molecules28104209. [PMID: 37241950 DOI: 10.3390/molecules28104209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The use of spirocycles in drug discovery and medicinal chemistry has been booming in the last two decades. This has clearly translated into the landscape of approved drugs. Among two dozen clinically used medicines containing a spirocycle, 50% have been approved in the 21st century. The present review focuses on the notable synthetic routes to such drugs invented in industry and academia, and is intended to serve as a useful reference source of synthetic as well as general drug information for researchers engaging in the design of new spirocyclic scaffolds for medicinal use or embarking upon analog syntheses inspired by the existing approved drugs.
Collapse
Affiliation(s)
- Nazar Moshnenko
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, 191036 Saint Petersburg, Russia
| |
Collapse
|
27
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
28
|
Piccin A, Gulotta M, di Bella S, Martingano P, Crocè LS, Giuffrè M. Diverticular Disease and Rifaximin: An Evidence-Based Review. Antibiotics (Basel) 2023; 12:antibiotics12030443. [PMID: 36978310 PMCID: PMC10044695 DOI: 10.3390/antibiotics12030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
There have been considerable advances in the treatment of diverticular disease in recent years. Antibiotics are frequently used to treat symptoms and prevent complications. Rifaximin, a non-absorbable antibiotic, is a common therapeutic choice for symptomatic diverticular disease in various countries, including Italy. Because of its low systemic absorption and high concentration in stools, it is an excellent medicine for targeting the gastrointestinal tract, where it has a beneficial effect in addition to its antibacterial properties. Current evidence shows that cyclical rifaximin usage in conjunction with a high-fiber diet is safe and effective for treating symptomatic uncomplicated diverticular disease, while the cost-effectiveness of long-term treatment is unknown. The use of rifaximin to prevent recurrent diverticulitis is promising, but further studies are needed to confirm its therapeutic benefit. Unfortunately, there is no available evidence on the efficacy of rifaximin treatment for acute uncomplicated diverticulitis.
Collapse
Affiliation(s)
- Anna Piccin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Marco Gulotta
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Stefano di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Infectious Disease Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34128 Trieste, Italy
| | - Paola Martingano
- Department of Radiology, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34128 Trieste, Italy
| | - Lory Saveria Crocè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Liver Clinic, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), 34128 Trieste, Italy
| | - Mauro Giuffrè
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Correspondence:
| |
Collapse
|
29
|
Characterization of the Gut Microbiota in Urban Thai Individuals Reveals Enterotype-Specific Signature. Microorganisms 2023; 11:microorganisms11010136. [PMID: 36677429 PMCID: PMC9866083 DOI: 10.3390/microorganisms11010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Gut microbiota play vital roles in human health, utilizing indigestible nutrients, producing essential substances, regulating the immune system, and inhibiting pathogen growth. Gut microbial profiles are dependent on populations, geographical locations, and long-term dietary patterns resulting in individual uniqueness. Gut microbiota can be classified into enterotypes based on their patterns. Understanding gut enterotype enables us to interpret the capability in macronutrient digestion, essential substance production, and microbial co-occurrence. However, there is still no detailed characterization of gut microbiota enterotype in urban Thai people. In this study, we characterized the gut microbiota of urban Thai individuals by amplicon sequencing and classified their profiles into enterotypes, including Prevotella (EnP) and Bacteroides (EnB) enterotypes. Enterotypes were associated with lifestyle, dietary habits, bacterial diversity, differential taxa, and microbial pathways. Microbe-microbe interactions have been studied via co-occurrence networks. EnP had lower α-diversities than those in EnB. A correlation analysis revealed that the Prevotella genus, the predominant taxa of EnP, has a negative correlation with α-diversities. Microbial function enrichment analysis revealed that the biosynthesis pathways of B vitamins and fatty acids were significantly enriched in EnP and EnB, respectively. Interestingly, Ruminococcaceae, resistant starch degraders, were the hubs of both enterotypes, and strongly correlated with microbial diversity, suggesting that traditional Thai food, consisting of rice and vegetables, might be the important drivers contributing to the gut microbiota uniqueness in urban Thai individuals. Overall findings revealed the biological uniqueness of gut enterotype in urban Thai people, which will be advantageous for developing gut microbiome-based diagnostic tools.
Collapse
|
30
|
Yang T, Liu B, Zhou J, Shen Y, Song X, Tang X, Benghezal M, Marshall BJ, Tang H, Li H. The Inappropriateness of Using Rifampicin E-Test to Predict Rifabutin Resistance in Helicobacter pylori. J Infect Dis 2022; 226:S479-S485. [PMID: 36478247 DOI: 10.1093/infdis/jiac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the rifamycin cross-resistance in Helicobacter pylori, and whether the use of rifampicin E-test strips to screen H. pylori rifabutin resistance is appropriate. METHODS A total of 89 H. pylori isolates were included. Rifampicin minimum inhibitory concentrations (MICs) were obtained by E-test, while the MICs for rifapentine, rifaximin, and rifabutin were determined by agar dilution method. The rifamycin resistance rates based on different breakpoints were compared. Isolates with high-level rifampicin resistance were subjected to whole-genome sequencing. RESULTS A wide distribution of MICs (mostly in the range 0.125-8 mg/L) was observed for rifampicin, rifapentine, and rifaximin. Using MIC >1, ≥ 4, and > 4 mg/L as the breakpoints, resistance rates to rifampicin/rifapentine/rifaximin were 60.4%/48.3%/38.2%, 28.1%/25.8%/23.6%, and 15.7%/16.9%/7.9%, respectively. However, the rifabutin MICs of all the tested H. pylori isolates were extremely low (≤0.016 mg/L). Applying MIC ≥ 0.125 mg/L as the breakpoint, rifabutin resistance was nil. No mutation was found in the rpoB gene sequences of the 2 isolates with high-level rifampicin resistance. CONCLUSIONS There is a lack of cross-resistance between rifabutin and other rifamycins in H. pylori. The use of rifampicin E-test to predict H. pylori rifabutin resistance is inappropriate.
