1
|
Holoubek A, Strachotová D, Wolfová K, Otevřelova P, Belejová S, Röselová P, Benda A, Brodská B, Herman P. Correlation of p53 oligomeric status and its subcellular localization in the presence of the AML-associated NPM mutant. PLoS One 2025; 20:e0322096. [PMID: 40334261 PMCID: PMC12058200 DOI: 10.1371/journal.pone.0322096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/17/2025] [Indexed: 05/09/2025] Open
Abstract
Tumor suppressor p53 is a key player in the cell response to DNA damage that suffers by frequent inactivating aberrations. Some of them disturb p53 oligomerization and influence cell decision between proliferation, growth arrest and apoptosis. Active p53 resides mostly in the nucleus, degradation occurs in the cytoplasm. Acute myeloid leukemia (AML)-related mutation of NPM (NPMmut) induces massive mislocalization of p53 to the cytoplasm, which might be related to leukemia initiation. Since both proteins interact and execute their function as oligomers, we investigated the role of perturbed p53 oligomerization in the p53 mislocalization process in live cells by FLIM (fluorescence lifetime imaging microscopy), fluorescence anisotropy imaging (FAIM), fluorescence cross-correlation spectroscopy (FCCS) and immunochemical methods. On a set of fluorescently labeled p53 variants, monomeric R337G and L344P, dimeric L344A, and multimeric D352G and A353S, we correlated their cellular localization, oligomerization and interaction with NPMmut. Interplay between nuclear export signal (NES) and nuclear localization signal (NLS) of p53 was investigated as well. While NLS was found critical for the nuclear p53 localization, NES plays less significant role. We observed cytoplasmic translocation only for multimeric A353S variant with sufficient stability and strong interaction with NPMmut. Less stable multimer D352G and L344A dimer were not translocated, monomeric p53 variants always resided in the nucleus independently of the presence of NPMmut and NES intactness. Oligomeric state of NPMmut is not required for p53 translocation, which happens also in the presence of the nonoligomerizing NPMmut variant. The prominent structural and functional role of the R337 residue is shown.
Collapse
Affiliation(s)
- Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dita Strachotová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | - Kateřina Wolfová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petra Otevřelova
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Sára Belejová
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| | - Pavla Röselová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Barbora Brodská
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Pamela RH, Minerva MR, Ernesto CMM, Manuel MAJ, Norberto SE, Francisco AH, de la Torre Silvia MD, Angélica RL, Elva JH, Carlos NEJ, Sara O, Juan XC, Ariadnna CC, Paula FA, José AG. Is the vIL-10 Protein from Cytomegalovirus Associated with the Potential Development of Acute Lymphoblastic Leukemia? Viruses 2025; 17:435. [PMID: 40143362 PMCID: PMC11945621 DOI: 10.3390/v17030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Leukemia is a hematologic malignancy; acute lymphoblastic leukemia (ALL) is the most prevalent subtype among children rather than in adults. Orthoherpesviridae family members produce proteins during latent infection phases that may contribute to cancer development. One such protein, viral interleukin-10 (vIL-10), closely resembles human interleukin-10 (IL-10) in structure. Research has explored the involvement of human cytomegalovirus (hCMV) in the pathogenesis of ALL. However, the limited characterization of its latent-phase proteins restricts a full understanding of the relationship between hCMV infection and leukemia progression. Studies have shown that hCMV induces an inflammatory response during infection, marked by the release of cytokines and chemokines. Inflammation may, therefore, play a role in how hCMV contributes to oncogenesis in pediatric ALL, possibly mediated by latent viral proteins. The classification of a virus as oncogenic is based on its alignment with cancer's established hallmarks. Viruses can manipulate host cellular mechanisms, causing dysregulated cell proliferation, evasion of apoptosis, and genomic instability. These processes lead to mutations, chromosomal abnormalities, and chronic inflammation, all of which are vital for carcinogenesis. This study aims to investigate the role of vIL-10 during the latent phase of hCMV as a potential factor in leukemia development.
Collapse
Affiliation(s)
- Ruvalcaba-Hernández Pamela
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mata-Rocha Minerva
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
| | | | - Mejía-Aranguré Juan Manuel
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sánchez-Escobar Norberto
- Unidad de Investigación en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Doctores, Ciudad de México 06720, Mexico; (M.-R.M.); (S.-E.N.)
- Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico
| | - Arenas-Huertero Francisco
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Melchor-Doncel de la Torre Silvia
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Rangel-López Angélica
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
| | - Jiménez-Hernández Elva
- Departamento de Oncología, Hospital Pediátrico Moctezuma SEDESA, Universidad Autónoma Metropolitana, Mexico City 09769, Mexico;
| | - Nuñez-Enriquez Juan Carlos
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ochoa Sara
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Xicohtencatl-Cortes Juan
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (O.S.); (X.-C.J.)
| | - Cruz-Córdova Ariadnna
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | | | - Arellano-Galindo José
- Laboratorio de Virología, Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.-H.P.); (M.-D.d.l.T.S.)
- Centro Interdisciplinario de Ciencias de la Salud Unidad Milpa Alta Instituto Politécnico Nacional, Mexico City 12000, Mexico
| |
Collapse
|
3
|
Chakraborty R, Dutta A, Mukhopadhyay R. TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds. Clin Transl Oncol 2025:10.1007/s12094-024-03841-6. [PMID: 39797946 DOI: 10.1007/s12094-024-03841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression. Missense mutations, null mutations, transversions, transitions, and point mutations occurring in the TP53 gene can cause an increase in metastatic activity. This review discusses mutations occurring in exon regions of TP53, polymorphisms in MDM2 and their interaction with large ribosomal subunit protein (RPL) leading to cancer development. We also highlight the potential of small molecules e.g. p53 activators like XI-011, Tenovin-1, and Nutlin-3a for the treatment of breast and ovarian cancers. The therapeutic efficacy of natural compounds in amelioration of these two types of cancers is also discussed.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Dutta
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
4
|
Tong R, Jing F, Li Y, Pan L, Yu X, Zhang N, Liao Q. Mechanisms of intestinal DNA damage and inflammation induced by ammonia nitrogen exposure in Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110070. [PMID: 39522856 DOI: 10.1016/j.cbpc.2024.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Ammonia nitrogen, a common aquaculture pollutant, harms crustaceans by causing intestinal inflammation, though its exact mechanisms are unclear. Thus, we exposed shrimp to 0, 2, 10 and 20 mg/L NH4Cl exposure for 0, 3, 6, 12, 24, 48, 72 h, and explored the intestinal stress, apoptosis, proliferation, inflammation and its histopathological changes. This research indicated that ammonia nitrogen exposure heightens plasma dopamine (DA), 5-hydroxytryptamine (5-HT), norepinephrine (NE), and acetylcholine (ACh) levels, alters gene expression of neurotransmitter receptors in the intestine, triggering the PLCCa2+ pathway and induces endoplasmic reticulum stress. Additionally, mitochondrial fission-related genes (Drp1, FIS1) significantly increase, the level of reactive oxygen species (ROS) was significantly elevated in the intestine, which induced DNA damage effects and initiated the DNA repair function, mainly through the base excision repair pathway, but with a low repair efficiency. By determining the expression of key genes of caspase-dependent and non-caspase-dependent apoptotic pathways, it was found that ammonia nitrogen exposure induced apoptosis in intestinal cells, proliferation key signaling pathways such as Wnt, EGFR and FOXO signaling showed an overall decrease after ammonia nitrogen exposure, combined with the gene expression of cell cycle proteins and proliferation markers, indicated that the proliferation of intestinal cells was inhibited. Performing pearson correlation analysis of intestinal cell damage, proliferation, and inflammatory factors, we hypothesized that ammonia nitrogen exposure induces intestinal endoplasmic reticulum stress and mitochondrial fission, induces elevated ROS, leads to DNA damage, and causes inflammation and damage in intestinal tissues by the underlying mechanism of promoting apoptosis and inhibiting proliferation.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan 250013, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Marques SI, Sá SI, Carmo H, Carvalho F, Silva JP. Pharmaceutical-mediated neuroimmune modulation in psychiatric/psychological adverse events. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111114. [PMID: 39111563 DOI: 10.1016/j.pnpbp.2024.111114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic use of many pharmaceuticals, including small molecules and biological therapies, has been associated with the onset of psychiatric and psychological adverse events (PPAEs), posing substantial concerns to patients' health and safety. These events, which encompass mood (e.g., depression, schizophrenia, suicidal ideation) and cognitive changes (e.g., learning and memory impairment, dementia) often remain undetected until advanced stages of clinical trials or pharmacovigilance, mostly because the mechanisms underlying the onset of PPAEs remain poorly understood. In recent years, the role of neuroimmune modulation (comprising an intricate interplay between various cell types and signaling pathways) in PPAEs has garnered substantial interest. Indeed, understanding these complex interactions would substantially contribute to increase the ability to predict the potential onset of PPAEs during preclinical stages of a new drug's R&D. This review provides a comprehensive summary of the most recent advances in neuroimmune modulation-related mechanisms contributing to the onset of PPAEs and their association with specific pharmaceuticals. Reported data strongly support an association between neuroimmune modulation and the onset of PPAEs. Pharmaceuticals may target specific molecular pathways and pathway elements (e.g., cholinergic and serotonergic systems), which in turn may directly or indirectly impact the inflammatory status and the homeostasis of the brain, regulating inflammation and neuronal function. Also, modulation of the peripheral immune system by pharmaceuticals that do not permeate the blood-brain barrier (e.g., monoclonal antibodies) may alter the neuroimmunomodulatory status of the brain, leading to PPAEs. In summary, this review underscores the diverse pathways through which drugs can influence brain inflammation, shedding light on potential targeted interventions.
