1
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025; 48:559-590. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Dress RJ, Ho WW, Ho V, Lam JH, Décaillot FM, Sinsinbar G, Soo J, Rengasamy G, Khan AK, Cornell TA, Chia TW, Venkataraman S, Nallani M, Ginhoux F. A Novel Polymersome Nanocarrier Promotes Anti-Tumour Immunity by Improved Priming of CD8 + T Cells. Immunology 2025; 175:21-35. [PMID: 39873184 PMCID: PMC11982605 DOI: 10.1111/imm.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed. Here, we describe the use of self-assembling artificial cell membrane (ACM) polymersomes to deliver tumour-specific peptides to trigger sustainable and efficient anti-tumour immune responses. We found that ACM polymersomes were highly efficient in targeting and activating mononuclear phagocytes (MNP) including dendritic cells (DC), while providing long-term reservoirs of antigens for continued immune cell priming. Subcutaneous injection of ACM-encapsulated tumour-antigen-peptides into tumour-bearing mice resulted in improved priming of CD8+ T cells and increased generation of tumour-antigen-peptide specific CD8+ effector T cells. Prophylactic and therapeutic immunisation with ACM-encapsulated peptides resulted in changes to the MNP composition in the tumour microenvironment, tumour regression and improved survival of immunised mice. Combining anti-PD-1 immune checkpoint inhibitor therapy with ACM polymersome peptide delivery further boosted anti-tumour immunity. Our results show that ACM polymersome nanocarriers efficiently instruct anti-tumour immune responses offering a promising new approach for vaccination and cancer immunotherapy. Trial Registration: NCT05385991.
Collapse
Affiliation(s)
- Regine J. Dress
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - William W. Ho
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | - Victor Ho
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | | | - Fabien M. Décaillot
- ACM Biolabs Pte LtdSingaporeSingapore
- Sapreme Development B.VBilthovenThe Netherlands
| | | | - Jenetta Soo
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
| | | | | | | | | | | | | | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STARSingaporeSingapore
- Gustave Roussy Cancer CampusVillejuifFrance
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015Equipe Labellisée—Ligue Nationale Contre le CancerVillejuifFrance
- Shanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Khan FU, Khongorzul P, Gris D, Amrani A. Role of USP7 in the regulation of tolerogenic dendritic cell function in type 1 diabetes. Cell Mol Biol Lett 2025; 30:47. [PMID: 40247205 PMCID: PMC12004606 DOI: 10.1186/s11658-025-00727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Tolerogenic dendritic cells (toDCs) are critical for maintaining immune homeostasis and preventing autoimmune disease development, such as type 1 diabetes (T1D). We have previously shown that DCs of non-obese diabetic (NOD) mice expressing active Stat5b (Stat5b-CA.DCs) acquire toDCs signature and protect against diabetes. However, the mechanisms involved in reprogramming DCs to adopt tolerogenic or immunogenic signatures are not fully known. This study investigates for the first time the role of USP7 in DC-mediated immune regulation in T1D using a transgenic NOD mouse model expressing an active form of Stat5b (NOD.Stat5b-CA). METHODS Splenic DCs were purified from diabetes-prone NOD mice and diabetes-resistant NOD.Stat5b-CA transgenic mice and their tolerogenic and immunogenic phenotypes were analyzed by FACS. Their pro-and anti-inflammatory cytokine patterns, IRF4, IRF8, de-ubiquitin ligase USP7, and methyltransferase Ezh2 expression were assessed by FACS and Western blot. Moreover, the impact of USP7 inhibition in DCs on Th1/Th2/Th17 and Treg and diabetes onset was assessed using an in vivo DC-based transfer model. RESULTS In this study, we found that splenic Stat5b-CA.DCs expressed high levels of USP7, Ezh2, and PD-L-1/2 and contained a higher proportion of tolerogenic conventional DC2 (cDC2) subsets than immunogenic cDC1 compared to NOD mice DCs. We also found that the USP7 blockade increased Stat5b-CA.DCs maturation and proinflammatory cytokines production while decreasing anti-inflammatory cytokines and PD-L1 and PD-L2 expressions. Mechanistically, USP7 blockade in Stat5-CA.DCs promoted cDC1 over cDC2 subsets by increasing IRF8 expression in an Ezh2-dependent manner and decreasing IRF4 expression independently of Ezh2. USP7 blockade also increased Stat5b-CA.DC capacity to promote Th17 and to restrain Th2 and Treg cells. Importantly, the capacity of Stat5b-CA.DCs to protect NOD mice from diabetes were lost when treated with USP7 inhibitor. CONCLUSIONS Our findings underscore the role of the USP7/Ezh2 axis in maintaining tolerogenic DC functions that are required to tailor adaptive immune response and diabetes protection in NOD mice.
Collapse
Affiliation(s)
- Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Denis Gris
- Department of Phamacology-Physiology, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Université de Sherbrooke Faculté de Médecine et des Sciences de la Santé, 3001, 12 th Avenue North, Sherbrooke, QC, J1H 5 N4, Canada.
| |
Collapse
|
4
|
Zhao Y, Zhu W, Dong S, Zhang H, Zhou W. Glucose Metabolism Reprogramming of Immune Cells in the Microenvironment of Pancreatic and Hepatobiliary Cancers. J Gastroenterol Hepatol 2025; 40:355-366. [PMID: 39780341 DOI: 10.1111/jgh.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIM Pancreatic and hepatobiliary cancers are increasing in prevalence and contribute significantly to cancer-related mortality worldwide. Emerging therapeutic approaches, particularly immunotherapy, are gaining attention for their potential to harness the patient's immune system to combat these tumors. Understanding the role of immune cells in the tumor microenvironment (TME) and their metabolic reprogramming is key to developing more effective treatment strategies. This review aims to explore the relationship between immune cell function and glucose metabolism in the TME of pancreatic and hepatobiliary cancers. METHODS This review synthesizes current research on the metabolic adaptations of immune cells, specifically focusing on glucose metabolism within the TME of pancreatic and hepatobiliary cancers. We examine the mechanisms by which immune cells influence tumor progression through metabolic reprogramming and how these interactions can be targeted for therapeutic purposes. RESULTS Immune cells in the TME undergo significant metabolic changes, with glucose metabolism playing a central role in modulating immune responses. These metabolic shifts not only affect immune cell function but also influence tumor behavior and progression. The unique metabolic features of immune cells in pancreatic and hepatobiliary cancers provide new opportunities for targeting immune responses to combat these malignancies more effectively. CONCLUSION Understanding the complex relationship between immune cell glucose metabolism and tumor progression in the TME of pancreatic and hepatobiliary cancers offers promising therapeutic strategies. By modulating immune responses through targeted metabolic interventions, it may be possible to improve the efficacy of immunotherapies and better combat these aggressive cancers.
Collapse
Affiliation(s)
- Yongqing Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weixiong Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
| |
Collapse
|
5
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
da Silva CP, Silva MDS, Santana HM, Paloschi MV, Ferreira E Ferreira AA, Brilhante LMV, Cruz LF, Serrath SN, Eulálio MDMC, Setúbal SDS, Vallochi AL, Nery NM, Zuliani JP. Bothrops atrox snake venom decreased MHC-II and CD86 expression in bone marrow-derived dendritic cells. Acta Trop 2024; 260:107426. [PMID: 39393479 DOI: 10.1016/j.actatropica.2024.107426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The effect of Bothrops atrox venom (BaV) on the maturation of bone marrow-derived dendritic cells (BMDCs) from mice was investigated, with a focus on selected cell markers, TAP1 expression, and the release of pro-inflammatory cytokines during this process. The objective was to evaluate BaV's impact on dendritic cell (DC) function, as DCs are pivotal in antigen presentation and responsible for initiating the immune response mediated by naïve T cells, as well as regulating the immune system. Bone marrow cells were obtained from Swiss mice, and hematopoietic precursors were differentiated into BMDCs using GM-CSF and IL-4. On the 7th day, BaV and LPS were introduced into the culture, and the cells were analyzed 24 h later. BaV's ability to stimulate BMDC maturation was assessed through the analysis of surface marker expression. The findings demonstrated that BMDCs are highly influenced by culture environment factors, such as GM-CSF and IL-4, and are sensitive to additional stimuli like LPS and BaV. Mature DCs exhibited elevated levels of critical markers for T cell activation, such as MHC-II, CD80, and CD86, displaying specific phenotypic characteristics. However, the observed reduction in MHC-II and CD86 expression following BaV exposure suggests a substantial impact on the immunological activation capacity of these cells, potentially interfering with the adaptive immune response. Furthermore, the selective release of cytokines, such as IL-6, but not TNF-α or IL-1β, indicates differentiated modulation of inflammatory responses by DCs under various stimulation conditions.