Collapse
Affiliation(s)
- Tiankuo Yang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Aviation Medical Appraisal Center, Civil Aviation Flight University of China, Guanghan, China
| | | | - Junpeng Zhou
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Shen
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaona Song
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqiong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Mohammed Benghezal
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Barry James Marshall
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Helicobacter pylori Research Laboratory, School of Biomedical Sciences, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Australia.,School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Hong Tang
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Aguilera-Correa JJ, Gisbert-Garzarán M, Mediero A, Fernández-Aceñero MJ, de-Pablo-Velasco D, Lozano D, Esteban J, Vallet-Regí M. Antibiotic delivery from bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis caused by methicillin-resistant Staphylococcus aureus. Acta Biomater 2022; 154:608-625. [PMID: 36341887 DOI: 10.1016/j.actbio.2022.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Osteomyelitis is a hard-to-treat infection of the bone and bone marrow that is mainly caused by Staphylococcus aureus, with an increasing incidence of methicillin-resistant S. aureus (MRSA). Owing to the aggressiveness of these bacteria in colonizing and destroying the bone, systemic antibiotic treatments fail to eradicate the infection. Instead, it normally entails surgery to remove the dead or infected bone. In this work, we report bone-targeted mesoporous silica nanoparticles for the treatment of osteomyelitis. The nanoparticles have been engineered with a functional gelatine/colistin coating able to hamper premature release from the mesopores while effectively disaggregating the bacterial biofilm. Because antibiotic resistance is a global emergency, we have designed two sets of identical nanoparticles, carrying each of them a clinically relevant antibiotic, that have demonstrated to have synergistic effect. The bone-targeted nanoparticles have been thoroughly evaluated in vitro and in vivo, obtaining a notable reduction of the amount of bacteria in the bone in just 24 h after only one dose, and paving the way for localized, nanoparticle-mediated treatment of MRSA-caused osteomyelitis. STATEMENT OF SIGNIFICANCE: In this work, we propose the use of bone-targeted mesoporous silica nanoparticles to address S. aureus-caused osteomyelitis that render synergistic therapeutic effect via multidrug delivery. Because the bacterial biofilm is responsible for an aggressive surgical approach and prolonged antibiotic treatment, the nanoparticles have been functionalized with a functional coating able to both disaggregate the biofilm, hamper premature antibiotic release and protect the intact bone. These engineered nanoparticles are able to effectively target bone tissue both in vitro and in vivo, showing high biocompatibility and elevated antibacterial effect.
Collapse
Affiliation(s)
- J J Aguilera-Correa
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - M Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - A Mediero
- Bone and Joint Unit, IIS- Fundación Jimenez Diaz, UAM, Avenida Reyes Católicos, 2 28037 Madrid, Spain
| | | | | | - D Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - J Esteban
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain; Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes Católicos, 2 28037 Madrid, Spain.
| | - M Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
32
|
Li Y, Liu C, Ma A, He W, Qiu Q, Zhao Y, Li Y. Identification and drug susceptibility testing of the subspecies of Mycobacterium avium complex clinical isolates in mainland China. J Glob Antimicrob Resist 2022; 31:90-97. [PMID: 35660663 DOI: 10.1016/j.jgar.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/25/2021] [Accepted: 05/29/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The Mycobacterium avium complex (MAC), comprising a series of subspecies, has a worldwide distribution, with differences in drug susceptibility among subspecies. This study aimed to assess the composition of MAC and susceptibility differences among subspecies in mainland China. METHODS A total of 287 MAC clinical strains were included in the study. Multitarget sequences were applied to accurately identify subspecies, and a microdilution method was used to evaluate minimum inhibitory concentrations (MICs) among subspecies using Sensititre SLOMYCO plates. RESULTS Mycobacterium intracellular (N = 169), Mycobacterium avium (N = 52), Mycobacterium chimaera (N = 22), Mycobacterium marseillense (N = 25), Mycobacterium colombiense (N = 14), Mycobacterium yongonense (N = 4), Mycobacterium vulneris (N = 3) and Mycobacterium timonense (N = 2) were isolated from MAC. Clarithromycin, amikacin and rifabutin showed lower MIC50 and MIC90 values than other drugs, and the resistance rates of clarithromycin, amikacin, linezolid and moxifloxacin were 6.3%, 10.5%, 51.9% and 46.3%, respectively. The resistance rates of clarithromycin and moxifloxacin in the initial treatment group were significantly lower than those in the retreatment group (4.09% vs. 12.94%; 30.41% vs. 75.29%; P < 0.05). Drug susceptibility differences were observed in clarithromycin and moxifloxacin among the five major subspecies (P < 0.05); however, those statistically significant differences disappeared when MACs were divided into two groups according to previous anti-tuberculosis (anti-TB) treatment history. CONCLUSION This study revealed that MAC, primarily comprising M. intracellulare, was susceptible to clarithromycin, amikacin and rifabutin. Drug susceptibility among subspecies did not exhibit intrinsic differences in our study. Previous anti-TB treatment patients are more resistant to drugs; thus, attention should be given to those patients in the clinic.