Collapse
Affiliation(s)
- Sandra I Marques
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Susana I Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Helena Carmo
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João P Silva
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Lee JS, Kim JR, Byeon E, Kim DH, Kim HS, Lee JS. Molecular Events in Response to Triclosan-Induced Oxidative Stress in CRISPR/Cas9-Mediated p53-Targeted Mutants in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39261290 DOI: 10.1021/acs.est.4c05105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Triclosan (TCS), a widely used antimicrobial agent, has been implicated in the oxidative stress induction and disruption of cellular processes in aquatic organisms. As TCS is ubiquitous in the aquatic environment, many previous studies have documented the effects of exposure to TCS on aquatic organisms. Nevertheless, most of the research has concentrated on the molecular and physiological responses of TCS, but there are still limited studies on the function of specific genes and the consequences of their absence. In this study, we focused on p53, a gene that is crucial for molecular responses such as autophagy and apoptosis as a result of TCS exposure. In order to ascertain the role and impact of the p53 gene in TCS-induced molecular responses, we examined the molecular responses to TCS-induced oxidative stress in wild-type (WT) and CRISPR/Cas9-mediated p53 mutant (MT) water fleas. The result has been accomplished by examining changes in molecular mechanisms, including in vivo end points, enzyme activities, adenosine triphosphate release rate, and apoptosis, to determine the role and impact of the p53 gene on TCS-induced molecular responses. The results indicated that the sensitivity of MT water fleas to TCS was greater than that of WT water fleas; however, the difference in sensitivity was significant at short exposures within 48 h and decreased toward 48 h. Accordingly, when we confirmed the oxidative stress after 24 h of exposure, the oxidative stress to TCS exposure was stronger in the MT group, with an imbalance of redox. To identify the mechanisms of tolerance to TCS in WT and MT Daphnia magna, we checked mitochondrial and ER-stress-related biomarkers and found an increase in apoptosis and greater sensitivity to TCS exposure in the MT group than in the WT. Our results suggest that the absence of p53 caused alterations in molecular processes in response to TCS exposure, resulting in increased sensitivity to TCS, and that p53 plays a critical role in response to TCS exposure.
Collapse
Affiliation(s)
- Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ju Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
7
|
Zhu J, Zhu X, Shi C, Li Q, Jiang Y, Chen X, Sun P, Jin Y, Wang T, Chen J. Integrative analysis of aging-related genes reveals CEBPA as a novel therapeutic target in non-small cell lung cancer. Cancer Cell Int 2024; 24:267. [PMID: 39068458 PMCID: PMC11282817 DOI: 10.1186/s12935-024-03457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND To explore the impact of ARGs on the prognosis of NSCLC, and its correlation with clinicopathological parameters and immune microenvironment. Preliminary research on the biological functions of CEBPA in NSCLC. METHODS Using consensus clustering analysis to identify molecular subtypes of ARGs in NSCLC patients; employing LASSO regression and multivariate Cox analysis to select 7 prognostic risk genes and construct a prognostic risk model; validating independent prognostic factors of NSCLC using forest plot analysis; analyzing immune microenvironment correlations using ESTIMATE and ssGSEA; assessing correlations between prognostic risk genes via qPCR and Western blot in NSCLC; measuring mRNA and protein expression levels of knocked down and overexpressed CEBPA in NSCLC using CCK-8 and EdU assays; evaluating the effects of knocked down and overexpressed CEBPA on cell proliferation using Transwell experiments; examining the correlation of CEBPA with T cells and B cells using mIHC analysis. RESULTS Consensus clustering analysis identified three molecular subtypes, suggesting significant differential expression of these ARGs in NSCLC prognosis and clinical pathological parameters. There was significant differential expression between the two risk groups in the prognostic risk model, with P < 0.001. The risk score of the prognostic risk model was also P < 0.001. CEBPA exhibited higher mRNA and protein expression levels in NSCLC cell lines. Knockdown of CEBPA significantly reduced mRNA and protein expression levels of CEBPB, YWHAZ, ABL1, and CDK1 in H1650 and A549 cells. siRNA-mediated knockdown of CEBPA markedly inhibited proliferation, migration, and invasion of NSCLC cells, whereas overexpression of CEBPA showed the opposite trend. mIHC results indicated a significant increase in CD3 + CD4+, CD3 + CD8+, and CD20 + cell counts in the high CEBPA expression group. CONCLUSIONS The risk score of the prognostic risk model can serve as an independent prognostic factor, guiding the diagnosis and treatment of NSCLC. CEBPA may serve as a potential tumor biomarker and immune target, facilitating further exploration of the biological functions and immunological relevance in NSCLC.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Conglin Shi
- Cancer Immunotherapy Center, Cancer Research Institute, Xuzhou Medical University, Xuzhou, China
| | - Qixuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xingyou Chen
- School of Medicine, Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank, The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Tianyi Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
8
|
Waziri P, Auta R, Imam MU, Chindo BA, Ladan Z, Mohammed Z, Wayah S, Mohammed J, Tahir MI, Ahmad AE, Alhassan Y, Tyoapine D, Agbaji AS. In Vivo Anti-Hepatocellular Carcinoma Effects of the Chloroform Root Extract of Clausena excavata Burm. J Evid Based Integr Med 2024; 29:2515690X241251558. [PMID: 38689490 PMCID: PMC11062218 DOI: 10.1177/2515690x241251558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Liver cancer is the most common cancer among males in Africa. The disease has a poor prognosis and its treatment is associated with toxicity and resistance. For this reason, numerous herbal combinations are being subjected to anticancer screening to circumvent the shortcomings of the conventional anticancer drugs. In the current study, the in vivo anti-cancer effects of the chloroform root extract of the herb, Clausena excavata Burm were investigated. Liver cancer was induced in mice by a single intraperitoneal injection of diethylnitrosamine (DEN) followed by oral administration of the promoter of carcinogenesis, 2-aminoacetyl fluorine that was mixed with the mice feed. The cytotoxicity of the root extract of C. excavata on liver cancer cells was investigated using liver enzyme, histology, DNA fragmentation and caspases assays. Real time qPCR was conducted to evaluate the effect of the extract on apoptotic genes. The findings revealed that the extract of C. excavata significantly decreased the progression of hepatocarcinogenesis and the toxicity-induced production of the liver enzymes, alanine and aspartate aminotransferases. The histological analyses of the liver tissues revealed evidence of apoptotic cell death. The extract also provoked significant (p < .05) expressions of caspase 9 protein and gene as well as other apoptotic genes (P53, P27, Apaf-1, cytochrome C, bax and bid). Therefore, we postulate that the chloroform root extract of C. excavata induces apoptosis of liver cancer in mice.
Collapse
Affiliation(s)
- Peter Waziri
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Richard Auta
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Mustapha U Imam
- Department of Medical Biochemistry, Usmanu Danfodio University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodio University, Sokoto, Nigeria
| | - Ben A Chindo
- Department of Pharmacology, Kaduna State University, Kaduna, Nigeria
| | - Zakari Ladan
- Department of Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Zainab Mohammed
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Samson Wayah
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Ja'afar Mohammed
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Mohammed I Tahir
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Abdurrahman E Ahmad
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Yusuf Alhassan
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Daniel Tyoapine
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Abel S Agbaji
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| |
Collapse
|
9
|
Xin L, Li F, Yu H, Xiong Q, Hou Q, Meng Y. Honokiol alleviates radiation-induced premature ovarian failure via enhancing Nrf2. Am J Reprod Immunol 2023; 90:e13769. [PMID: 37766410 DOI: 10.1111/aji.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The ovary is highly sensitive to radiation, and patients receiving radiotherapy are at significant risk of premature ovarian failure (POF). This study aimed to explore the radioprotective effect of honokiol (HKL) on ionizing radiation (IR)-induced POF. METHODS Female C57BL/6 mice were administered intraperitoneally with vehicle or HKL once daily for 7 days. On day 7, the mice in the IR and HKL+IR groups were exposed to 3.2 Gy whole-body radiation for one hour after the intraperitoneal injection and sacrificed 12 or 72 h after radiation exposure. The gonadosomatic index (GSI) was calculated. Blood samples were collected for enzyme-linked immunosorbent assay (ELISA). Ovaries were harvested for histological examination, immunohistochemistry, immunofluorescence, TUNEL, western blot, and qPCR. The fertility assessment was evaluated by calculating live offspring number. RESULTS The optimum dose of HKL against radiation was 10 mg/kg via intraperitoneal injection. POF was induced 72 h after irradiation with significantly downregulated proliferating cell nuclear antigen (PCNA). The numbers of primordial and preantral follicles decreased significantly after irradiation (p < .001), whereas the number of atretic follicles increased (p < .001). The serum levels of estradiol (E2 ) and anti-Müllerian hormone (AMH) decreased to 50% of the control group after irradiation (p < .05). Moreover, the GSI after irradiation was 27% lower than in the control group (p < .05). The number of offspring in the IR group dropped by 50% compared with the control group (p < .05). HKL pretreatment protected the animals' fertility, GSI, PCNA, serum levels of E2 and AMH, and the number of primordial and preantral follicles. Significant upregulation of apoptosis-related proteins such as Pho-P53, Bax, Cyto C, C-caspase-3, C-PARP, and pyroptosis-related proteins such as Pho-NF-κB p65, NLRP3, caspase-1, IL-1β, and IL-18 was observed after irradiation, while the expression of Bcl-2 decreased. HKL pretreatment prevented these changes. After irradiation, malondialdehyde (MDA), Nrf2, and HO-1 were upregulated. HKL treatment activated the expression of Nrf2 and HO-1 and promoted the nucleus translocation of Nrf2. Furthermore, HKL did not affect ovarian reserves under physiological conditions. CONCLUSIONS HKL ameliorated IR-induced POF by inhibiting apoptosis and pyroptosis by enhancing Nrf2 expression and translocation.