Collapse
Affiliation(s)
- Carolina P da Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Milena D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Hallison M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Alex A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Lívia M V Brilhante
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Larissa F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Suzanne N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Micaela de M C Eulálio
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Adriana L Vallochi
- Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Neriane M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil.
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
7
|
Backer RA, Probst HC, Clausen BE. Multiparameter Flow Cytometric Analysis of the Conventional and Monocyte-Derived DC Compartment in the Murine Spleen. Vaccines (Basel) 2024; 12:1294. [PMID: 39591196 PMCID: PMC11598974 DOI: 10.3390/vaccines12111294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Dendritic cells (DCs) are present in almost all tissues, where they act as sentinels involved in innate recognition and the initiation of adaptive immune responses. The DC family consists of several cell lineages that are heterogenous in their development, phenotype, and function. Within these DC lineages, further subdivisions exist, resulting in smaller, less characterized subpopulations, each with its unique immunomodulatory capabilities. Given the interest in utilizing DC for experimental studies and for vaccination purposes, it becomes increasingly crucial to thoroughly classify and characterize these diverse DC subpopulations. This understanding is vital for comprehending their relative contribution to the initiation, regulation, and propagation of immune responses. To facilitate such investigation, we here provide an easy and ready-to-use multicolor flow cytometry staining panel for the analysis of conventional DC, plasmacytoid DC, and monocyte-derived DC populations isolated from mouse spleens. This adaptable panel can be easily customized for the analysis of other tissue-specific DC populations, providing a valuable tool for DC research.
Collapse
Affiliation(s)
- Ronald A. Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
8
|
Yang Y, Qin S, Yang M, Wang T, Feng R, Zhang C, Zheng E, Li Q, Xiang P, Ning S, Xu X, Zuo X, Zhang S, Yun X, Zhou X, Wang Y, He L, Shang Y, Sun L, Liu H. Reconstitution of the Multiple Myeloma Microenvironment Following Lymphodepletion with BCMA CAR-T Therapy. Clin Cancer Res 2024; 30:4201-4214. [PMID: 39024031 PMCID: PMC11393544 DOI: 10.1158/1078-0432.ccr-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The purpose of this study was to investigate the remodeling of the multiple myeloma microenvironment after B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy. EXPERIMENTAL DESIGN We performed single-cell RNA sequencing on paired bone marrow specimens (n = 14) from seven patients with multiple myeloma before (i.e., baseline, "day -4") and after (i.e., "day 28") lymphodepleted BCMA CAR-T cell therapy. RESULTS Our analysis revealed heterogeneity in gene expression profiles among multiple myeloma cells, even those harboring the same cytogenetic abnormalities. The best overall responses of patients over the 15-month follow-up are positively correlated with the abundance and targeted cytotoxic activity of CD8+ effector CAR-T cells on day 28 after CAR-T cell infusion. Additionally, favorable responses are associated with attenuated immunosuppression mediated by regulatory T cells, enhanced CD8+ effector T-cell cytotoxic activity, and elevated type 1 conventional dendritic cell (DC) antigen presentation ability. DC re-clustering inferred intramedullary-originated type 3 conventional DCs with extramedullary migration. Cell-cell communication network analysis indicated that BCMA CAR-T therapy mitigates BAFF/GALECTIN/MK pathway-mediated immunosuppression and activates MIF pathway-mediated anti-multiple myeloma immunity. CONCLUSIONS Our study sheds light on multiple myeloma microenvironment dynamics after BCMA CAR-T therapy, offering clues for predicting treatment responsivity.
Collapse
Affiliation(s)
- Yazi Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mengyu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Enrun Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Qinghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Pengyu Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Xu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zuo
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoya Yun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Karanika S, Wang T, Yilma A, Castillo JR, Gordy JT, Bailey H, Quijada D, Fessler K, Tasneen R, Rouse Salcido EM, Harris HT, Bates RE, Ton H, Meza J, Li Y, Taylor AD, Zheng JJ, Zhang J, Peske JD, Karantanos T, Maxwell AR, Nuermberger E, Markham RB, Karakousis PC. Therapeutic DNA Vaccine Targeting Mycobacterium tuberculosis Persisters Shortens Curative Tuberculosis Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611055. [PMID: 39282461 PMCID: PMC11398349 DOI: 10.1101/2024.09.03.611055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Mycobacterium tuberculosis ( Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response rel Mtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice. Compared to the first-line regimen for drug-susceptible TB alone, our novel adjunctive vaccine induced greater Rel Mtb -specific T-cell responses associated with optimal TB control in spleen, blood, lungs, mediastinal lymph nodes, and bronchoalveolar lavage (BAL) fluid. These responses were sustained, if not augmented, over time. It also triggered more effective dendritic cell recruitment, activation, and colocalization with T cells, implying enhanced crosstalk between innate and adaptive immunity. Moreover, it potentiated a 6-month TB drug-resistant regimen, rendering it effective across treatment regimens, and also showed promising results in CD4+ knockout mice, perhaps due to enhanced Rel-specific CD8+ T-cell responses. Notably, our novel fusion vaccine was also immunogenic in nonhuman primates, the gold standard animal model for TB vaccine studies, eliciting antigen-specific T-cell responses in blood and BAL fluid analogous to those observed in protected mice. Our findings have critical implications for therapeutic TB vaccine clinical development in immunocompetent and immunocompromised populations and may serve as a model for defining immunological correlates of therapeutic vaccine-induced protection. One sentence summary A TB vaccine shortens curative drug treatment in mice by eliciting strong TB-protective immune responses and induces similar responses in macaques.
Collapse
|
10
|
Guak H, Weiland M, Ark AV, Zhai L, Lau K, Corrado M, Davidson P, Asiedu E, Mabvakure B, Compton S, DeCamp L, Scullion CA, Jones RG, Nowinski SM, Krawczyk CM. Transcriptional programming mediated by the histone demethylase KDM5C regulates dendritic cell population heterogeneity and function. Cell Rep 2024; 43:114506. [PMID: 39052479 PMCID: PMC11416765 DOI: 10.1016/j.celrep.2024.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/30/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Functional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs. Loss of KDM5C results in an increase in Ly6C- pDCs, which, compared to Ly6C+ pDCs, have limited ability to produce type I IFN and more efficiently stimulate antigen-specific CD8 T cells. KDM5C-deficient DCs have increased expression of inflammatory genes, altered expression of lineage-specific genes, and decreased function. In response to Listeria infection, KDM5C-deficient mice mount reduced CD8 T cell responses due to decreased antigen presentation by cDC1s. Thus, KDM5C is a key regulator of DC heterogeneity and critical driver of the functional properties of DCs.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew Weiland
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Alexandra Vander Ark
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lukai Zhai
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Mario Corrado
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Internal Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Paula Davidson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ebenezer Asiedu
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Batsirai Mabvakure
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Oncology, Georgetown University School of Medicine, Washington, DC 20057, USA; Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Shelby Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Catherine A Scullion
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; Department of Experimental Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sara M Nowinski
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
11
|
Bai X, Chen S, Chi X, Xie B, Guo X, Feng H, Wei P, Zhang D, Xie S, Xie T, Chen Y, Gou M, Qiao Q, Liu X, Jin W, Xu W, Zhao Z, Xing Q, Wang X, Zhang X, Dong C. Reciprocal regulation of T follicular helper cells and dendritic cells drives colitis development. Nat Immunol 2024; 25:1383-1394. [PMID: 38942990 DOI: 10.1038/s41590-024-01882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 05/22/2024] [Indexed: 06/30/2024]
Abstract
The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.
Collapse
Affiliation(s)
- Xue Bai
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Sijie Chen
- Bioinformatics Division, BNRIST and Department of Automation, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Xinxin Chi
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Bowen Xie
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xinyi Guo
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Han Feng
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Peng Wei
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Di Zhang
- Department of Pathology, The First Hospital of China Medical University and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Shan Xie
- Department of Gastroenterology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tian Xie
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Yongzhen Chen
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Mengting Gou
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
| | - Qin Qiao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xinwei Liu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Jin
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Wei Xu
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Zixuan Zhao
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Qi Xing
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xiaohu Wang
- Institute of Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Xuegong Zhang
- Bioinformatics Division, BNRIST and Department of Automation, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- New Cornerstone Science Laboratory, Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China.