Collapse
Affiliation(s)
- Yuanchun Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chunfa Liu
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aijing Ma
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wencong He
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Qiu
- Research Institute of Tuberculosis, Chongqing Public Health Medical Center, Southwest University, Chongqing, China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yanming Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
33
|
Qian X, Wu B, Tang H, Luo Z, Xu Z, Ouyang S, Li X, Xie J, Yi Z, Leng Q, Liu Y, Qi Z, Zhao P. Rifapentine is an entry and replication inhibitor against yellow fever virus both in vitro and in vivo. Emerg Microbes Infect 2022; 11:873-884. [PMID: 35249454 PMCID: PMC8942558 DOI: 10.1080/22221751.2022.2049983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Yellow fever virus (YFV) infection is a major public concern that threatens a large population in South America and Africa. No specific anti-YFV drugs are available till now. Here, we report that rifapentine is a potent YFV inhibitor in various cell lines by high-throughput drugs screening, acting at both cell entry and replication steps. Kinetic test and binding assay suggest that rifapentine interferes the viral attachment to the target cells. The application of YFV replicon and surface plasmon resonance assay indicates that rifapentine suppresses viral replication by binding to the RNA-dependent RNA polymerase (RdRp) domain of viral nonstructural protein NS5. Further molecular docking suggests that it might interact with the active centre of RdRp. Rifapentine significantly improves the survival rate, alleviates clinical signs, and reduces virus load and injury in targeted organs both in YFV-infected type I interferon receptor knockout A129−/− and wild-type C57 mice. The antiviral effect in vivo is robust during both prophylactic intervention and therapeutic treatment, and the activity is superior to sofosbuvir, a previously reported YFV inhibitor in mice. Our data show that rifapentine may serve as an effective anti-YFV agent, providing promising prospects in the development of YFV pharmacotherapy.
Collapse
Affiliation(s)
- Xijing Qian
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Bingan Wu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Hailin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Zhenghan Luo
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Zhenghao Xu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, College of Life Sciences, Fujian Normal University, Fujian, People's Republic of China
| | - Xiangliang Li
- Key Laboratory of Innate Immune Biology of Fujian Province, College of Life Sciences, Fujian Normal University, Fujian, People's Republic of China
| | - Jianfeng Xie
- Fujian Provincial Center for Disease Control and Prevention, Fujian, People's Republic of China
| | - Zhigang Yi
- Key Laboratory of Medical Molecular Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qibin Leng
- State Key Laboratory of Respiratory Diseases, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yan Liu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naicker T, Ebenhan T. Antibiotic-Derived Radiotracers for Positron Emission Tomography: Nuclear or "Unclear" Infection Imaging? Angew Chem Int Ed Engl 2022; 61:e202204955. [PMID: 35834311 PMCID: PMC9826354 DOI: 10.1002/anie.202204955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Indexed: 01/11/2023]
Abstract
The excellent features of non-invasive molecular imaging, its progressive technology (real-time, whole-body imaging and quantification), and global impact by a growing infrastructure for positron emission tomography (PET) scanners are encouraging prospects to investigate new concepts, which could transform clinical care of complex infectious diseases. Researchers are aiming towards the extension beyond the routinely available radiopharmaceuticals and are looking for more effective tools that interact directly with causative pathogens. We reviewed and critically evaluated (challenges or pitfalls) antibiotic-derived PET radiopharmaceutical development efforts aimed at infection imaging. We considered both radiotracer development for infection imaging and radio-antibiotic PET imaging supplementing other tools for pharmacologic drug characterization; overall, a total of 20 original PET radiotracers derived from eleven approved antibiotics.
Collapse
Affiliation(s)
- Arno Christiaan Gouws
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | | | - Olivier Gheysens
- Department of Nuclear MedicineCliniques Universitaires Saint-Luc, and Institute of Clinical and Experimental ResearchUniversité Catholique de LouvainBrusselsBelgium
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- RadiochemistryThe South African Nuclear Energy CorporationBrits0420South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
| | | | - Tricia Naicker
- Catalysis and Peptide Research UnitUniversity of KwaZulu-NatalDurban4000South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPCPretoria0001South Africa
- Preclinical Drug Development PlatformNorth West UniversityPotchefstroom2520South Africa
- Department of Nuclear MedicineUniversity of PretoriaPretoria0001South Africa
| |
Collapse
|
35
|
Lan T, Ganapathy US, Sharma S, Ahn Y, Zimmerman M, Molodtsov V, Hegde P, Gengenbacher M, Ebright RH, Dartois V, Freundlich JS, Dick T, Aldrich CC. Redesign of Rifamycin Antibiotics to Overcome ADP-Ribosylation-Mediated Resistance. Angew Chem Int Ed Engl 2022; 61:e202211498. [PMID: 36222275 PMCID: PMC9633546 DOI: 10.1002/anie.202211498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/11/2022]
Abstract
Rifamycin antibiotics are a valuable class of antimicrobials for treating infections by mycobacteria and other persistent bacteria owing to their potent bactericidal activity against replicating and non-replicating pathogens. However, the clinical utility of rifamycins against Mycobacterium abscessus is seriously compromised by a novel resistance mechanism, namely, rifamycin inactivation by ADP-ribosylation. Using a structure-based approach, we rationally redesign rifamycins through strategic modification of the ansa-chain to block ADP-ribosylation while preserving on-target activity. Validated by a combination of biochemical, structural, and microbiological studies, the most potent analogs overcome ADP-ribosylation, restored their intrinsic low nanomolar activity and demonstrated significant in vivo antibacterial efficacy. Further optimization by tuning drug disposition properties afforded a preclinical candidate with remarkable potency and an outstanding pharmacokinetic profile.