Collapse
Affiliation(s)
- Lingli Xin
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qi Xiong
- Department of Oncology, General Hospital of Chinese PLA, Beijing, China
| | - Qingxiang Hou
- Department of Obstetrics and Gynecology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuanguang Meng
- Department of Graduate Administration, General Hospital of Chinese PLA, Beijing, China
- Department of Obstetrics and Gynecology, General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
10
|
Denisenko NP, Kachanova AA, Sychev IV, Shuev GN, Perfilieva OM, Mukhamadiev RH, Kazakov RE, Milyutina OI, Konenkova OV, Ryzhkin SA, Zhmaeva EM, Kirienko SL, Ivashchenko DV, Bure IV, Ametov AS, Poddubnaya IV, Mirzaev KB, Sychev DA. Genetic markers associated with adverse reactions of radioiodine therapy in thyroid cancer patients. Drug Metab Pers Ther 2023; 38:255-265. [PMID: 37708952 DOI: 10.1515/dmpt-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVES Radioactive iodine therapy is considered for patients with certain clinicopathological factors that predict a significant risk of recurrence, distant metastases of thyroid cancer or disease-specific mortality. The aim of the study was to investigate the association between polymorphisms of genes, products of which are involved in the processes of DNA damage response and autophagy, and the adverse reactions of radioiodine therapy in thyroid cancer patients. METHODS The study included 181 patients (37 men, 144 women; median age 56 [41; 66.3] years) with histologically confirmed thyroid cancer and a history of thyroidectomy who received radioiodine therapy. NFKB1, ATM, ATG16L2, ATG10, TGFB1, and TNF polymorphisms were determined by allele-specific realtime-PCR. RESULTS The frequency of adverse reactions was the following: gastrointestinal symptoms - 57.9 %, local symptoms - 65.8 %, cerebral symptoms - 46.8 %, fatigue - 54.4 %; signs of sialoadenitis six months after radioiodine therapy - 25.2 %. TT genotype carriers of ATG10 rs1864183 had higher frequency of gastrointestinal symptoms (vs. CC+CT), the CC genotype carriers of ATG10 rs10514231 had significantly more frequent cerebral symptoms (vs. CT+TT), as well as AA genotype carriers of TGFB1 rs1800469 (vs. AG+GG). CC genotype of ATG10 rs10514231 increased the incidence of radioiodine-induced fatigue, whereas GA genotype of the ATM rs11212570 had a protective role against fatigue. TGFB1 rs1800469 was associated with signs of sialoadenitis six months after radioiodine therapy. CONCLUSIONS Genetic factors may contribute to the occurrence of adverse reactions of radioiodine therapy in thyroid cancer patients.
Collapse
Affiliation(s)
- Natalia P Denisenko
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | | | - Ivan V Sychev
- Department of Faculty Therapy with courses of Physiotherapy and Exercise Therapy, Medicine Institute, Ogarev Mordovia State University, Saransk, Russia
| | - Gregory N Shuev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Oksana M Perfilieva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Reis H Mukhamadiev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Ruslan E Kazakov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Olga I Milyutina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Olga V Konenkova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey A Ryzhkin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Elena M Zhmaeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey L Kirienko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy V Ivashchenko
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Bure
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Alexander S Ametov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Poddubnaya
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Karin B Mirzaev
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
11
|
Denisenko NP, Kachanova AA, Sychev IV, Shuev GN, Perfilieva OM, Mukhamadiev RH, Kazakov RE, Milyutina OI, Konenkova OV, Ryzhkin SA, Zhmaeva EM, Kirienko SL, Ivashchenko DV, Bure IV, Ametov AS, Poddubnaya IV, Mirzaev KB, Sychev DA. Genetic markers associated with adverse reactions of radioiodine therapy in thyroid cancer patients. Drug Metab Pers Ther 2023:dmdi-2023-0007. [PMID: 37381702 DOI: 10.1515/dmdi-2023-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/08/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Radioactive iodine therapy is considered for patients with certain clinicopathological factors that predict a significant risk of recurrence, distant metastases of thyroid cancer or disease-specific mortality. The aim of the study was to investigate the association between polymorphisms of genes, products of which are involved in the processes of DNA damage response and autophagy, and the adverse reactions of radioiodine therapy in thyroid cancer patients. METHODS The study included 181 patients (37 men, 144 women; median age 56 [41; 66.3] years) with histologically confirmed thyroid cancer and a history of thyroidectomy who received radioiodine therapy. NFKB1, ATM, ATG16L2, ATG10, TGFB1, and TNF polymorphisms were determined by allele-specific realtime-PCR. RESULTS The frequency of adverse reactions was the following: gastrointestinal symptoms - 57.9 %, local symptoms - 65.8 %, cerebral symptoms - 46.8 %, fatigue - 54.4 %; signs of sialoadenitis six months after radioiodine therapy - 25.2 %. TT genotype carriers of ATG10 rs1864183 had higher frequency of gastrointestinal symptoms (vs. CC+CT), the CC genotype carriers of ATG10 rs10514231 had significantly more frequent cerebral symptoms (vs. CT+TT), as well as AA genotype carriers of TGFB1 rs1800469 (vs. AG+GG). CC genotype of ATG10 rs10514231 increased the incidence of radioiodine-induced fatigue, whereas GA genotype of the ATM rs11212570 had a protective role against fatigue. TGFB1 rs1800469 was associated with signs of sialoadenitis six months after radioiodine therapy. CONCLUSIONS Genetic factors may contribute to the occurrence of adverse reactions of radioiodine therapy in thyroid cancer patients.
Collapse
Affiliation(s)
- Natalia P Denisenko
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | | | - Ivan V Sychev
- Department of Faculty Therapy with courses of Physiotherapy and Exercise Therapy, Medicine Institute, Ogarev Mordovia State University, Saransk, Russia
| | - Gregory N Shuev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Oksana M Perfilieva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Reis H Mukhamadiev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Ruslan E Kazakov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Olga I Milyutina
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Olga V Konenkova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey A Ryzhkin
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Elena M Zhmaeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Sergey L Kirienko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitriy V Ivashchenko
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Bure
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Alexander S Ametov
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Irina V Poddubnaya
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Karin B Mirzaev
- Research Laboratory of Neuroendocrine Tumors, Centre for Personalized Medicine, Saint-Petersburg, Russia
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
12
|
Chen J, Baxi K, Lipsitt AE, Hensch NR, Wang L, Sreenivas P, Modi P, Zhao XR, Baudin A, Robledo DG, Bandyopadhyay A, Sugalski A, Challa AK, Kurmashev D, Gilbert AR, Tomlinson GE, Houghton P, Chen Y, Hayes MN, Chen EY, Libich DS, Ignatius MS. Defining function of wild-type and three patient-specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. eLife 2023; 12:e68221. [PMID: 37266578 PMCID: PMC10322150 DOI: 10.7554/elife.68221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.
Collapse
Affiliation(s)
- Jiangfei Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical UniversityWenzhouChina
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Amanda E Lipsitt
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Nicole Rae Hensch
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Long Wang
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Prethish Sreenivas
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Paulomi Modi
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Xiang Ru Zhao
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Antoine Baudin
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Daniel G Robledo
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Abhik Bandyopadhyay
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Aaron Sugalski
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Anil K Challa
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Pediatrics, Division of Hematology Oncology, UT Health Sciences CenterSan AntonioUnited States
| | - Peter Houghton
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| | - Yidong Chen
- Department of Population Health Sciences, UT Health Sciences CenterSan AntonioUnited States
| | - Madeline N Hayes
- Developmental and Stem Cell Biology, Hospital for Sick ChildrenTorontoCanada
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - David S Libich
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health Sciences CenterSan AntonioUnited States
| | - Myron S Ignatius
- Greehey Children's Cancer Research Institute (GCCRI), UT Health Sciences CenterSan AntonioUnited States
- Department of Molecular Medicine, UT Health Sciences CenterSan AntonioUnited States
| |
Collapse
|
13
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
14
|
Di Ianni A, Tüting C, Kipping M, Ihling CH, Köppen J, Iacobucci C, Arlt C, Kastritis PL, Sinz A. Structural assessment of the full-length wild-type tumor suppressor protein p53 by mass spectrometry-guided computational modeling. Sci Rep 2023; 13:8497. [PMID: 37231156 DOI: 10.1038/s41598-023-35437-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The tetrameric tumor suppressor p53 represents a great challenge for 3D-structural analysis due to its high degree of intrinsic disorder (ca. 40%). We aim to shed light on the structural and functional roles of p53's C-terminal region in full-length, wild-type human p53 tetramer and their importance for DNA binding. For this, we employed complementary techniques of structural mass spectrometry (MS) in an integrated approach with computational modeling. Our results show no major conformational differences in p53 between DNA-bound and DNA-free states, but reveal a substantial compaction of p53's C-terminal region. This supports the proposed mechanism of unspecific DNA binding to the C-terminal region of p53 prior to transcription initiation by specific DNA binding to the core domain of p53. The synergies between complementary structural MS techniques and computational modeling as pursued in our integrative approach is envisioned to serve as general strategy for studying intrinsically disordered proteins (IDPs) and intrinsically disordered region (IDRs).