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, China.
- Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Zhu L, Shang J, Li Y, Zhang Z, Fu P, Zong Y, Chen S, Wang J, Zhang J, Wang J, Jiang C. Toll-Like Receptors Mediate Opposing Dendritic Cell Effects on Treg/Th17 Balance in Mice With Intracerebral Hemorrhage. Stroke 2024; 55:2126-2138. [PMID: 38920054 DOI: 10.1161/strokeaha.124.046394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Dendritic cells (DCs) regulate the immune response associated with T lymphocytes, but their role in stroke remains unclear. In this study, we investigated the causal relationship between DCs and T-cell response in intracerebral hemorrhage (ICH) by focusing on TLRs (toll-like receptors) that may modulate the function of DCs. METHODS We studied the effects of TLR4, TLR2, and TLR9 on DC-mediated T-cell response and the outcomes of ICH using male C57BL/6 and CD11c-DTx (diphtheria toxin) receptor mice. We administered specific agents intraperitoneally or orally and evaluated the results using flow cytometry, real-time polymerase chain reaction, Western blotting, immunofluorescence staining, histopathology, and behavioral tests. RESULTS TLR4 and TLR2 activation induces DC maturation and reduces the ratio of regulatory T to T-helper 17 cells in the brain and periphery after ICH. When either of these receptors is activated, it can worsen neuroinflammation and exacerbate ICH outcomes. TLR9 also promotes DC maturation, stabilizing the number of DCs, particularly conventional DCs. TLR9 has the opposite effects on regulatory T/T-helper 17 balance, neuroinflammation, and ICH outcomes compared with TLR4 and TLR2. Upon stimulation, TLR4 and TLR9 may achieve these effects through the p38-MAPK (p38-mitogen-activated protein kinase)/MyD88 (myeloid differentiation primary response gene 88) and indoleamine 2,3-dioxygenase 1 (IDO1)/GCN2 (general control nonderepressible 2) signaling pathways, respectively. DCs act as intermediaries for TLR-mediated T-cell response. CONCLUSIONS TLR-mediated opposing effects of DCs on T-cell response may provide novel strategies to treat ICH.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Yinuo Li
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Zhiying Zhang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Peiji Fu
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Yan Zong
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Shuai Chen
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| | - Jian Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, China (Junmin Wang, Jian Wang)
| | - Chao Jiang
- Department of Neurology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- The Laboratory of Cerebrovascular Diseases and Neuroimmunology (L.Z., Y.L., Z.Z., P.F., Y.Z., S.C., C.J.), The Fifth Affiliated Hospital of Zhengzhou University, China
- Department of Neurology, People's Hospital of Zhengzhou University, China (J.S., J.Z., C.J.)
| |
Collapse
|
13
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Nakkala JR, Li Y, Akter L, Kang X, Chen X. Differential Regulation of DC Function, Adaptive Immunity, and MyD88 Dependence by Two Squalene Emulsion-Based Vaccine Adjuvants. Vaccines (Basel) 2024; 12:531. [PMID: 38793782 PMCID: PMC11125884 DOI: 10.3390/vaccines12050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
MF59 and AS03 are squalene emulsion-based vaccine adjuvants with similar compositions and droplet sizes. Despite their broad use in licensed influenza vaccines, few studies compared their adjuvant effects and action mechanisms side by side. Considering the majority of adjuvants act on dendritic cells (DCs) to achieve their adjuvant effects, this study compared AddaVax and AddaS03 with similar compositions to MF59 and AS03 adjuvants to enhance antigen uptake, DC maturation, ovalbumin (OVA), and seasonal influenza vaccine-induced immune responses. Considering MF59 was reported to activate MyD88 to mediate its adjuvant effects, this study also investigated whether the above-explored adjuvant effects of AddaVax and AddaS03 depended on MyD88. We found AddaVax more potently enhanced antigen uptake at the local injection site, while AddaS03 more potently enhanced antigen uptake in the draining lymph nodes. AddaS03 but not AddaVax stimulated DC maturation. Adjuvant-enhanced antigen uptake was MyD88 independent, while AddaS03-induced DC maturation was MyD88 dependent. AddaVax and AddaS03 similarly enhanced OVA-induced IgG and subtype IgG1 antibody responses as well as influenza vaccine-induced hemagglutination inhibition antibody titers, whileAddaS03 more potently enhanced OVA-specific IgG2c antibody responses. Both adjuvants depended on MyD88 to enhance vaccine-induced antibody responses, while AddaVax depended more on MyD88 to achieve its adjuvant effects. Our study reveals similarities and differences of the two squalene emulsion-based vaccine adjuvants, contributing to our improved understanding of their action mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (J.R.N.); (Y.L.); (L.A.); (X.K.)
| |
Collapse
|
15
|
Flynn PA, Long MD, Kosaka Y, Long N, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. Front Immunol 2024; 15:1297338. [PMID: 38495876 PMCID: PMC10943691 DOI: 10.3389/fimmu.2024.1297338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 03/19/2024] Open
Abstract
Dendritic cells (DC) are mediators between innate and adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for acute myeloid leukemia (AML) patients. Having a shared myeloid lineage it can be difficult to distinguish bone fide DCs from AML tumor cells. To date, there is little information on the effects of FLT3-ITD in DC biology. To further elucidate this relationship we utilized CITE-seq technology in combination with flow cytometry and multiplex immunoassays to measure changes to DCs in human and mouse tissues. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with AML to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet- phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells in the bone marrow and spleen compartments. Ex vivo stimulation of CD4+ T cells also showed increased Th17 phenotype in AML mice. Moreover, co-culture of AML mouse-derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes and their downstream effects on Th polarization.
Collapse
Affiliation(s)
- Patrick A. Flynn
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yoko Kosaka
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Nicola Long
- Department of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Jessica S. Mulkey
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Jesse L. Coy
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Anupriya Agarwal
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Evan F. Lind
- Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
16
|
Yu P, Cao S, Yang SM, Rai G, Martinez NJ, Yasgar A, Zakharov AV, Simeonov A, Molina Arocho WA, Lobel GP, Mohei H, Scott AL, Zhai L, Furth EE, Celeste Simon M, Haldar M. RALDH1 Inhibition Shows Immunotherapeutic Efficacy in Hepatocellular Carcinoma. Cancer Immunol Res 2024; 12:180-194. [PMID: 38051215 PMCID: PMC10872947 DOI: 10.1158/2326-6066.cir-22-1023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Globally, hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related death. We previously identified an immune evasion pathway whereby tumor cells produce retinoic acid (RA) to promote differentiation of intratumoral monocytes into protumor macrophages. Retinaldehyde dehydrogenase 1 (RALDH1), RALDH2, and RALDH3 are the three isozymes that catalyze RA biosynthesis. In this study, we have identified RALDH1 as the key driver of RA production in HCC and demonstrated the efficacy of RALDH1-selective inhibitors (Raldh1-INH) in suppressing RA production by HCC cells. Raldh1-INH restrained tumor growth in multiple mouse models of HCC by reducing the number and tumor-supporting functions of intratumoral macrophages as well as increasing T-cell infiltration and activation within tumors. Raldh1-INH also displayed favorable pharmacokinetic, pharmacodynamic, and toxicity profiles in mice thereby establishing them as promising new drug candidates for HCC immunotherapy.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- BeiGene (Shanghai) Research & Development Co., Ltd., Shanghai 200131, China
| | - Shuwen Cao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Natalia J. Martinez
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - William A. Molina Arocho
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graham P. Lobel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hesham Mohei
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexis L. Scott
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malay Haldar
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
18
|
Li L, Lu J, Liu J, Wu J, Zhang X, Meng Y, Wu X, Tai Z, Zhu Q, Chen Z. Immune cells in the epithelial immune microenvironment of psoriasis: emerging therapeutic targets. Front Immunol 2024; 14:1340677. [PMID: 38239345 PMCID: PMC10794746 DOI: 10.3389/fimmu.2023.1340677] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Psoriasis is a chronic autoimmune inflammatory disease characterized by erroneous metabolism of keratinocytes. The development of psoriasis is closely related to abnormal activation and disorders of the immune system. Dysregulated skin protective mechanisms can activate inflammatory pathways within the epithelial immune microenvironment (EIME), leading to the development of autoimmune-related and inflammatory skin diseases. In this review, we initially emphasized the pathogenesis of psoriasis, paying particular attention to the interactions between the abnormal activation of immune cells and the production of cytokines in psoriasis. Subsequently, we delved into the significance of the interactions between EIME and immune cells in the emergence of psoriasis. A thorough understanding of these immune processes is crucial to the development of targeted therapies for psoriasis. Finally, we discussed the potential novel targeted therapies aimed at modulating the EIME in psoriasis. This comprehensive examination sheds light on the intricate underlying immune mechanisms and provides insights into potential therapeutic avenues of immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Yu Meng
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai University, School of Medicine, Shanghai, China
- Shanghai Engineering Research Center of External Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Mahajan D, Kumar T, Rath PK, Sahoo AK, Mishra BP, Kumar S, Nayak NR, Jena MK. Dendritic Cells and the Establishment of Fetomaternal Tolerance for Successful Human Pregnancy. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0010. [PMID: 38782369 DOI: 10.2478/aite-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.