Collapse
Affiliation(s)
- Tian Lan
- Department of Medicinal ChemistryCollege of PharmacyUniversity of Minnesota308 SE Harvard St SEMinneapolisMN 55455USA
| | - Uday S. Ganapathy
- Center for Discovery and InnovationHackensack Meridian Health & Department of Medical SciencesHackensack Meridian School of Medicine123 Metro BoulevardNutleyNJ 07110USA
| | - Sachin Sharma
- Department of Medicinal ChemistryCollege of PharmacyUniversity of Minnesota308 SE Harvard St SEMinneapolisMN 55455USA
| | - Yong‐Mo Ahn
- Department of Pharmacology and PhysiologyDepartment of MedicineCenter for Emerging and Reemerging PathogensRutgers University185 South Orange AvenueNewarkNJ 07103USA
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMD 20850USA
| | - Matthew Zimmerman
- Center for Discovery and InnovationHackensack Meridian Health & Department of Medical SciencesHackensack Meridian School of Medicine123 Metro BoulevardNutleyNJ 07110USA
| | - Vadim Molodtsov
- Waksman InstituteRutgers University190 Frelinghuysen RoadPiscatawayNJ 08854USA
| | - Pooja Hegde
- Department of Medicinal ChemistryCollege of PharmacyUniversity of Minnesota308 SE Harvard St SEMinneapolisMN 55455USA
| | - Martin Gengenbacher
- Center for Discovery and InnovationHackensack Meridian Health & Department of Medical SciencesHackensack Meridian School of Medicine123 Metro BoulevardNutleyNJ 07110USA
| | - Richard H. Ebright
- Waksman InstituteRutgers University190 Frelinghuysen RoadPiscatawayNJ 08854USA
| | - Véronique Dartois
- Center for Discovery and InnovationHackensack Meridian Health & Department of Medical SciencesHackensack Meridian School of Medicine123 Metro BoulevardNutleyNJ 07110USA
| | - Joel S. Freundlich
- Department of Pharmacology and PhysiologyDepartment of MedicineCenter for Emerging and Reemerging PathogensRutgers University185 South Orange AvenueNewarkNJ 07103USA
| | - Thomas Dick
- Center for Discovery and InnovationHackensack Meridian Health & Department of Medical SciencesHackensack Meridian School of Medicine123 Metro BoulevardNutleyNJ 07110USA
- Department of Microbiology and ImmunologyGeorgetown University3900 Reservoir Road NWWashingtonDC 20007USA
| | - Courtney C. Aldrich
- Department of Medicinal ChemistryCollege of PharmacyUniversity of Minnesota308 SE Harvard St SEMinneapolisMN 55455USA
| |
Collapse
|
36
|
Lan T, Ganapathy US, Sharma S, Ahn Y, Zimmerman M, Molodtsov V, Hegde P, Gengenbacher M, Ebright RH, Dartois V, Freundlich JS, Dick T, Aldrich CC. Redesign of Rifamycin Antibiotics to Overcome ADP‐Ribosylation‐Mediated Resistance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tian Lan
- Department of Medicinal Chemistry College of Pharmacy University of Minnesota 308 SE Harvard St SE Minneapolis MN 55455 USA
| | - Uday S. Ganapathy
- Center for Discovery and Innovation Hackensack Meridian Health & Department of Medical Sciences Hackensack Meridian School of Medicine 123 Metro Boulevard Nutley NJ 07110 USA
| | - Sachin Sharma
- Department of Medicinal Chemistry College of Pharmacy University of Minnesota 308 SE Harvard St SE Minneapolis MN 55455 USA
| | - Yong‐Mo Ahn
- Department of Pharmacology and Physiology Department of Medicine Center for Emerging and Reemerging Pathogens Rutgers University 185 South Orange Avenue Newark NJ 07103 USA
- National Center for Advancing Translational Sciences National Institutes of Health Rockville MD 20850 USA
| | - Matthew Zimmerman
- Center for Discovery and Innovation Hackensack Meridian Health & Department of Medical Sciences Hackensack Meridian School of Medicine 123 Metro Boulevard Nutley NJ 07110 USA
| | - Vadim Molodtsov
- Waksman Institute Rutgers University 190 Frelinghuysen Road Piscataway NJ 08854 USA
| | - Pooja Hegde
- Department of Medicinal Chemistry College of Pharmacy University of Minnesota 308 SE Harvard St SE Minneapolis MN 55455 USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation Hackensack Meridian Health & Department of Medical Sciences Hackensack Meridian School of Medicine 123 Metro Boulevard Nutley NJ 07110 USA
| | - Richard H. Ebright
- Waksman Institute Rutgers University 190 Frelinghuysen Road Piscataway NJ 08854 USA
| | - Véronique Dartois
- Center for Discovery and Innovation Hackensack Meridian Health & Department of Medical Sciences Hackensack Meridian School of Medicine 123 Metro Boulevard Nutley NJ 07110 USA
| | - Joel S. Freundlich
- Department of Pharmacology and Physiology Department of Medicine Center for Emerging and Reemerging Pathogens Rutgers University 185 South Orange Avenue Newark NJ 07103 USA
| | - Thomas Dick
- Center for Discovery and Innovation Hackensack Meridian Health & Department of Medical Sciences Hackensack Meridian School of Medicine 123 Metro Boulevard Nutley NJ 07110 USA
- Department of Microbiology and Immunology Georgetown University 3900 Reservoir Road NW Washington DC 20007 USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry College of Pharmacy University of Minnesota 308 SE Harvard St SE Minneapolis MN 55455 USA
| |
Collapse
|
37
|