Collapse
Affiliation(s)
- Alessio Di Ianni
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian Tüting
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Marc Kipping
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Janett Köppen
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100, L'Aquila, Italy
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| | - Panagiotis L Kastritis
- ZIK HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 01620, Halle (Saale), Germany.
| |
Collapse
|
15
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
16
|
Quadros KRS, Roza NAV, França RA, Esteves ABA, Barreto J, Dominguez WV, Furukawa LNS, Caramori JT, Sposito AC, de Oliveira RB. Advanced Glycation End Products and Bone Metabolism in Patients with Chronic Kidney Disease. JBMR Plus 2023; 7:e10727. [PMID: 36936360 PMCID: PMC10020922 DOI: 10.1002/jbm4.10727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulation may be involved in the progression of CKD-bone disorders. We sought to determine the relationship between AGEs measured in the blood, skin, and bone with histomorphometry parameters, bone protein, gene expression, and serum biomarkers of bone metabolism in patients with CKD stages 3 to 5D patients. Serum levels of AGEs were estimated by pentosidine, glycated hemoglobin (A1c), and N-carboxymethyl lysine (CML). The accumulation of AGEs in the skin was estimated from skin autofluorescence (SAF). Bone AGEs accumulation and multiligand receptor for AGEs (RAGEs) expression were evaluated by immunohistochemistry; bone samples were used to evaluate protein and gene expression and histomorphometric analysis. Data are from 86 patients (age: 51 ± 13 years; 60 [70%] on dialysis). Median serum levels of pentosidine, CML, A1c, and SAF were 71.6 pmol/mL, 15.2 ng/mL, 5.4%, and 3.05 arbitrary units, respectively. AGEs covered 3.92% of trabecular bone and 5.42% of the cortical bone surface, whereas RAGEs were expressed in 0.7% and 0.83% of trabecular and cortical bone surfaces, respectively. AGEs accumulation in bone was inversely related to serum receptor activator of NF-κB ligand/parathyroid hormone (PTH) ratio (R = -0.25; p = 0.03), and RAGE expression was negatively related to serum tartrate-resistant acid phosphatase-5b/PTH (R = -0.31; p = 0.01). Patients with higher AGEs accumulation presented decreased bone protein expression (sclerostin [1.96 (0.11-40.3) vs. 89.3 (2.88-401) ng/mg; p = 0.004]; Dickkopf-related protein 1 [0.064 (0.03-0.46) vs. 1.36 (0.39-5.87) ng/mg; p = 0.0001]; FGF-23 [1.07 (0.4-32.6) vs. 44.1 (6-162) ng/mg; p = 0.01]; and osteoprotegerin [0.16 (0.08-2.4) vs. 6.5 (1.1-23.7) ng/mg; p = 0.001]), upregulation of the p53 gene, and downregulation of Dickkopf-1 gene expression. Patients with high serum A1c levels presented greater cortical porosity and Mlt and reduced osteoblast surface/bone surface, eroded surface/bone surface, osteoclast surface/bone surface, mineral apposition rate, and adjusted area. Cortical thickness was negatively correlated with serum A1c (R = -0.28; p = 0.02) and pentosidine levels (R = -0.27; p = 0.02). AGEs accumulation in the bone of CKD patients was related to decreased bone protein expression, gene expression changes, and increased skeletal resistance to PTH; A1c and pentosidine levels were related to decreased cortical thickness; and A1c levels were related to increased cortical porosity and Mlt. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kélcia R. S. Quadros
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Noemi A. V. Roza
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Renata A. França
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - André B. A. Esteves
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Joaquim Barreto
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| | - Wagner V. Dominguez
- Laboratory of Renal Pathophysiology, LIM‐16, Department of Internal Medicine, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Luzia N. S. Furukawa
- Laboratory of Renal Pathophysiology, LIM‐16, Department of Internal Medicine, School of MedicineUniversity of São PauloSão PauloBrazil
| | | | - Andrei C. Sposito
- Laboratory of Atherosclerosis and Vascular Biology, Cardiology DivisionSchool of Medical Sciences, University of Campinas (Unicamp)CampinasBrazil
| | - Rodrigo Bueno de Oliveira
- Nephrology Division, School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
- Laboratory for Evaluation of Mineral and Bone Disorders in Nephrology (LEMON), School of Medical SciencesUniversity of Campinas (Unicamp)CampinasBrazil
| |
Collapse
|
17
|
Yang H, Zhang K, Guo Y, Guo X, Hou K, Hou J, Luo Y, Liu J, Jia S. Gain-of-Function p53N236S Mutation Drives the Bypassing of HRas V12-Induced Cellular Senescence via PGC-1α. Int J Mol Sci 2023; 24:ijms24043790. [PMID: 36835200 PMCID: PMC9960896 DOI: 10.3390/ijms24043790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
One of the key steps in tumorigenic transformation is immortalization in which cells bypass cancer-initiating barriers such as senescence. Senescence can be triggered by either telomere erosion or oncogenic stress (oncogene-induced senescence, OIS) and undergo p53- or Rb-dependent cell cycle arrest. The tumor suppressor p53 is mutated in 50% of human cancers. In this study, we generated p53N236S (p53S) mutant knock-in mice and observed that p53S heterozygous mouse embryonic fibroblasts (p53S/+) escaped HRasV12-induced senescence after subculture in vitro and formed tumors after subcutaneous injection into severe combined immune deficiency (SCID) mice. We found that p53S increased the level and nuclear translocation of PGC-1α in late-stage p53S/++Ras cells (LS cells, which bypassed the OIS). The increase in PGC-1α promoted the biosynthesis and function of mitochondria in LS cells by inhibiting senescence-associated reactive oxygen species (ROS) and ROS-induced autophagy. In addition, p53S regulated the interaction between PGC-1α and PPARγ and promoted lipid synthesis, which may indicate an auxiliary pathway for facilitating cell escape from aging. Our results illuminate the mechanisms underlying p53S mutant-regulated senescence bypass and demonstrate the role played by PGC-1α in this process.
Collapse
|
18
|
Tian C, Liu S, Huo R. Identification of the ageing-related prognostic gene signature, and the associated regulation axis in skin cutaneous melanoma. Sci Rep 2023; 13:24. [PMID: 36631465 PMCID: PMC9834281 DOI: 10.1038/s41598-022-22259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/12/2022] [Indexed: 01/12/2023] Open
Abstract
Skin cutaneous melanoma (SKCM) has substantial malignancy and a poor prognosis. The function of ageing-related genes (ARGs) in SKCM is unknown. In this study, a prognostic risk-scoring model for ARG was constructed based on SKCM RNA-seq, mutation, and clinical data in The Cancer Genome Atlas. Our novel prognostic model, which included four ARGs (IRS2, PDGFRA, TFAP2A, and SOD2), could distinguish between low-risk and high-risk groups. Low-risk patients benefited more from immunotherapy and commonly used targeted and chemotherapy drugs than high-risk patients. There were also considerable differences in immunocyte infiltration and tumour microenvironment between the two groups. Furthermore, multivariate Cox regression analysis revealed that age, pT_stage, pM_stage, body mass index, tumour mutation burden, and risk score were independent factors influencing the prognosis of patients with SKCM; therefore, we devised a prognosis nomogram. Last, a long non-coding (lncRNA) NEAT1/miR-33a-5p/IRS2 regulatory axis of the competing endogenous RNA network was built to investigate the mechanisms of SKCM metastasis progression. Grouping based on the scoring system could predict the prognosis of SKCM and predict the sensitivity of patients to immunotherapy, targeted therapy, and chemotherapy. This could facilitate the formulation of individualised treatment strategies and help drug research and development. These findings highlight the regulatory axis of the lncRNA NEAT1/miR-33a-5p/IRS2, which may play a role in SKCM metastasis.
Collapse
Affiliation(s)
- Chonglin Tian
- grid.460018.b0000 0004 1769 9639Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
| | - Sujing Liu
- grid.27255.370000 0004 1761 1174Shandong Provincial Third Hospital, Shandong University, Jinan, 250031 Shandong China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China. .,Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Meng F, Ke J, Li J, Zhao C, Yan J, Wang L. A deuterohemin peptide protects cerebral ischemia-reperfusion injury by preventing oxidative stress in vitro and in vivo. Exp Cell Res 2023; 422:113432. [PMID: 36442518 DOI: 10.1016/j.yexcr.2022.113432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a brain injury that usually occurs during thrombolytic therapy for acute ischemic stroke and impacts human health. Oxidative stress is one of the major causative factors of CIRI. DhHP-3 is a novel peroxidase-mimicking enzyme that exhibits robust reactive oxygen species (ROS) scavenging ability in vitro. Here, we established in vitro and in vivo models of cerebral ischemia-reperfusion to mechanistically investigate whether DhHP-3 can alleviate CIRI. DhHP-3 could reduce ROS, down-regulate apoptotic proteins, suppress p53 phosphorylation, attenuate the DNA damage response (DDR), and inhibit apoptosis in SH-SY5Y cells subjected to oxygen-glucose deprivation/re-oxygenation (OGD/R) and in the brain of Sprague Dawley rats subjected to transient middle cerebral artery occlusion. In conclusion, DhHP-3 has bioactivity of CIRI inhibition through suppression of the ROS-induced apoptosis.
Collapse
Affiliation(s)
- Fanwei Meng
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130012, China; School of Life Sciences; Jilin University, Changchun, 130012, China
| | - Junfeng Ke
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130012, China; School of Life Sciences; Jilin University, Changchun, 130012, China
| | - Jinze Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130012, China; School of Life Sciences; Jilin University, Changchun, 130012, China
| | - Changhui Zhao
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130012, China; School of Life Sciences; Jilin University, Changchun, 130012, China
| | - Jiaqing Yan
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130012, China; School of Life Sciences; Jilin University, Changchun, 130012, China.
| |
Collapse
|
20
|
Xu Q, Zhu F, Pan Y, Ren Y, Li J, Huang N, Liu K, Wang Y. HIV Tat-Conjugated Histone H3 Peptides Induce Tumor Cell Death Via Cellular Stress Responses. Hum Gene Ther 2023; 34:42-55. [PMID: 36373826 DOI: 10.1089/hum.2022.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Histone H3 is a nucleosome scaffold protein that is involved in a variety of intracellular processes. Aberrant modification of H3 is important in carcinogenesis. In contrast, free histones in cells can act as stimuli to trigger cellular immune responses and cell death. In this study, we linked cell-penetrating peptide HIV Tat to a histone H3 fragment to achieve intracellular delivery in tumor cells. We found that Tat-conjugated histone polypeptides localized to nuclei of lung and breast cancer cells and caused cell death. A trans-configured Tat sequence displayed dramatically improved peptide half-life and cytotoxicity. Mechanistic studies demonstrated that treatment with the peptides significantly elevated mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species (ROS) production, as well as levels of stress-inducible transcription factor ATF3 (activating transcription factor 3) and AP-1 (activating protein-1). Cytotoxicity of the peptide was significantly reduced by inhibition of AP-1 activity and ROS production. These results suggest the potential of Tat-conjugated H3 peptides as antitumor agents to induce cell death via increased cellular stress response by activating p38-MAPK signaling and intracellular ROS production.