Collapse
Affiliation(s)
- Deviyani Mahajan
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tarun Kumar
- Department of Veterinary Clinical Complex, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Anjan Kumar Sahoo
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Bidyut Prava Mishra
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
- Department of Livestock Products Technology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha 751003, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
20
|
Xu L, Jiang Y, Xu F, Liu J, Jiang Y, Fang F, Luo L. Deucravacitinib and shikonin combination therapy ameliorates imiquimod-induced psoriasis in mice. Int J Immunopathol Pharmacol 2024; 38:3946320241260262. [PMID: 38876119 PMCID: PMC11179549 DOI: 10.1177/03946320241260262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024] Open
Abstract
INTRODUCTION TYK2 inhibitors and traditional natural drugs as promising drugs for psoriasis therapy are receiving increasing attention. They both affect different molecules of JAK/STAT pathway, but it is currently unclear whether their combination will enhance the effect on psoriasis. In this study, we used imiquimod (IMQ)-induced psoriasis mouse model to investigate the therapeutic effects of the combined administration of deucravacitinib (TYK2 inhibitor) and shikonin. METHODS Aldara cream containing 5% IMQ was used to topically treat the dorsal skin of each mouse for a total of six consecutive days to induce psoriasis. The psoriasis area and severity index (PASI) scores were recorded every day. On the 7th day, skin tissues were taken for histopathological examination and the content of cytokines in skin were evaluated. The frequency of immune cells in peripheral blood, spleen and skin were detected through flow cytometry. RESULTS Compared to the vehicle control group, the psoriasis symptoms and immune disorder improved significantly in the combination therapy group and deucravacitinib treatment group on the 7th day, and the expressions of p-STAT3 and Ki67 in skin were reduced as well. Moreover, the combined treatment of deucravacitinib and shikonin for psoriasis was superior to the monotherapy group, especially in inhibiting abnormal capillaries proliferation, reducing immune cells infiltration and decreasing the concentration of IL-12p70 in skin. CONCLUSION The combination of deucravacitinib and shikonin is a promising clinical application.
Collapse
Affiliation(s)
- Ling Xu
- School of Pharmacy, Nantong University, Nantong, China
- Biomarker Department, Crown Bioscience, Inc, Suzhou, China
| | - Ying Jiang
- School of Pharmacy, Nantong University, Nantong, China
| | - Fuping Xu
- Biomarker Department, Crown Bioscience, Inc, Suzhou, China
| | - Jun Liu
- School of Pharmacy, Nantong University, Nantong, China
| | - Yuhong Jiang
- Biomarker Department, Crown Bioscience, Inc, Suzhou, China
| | - Fang Fang
- Biomarker Department, Crown Bioscience, Inc, Suzhou, China
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
21
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
22
|
Li D, Yuan S, Deng Y, Wang X, Wu S, Chen X, Li Y, Ouyang J, Lin D, Quan H, Fu X, Li C, Mao W. The dysregulation of immune cells induced by uric acid: mechanisms of inflammation associated with hyperuricemia and its complications. Front Immunol 2023; 14:1282890. [PMID: 38053999 PMCID: PMC10694226 DOI: 10.3389/fimmu.2023.1282890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 12/07/2023] Open
Abstract
Changes in lifestyle induce an increase in patients with hyperuricemia (HUA), leading to gout, gouty arthritis, renal damage, and cardiovascular injury. There is a strong inflammatory response in the process of HUA, while dysregulation of immune cells, including monocytes, macrophages, and T cells, plays a crucial role in the inflammatory response. Recent studies have indicated that urate has a direct impact on immune cell populations, changes in cytokine expression, modifications in chemotaxis and differentiation, and the provocation of immune cells by intrinsic cells to cause the aforementioned conditions. Here we conducted a detailed review of the relationship among uric acid, immune response, and inflammatory status in hyperuricemia and its complications, providing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Delun Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Siyu Yuan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyao Deng
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaowan Wang
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Shouhai Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xuesheng Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Yimeng Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Jianting Ouyang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Danyao Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Haohao Quan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Xinwen Fu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| | - Wei Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Nephrology Institute of Guangdong Provincial Academy of Chinese Medical Sciences (NIGH-CM), Guangzhou, China
| |
Collapse
|
23
|
Hashimi M, Sebrell TA, Hedges JF, Snyder D, Lyon KN, Byrum SD, Mackintosh SG, Crowley D, Cherne MD, Skwarchuk D, Robison A, Sidar B, Kunze A, Loveday EK, Taylor MP, Chang CB, Wilking JN, Walk ST, Schountz T, Jutila MA, Bimczok D. Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nat Commun 2023; 14:6882. [PMID: 37898615 PMCID: PMC10613288 DOI: 10.1038/s41467-023-42610-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Bats are natural reservoirs for several zoonotic viruses, potentially due to an enhanced capacity to control viral infection. However, the mechanisms of antiviral responses in bats are poorly defined. Here we established a Jamaican fruit bat (JFB, Artibeus jamaicensis) intestinal organoid model of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Upon infection with SARS-CoV-2, increased viral RNA and subgenomic RNA was detected, but no infectious virus was released, indicating that JFB organoids support only limited viral replication but not viral reproduction. SARS-CoV-2 replication was associated with significantly increased gene expression of type I interferons and inflammatory cytokines. Interestingly, SARS-CoV-2 also caused enhanced formation and growth of JFB organoids. Proteomics revealed an increase in inflammatory signaling, cell turnover, cell repair, and SARS-CoV-2 infection pathways. Collectively, our findings suggest that primary JFB intestinal epithelial cells mount successful antiviral interferon responses and that SARS-CoV-2 infection in JFB cells induces protective regenerative pathways.
Collapse
Affiliation(s)
- Marziah Hashimi
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - T Andrew Sebrell
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Jodi F Hedges
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Deann Snyder
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Katrina N Lyon
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Stephanie D Byrum
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
- Arkansas Children's Research Institute, Little Rock, AR, USA
| | - Samuel G Mackintosh
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, USA
| | - Dan Crowley
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
- Department of Public & Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Michelle D Cherne
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - David Skwarchuk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Amanda Robison
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Barkan Sidar
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Anja Kunze
- Montana State University, Electrical and Computer Engineering Department, Bozeman, MT, USA
| | - Emma K Loveday
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
| | - Matthew P Taylor
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Connie B Chang
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James N Wilking
- Montana State University, Chemical and Biological Engineering Department, Bozeman, MT, USA
- Center for Biofilm Engineering, Bozeman, MT, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Seth T Walk
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology and Center of Vector-Borne Infectious Diseases, Colorado State University, Fort, Collins, CO, USA
| | - Mark A Jutila
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA
| | - Diane Bimczok
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, MT, USA.
- Center for Biofilm Engineering, Bozeman, MT, USA.
| |
Collapse
|
24
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Wang Z, Zhang J, An F, Zhang J, Meng X, Liu S, Xia R, Wang G, Yan C. The mechanism of dendritic cell-T cell crosstalk in rheumatoid arthritis. Arthritis Res Ther 2023; 25:193. [PMID: 37798668 PMCID: PMC10552435 DOI: 10.1186/s13075-023-03159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by joint pain and swelling, synovial hyperplasia, cartilage damage, and bone destruction. The mechanisms of dendritic cell (DC) and T cell-mediated crosstalk have gradually become a focus of attention. DCs regulate the proliferation and differentiation of CD4+ T cell subtypes through different cytokines, surface molecules, and antigen presentation. DC-T cell crosstalk also blocks antigen presentation by DCs, ultimately maintaining immune tolerance. DC-T cell crosstalk mainly involves chemokines, surface molecules (TonEBP, NFATc1), the PD-L1/PD-1 signalling axis, and the TGF-β signalling axis. In addition, DC-T cell crosstalk in RA is affected by glycolysis, reactive oxygen species, vitamin D, and other factors. These factors lead to the formation of an extremely complex regulatory network involving various mechanisms. This article reviews the key immune targets of DC-T cell crosstalk and elucidates the mechanism of DC-T cell crosstalk in RA to provide a basis for the treatment of patients with RA.