Ramirez DM, Ramirez D, Arthur G, Zhanel G, Schweizer F. Guanidinylated Polymyxins as Outer Membrane Permeabilizers Capable of Potentiating Rifampicin, Erythromycin, Ceftazidime and Aztreonam against Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11101277. [PMID: 36289935 PMCID: PMC9598282 DOI: 10.3390/antibiotics11101277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polymyxins are considered a last-line treatment against infections caused by multidrug-resistant (MDR) Gram-negative bacteria. In addition to their use as a potent antibiotic, polymyxins have also been utilized as outer membrane (OM) permeabilizers, capable of augmenting the activity of a partner antibiotic. Several polymyxin derivatives have been developed accordingly, with the objective of mitigating associated nephrotoxicity. The conversion of polymyxins to guanidinylated derivatives, whereby the L-γ-diaminobutyric acid (Dab) amines are substituted with guanidines, are described herein. The resulting guanidinylated colistin and polymyxin B (PMB) exhibited reduced antibacterial activity but preserved OM permeabilizing properties that allowed potentiation of several antibiotic classes. Rifampicin, erythromycin, ceftazidime and aztreonam were particularly potentiated against clinically relevant MDR Gram-negative bacteria. The potentiating effects of guanidinylated polymyxins with ceftazidime or aztreonam were further enhanced by adding the β-lactamase inhibitor avibactam.
Collapse
Affiliation(s)
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
38
|
Gouws AC, Kruger HG, Gheysens O, Zeevaart JR, Govender T, Naiker T, Ebenhan T. Antibiotic‐Derived Radiotracers for Positron Emission Tomography: Nuclear or ‘Unclear’ Infection Imaging? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arno Christiaan Gouws
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Hendrik Gerhardus Kruger
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Olivier Gheysens
- Cliniques Universitaires Saint-Luc Department of Nuclear Medicine BELGIUM
| | - Jan Rijn Zeevaart
- North-West University Potchefstroom Campus: North-West University Preclinical Drug Development Platform SOUTH AFRICA
| | | | - Tricia Naiker
- University of KwaZulu-Natal School of Health Sciences Catalysis and Peptide Research Unit SOUTH AFRICA
| | - Thomas Ebenhan
- University of Pretoria Nuclear Medicine Steve Biko and Malherbe St 0001 Pretoria SOUTH AFRICA
| |
Collapse
|
39
|
Low-Dose Rifabutin Increases Cytotoxicity in Antimitotic-Drug-Treated Resistant Cancer Cells by Exhibiting Strong P-gp-Inhibitory Activity. Int J Mol Sci 2022; 23:ijms23137383. [PMID: 35806386 PMCID: PMC9267098 DOI: 10.3390/ijms23137383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The cytotoxicity of various antibiotics at low doses in drug-resistant cancer cells was evaluated. Low doses of rifabutin were found to markedly increase the cytotoxicity of various antimitotic drugs, such as vincristine (VIC), to P-glycoprotein (P-gp)-overexpressing antimitotic-drug-resistant KBV20C cells. Rifabutin was also found to exert high levels of P-gp-inhibitory activity at 4 and 24 h posttreatment, suggesting that the cytotoxicity of VIC + rifabutin was mainly due to the direct binding of rifabutin to P-gp and the reduction of VIC efflux by P-gp. The combination of VIC + rifabutin also increased early apoptosis, G2 arrest, and the DNA damaging marker, pH2AX protein. Interestingly, only the combination of VIC + rifabutin induced remarkable levels of cytotoxicity in resistant KBV20C cells, whereas other combinations (VIC + rifampin, VIC + rifapentine, and VIC + rifaximin) induced less cytotoxicity. Such finding suggests that rifabutin specifically increases the cytotoxicity of VIC in KBV20C cells, independent of the toxic effect of the ansamycin antibiotic. Only rifabutin had high P-gp-inhibitory activity, which suggests that its high P-gp-inhibitory activity led to the increased cytotoxicity of VIC + rifabutin. As rifabutin has long been used in the clinic, repositioning this drug for P-gp-overexpressing resistant cancer could increase the availability of treatments for patients with drug-resistant cancer.
Collapse
|
40
|
Monk M, Elshaboury R, Tatara A, Nelson S, Bidell MR. A Case Series of Rifabutin Use in Staphylococcal Prosthetic Infections. Microbiol Spectr 2022; 10:e0038422. [PMID: 35543561 PMCID: PMC9241794 DOI: 10.1128/spectrum.00384-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/12/2022] [Indexed: 01/24/2023] Open
Abstract
This case series describes seven patients who received rifabutin in place of rifampin combined with conventional antimicrobial therapy for treatment of hardware-associated staphylococcal infections. Infection recurrence, defined as need for unplanned surgical intervention within the evaluable follow up period after starting rifabutin, occurred in two patients. Two patients experienced possible treatment-associated adverse effects. Findings support future work to examine rifabutin use, when rifampin is not suitable, for adjunctive treatment of staphylococcal hardware infections. IMPORTANCE This work evaluates real-world data and clinical outcomes when rifabutin is used in place of rifampin for adjunctive management of staphylococcal hardware-associated infections. This is the second case study looking at this specific use of rifabutin, signifying the current lack of clinical data in this area. Assessing use of rifabutin in this capacity is clinically important given its lower propensity for drug interactions compared to rifampin.