Collapse
Affiliation(s)
- Qian Xu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Feimei Zhu
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yixuan Pan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanlin Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Keyun Liu
- Department of Physiology, School of Medicine, Hubei Minzu University, Enshi, China
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Prives C. How Terri Grodzicker transformed Genes & Development. Genes Dev 2023; 37:4-5. [PMID: 37061965 DOI: 10.1101/gad.350474.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
GUEST EDITOR.
Collapse
Affiliation(s)
- Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
22
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
23
|
Novacescu D, Cut TG, Cumpanas AA, Bratosin F, Ceausu RA, Raica M. Novel Expression of Thymine Dimers in Renal Cell Carcinoma, Demonstrated through Immunohistochemistry. Biomedicines 2022; 10:2673. [PMID: 36359193 PMCID: PMC9687240 DOI: 10.3390/biomedicines10112673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/25/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Despite significant developments in renal cell carcinoma (RCC) detection and molecular pathology, mortality has been steadily rising. Advanced RCC remains an incurable disease. Better clinical management tools, i.e., RCC biomarkers, have yet to emerge. Thymine-dimers (TDs) were traditionally considered photo-dependent pre-mutagenic lesions, occurring exclusively during ultra-violet light exposure. Non-oxidative, direct, and preferential byproducts of DNA photochemical reactions, TDs, have recently shown evidence regarding UVR-independent formation. In this study, we investigate, for the first time, TD expression within RCC tumor tissue and tumor-adjacent healthy renal parenchyma using a TD-targeted IHC monoclonal antibody, clone KTM53. Remarkably, out of the 54 RCCs evaluated, 77.8% showed nuclear TD-expression in RCC tumor tissue and 37% in the tumor-adjacent healthy renal parenchyma. A comprehensive report regarding quantitative/qualitative TD-targeted immunostaining was elaborated. Two main distribution models for TD expression within RCC tumor tissue were identified. Statistical analysis showed significant yet moderate correlations regarding TD-positivity in RCC tissue/tumor-adjacent healthy renal parenchyma and TNM stage at diagnosis/lymphatic dissemination, respectively, indicating possible prognostic relevance. We review possible explanations for UVR-independent TD formation and molecular implications regarding RCC carcinogenesis. Further rigorous molecular analysis is required in order to fully comprehend/validate the biological significance of this newly documented TD expression in RCC.
Collapse
Affiliation(s)
- Dorin Novacescu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Talida Georgiana Cut
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Methodological and Infectious Diseases Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Marius Raica
- Department II, Discipline of Histology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| |
Collapse
|
24
|
Keshavarz-Rahaghi F, Pleasance E, Kolisnik T, Jones SJM. A p53 transcriptional signature in primary and metastatic cancers derived using machine learning. Front Genet 2022; 13:987238. [PMID: 36134028 PMCID: PMC9483853 DOI: 10.3389/fgene.2022.987238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor suppressor gene, TP53, has the highest rate of mutation among all genes in human cancer. This transcription factor plays an essential role in the regulation of many cellular processes. Mutations in TP53 result in loss of wild-type p53 function in a dominant negative manner. Although TP53 is a well-studied gene, the transcriptome modifications caused by the mutations in this gene have not yet been explored in a pan-cancer study using both primary and metastatic samples. In this work, we used a random forest model to stratify tumor samples based on TP53 mutational status and detected a p53 transcriptional signature. We hypothesize that the existence of this transcriptional signature is due to the loss of wild-type p53 function and is universal across primary and metastatic tumors as well as different tumor types. Additionally, we showed that the algorithm successfully detected this signature in samples with apparent silent mutations that affect correct mRNA splicing. Furthermore, we observed that most of the highly ranked genes contributing to the classification extracted from the random forest have known associations with p53 within the literature. We suggest that other genes found in this list including GPSM2, OR4N2, CTSL2, SPERT, and RPE65 protein coding genes have yet undiscovered linkages to p53 function. Our analysis of time on different therapies also revealed that this signature is more effective than the recorded TP53 status in detecting patients who can benefit from platinum therapies and taxanes. Our findings delineate a p53 transcriptional signature, expand the knowledge of p53 biology and further identify genes important in p53 related pathways.
Collapse
Affiliation(s)
- Faeze Keshavarz-Rahaghi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Bioinformatics, University of British Columbia, Vancouver, BC, Canada
| | - Erin Pleasance
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Tyler Kolisnik
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | - Steven J. M. Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, Canada
- *Correspondence: Steven J. M. Jones,
| |
Collapse
|
25
|
Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death Dis 2022; 13:716. [PMID: 35977948 PMCID: PMC9385859 DOI: 10.1038/s41419-022-05160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.
Collapse
|
26
|
Ayaz G, Yan H, Malik N, Huang J. An Updated View of the Roles of p53 in Embryonic Stem Cells. Stem Cells 2022; 40:883-891. [PMID: 35904997 PMCID: PMC9585900 DOI: 10.1093/stmcls/sxac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022]
Abstract
The TP53 gene is unarguably one of the most studied human genes. Its encoded protein, p53, is a tumor suppressor and is often called the "guardian of the genome" due to its pivotal role in maintaining genome stability. Historically, most studies of p53 have focused on its roles in somatic cells and tissues, but in the last two decades, its functions in embryonic stem cells (ESCs) and induced pluripotent stem cells have attracted increasing attention. Recent studies have identified p53 as a critical regulator of pluripotency, self-renewal, differentiation, proliferation, and genome stability in mouse and human embryonic stem cells. In this article, we systematically review the studies on the functions of p53 in ESCs, provide an updated overview, attempt to reconcile controversial results described in the literature, and discuss the relevance of these cellular functions of p53 to its roles in tumor suppression.
Collapse
Affiliation(s)
- Gamze Ayaz
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Navdeep Malik
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Fares Amer N, Luzzatto Knaan T. Natural Products of Marine Origin for the Treatment of Colorectal and Pancreatic Cancers: Mechanisms and Potential. Int J Mol Sci 2022; 23:ijms23148048. [PMID: 35887399 PMCID: PMC9323154 DOI: 10.3390/ijms23148048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers.
Collapse
|
28
|
Kalitin NN, Ektova LV, Kostritsa NS, Sivirinova AS, Kostarev AV, Smirnova GB, Borisova YA, Golubeva IS, Ermolaeva EV, Vergun MA, Babaeva MA, Lushnikova AA, Karamysheva AF. A novel glycosylated indolocarbazole derivative LCS1269 effectively inhibits growth of human cancer cells in vitro and in vivo through driving of both apoptosis and senescence by inducing of DNA damage and modulating of AKT/mTOR/S6K and ERK pathways. Chem Biol Interact 2022; 364:110056. [PMID: 35872044 DOI: 10.1016/j.cbi.2022.110056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 12/09/2022]
Abstract
In recent decades, indolocarbazole glycosides containing sugar moieties have attracted attention due to their diverse anti-tumor activities. In the present study, a series of new indolo [2,3-a]pyrrolo [3,4-c]carbazole derivatives were synthesized for the first time. First of all, we have shown that compound 6e (LCS1269) had the most pronounced effect on inhibiting tumor growth in the transferable solid and non-solid murine tumors as compared with other synthesized indolocarbazole derivatives. The results of the in vivo nude mice xenoraft study also confirmed that LCS1269 treatment strongly suppressed the growth of human colon cancer SW620 xenografts. It is important to note that the antiproliferative activity of LCS1269 against three human cancer cell lines (MCF-7, HCT-116 and A549) was considerably higher than that against the non-tumor cell lines (immortalized breast cells and normal embryonic fibroblasts). Furthermore, the treatment of MCF-7, HCT-116 and A549 cells with LCS1269 caused the statistically significant inhibition of anchorage-dependent and anchorage-independent colony formation. We further revealed that LCS1269 treatment of investigated human cancer cells resulted in the DNA damage and G2/M cell cycle arrest followed by the decrease of mitochondrial membrane potential with subsequent initiation of intrinsic apoptosis and the triggering of senescence via p53-dependent mechanisms. In addition, our western blotting findings and molecular docking data suppose that LCS1269 could at least partially attenuate cancer cells growth by modulation of AKT/mTOR/S6K and ERK signaling pathways. Therefore, we concluded that LCS1269 might be the promising compound for implementation and probable use in the clinical practice.