Collapse
Affiliation(s)
- Zhandong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jinlong Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Shiqing Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China
| | - Gang Wang
- Rheumatism and Orthopaedics Department, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
26
|
Kim S, Chen J, Jo S, Ou F, Ferris ST, Liu TT, Ohara RA, Anderson DA, Wu R, Chen MY, Gillanders WE, Gillanders WE, Murphy TL, Murphy KM. IL-6 selectively suppresses cDC1 specification via C/EBPβ. J Exp Med 2023; 220:e20221757. [PMID: 37432392 PMCID: PMC10336151 DOI: 10.1084/jem.20221757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Cytokines produced in association with tumors can impair antitumor immune responses by reducing the abundance of type 1 conventional dendritic cells (cDC1), but the mechanism remains unclear. Here, we show that tumor-derived IL-6 generally reduces cDC development but selectively impairs cDC1 development in both murine and human systems through the induction of C/EBPβ in the common dendritic cell progenitor (CDP). C/EBPβ and NFIL3 compete for binding to sites in the Zeb2 -165 kb enhancer and support or repress Zeb2 expression, respectively. At homeostasis, pre-cDC1 specification occurs upon Nfil3 induction and consequent Zeb2 suppression. However, IL-6 strongly induces C/EBPβ expression in CDPs. Importantly, the ability of IL-6 to impair cDC development is dependent on the presence of C/EBPβ binding sites in the Zeb2 -165 kb enhancer, as this effect is lost in Δ1+2+3 mutant mice in which these binding sites are mutated. These results explain how tumor-associated IL-6 suppresses cDC1 development and suggest therapeutic approaches preventing abnormal C/EBPβ induction in CDPs may help reestablish cDC1 development to enhance antitumor immunity.
Collapse
Affiliation(s)
- Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Suin Jo
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Feiya Ou
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stephen T. Ferris
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Ray A. Ohara
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - David A. Anderson
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Renee Wu
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Michael Y. Chen
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - William E. Gillanders
- Department of Surgery, Washington University and Siteman Cancer Center in St. Louis, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Theresa L. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Nery NM, Santana HM, Rego CMA, Lopes JA, Silva MDS, Ferreira E Ferreira AA, Reis VP, Paloschi MV, Serrath SN, Bastos JSF, Silva CP, Magalhães JGS, Cruz LF, Setubal SS, Zuliani JP. Bothrops jararacussu snake venom decreases CD1d, CD83, and CD86 expression on bone marrow-derived dendritic cells. Immunol Lett 2023; 262:7-17. [PMID: 37634711 DOI: 10.1016/j.imlet.2023.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
This study was designed to characterize mice bone marrow (BM) and bone marrow-derived dendritic cells (BMDC) and to compare the surface markers expression and inflammatory cytokine liberation in response to LPS and Bothrops jararacussu venom (BjV) stimulation. Typical morphology was observed in BM and BMDCs from the 4th up to the 8th day of culture using recombinant mouse GM-CSF and IL-4. A high basal level of MHC-II, CD1d, CD83, CD11c, CD80, and low CD86 was expressed by BM cells. After stimulation with GM-CSF/IL-4 for BMDCs differentiation, the BM cells differentiated into BMDCs presented MHC-II, CD1d, CD83, CD11c, CD86, and CD80 expression on the 4th - 8th day accompanied with high levels of TNF-α liberated. The difference between the surface markers' expression was observed in this time course in which CD1d, CD11c, and CD80 remained in high levels of expression, while MHC-II and CD83 showed moderate expression during the differentiation period. Also, cytokines liberation was monitored over the period of the BMDCs culture, and on the 6th day, low levels of IL-6 and IL-1β were found, while high levels of TNF-α on the 4th and 8th days, both of which contributed to the maturity of the BMDCs. Maturation of DCs with LPS showed significant upregulation of surface markers (MHC-II, CD1d, CD83, CD86, CD80) and pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) liberation. On the other hand, BjV induced a decrease in CD1d, CD11c, CD83, and CD86 expression in mature BMDCs which was not observed when LPS was used to stimulate BMDCs which probably induces impairment in T-cell activation.
Collapse
Affiliation(s)
- N M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - H M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - C M A Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - J A Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - M D S Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - A A Ferreira E Ferreira
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - V P Reis
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - M V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - S N Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - J S F Bastos
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - C P Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - J G S Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - L F Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - S S Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil
| | - J P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho-RO, Brazil; Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho-RO, Brazil.
| |
Collapse
|
28
|
Flynn PA, Long MD, Kosaka Y, Mulkey JS, Coy JL, Agarwal A, Lind EF. Leukemic mutation FLT3-ITD is retained in dendritic cells and disrupts their homeostasis leading to expanded Th17 frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558512. [PMID: 37781631 PMCID: PMC10541139 DOI: 10.1101/2023.09.19.558512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dendritic cells (DC) are mediators of adaptive immune responses to pathogens and tumors. DC development is determined by signaling through the receptor tyrosine kinase Fms-like tyrosine kinase 3 (FLT3) in bone marrow myeloid progenitors. Recently the naming conventions for DC phenotypes have been updated to distinguish between "Conventional" DCs (cDCs) and plasmacytoid DCs (pDCs). Activating mutations of FLT3, including Internal Tandem Duplication (FLT3-ITD), are associated with poor prognosis for leukemia patients. To date, there is little information on the effects of FLT3-ITD in DC biology. We examined the cDC phenotype and frequency in bone marrow aspirates from patients with acute myeloid leukemia (AML) to understand the changes to cDCs associated with FLT3-ITD. When compared to healthy donor (HD) we found that a subset of FLT3-ITD+ AML patient samples have overrepresented populations of cDCs and disrupted phenotypes. Using a mouse model of FLT3-ITD+ AML, we found that cDCs were increased in percentage and number compared to control wild-type (WT) mice. Single cell RNA-seq identified FLT3-ITD+ cDCs as skewed towards a cDC2 T-bet - phenotype, previously shown to promote Th17 T cells. We assessed the phenotypes of CD4+ T cells in the AML mice and found significant enrichment of both Treg and Th17 CD4+ T cells. Furthermore, co-culture of AML mouse- derived DCs and naïve OT-II cells preferentially skewed T cells into a Th17 phenotype. Together, our data suggests that FLT3-ITD+ leukemia-associated cDCs polarize CD4+ T cells into Th17 subsets, a population that has been shown to be negatively associated with survival in solid tumor contexts. This illustrates the complex tumor microenvironment of AML and highlights the need for further investigation into the effects of FLT3-ITD mutations on DC phenotypes.
Collapse
|
29
|
Guo X, He C, Xin S, Gao H, Wang B, Liu X, Zhang S, Gong F, Yu X, Pan L, Sun F, Xu J. Current perspective on biological properties of plasmacytoid dendritic cells and dysfunction in gut. Immun Inflamm Dis 2023; 11:e1005. [PMID: 37773693 PMCID: PMC10510335 DOI: 10.1002/iid3.1005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs), a subtype of DC, possess unique developmental, morphological, and functional traits that have sparked much debate over the years whether they should be categorized as DCs. The digestive system has the greatest mucosal tissue overall, and the pDC therein is responsible for shaping the adaptive and innate immunity of the gastrointestinal tract, resisting pathogen invasion through generating type I interferons, presenting antigens, and participating in immunological responses. Therefore, its alleged importance in the gut has received a lot of attention in recent years, and a fresh functional overview is still required. Here, we summarize the current understanding of mouse and human pDCs, ranging from their formation and different qualities compared with related cell types to their functional characteristics in intestinal disorders, including colon cancer, infections, autoimmune diseases, and intestinal graft-versus-host disease. The purpose of this review is to convey our insights, demonstrate the limits of existing research, and lay a theoretical foundation for the rational development and use of pDCs in future clinical practice.