Collapse
Affiliation(s)
- Miranda Monk
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ramy Elshaboury
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander Tatara
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sandra Nelson
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Monique R. Bidell
- Department of Pharmacy, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Wang B, Svetlov D, Bartikofsky D, Wobus CE, Artsimovitch I. Going Retro, Going Viral: Experiences and Lessons in Drug Discovery from COVID-19. Molecules 2022; 27:3815. [PMID: 35744940 PMCID: PMC9228142 DOI: 10.3390/molecules27123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
The severity of the COVID-19 pandemic and the pace of its global spread have motivated researchers to opt for repurposing existing drugs against SARS-CoV-2 rather than discover or develop novel ones. For reasons of speed, throughput, and cost-effectiveness, virtual screening campaigns, relying heavily on in silico docking, have dominated published reports. A particular focus as a drug target has been the principal active site (i.e., RNA synthesis) of RNA-dependent RNA polymerase (RdRp), despite the existence of a second, and also indispensable, active site in the same enzyme. Here we report the results of our experimental interrogation of several small-molecule inhibitors, including natural products proposed to be effective by in silico studies. Notably, we find that two antibiotics in clinical use, fidaxomicin and rifabutin, inhibit RNA synthesis by SARS-CoV-2 RdRp in vitro and inhibit viral replication in cell culture. However, our mutagenesis studies contradict the binding sites predicted computationally. We discuss the implications of these and other findings for computational studies predicting the binding of ligands to large and flexible protein complexes and therefore for drug discovery or repurposing efforts utilizing such studies. Finally, we suggest several improvements on such efforts ongoing against SARS-CoV-2 and future pathogens as they arise.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | | | - Dylan Bartikofsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; (D.B.); (C.E.W.)
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
42
|
Amelia TSM, Suaberon FAC, Vad J, Fahmi ADM, Saludes JP, Bhubalan K. Recent Advances of Marine Sponge-Associated Microorganisms as a Source of Commercially Viable Natural Products. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:492-512. [PMID: 35567600 DOI: 10.1007/s10126-022-10130-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Many industrially significant compounds have been derived from natural products in the environment. Research efforts so far have contributed to the discovery of beneficial natural products that have improved the quality of life on Earth. As one of the sources of natural products, marine sponges have been progressively recognised as microbial hotspots with reports of the sponges harbouring diverse microbial assemblages, genetic material, and metabolites with multiple industrial applications. Therefore, this paper aims at reviewing the recent literature (primarily published between 2016 and 2022) on the types and functions of natural products synthesised by sponge-associated microorganisms, thereby helping to bridge the gap between research and industrial applications. The metabolites that have been derived from sponge-associated microorganisms, mostly bacteria, fungi, and algae, have shown application prospects especially in medicine, cosmeceutical, environmental protection, and manufacturing industries. Sponge bacteria-derived natural products with medical properties harboured anticancer, antibacterial, antifungal, and antiviral functions. Efforts in re-identifying the origin of known and future sponge-sourced natural products would further clarify the roles and significance of microbes within marine sponges.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ferr Angelus C Suaberon
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
| | - Johanne Vad
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Afiq Durrani Mohd Fahmi
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jonel P Saludes
- Center for Natural Drug Discovery & Development (CND3), University of San Agustin, 5000, Iloilo City, Philippines
- Department of Chemistry, University of San Agustin, 5000, Iloilo City, Philippines
- Department of Science and Technology, Balik Scientist Program, Philippine Council for Health Research & Development (PCHRD), Bicutan, 1631, Taguig, Philippines
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Eco-Innovation Research Interest Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
43
|
Chen J, Zhang H, Guo Q, He S, Xu L, Zhang Z, Ma J, Chu H. In Vitro Activity of Rifabutin against Mycobacterium abscessus, Including Clarithromycin-Insusceptible Multidrug-Resistant Clinical Isolates. Clin Exp Pharmacol Physiol 2022; 49:767-775. [PMID: 35531776 DOI: 10.1111/1440-1681.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
The antibiotic options available for Mycobacterium abscessus (M. abscessus) infection are limited and no definitive therapeutic strategies have been formulated. The recent discovery that rifabutin is active against M. abscessus has raised interest in using rifabutin to treat this intractable disease. In this study, we evaluated the in vitro activity of rifabutin against 194 M. abscessus clinical isolates collected during 2012 January to 2017 December. As respected, rifabutin demonstrated considerably lower MICs against M. abscessus, with an MIC50 of 2μg/ml and MIC90 of 4μg/ml, respectively. Notably, the anti-M.abscessus activity was even stronger among clarithromycin-insusceptible strains. In addition, M. abscessus isolates with a rough morphotype were more sensitive to rifabutin compared with those forming smooth colonies when considered as a whole or in separate subspecies. Results from synergistic experiments revealed that the in vitro activity of rifabutin was significantly enhanced by the addition of amikacin, suggesting a promising strategy for M. abscessus infection combination treatment. Finally, five and three mutation patterns in rpoB and arr, respectively, were identified among the 194 strains through whole genome sequencing. However, none of them conferred rifabutin resistance. Our study is among the first to report the susceptibility of M. abscessus to rifabutin in vitro with a large amount of clinical isolates, suggesting that rifabutin is active, both alone and in combination, against M. abscessus and is worth considering as part of a combination treatment regimen for M. abscessus infections.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Haonan Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Liyun Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