Collapse
Affiliation(s)
- Nikolay N Kalitin
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia.
| | - Lidia V Ektova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Natalia S Kostritsa
- M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, 119234, Moscow, Russia
| | | | | | - Galina B Smirnova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Yulia A Borisova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Irina S Golubeva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Elisaveta V Ermolaeva
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| | - Maria A Vergun
- I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991, Moscow, Russia
| | - Maria A Babaeva
- M.V. Lomonosov Moscow State University, 1 Leninskiye Gory, 119234, Moscow, Russia
| | - Anna A Lushnikova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| | - Aida F Karamysheva
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoe Shosse, 115478, Moscow, Russia
| |
Collapse
|
29
|
Martínez M, Úbeda A, Martínez‑Botas J, Trillo M. Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncol Lett 2022; 24:295. [PMID: 35949615 PMCID: PMC9353226 DOI: 10.3892/ol.2022.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have shown that intermittent exposure to a 50 Hz, 100 µT sinusoidal magnetic field (MF) promotes proliferation of human neuroblastoma cells, NB69. This effect is mediated by activation of the epidermal growth factor receptor through a free radical-dependent activation of the p38 pathway. The present study investigated the possibility that the oxidative stress-sensitive protein p53 is a potential target of the MF, and that field exposure can affect the protein expression. To that end, NB69 cells were exposed to short intervals of 30 to 120 min to the aforementioned MF parameters. Two specific anti-p53 antibodies that allow discrimination between the wild and unfolded forms of p53 were used to study the expression and cellular distribution of both isoforms of the protein. The expression of the antiapoptotic protein Bcl-2, whose regulation is mediated by p53, was also analyzed. The obtained results revealed that MF exposure induced increases in p53 gene expression and in protein expression of the wild-type form of p53. Field exposure also caused overexpression of the unfolded form of p53, together with changes in the nuclear/cytoplasmic distribution of both forms of the protein. The expression of protein Bcl-2 was also significantly increased in response to the MF. As a whole, these results indicated that the MF is capable of interacting with the function, distribution and conformation of protein p53. Such interactions could be involved in previously reported MF effects on NB69 proliferation promotion.
Collapse
Affiliation(s)
- María Martínez
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| | - Alejandro Úbeda
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| | - Javier Martínez‑Botas
- Biochemistry Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid, Spain
| | - María Trillo
- Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid
| |
Collapse
|
30
|
p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proc Natl Acad Sci U S A 2022; 119:e2123202119. [PMID: 35617425 DOI: 10.1073/pnas.2123202119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance p73 is expressed as multiple C-terminal isoforms, but their expression and activity are largely unknown. Here, we identified p73α1 as a p73 C-terminal isoform that results from exon 12 (E12) exclusion. We showed that E12 deficiency in mice leads to systemic inflammation but not spontaneous tumors. We also showed that Notch1 is regulated by p73α1 and plays a critical role in p73-dependent tumor suppression and systemic inflammation.
Collapse
|
31
|
Gupta A, Breedon SA, Storey KB. Activation of p53 in anoxic freshwater crayfish, Faxonius virilis. J Exp Biol 2022; 225:275712. [DOI: 10.1242/jeb.244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis, and autophagy. The current work studies stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response was measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 was assessed using immunoblotting at sites known to be phosphorylated (Serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phospho-p53 was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low oxygen stress were studied. The results showed an increase in p53 levels during anoxia in both hepatopancreases and tail muscle. Increased transcript levels of ei24, a downstream target of p53, support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser-15 p-p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low oxygen stress. Understanding how anoxia-tolerant organisms are able to protect against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah A. Breedon
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | | |
Collapse
|
32
|
Xu C, Minaguchi T, Qi N, Fujieda K, Suto A, Itagaki H, Shikama A, Tasaka N, Akiyama A, Nakao S, Ochi H, Satoh T. Differential roles of the Wip1-p38-p53 DNA damage response pathway in early/advanced-stage ovarian clear cell carcinomas. World J Surg Oncol 2022; 20:139. [PMID: 35490254 PMCID: PMC9055709 DOI: 10.1186/s12957-022-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ovarian clear cell carcinoma (OCCC) is one of the most lethal types of ovarian cancer. Early-stage OCCC can be cured by surgery; however, advanced-stage disease shows poor prognosis due to chemoresistance unlike the more common high-grade serous carcinoma. Methods We explored the differential roles of the Wip1–p38–p53 DNA damage response pathway in respective early- or advanced-stage OCCC by immunohistochemistry of Wip1, phospho-p38, p53, and phospho-p53 from consecutive 143 patients. Results High Wip1 expression correlated with positive p53 (p=0.011), which in turn correlated with low nuclear phospho-p38 expression (p=0.0094). In the early stages, positive p53 showed trends toward worse overall survival (OS) (p=0.062), whereas in the advanced stages, high Wip1 correlated with worse OS (p=0.0012). The univariate and multivariate analyses of prognostic factors indicated that high Wip1 was significant and independent for worse OS (p=0.011) in the advanced stages, but not in the early stages. Additionally, high Wip1 showed trends toward shorter treatment-free interval (TFI) in the advanced stages, but not in the early stages (p=0.083 vs. 0.93). Furthermore, high Wip1 was significantly associated with positive p53 only in the patients with shorter TFI (<6 months), but not in those with longer TFI (≥6 months) (p=0.036 vs. 0.34). Conclusions Wip1 appears to play a crucial role for the prognosis of OCCC through chemoresistance specifically in the advanced stages, implicating that Wip1 possibly serves as a reasonable therapeutic target for improving chemoresistance and poor prognosis of advanced-stage OCCC.
Collapse
Affiliation(s)
- Chenyang Xu
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Takeo Minaguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan.
| | - Nan Qi
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Kaoru Fujieda
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Asami Suto
- Doctoral Program in Obstetrics and Gynecology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8577, Japan
| | - Hiroya Itagaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayumi Shikama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Nobutaka Tasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Azusa Akiyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Sari Nakao
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Ochi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| | - Toyomi Satoh
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
33
|
McCubrey JA, Meher AK, Akula SM, Abrams SL, Steelman LS, LaHair MM, Franklin RA, Martelli AM, Ratti S, Cocco L, Barbaro F, Duda P, Gizak A. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY) 2022; 14:3365-3386. [PMID: 35477123 PMCID: PMC9085237 DOI: 10.18632/aging.204038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
TP53 is a master regulator of many signaling and apoptotic pathways involved in: aging, cell cycle progression, gene regulation, growth, apoptosis, cellular senescence, DNA repair, drug resistance, malignant transformation, metastasis, and metabolism. Most pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDAC). The tumor suppressor gene TP53 is mutated frequently (50-75%) in PDAC. Different types of TP53 mutations have been observed including gain of function (GOF) point mutations and various deletions of the TP53 gene resulting in lack of the protein expression. Most PDACs have point mutations at the KRAS gene which result in constitutive activation of KRas and multiple downstream signaling pathways. It has been difficult to develop specific KRas inhibitors and/or methods that result in recovery of functional TP53 activity. To further elucidate the roles of TP53 in drug-resistance of pancreatic cancer cells, we introduced wild-type (WT) TP53 or a control vector into two different PDAC cell lines. Introduction of WT-TP53 increased the sensitivity of the cells to multiple chemotherapeutic drugs, signal transduction inhibitors, drugs and nutraceuticals and influenced key metabolic properties of the cells. Therefore, TP53 is a key molecule which is critical in drug sensitivity and metabolism of PDAC.
Collapse
Affiliation(s)
- James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Akshaya K. Meher
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Michelle M. LaHair
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Richard A. Franklin
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery, Re.Mo.Bio.S. Laboratory, Anatomy Section, University of Parma, Parma, Italy
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
34
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
35
|
Messaoudi S, Al Sharhan N, Alharthi B, Babu S, Alsaleh A, Alasiri A, Assidi M, Buhmeida A, Almawi W. Detection of genetic mutations in patients with breast cancer from Saudi Arabia using Ion AmpliSeq™ Cancer Hotspot Panel v.2.0. Biomed Rep 2022; 16:26. [PMID: 35251613 PMCID: PMC8889543 DOI: 10.3892/br.2022.1509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/05/2022] Open
Abstract
Next-Generation Sequencing allows for quick and precise sequencing of multiple genes concurrently. Recently, this technology has been employed for the identification of novel gene mutations responsible for disease manifestation among breast cancer (BC) patients, the most common type of cancer amongst Arabian women, and the major cause of disease-associated death in women worldwide. Genomic DNA was extracted from the peripheral blood of 32 Saudi Arabian BC patients with histologically confirmed invasive BC stages I-III and IV, as well from 32 healthy Saudi Arabian women using a QIAamp® DNA Mini Kit. The isolated DNA was quantified using a Qubit™ dsDNA BR Assay Kit with a Qubit 2.0 Fluorometer. Ion semiconductor sequencing technology with an Ion S5 System and AmpliSeq™ Cancer Hotspot Panel v2 were utilized to analyze ~2,800 mutations described in the Catalogue of Somatic Mutations in Cancer from 50 oncogenes and tumor suppressor genes. Ion Reporter Software v.5.6 was used to evaluate the genomic alterations in all the samples after alignment to the hg19 human reference genome. The results showed that out of the 50 genes, 26 mutations, including 17 (65%) missense point mutations (single nucleotide variants), and 9 (35%) frameshift (insertion/deletion) mutations, were identified in 11 genes across the cohort in 61 samples (95%). Mutations were predominantly focused on two genes, PIK3CA and TP53, in the BC genomes of the sample set. PIK3CA mutation, c.1173A>G located in exon 9, was identified in 15 patients (46.9%). The TP53 mutations detected were a missense mutation (c.215C>G) in 26 patients (86.70%) and 1 frameshift mutation (c.215_216insG) in 1 patient (3.33%), located within exon 3 and 5, respectively. This study revealed specific mutation profiles for every BC patient, Thus, the results showed that Ion Torrent DNA Sequencing technology may be a possible diagnostic and prognostic method for developing personalized therapy based on the patient's individual BC genome.