Collapse
Affiliation(s)
- Xueran Guo
- Department of Clinical Medicine, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Chengwei He
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Shuzi Xin
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Han Gao
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
- Department of Clinical Laboratory, Aerospace Center HospitalPeking UniversityBeijingChina
| | - Boya Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaohui Liu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Sitian Zhang
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fengrong Gong
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Xinyi Yu
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Luming Pan
- Department of Clinical Medicine, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Fangling Sun
- Department of Laboratory Animal Research, Xuan Wu HospitalCapital Medical UniversityBeijingChina
| | - Jingdong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| |
Collapse
|
30
|
An Z, Liu W, Li W, Wei M, An C. Application of single-cell RNA sequencing in head and neck squamous cell carcinoma. Chin J Cancer Res 2023; 35:331-342. [PMID: 37691894 PMCID: PMC10485914 DOI: 10.21147/j.issn.1000-9604.2023.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma (HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells' expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancer-associated fibroblasts (CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-to-mesenchymal transition (EMT) model and the mechanism of drug resistance, as well as its clinical value.
Collapse
Affiliation(s)
- Zhaohong An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Liu
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Minghui Wei
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Changming An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
31
|
Zhang Y, Hu J, Ji K, Jiang S, Dong Y, Sun L, Wang J, Hu G, Chen D, Chen K, Tao Z. CD39 inhibition and VISTA blockade may overcome radiotherapy resistance by targeting exhausted CD8+ T cells and immunosuppressive myeloid cells. Cell Rep Med 2023; 4:101151. [PMID: 37567173 PMCID: PMC10439278 DOI: 10.1016/j.xcrm.2023.101151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023]
Abstract
Although radiotherapy (RT) has achieved great success in the treatment of non-small cell lung cancer (NSCLC), local relapses still occur and abscopal effects are rarely seen even when it is combined with immune checkpoint blockers (ICBs). Here, we characterize the dynamic changes of tumor-infiltrating immune cells after RT in a therapy-resistant murine tumor model using single-cell transcriptomes and T cell receptor sequencing. At the early stage, the innate and adaptive immune systems are activated. At the late stage, however, the tumor immune microenvironment (TIME) shifts into immunosuppressive properties. Our study reveals that inhibition of CD39 combined with RT preferentially decreases the percentage of exhausted CD8+ T cells. Moreover, we find that the combination of V-domain immunoglobulin suppressor of T cell activation (VISTA) blockade and RT synergistically reduces immunosuppressive myeloid cells. Clinically, high VISTA expression is associated with poor prognosis in patients with NSCLC. Altogether, our data provide deep insight into acquired resistance to RT from an immune perspective and present rational combination strategies.
Collapse
Affiliation(s)
- Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Ji
- Department of Pain Relief, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yang Dong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jun Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Department of Radiation Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, China; Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
32
|
Conarroe CA, Bullock TNJ. Ready for Prime Time? Dendritic Cells in High-Grade Gliomas. Cancers (Basel) 2023; 15:2902. [PMID: 37296865 PMCID: PMC10251930 DOI: 10.3390/cancers15112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
High-grade gliomas are malignant brain tumors, and patient outcomes remain dismal despite the emergence of immunotherapies aimed at promoting tumor elimination by the immune system. A robust antitumor immune response requires the presentation of tumor antigens by dendritic cells (DC) to prime cytolytic T cells. However, there is a paucity of research on dendritic cell activity in the context of high-grade gliomas. As such, this review covers what is known about the role of DC in the CNS, DC infiltration of high-grade gliomas, tumor antigen drainage, the immunogenicity of DC activity, and DC subsets involved in the antitumor immune response. Finally, we consider the implications of suboptimal DC function in the context of immunotherapies and identify opportunities to optimize immunotherapies to treat high-grade gliomas.
Collapse
Affiliation(s)
- Claire A. Conarroe
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
| | | |
Collapse
|
33
|
Zhuang WR, Wang Y, Nie W, Lei Y, Liang C, He J, Zuo L, Huang LL, Xie HY. Bacterial outer membrane vesicle based versatile nanosystem boosts the efferocytosis blockade triggered tumor-specific immunity. Nat Commun 2023; 14:1675. [PMID: 36966130 PMCID: PMC10039929 DOI: 10.1038/s41467-023-37369-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
Efferocytosis inhibition is emerging as an attractive strategy for antitumor immune therapy because of the subsequent leak of abundant immunogenic contents. However, the practical efficacy is seriously impeded by the immunosuppressive tumor microenvironments. Here, we construct a versatile nanosystem that can not only inhibit the efferocytosis but also boost the following antitumor immunity. MerTK inhibitor UNC2025 is loaded into the bacterial outer membrane vesicles (OMVs), which are then modified with maleimide (mU@OMVs). The prepared mU@OMVs effectively inhibits the efferocytosis by promoting the uptake while preventing the MerTK phosphorylation of tumor associated macrophages, and then captures the released antigens through forming universal thioether bonds. The obtained in situ vaccine effectively transfers to lymph nodes by virtue of the intrinsic features of OMVs, and then provokes intense immune responses that can efficiently prevent the growth, metastasis and recurrence of tumors in mice, providing a generalizable strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Wan-Ru Zhuang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yunfeng Wang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Yao Lei
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Liping Zuo
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, 100081, Beijing, P.R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, 100081, Beijing, P.R. China.
| |
Collapse
|
34
|
Backer RA, Probst HC, Clausen BE. Classical DC2 subsets and monocyte-derived DC: Delineating the developmental and functional relationship. Eur J Immunol 2023; 53:e2149548. [PMID: 36642930 DOI: 10.1002/eji.202149548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/08/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
To specifically tailor immune responses to a given pathogenic threat, dendritic cells (DC) are highly heterogeneous and comprise many specialized subtypes, including conventional DC (cDC) and monocyte-derived DC (MoDC), each with distinct developmental and functional characteristics. However, the functional relationship between cDC and MoDC is not fully understood, as the overlapping phenotypes of certain type 2 cDC (cDC2) subsets and MoDC do not allow satisfactory distinction of these cells in the tissue, particularly during inflammation. However, precise cDC2 and MoDC classification is required for studies addressing how these diverse cell types control immune responses and is therefore currently one of the major interests in the field of cDC research. This review will revise murine cDC2 and MoDC biology in the steady state and under inflammatory conditions and discusses the commonalities and differences between ESAMlo cDC2, inflammatory cDC2, and MoDC and their relative contribution to the initiation, propagation, and regulation of immune responses.
Collapse
Affiliation(s)
- Ronald A Backer
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Christian Probst
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Immunology, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Björn E Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
35
|
Shi K, Tang J, Yuan L, Zhou S, Ran W, Wang Z. Role of gene signature regulation in tumor immune microenvironment on the mechanism of uveal melanoma metastasis. Cancer Biomark 2023; 36:161-175. [PMID: 36683494 DOI: 10.3233/cbm-210427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Uveal melanoma (UM) is a rare but deadly cancer. The main cause of death from UM is liver metastasis. Though the metastasis mechanism remains unclear, it is closely related to the immune microenvironment and gene expression. OBJECTIVE This study aimed to identify the prognostic genes in primary and metastatic UM and their relationship with the immune microenvironment. METHODS Primary and metastatic UM data from the GEO database included GSE22138 and GSE44295 datasets. Kaplan-Meier analysis, Cox regression models, and ROC analysis were applied to screen genes in GSE22138. TIMER2.0 was employed to analyze the immune microenvironment from gene expression. Prognostic immune gene correlation was tested by Spearman. The results were validated in the independent dataset of cohort GSE44295. RESULTS Metastasis and primary differential gene analysis showed 107 significantly different genes associated with prognosis, and 11 of them were immune-related. ROC analysis demonstrated that our signature was predictive for UM prognosis (AUC > 0.8). Neutrophil and myeloid dendritic cells were closely associated with metastasis with scores that significantly divided patients into high-risk and low-risk groups (log-rank p< 0.05). Of these 11 genes, FABP5 and SHC4 were significantly associated with neutrophils in metastatic tumors, while ROBO1 expression was significantly correlated with myeloid dendritic cells in the primary tumors. CONCLUSIONS The present study constructed an 11-gene signature and established a model for risk stratification and prediction of overall survival in metastatic UM. Since FABP5 and SHC4 are related to neutrophil infiltration in metastatic UM, FABP5 and neutrophil regulation might be crucial in metastatic UM.