45
|
Koepf US, Scheidt S, Hischebeth GTR, Strassburg CP, Wirtz DC, Randau TM, Lutz P. Increased rate of enteric bacteria as cause of periprosthetic joint infections in patients with liver cirrhosis. BMC Infect Dis 2022; 22:389. [PMID: 35439971 PMCID: PMC9019970 DOI: 10.1186/s12879-022-07379-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction Periprosthetic joint infections (PJI) are a major complication in joint-arthroplasty. Rifampicin is often used as an additional agent to treat PJI, because it penetrates bacterial biofilms. However, rifaximin, belonging to the same antibiotic class as rifampicin, is frequently used to prevent episodes of hepatic encephalopathy in patients with cirrhosis and may induce resistance to rifampicin. The aim of this study was to examine the microbial pattern of periprosthetic joint infections in cirrhotic patients and to test the hypothesis that intake of rifaximin increases the rate of resistance to rifampicin in periprosthetic joint infections. Methods A cohort of cirrhotic patients and PJI (n = 25) was analysed on the characteristics of bacterial isolates from sonication and tissue analysis. In a second step a subgroup analysis on the development of rifampicin resistant bacterial specimens, depending on the intake of rifaximin (8 rifaximin intake patients vs. 13 non rifaximin intake patients) was performed. Results Intestinal bacteria were found in 50% of the specimens, which was significantly more frequent than in a control cohort. By comparison of the single bacterial isolates, rifampicin resistance was detected in 69.2% (9/13) of the rifaximin-intake samples. In contrast, the non-rifaximin-intake isolates only were resistant to rifampicin in 22.2% (4/18) of the cases (p = 0.01). The odds ratio for developing a rifampicin-resistance through rifaximin intake was calculated as OR = 13.5. Conclusion Periprosthetic joint infections have a high incidence of being caused by enteric bacteria in cirrhotic patients. Due to this change in microbial pattern and the innate resistance to rifampicin of most of gram-negative bacteria, the therapy with rifampicin should be carefully considered. The association between the use of rifaximin and developed resistance to rifampicin has a major impact on the treatment of PJI.
Collapse
Affiliation(s)
- Uta S Koepf
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Sebastian Scheidt
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Gunnar T R Hischebeth
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Dieter C Wirtz
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Thomas M Randau
- Department of Orthopaedics and Traumatology, University Hospital Bonn, Bonn, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| |
Collapse
|
46
|
MacDougall C, Canonica T, Keh C, P. Phan BA, Louie J. Systematic review of drug–drug interactions between rifamycins and anticoagulant and antiplatelet agents and considerations for management. Pharmacotherapy 2022; 42:343-361. [DOI: 10.1002/phar.2672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Conan MacDougall
- Department of Clinical Pharmacy University of California San Francisco School of Pharmacy San Francisco California USA
| | - Theora Canonica
- Department of Clinical Pharmacy San Francisco Veterans' Affairs Medical Center San Francisco California USA
| | - Chris Keh
- Division of Infectious Disease University of California, San Francisco San Francisco California USA
| | - Binh An P. Phan
- Division of Cardiology San Francisco General Hospital University of California, San Francisco San Francisco California USA
| | - Janice Louie
- Division of Infectious Diseases San Francisco Department of Public Health Tuberculosis Clinic University of California, San Francisco San Francisco California USA
| |
Collapse
|
47
|
Dang Thi Ngoc T, Thi HN, Nguyen Duc D, Nguyen Thi S, Nguyen Duc T, Nguyen Hoang N. Preparation and Photocatalytic Characterization of Modified Nano TiO 2/Nd/Rice Husk Ash Material for Rifampicin Removal in Aqueous Solution. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2084906. [PMID: 35402061 PMCID: PMC8986426 DOI: 10.1155/2022/2084906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics like rifampicin are often persistent in the environment. When entering the water, it causes antimicrobial resistance that affects the ecosystem and accumulates in the aquatic organisms and affects human health through the food chain. In this study, titanium dioxide was doped with neodymium (0.01 to 0.8%) using the sol-gel hydrothermal method. TiO2/Nd was then coated on rice husk ash to produce a modified TiO2/Nd/rice husk ash material containing 0.36% (w/w) Nd. The structural characteristics and photocatalytic properties of the materials were analyzed by X-ray diffraction, energy dispersive X-ray, transmission electron microscopy, scanning electron microscopy, forbidden zone energy, and specific surface area. The TiO2/Nd material exhibited a higher photocatalytic decomposition capacity than TiO2 and depended on the Nd content. The rifampicin removal efficiency of TiO2/Nd materials with 0.36 to 0.80% Nd contents was approximately 40% higher than that of TiO2/Nd containing 0.01 to 0.28% Nd. A new photocatalytic TiO2/Nd/rice husk ash material was developed to decompose rifampicin. The rifampicin-degrading efficiency of TiO2/Nd and TiO2/Nd/rice husk ash material reached approximately 86 and 75%, respectively, within 90 min under sunlight. Although a lower efficiency was obtained, the TiO2/Nd/rice husk ash material was selected to degrade rifampicin residue in water via the photocatalytic process (under sunlight) because of its advantages such as requirement of a small amount and easy recovery. In the rifampicin removal process, k values were found to match the zero- and first-order kinetics. In particular, for TiO2/Nd and TiO2/Nd/rice husk ash under solar irradiation, R 2 values reached approximately 0.98. These results have been previously published as a preprint.