Collapse
Affiliation(s)
- Safia Messaoudi
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Nourah Al Sharhan
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Bandar Alharthi
- Department of Surgery, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Saranya Babu
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Abrar Alsaleh
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Alanoud Alasiri
- Department of Forensic Science, Naif Arab University for Security Sciences, Riyadh 11452, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wassim Almawi
- Faculty of Sciences, El‑Manar University, 1068 Tunis, Tunisia
| |
Collapse
|
36
|
Transient exposure of a buried phosphorylation site in an autoinhibited protein. Biophys J 2022; 121:91-101. [PMID: 34864046 PMCID: PMC8758417 DOI: 10.1016/j.bpj.2021.11.2890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Autoinhibition is a mechanism used to regulate protein function, often by making functional sites inaccessible through the interaction with a cis-acting inhibitory domain. Such autoinhibitory domains often display a substantial degree of structural disorder when unbound, and only become structured in the inhibited state. These conformational dynamics make it difficult to study the structural origin of regulation, including effects of regulatory post-translational modifications. Here, we study the autoinhibition of the Dbl Homology domain in the protein Vav1 by the so-called acidic inhibitory domain. We use molecular simulations to study the process by which a mostly unstructured inhibitory domain folds upon binding and how transient exposure of a key buried tyrosine residue makes it accessible for phosphorylation. We show that the inhibitory domain, which forms a helix in the bound and inhibited stated, samples helical structures already before binding and that binding occurs via a molten-globule-like intermediate state. Together, our results shed light on key interactions that enable the inhibitory domain to sample a finely tuned equilibrium between an inhibited and a kinase-accessible state.
Collapse
|
37
|
Ding W, Shangguan Y, Zhu Y, Sultan Y, Feng Y, Zhang B, Liu Y, Ma J, Li X. Negative impacts of microcystin-LR and glyphosate on zebrafish intestine: Linked with gut microbiota and microRNAs? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117685. [PMID: 34438504 DOI: 10.1016/j.envpol.2021.117685] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-LR (MC-LR) and glyphosate (GLY) have been classified as a Group 2B and Group 2A carcinogens for humans, respectively, and frequently found in aquatic ecosystems. However, data on the potential hazard of MC-LR and GLY exposure to the fish gut are relatively scarce. In the current study, a subacute toxicity test of zebrafish exposed to MC-LR (35 μg L-1) and GLY (3.5 mg L-1), either alone or in combination was performed for 21 d. The results showed that MC-LR or/and GLY treatment reduced the mRNA levels of tight junction genes (claudin-5, occludin, and zonula occludens-1) and altered the levels of diamine oxidase and D-lactic, indicating increased intestinal permeability in zebrafish. Furthermore, MC-LR and/or GLY treatment remarkably increased the levels of intestinal IL-1β and IL-8 but decreased the levels of IL-10 and TGF-β, indicating that MC-LR and/or GLY exposure induced an inflammatory response in the fish gut. MC-LR and/or GLY exposure also activated superoxide dismutase and catalase, generally upregulated the levels of p53, bax, bcl-2, caspase-3, and caspase-9, downregulated the levels of caspase-8 and caused notable histological injury in the fish gut. Moreover, MC-LR and/or GLY exposure also significantly altered the microbial community in the zebrafish gut and the expression of miRNAs (miR-146a, miR-155, miR-16, miR-21, and miR-223). Chronic exposure to MC-LR and/or GLY can induce intestinal damage in zebrafish, and this study is the first to demonstrate an altered gut microbiome and miRNAs in the zebrafish gut after MC-LR and GLY exposure.
Collapse
Affiliation(s)
- Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yingying Shangguan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuqing Zhu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Bangjun Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
38
|
A Network Pharmacology and Molecular Docking Strategy to Explore Potential Targets and Mechanisms Underlying the Effect of Curcumin on Osteonecrosis of the Femoral Head in Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5538643. [PMID: 34557547 PMCID: PMC8455200 DOI: 10.1155/2021/5538643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022]
Abstract
Background Systemic lupus erythematosus (SLE) is a refractory immune disease, which is often complicated with osteonecrosis of the femoral head (ONFH). Curcumin, the most active ingredient of Curcuma longa with a variety of biological activities, has wide effects on the body system. The study is aimed at exploring the potential therapeutic targets underlying the effect of curcumin on SLE-ONFH by utilizing a network pharmacology approach and molecular docking strategy. Methods Curcumin and its drug targets were identified using network analysis. First, the Swiss target prediction, GeneCards, and OMIM databases were mined for information relevant to the prediction of curcumin targets and SLE-ONFH-related targets. Second, the curcumin target gene, SLE-ONFH shared gene, and curcumin-SLE-ONFH target gene networks were created in Cytoscape software followed by collecting the candidate targets of each component by R software. Third, the targets and enriched pathways were examined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Eventually, a gene-pathway network was constructed and visualized by Cytoscape software; key potential central targets were verified and checked by molecular docking and literature review. Results 201 potential targets of curcumin and 170 related targets involved in SLE-ONFH were subjected to network analysis, and the 36 intersection targets indicated the potential targets of curcumin for the treatment of SLE-ONFH. Additionally, for getting more comprehensive and accurate candidate genes, the 36 potential targets were determined to be analyzed by network topology and 285 candidate genes were obtained finally. The top 20 biological processes, cellular components, and molecular functions were identified, when corrected by a P value ≤ 0.05. 20 related signaling pathways were identified by KEGG analysis, when corrected according to a Bonferroni P value ≤ 0.05. Molecular docking showed that the top three genes (TP53, IL6, VEGFA) have good binding force with curcumin; combined with literature review, some other genes such as TNF, CCND1, CASP3, and MMP9 were also identified. Conclusion The present study explored the potential targets and signaling pathways of curcumin against SLE-ONFH, which could provide a better understanding of its effects in terms of regulating cell cycle, angiogenesis, immunosuppression, inflammation, and bone destruction.
Collapse
|
39
|
Nandi S, Dey R, Dey S, Samadder A, Saxena A. Naturally Sourced CDK Inhibitors and Current Trends in Structure-Based Synthetic Anticancer Drug Design by Crystallography. Anticancer Agents Med Chem 2021; 22:485-498. [PMID: 34503422 DOI: 10.2174/1871520621666210908101751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 06/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) are the chief regulators in cell proliferation; the kinase activities are largely regulated by their interactions with CDK inhibitors (CKIs) and Cyclins. The association of different CDKs with CDKIs and Cyclins at the cell-cycle checkpoints of different stages of mitotic cell cycle function act more likely as the molecular switches that regulate different transcriptional events required for progression through the cell cycle. A fine balance in response to extracellular and intracellular signals is highly maintained in the orchestrated function of CDKs along with Cyclins and CDKIs for normal cell proliferation. This fine-tuning in mitotic cell cycle progression sometimes gets lost due to dysregulation of CDKs. The aberrant functioning of the CDKIs is therefore studied for its contributions as a vital hallmark of cancers. It has attracted our focus to maneuver cancer therapy. Hence, several synthetic CDKIs and their crystallography-based drug design have been explained to understand their mode of action with CDKs. Since most of the synthetic drugs function by inhibiting the CDK4/6 kinases by competitively binding to their ATP binding cleft, these synthetic drugs are reported to attack the normal, healthy growing cells adjacent to the cancer cells leading to the decrease in the life span of the cancer patients. The quest for traditional natural medicines may have a great impact on the treatment of cancer. Therefore, in the present studies, a search for naturally sourced CDK inhibitors has been briefly focused. Additionally, some synthetic crystallography-based drug design has been explained to elucidate different avenues to develop better anticancer chemotherapeutics, converting natural scaffolds into inhibitors of the CDK mediated abnormal signal transduction with lesser side effects.
Collapse
Affiliation(s)
- Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Rishita Dey
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| | - Sudatta Dey
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235. India
| | - Anil Saxena
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713. India
| |
Collapse
|
40
|
Hasan MM, Tasmin MS, El-Shehawi AM, Elseehy MM, Reza MA, Haque A. R. vesicarius L. exerts nephroprotective effect against cisplatin-induced oxidative stress. BMC Complement Med Ther 2021; 21:225. [PMID: 34481509 PMCID: PMC8417970 DOI: 10.1186/s12906-021-03398-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cisplatin is an outstanding anticancer drug, but its use has been decreased remarkably due to sever nephrotoxicity. R. vesicarius L. is a leafy vegetable that is evident with anti-angeogenic, anti-inflammatory, anti-proliferative, hepatoprotective, and nephroprotective potential. Therefore, this study was designed to inspect its methanol extract (RVE) for possible nephroprotective effect. METHODS Primarily, in vitro antioxidant activity of RVE was confirmed based on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging aptitude. Thereafter, Swiss Albino male mice were treated with cisplatin (2.5 mg/kg) for 5 successive days to induce nephrotoxicity. Recovery from nephrotoxicity was scrutinized by treating the animals with RVE (25, 50, and 100 mg/kg) intraperitoneally (i.p.) for the next 5 consecutive days. After completion of treatment, mice were sacrificed and kidneys were collected. Part of it was homogenized in sodium phosphate buffer for evaluating malondialdehyde (MDA) level, another part was used to evaluate gene (NQO1, p53, and Bcl-2) expression. Moreover, the hydrogen peroxide (H2O2) neutralizing capacity of RVE was evaluated in HK-2 cells in vitro. Finally, bioactive phytochemicals in RVE were determined using gas chromatography-mass spectrometry (GC-MS). RESULTS RVE showed in vitro antioxidant activity in a dose-dependent fashion with 37.39 ± 1.89 μg/mL IC50 value. Treatment with RVE remarkably (p < 0.05) decreased MDA content in kidney tissue. Besides, the expression of NQO, p53, and Bcl-2 genes was significantly (p < 0.05) mitigated in a dose-dependent manner due to the administration of RVE. RVE significantly (p < 0.05) reversed the H2O2 level in HK-2 cells to almost normal. From GC-MS, ten compounds including three known antioxidants "4H-Pyran-4-one, 2, 3-dihydro-3,5-dihydroxy-6-methyl-", "Hexadecanoic acid", and "Squalene" were detected. The extract was rich with an alkaloid "13-Docosenamide". CONCLUSION Overall, RVE possesses a protective effect against cisplatin-induced kidney damage.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Most Sayla Tasmin
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ahmed M El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mona M Elseehy
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Md Abu Reza
- Molecular Biology and Protein Science Laboratory, Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Ariful Haque
- Molecular Pathology Laboratory, Institute of Biological Sciences, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
41
|
Harikumar A, Lim PSL, Nissim-Rafinia M, Park JE, Sze SK, Meshorer E. Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and β-Catenin. Stem Cell Reports 2021; 15:1260-1274. [PMID: 33296674 PMCID: PMC7724474 DOI: 10.1016/j.stemcr.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
The multifunctional histone chaperone, SET, is essential for embryonic development in the mouse. Previously, we identified SET as a factor that is rapidly downregulated during embryonic stem cell (ESC) differentiation, suggesting a possible role in the maintenance of pluripotency. Here, we explore SET's function in early differentiation. Using immunoprecipitation coupled with protein quantitation by LC-MS/MS, we uncover factors and complexes, including P53 and β-catenin, by which SET regulates lineage specification. Knockdown for P53 in SET-knockout (KO) ESCs partially rescues lineage marker misregulation during differentiation. Paradoxically, SET-KO ESCs show increased expression of several Wnt target genes despite reduced levels of active β-catenin. Further analysis of RNA sequencing datasets hints at a co-regulatory relationship between SET and TCF proteins, terminal effectors of Wnt signaling. Overall, we discover a role for both P53 and β-catenin in SET-regulated early differentiation and raise a hypothesis for SET function at the β-catenin-TCF regulatory axis.