Collapse
Affiliation(s)
- Kai Shi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiatian Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyan Yuan
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China
| | - Shengwen Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wei Ran
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhiming Wang
- PET/CT Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
36
|
Characterization of Developmental Trajectories of Dendritic Cell Hematopoiesis Through Single-Cell RNA Sequencing Methods. Methods Mol Biol 2023; 2618:375-385. [PMID: 36905527 DOI: 10.1007/978-1-0716-2938-3_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Single-cell technologies have become valuable tools to trace dendritic cell differentiation trajectories. Here, we illustrate the workflow used for processing of mouse bone marrow for single-cell RNA sequencing and trajectory analyses, as done in Dress et al. (Nat Immunol 20:852-864, 2019). This short methodology is presented as a starting point for researchers just beginning to dive into the complex field of dendritic cell ontogeny and cellular development trajectory analyses.
Collapse
|
37
|
Xiao Q, Xia Y. Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Front Cell Infect Microbiol 2023; 13:1140765. [PMID: 36936763 PMCID: PMC10018208 DOI: 10.3389/fcimb.2023.1140765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the initiation and regulation of adaptive immune responses. When encountering immune stimulus such as bacterial and viral infection, parasite invasion and dead cell debris, DCs capture antigens, mature, acquire immunostimulatory activity and transmit the immune information to naïve T cells. Then activated cytotoxic CD8+ T cells directly kill the infected cells, while CD4+ T helper cells release cytokines to aid the activity of other immune cells, and help B cells produce antibodies. Thus, detailed insights into the DC maturation process are necessary for us to understand the working principle of immune system, and develop new medical treatments for infection, cancer and autoimmune disease. This review summarizes the DC maturation process, including environment sensing and antigen sampling by resting DCs, antigen processing and presentation on the cell surface, DC migration, DC-T cell interaction and T cell activation. Application of advanced imaging modalities allows visualization of subcellular and molecular processes in a super-high resolution. The spatiotemporal tracking of DCs position and migration reveals dynamics of DC behavior during infection, shedding novel lights on DC biology.
Collapse
Affiliation(s)
- Qi Xiao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
- *Correspondence: Qi Xiao,
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
38
|
Zhao D, Chen X, Wang L, Zhang J, Lv R, Tan L, Chen Y, Tao R, Li X, Chen Y, He W, He J. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front Microbiol 2023; 14:1111886. [PMID: 36960292 PMCID: PMC10027775 DOI: 10.3389/fmicb.2023.1111886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
The current influenza vaccines are unable to provide effective protection in many cases, like influenza viruses strain antigenic drift or shift, and the influenza continues to cause significant annual morbidity and mortality. Improving the immune response to influenza vaccination is an unmet need. Traditional Chinese medicine (TCM) and its active ingredients are commonly known to have immunomodulatory properties. We therefore compared influenza vaccination alone or formulated with Astragali Radix (Huangqi in Chinese), and several representative ingredients of TCM, including lentinan (polysaccharide), panax notoginseng saponins (saponin), breviscapine (flavone), andrographolide (terpenoid), and a Chinese herbal compound (kangai) for their potential to enhance immune responses to influenza vaccine in mice. We found that all these TCM-adjuvants were able to increase hemagglutination inhibition (HAI) antibody titers, splenocyte proliferation, splenic T cell differentiation, bone marrow dendritic cell maturity, and both Th1 and Th2 cytokine secretion of influenza vaccine to varying degrees, and that had the characteristics of no excessive inflammatory responses and bidirectional regulation simultaneously. Taken together, our findings show that Astragali Radix exerts a more comprehensive effect on vaccine immunity, on both innate and adaptive immunity. The effects of lentinan and andrographolide on adaptive immunity were more significant, while the effects of breviscapine on innate immunity were stronger, and the other two TCM adjuvants were weaker. As the first report of a comprehensive evaluation of TCM adjuvants in influenza vaccines, the results suggest that TCM and their active ingredients are good candidates for enhancing the immune response of influenza vaccines, and that suitable TCMs can be selected based on the adjuvant requirements of different vaccines.
Collapse
Affiliation(s)
- Danping Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuhong Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Linyuan Wang, ; Jianjun Zhang,
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lingyun Tan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei He
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Macrophage to dendritic cell transitioning induced by Toxoplasma. Trends Parasitol 2023; 39:10-11. [PMID: 36470783 DOI: 10.1016/j.pt.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Toxoplasma gondii exploits the migratory properties of monocytes and dendritic cells to promote tissue dissemination. Recently, ten Hoeve et al. reported that the parasite effector protein GRA28 conspires with host chromatin modifiers to confer dendritic cell-like features that convert sessile macrophages into migratory cells that transport infection to distal organs.
Collapse
|
40
|
Liu P, Kang C, Zhang J, Liu Y, Liu J, Hu T, Zeng X, Qiu S. The role of dendritic cells in allergic diseases. Int Immunopharmacol 2022; 113:109449. [DOI: 10.1016/j.intimp.2022.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
|
41
|
Delgado-Arévalo C, Calvet-Mirabent M, Triguero-Martínez A, Vázquez de Luis E, Benguría-Filippini A, Largo R, Calzada-Fraile D, Popova O, Sánchez-Cerrillo I, Tsukalov I, Moreno-Vellisca R, de la Fuente H, Herrero-Beaumont G, Ramiro A, Sánchez-Madrid F, Castañeda S, Dopazo A, González Álvaro I, Martin-Gayo E. NLRC4-mediated activation of CD1c+ DC contributes to perpetuation of synovitis in rheumatoid arthritis. JCI Insight 2022; 7:152886. [PMID: 36194479 DOI: 10.1172/jci.insight.152886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2022] [Indexed: 12/15/2022] Open
Abstract
The individual contribution of specific myeloid subsets such as CD1c+ conventional DC (cDC) to perpetuation of rheumatoid arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDC in patients with RA and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional, and functional characteristics of CD1c+ and CD141+ cDC and monocytes from the blood and synovial fluid of patients with RA. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC was associated with the presence of this DC subset in the synovial membrane in patients with RA. Moreover, synovial CD1c+ cDC are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFN-γ+IL-17+CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ receptors and NLRC4 as a potential molecular mechanism mediating pathogenic activation, CD64 upregulation, and functional specialization of CD1c+ cDC in response to dsDNA-IgG in patients with RA.
Collapse
Affiliation(s)
- Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Triguero-Martínez
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | | | - Raquel Largo
- Bone and Joint Research Unit, Rheumatology Service, IIS Fundación Jiménez Díaz, Madrid, Spain
| | - Diego Calzada-Fraile
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Olga Popova
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ilya Tsukalov
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | | | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | | | - Almudena Ramiro
- Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain.,Biology Laboratory, The National Centre for Cardiovascular Research, Madrid, Spain
| | - Santos Castañeda
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Department of Medicine, UAM, Madrid, Spain
| | - Ana Dopazo
- Genomic Unit, The National Centre for Cardiovascular Research, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa, Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Enrique Martin-Gayo
- Immunology Unit from Hospital Universitario La Princesa, Medicine Faculty, Autonomous University of Madrid (UAM), Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.,CIBER Infectious Diseases, Madrid, Spain
| |
Collapse
|
42
|
Katopodi T, Petanidis S, Charalampidis C, Chatziprodromidou I, Eskitzis P, Tsavlis D, Zarogoulidis P, Kosmidis C, Matthaios D, Porpodis K. Tumor-Infiltrating Dendritic Cells: Decisive Roles in Cancer Immunosurveillance, Immunoediting, and Tumor T Cell Tolerance. Cells 2022; 11:cells11203183. [PMID: 36291050 PMCID: PMC9600942 DOI: 10.3390/cells11203183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a key role in progression of tumorigenesis, tumor progression, and metastasis. Accumulating data reveal that dendritic cells (DCs) appear to play a key role in the development and progression of metastatic neoplasia by driving immune system dysfunction and establishing immunosuppression, which is vital for tumor evasion of host immune response. Consequently, in this review, we will discuss the function of tumor-infiltrating DCs in immune cell signaling pathways that lead to treatment resistance, tumor recurrence, and immunosuppression. We will also review DC metabolism, differentiation, and plasticity, which are essential for metastasis and the development of lung tumors. Furthermore, we will take into account the interaction between myeloid cells and DCs in tumor-related immunosuppression. We will specifically look into the molecular immune-related mechanisms in the tumor microenvironment that result in reduced drug sensitivity and tumor relapse, as well as methods for combating drug resistance and focusing on immunosuppressive tumor networks. DCs play a crucial role in modulating the immune response. Especially, as cancer progresses, DCs may switch from playing an immunostimulatory to an inhibitory role. This article’s main emphasis is on tumor-infiltrating DCs. We address how they affect tumor growth and expansion, and we highlight innovative approaches for therapeutic modulation of these immunosuppressive DCs which is necessary for future personalized therapeutic approaches.