Collapse
Affiliation(s)
- Thuy Dang Thi Ngoc
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| | - Ha Nguyen Thi
- Faculty of Environmental Sciences, VNU-University of Science, Vietnam National University, Hanoi 100000/11406, Vietnam
| | - Dung Nguyen Duc
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| | - Sen Nguyen Thi
- Institute of Natural Resources and Environment Science, 7th Floor, GIM Building, 460 Lane, Hanoi 100000/11408, Vietnam
| | - Toan Nguyen Duc
- Institute of Natural Resources and Environment Training, 83 Nguyen Chi Thanh, Hanoi 100000/11500, Vietnam
| | - Nam Nguyen Hoang
- Department of Environment, Hanoi University of Mining and Geology, Hanoi 100000/129000, Vietnam
| |
Collapse
|
48
|
Thirumalaisamy R, Aroulmoji V, Iqbal MN, Saride S, Bhuvaneswari M, Deepa M, Sivasankar C, Khan R. Molecular insights of hyaluronic acid - ethambutol and hyaluronic acid - isoniazid drug conjugates act as promising novel drugs for the treatment of tuberculosis. J Biomol Struct Dyn 2022; 41:3562-3573. [PMID: 35293842 DOI: 10.1080/07391102.2022.2051748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study examines cellular targeted drug delivery (CTDD) pattern of two novel Hyaluronic acid (HA) Tuberculosis Drug (TB) conjugates and its efficacy and strong binding affinity towards TB molecular protein targets. Two TB drugs ethambutol (EB) and isoniazid (IN) and their Hyaluronic acid conjugates (HA-EB & HA-IN) were tested for its metabolism, toxicity and excretion prediction through In silico tools they revealed hyaluronic acid conjugate of two TB drugs exhibited good drug profile over their free form of TB drugs. Further these four molecules subjected to In silico molecular docking study with four potential Mycobacterium tuberculosis target proteins (3PD8, 4Y0L, 5DZK and 6GAU). Molecular docking study revealed that hyaluronic conjugates (HA-EB & HA-IN) exhibit significant binding affinity and excellent docking scores with all screened molecular protein targets of TB over their free form of drug. Further molecular dynamic simulation was calculated for the four drug molecules (EB, IN, HA- EB & HA-IN) with DNA gyrase enzyme (PDB ID 6GAU) of Mycobacterium tuberculosis and the MDS results revealed that both the conjugates with the TB target protein possessed good number of interaction with binding pocket residues and good simulation scores than the free form of drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Thirumalaisamy
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - V Aroulmoji
- Centre for Research & Development, Mahendra Engineering College (Autonomous), Mallasamudram, Namakkal, Tamil Nadu, India
| | | | - Shreyas Saride
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - M Bhuvaneswari
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - M Deepa
- Postgraduate and Research Department of Chemistry, Muthurangam Govt. Arts College, Vellore, India
| | - C Sivasankar
- Catalysis and Energy Laboratory, Department of Chemistry, Pondicherry University, Kalapet, Pondicherry, India
| | - Riaz Khan
- Rumsey, Berkshire, England, United Kingdom
| |
Collapse
|
49
|
Brauer M, Herrmann J, Zühlke D, Müller R, Riedel K, Sievers S. Myxopyronin B inhibits growth of a Fidaxomicin-resistant Clostridioides difficile isolate and interferes with toxin synthesis. Gut Pathog 2022; 14:4. [PMID: 34991700 PMCID: PMC8739712 DOI: 10.1186/s13099-021-00475-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The anaerobic, gastrointestinal pathogen Clostridioides difficile can cause severe forms of enterocolitis which is mainly mediated by the toxins it produces. The RNA polymerase inhibitor Fidaxomicin is the current gold standard for the therapy of C. difficile infections due to several beneficial features including its ability to suppress toxin synthesis in C. difficile. In contrast to the Rifamycins, Fidaxomicin binds to the RNA polymerase switch region, which is also the binding site for Myxopyronin B. Here, serial broth dilution assays were performed to test the susceptibility of C. difficile and other anaerobes to Myxopyronin B, proving that the natural product is considerably active against C. difficile and that there is no cross-resistance between Fidaxomicin and Myxopyronin B in a Fidaxomicin-resistant C. difficile strain. Moreover, mass spectrometry analysis indicated that Myxopyronin B is able to suppress early phase toxin synthesis in C. difficile to the same degree as Fidaxomicin. Conclusively, Myxopyronin B is proposed as a new lead structure for the design of novel antibiotics for the therapy of C. difficile infections.
Collapse
Affiliation(s)
- Madita Brauer
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Saarbrücken, Germany.,German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
50
|
Shingda SR, Ali PS, Gandhare NV, Pathan NB, Ansari NH. Investigation of mechanistic interactions between Rifampicin and bovine serum albumin in the presence of different surfactants. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1997759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sampat R. Shingda
- Department of Chemistry, Arvindbabu Deshmukh Mahavidyalaya, Bharsinghi, RTM, Nagpur University, Nagpur, India
| | - Parvez S. Ali
- Center for Health Studies, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Nilesh V. Gandhare
- Department of Chemistry, Nabira Mahavidyalaya, RTM, Nagpur University, Katol, India
| | - Naziyanaz B. Pathan
- Department of Chemistry, Institute of Science, RTM, Nagpur University, Nagpur, India
| | - Nizamul H. Ansari
- Department of Physical Sciences (Chemistry), Sant Baba Bhag Singh University, Jalandhar, Punjab, India
| |
Collapse
|