Collapse
Affiliation(s)
- Theodora Katopodi
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Savvas Petanidis
- Laboratory of Medical Biology and Genetics, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-999-205; Fax: +30-2310-999-208
| | | | | | - Panagiotis Eskitzis
- Department of Obstetrics, University of Western Macedonia, 50100 Kozani, Greece
| | - Drosos Tsavlis
- Laboratory of Experimental Physiology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paul Zarogoulidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | - Christoforos Kosmidis
- Third Department of Surgery, “AHEPA” University Hospital, Aristotle University of Thessaloniki, 55236 Thessaloniki, Greece
| | | | - Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, “G.Papanikolaou” General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
43
|
Sorafenib combined with STAT3 knockdown triggers ER stress-induced HCC apoptosis and cGAS-STING-mediated anti-tumor immunity. Cancer Lett 2022; 547:215880. [PMID: 35981569 DOI: 10.1016/j.canlet.2022.215880] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023]
Abstract
Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC). However, it is difficult to alleviate this disease process using single-agent chemotherapy. Using combination therapies for advanced HCC has become a major trend. Given that STAT3 overexpression is involved in chemotherapy resistance and the immune escape of HCC cells, it has become a potential therapeutic target for HCC in recent years. GEO database analysis showed that STAT3 levels in tumor tissues from non-responders were significantly higher than those in responders to sorafenib. Our studies demonstrated that STAT3 knockdown promoted sorafenib-induced ER stress-induced apoptosis. Importantly, the DNA released by dead HCC cells stimulated the cGAS-STING signaling pathway in CD103+ DCs and promoted type I interferon production, thus, enhancing the anti-tumor function of CD8+ T and NK cells. In conclusion, our results revealed that the combination strategy of sorafenib and STAT3 knockdown might be a potential treatment strategy for HCC, directly and efficiently disturbing the tumor features of HCC cells while improving the tumor microenvironment via the cGAS-STING-Type I IFNs axis of DCs, inducing anti-HCC immune responses.
Collapse
|
44
|
Wu R, Murphy KM. DCs at the center of help: Origins and evolution of the three-cell-type hypothesis. J Exp Med 2022; 219:e20211519. [PMID: 35543702 PMCID: PMC9098650 DOI: 10.1084/jem.20211519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/06/2022] Open
Abstract
Last year was the 10th anniversary of Ralph Steinman's Nobel Prize awarded for his discovery of dendritic cells (DCs), while next year brings the 50th anniversary of that discovery. Current models of anti-viral and anti-tumor immunity rest solidly on Steinman's discovery of DCs, but also rely on two seemingly unrelated phenomena, also reported in the mid-1970s: the discoveries of "help" for cytolytic T cell responses by Cantor and Boyse in 1974 and "cross-priming" by Bevan in 1976. Decades of subsequent work, controversy, and conceptual changes have gradually merged these three discoveries into current models of cell-mediated immunity against viruses and tumors.
Collapse
Affiliation(s)
- Renee Wu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
45
|
Han M, Ma J, Ouyang S, Wang Y, Zheng T, Lu P, Zheng Z, Zhao W, Li H, Wu Y, Zhang B, Hu R, Otsu K, Liu X, Wan Y, Li H, Huang G. The kinase p38α functions in dendritic cells to regulate Th2-cell differentiation and allergic inflammation. Cell Mol Immunol 2022; 19:805-819. [PMID: 35551270 PMCID: PMC9243149 DOI: 10.1038/s41423-022-00873-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a critical role in controlling T helper 2 (Th2) cell-dependent diseases, but the signaling mechanism that triggers this function is not fully understood. We showed that p38α activity in DCs was decreased upon HDM stimulation and dynamically regulated by both extrinsic signals and Th2-instructive cytokines. p38α-specific deletion in cDC1s but not in cDC2s or macrophages promoted Th2 responses under HDM stimulation. Further study showed that p38α in cDC1s regulated Th2-cell differentiation by modulating the MK2−c-FOS−IL-12 axis. Importantly, crosstalk between p38α-dependent DCs and Th2 cells occurred during the sensitization phase, not the effector phase, and was conserved between mice and humans. Our results identify p38α signaling as a central pathway in DCs that integrates allergic and parasitic instructive signals with Th2-instructive cytokines from the microenvironment to regulate Th2-cell differentiation and function, and this finding may offer a novel strategy for the treatment of allergic diseases and parasitic infection.
Collapse
Affiliation(s)
- Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China
| | - Jingyu Ma
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Peishan Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China
| | - Weiheng Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Hongjin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Baohua Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Ran Hu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.,Basic Department of Cancer Center, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Kinya Otsu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,School of Cardiovascular Medicine and Sciences, King's College London, London, SE59NU, UK
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ying Wan
- Biomedical Analysis Center, Army Medical University, 400038, Chongqing, China.
| | - Huabin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 200031, Shanghai, China.
| | - Gonghua Huang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China. .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China.
| |
Collapse
|
46
|
CD40 monoclonal antibody and OK432 synergistically promote the activation of dendritic cells in immunotherapy. Cancer Cell Int 2022; 22:216. [PMID: 35715855 PMCID: PMC9206283 DOI: 10.1186/s12935-022-02630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
Background Colorectal cancer (CRC) with pulmonary metastasis usually indicates a poor prognosis, whereas patients may benefit from adoptive cell therapy. Tumor-specific cytotoxic T lymphocytes (CTLs) have been reported as a promising treatment for CRC. However, the antitumor effect of CTLs remains limited partially due to insufficient production of effector cells via the activation by antigen-presenting dendritic cells (DCs). Method This study showed that a combination of CD40 mAb and Picibanil (OK-432) could significantly enhance the activation of CTLs by DCs, both in vitro and in vivo. Flow cytometry, colon cancer mouse model, and pathological staining were employed to demonstrate the specific functions. Results This approach promoted the maturation of DCs, augmented the production of stimulatory cytokines, and suppressed the secretion of inhibitory cytokines. Additionally, it facilitated the killing efficiency of CTLs via stimulating their proliferation while restraining the number of Tregs, concomitantly with the positive regulation of corresponding cytokines. Furthermore, the combined unit could hurdle the expansion of tumor cells on metastatic lungs in the colon cancer mouse model. Conclusion Collectively, the combination of CD40-mAb and OK-432 facilitated the maturation of DCs and enhanced the cytotoxicity of T cells, promising therapeutic approach against CRC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02630-x.
Collapse
|
47
|
Dendritic cells activated by cimetidine induce Th1/Th17 polarization in vitro and in vivo. Toxicol In Vitro 2022; 83:105395. [DOI: 10.1016/j.tiv.2022.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022]
|
48
|
Dalod M, Scheu S. Dendritic cell functions in vivo: a user's guide to current and next generation mutant mouse models. Eur J Immunol 2022; 52:1712-1749. [PMID: 35099816 DOI: 10.1002/eji.202149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/14/2022] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) do not just excel in antigen presentation. They orchestrate information transfer from innate to adaptive immunity, by sensing and integrating a variety of danger signals, and translating them to naïve T cells, to mount specifically tailored immune responses. This is accomplished by distinct DC types specialized in different functions and because each DC is functionally plastic, assuming different activation states depending on the input signals received. Mouse models hold the key to untangle this complexity and determine which DC types and activation states contribute to which functions. Here, we aim to provide comprehensive information for selecting the most appropriate mutant mouse strains to address specific research questions on DCs, considering three in vivo experimental approaches: (i) interrogating the roles of DC types through their depletion; (ii) determining the underlying mechanisms by specific genetic manipulations; (iii) deciphering the spatiotemporal dynamics of DC responses. We summarize the advantages, caveats, suggested use and perspectives for a variety of mutant mouse strains, discussing in more detail the most widely used or accurate models. Finally, we discuss innovative strategies to improve targeting specificity, for the next generation mutant mouse models, and briefly address how humanized mouse models can accelerate translation into the clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc Dalod
- CNRS, Inserm, Aix Marseille Univ, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Marseille, France
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Identification of a novel cDC2-committed progenitor within mouse common dendritic cell progenitor population. Protein Cell 2022; 13:302-307. [PMID: 34981445 PMCID: PMC8934366 DOI: 10.1007/s13238-021-00902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
50
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|