Collapse
Affiliation(s)
- Arigela Harikumar
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Patrick S L Lim
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Malka Nissim-Rafinia
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jung Eun Park
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
42
|
Luo H, Zhai L, Qiu W, Liang H, Yu L, Li Y, Xiong M, Guo J, Tang H. p16 loss facilitate hydroquinone-induced malignant transformation of TK6 cells through promoting cell proliferation and accelerating the cell cycle progression. ENVIRONMENTAL TOXICOLOGY 2021; 36:1591-1599. [PMID: 33932074 DOI: 10.1002/tox.23155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
The p16INK4A is a multifunction gene that includes regulation of the cell cycle, apoptosis, senescence and tumor development. However, the effects of p16 in hydroquinone-induced malignant transformation of TK6 cells remain unclear. The present study aimed to explore whether p16 loss facilitate malignant transformation in TK6 cells. The results demonstrated that p16/Rb signal pathway was suppressed in hydroquinone-induced malignant transformation of TK6 cells. We further confirmed that p16 loss stimulated cell proliferation, and accelerated cell cycle progression in vitro and in vivo. The immunoblotting analysis indicated that p16 regulated cell cycle progression via Rb and p53. Therefore, we conclude that p16 is involved in HQ-induced malignant transformation associated with suppressing Rb and p53 which resulting in accelerating the cell cycle progression.
Collapse
Affiliation(s)
- Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lei Yu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuan Li
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Mengyun Xiong
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiaying Guo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
43
|
Laubach K, Zhang J, Chen X. The p53 Family: A Role in Lipid and Iron Metabolism. Front Cell Dev Biol 2021; 9:715974. [PMID: 34395447 PMCID: PMC8358664 DOI: 10.3389/fcell.2021.715974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
The p53 family of tumor suppressors, which includes p53, p63, and p73, has a critical role in many biological processes, such as cell cycle arrest, apoptosis, and differentiation. In addition to tumor suppression, the p53 family proteins also participate in development, multiciliogenesis, and fertility, indicating these proteins have diverse roles. In this review, we strive to cover the relevant studies that demonstrate the roles of p53, p63, and p73 in lipid and iron metabolism.
Collapse
Affiliation(s)
| | | | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
44
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
45
|
Xu Q, Chen Y. An Aging-Related Gene Signature-Based Model for Risk Stratification and Prognosis Prediction in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:685379. [PMID: 34277626 PMCID: PMC8283194 DOI: 10.3389/fcell.2021.685379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Aging is an inevitable time-dependent process associated with a gradual decline in many physiological functions. Importantly, some studies have supported that aging may be involved in the development of lung adenocarcinoma (LUAD). However, no studies have described an aging-related gene (ARG)-based prognosis signature for LUAD. Accordingly, in this study, we analyzed ARG expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). After LASSO and Cox regression analyses, a six ARG-based signature (APOC3, EPOR, H2AFX, MXD1, PLCG2, and YWHAZ) was constructed using TCGA dataset that significantly stratified cases into high- and low-risk groups in terms of overall survival (OS). Cox regression analysis indicated that the ARG signature was an independent prognostic factor in LUAD. A nomogram based on the ARG signature and clinicopathological factors was developed in TCGA cohort and validated in the GEO dataset. Moreover, to visualize the prediction results, we established a web-based calculator yurong.shinyapps.io/ARGs_LUAD/. Calibration plots showed good consistency between the prediction of the nomogram and actual observations. Receiver operating characteristic curve and decision curve analyses indicated that the ARG nomogram had better OS prediction and clinical net benefit than the staging system. Taken together, these results established a genetic signature for LUAD based on ARGs, which may promote individualized treatment and provide promising novel molecular markers for immunotherapy.
Collapse
Affiliation(s)
- Qian Xu
- Health Management Center, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yurong Chen
- Department of Medical Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| |
Collapse
|
46
|
González-Alvarez ME, McGuire BC, Keating AF. Obesity alters the ovarian proteomic response to zearalenone exposure†. Biol Reprod 2021; 105:278-289. [PMID: 33855340 PMCID: PMC8256104 DOI: 10.1093/biolre/ioab069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, is detrimental to female reproduction. Altered chemical biotransformation, depleted primordial follicles and a blunted genotoxicant response have been discovered in obese female ovaries, thus, this study investigated the hypothesis that obesity would enhance ovarian sensitivity to ZEN exposure. Seven-week-old female wild-type nonagouti KK.Cg-a/a mice (lean) and agouti lethal yellow KK.Cg-Ay/J mice (obese) received food and water ad libitum, and either saline or ZEN (40 μg/kg) per os for 15 days. Body and organ weights, and estrous cyclicity were recorded, and ovaries collected posteuthanasia for protein analysis. Body and liver weights were increased (P < 0.05) in the obese mice, but obesity did not affect (P > 0.05) heart, kidney, spleen, uterus, or ovary weight and there was no impact (P > 0.05) of ZEN exposure on body or organ weight in lean or obese mice. Obese mice had shorter proestrus (P < 0.05) and a tendency (P = 0.055) for longer metestrus/diestrus. ZEN exposure in obese mice increased estrus but shortened metestrus/diestrus length. Neither obesity nor ZEN exposure impacted (P > 0.05) circulating progesterone, or ovarian abundance of EPHX1, GSTP1, CYP2E1, ATM, BRCA1, DNMT1, HDAC1, H4K16ac, or H3K9me3. Lean mice exposed to ZEN had a minor increase in γH2AX abundance (P < 0.05). In lean and obese mice, LC-MS/MS identified alterations to proteins involved in chemical metabolism, DNA repair and reproduction. These data identify ZEN-induced adverse ovarian modes of action and suggest that obesity is additive to ZEN-induced ovotoxicity.
Collapse
Affiliation(s)
- M Estefanía González-Alvarez
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Bailey C McGuire
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| | - Aileen F Keating
- Department of Animal Science and Interdepartmental Toxicology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
47
|
Ferracchiato S, Di-Iacovo N, Scopetti D, Piobbico D, Castelli M, Pieroni S, Gargaro M, Manni G, Brancorsini S, Della-Fazia MA, Servillo G. Hops/Tmub1 Heterozygous Mouse Shows Haploinsufficiency Effect in Influencing p53-Mediated Apoptosis. Int J Mol Sci 2021; 22:7186. [PMID: 34281239 PMCID: PMC8269437 DOI: 10.3390/ijms22137186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
HOPS is a ubiquitin-like protein implicated in many aspects of cellular function including the regulation of mitotic activity, proliferation, and cellular stress responses. In this study, we focused on the complex relationship between HOPS and the tumor suppressor p53, investigating both transcriptional and non-transcriptional p53 responses. Here, we demonstrated that Hops heterozygous mice and mouse embryonic fibroblasts exhibit an impaired DNA-damage response to etoposide-induced double-strand breaks when compared to wild-type genes. Specifically, alterations in HOPS levels caused significant defects in the induction of apoptosis, including a reduction in p53 protein level and percentage of apoptotic cells. We also analyzed the effect of reduced HOPS levels on the DNA-damage response by examining the transcript profiles of p53-dependent genes, showing a suggestive deregulation of the mRNA levels for a number of p53-dependent genes. Taken together, these results show an interesting haploinsufficiency effect mediated by Hops monoallelic deletion, which appears to be enough to destabilize the p53 protein and its functions. Finally, these data indicate a novel role for Hops as a tumor-suppressor gene in DNA damage repair in mammalian cells.
Collapse
|
48
|
Ziranu P, Lai E, Schirripa M, Puzzoni M, Persano M, Pretta A, Munari G, Liscia N, Pusceddu V, Loupakis F, Demurtas L, Libertini M, Mariani S, Migliari M, Dubois M, Giampieri R, Sotgiu G, Dei Tos AP, Lonardi S, Zaniboni A, Fassan M, Scartozzi M. The Role of p53 Expression in Patients with RAS/BRAF Wild-Type Metastatic Colorectal Cancer Receiving Irinotecan and Cetuximab as Later Line Treatment. Target Oncol 2021; 16:517-527. [PMID: 33970400 PMCID: PMC8266772 DOI: 10.1007/s11523-021-00816-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Preclinical and clinical data indicate that p53 expression might modulate the activity of the epidermal growth factor receptor (EGFR), influencing response/resistance to anti-EGFR monoclonal antibodies. However, the association between p53 status and clinical outcome has not been clarified yet. OBJECTIVE In our study, we evaluated the role of p53 expression in patients with RAS/BRAF wild-type metastatic colorectal cancer (mCRC) receiving irinotecan/cetuximab in an exploratory and a validation cohort. PATIENTS AND METHODS p53 expression was analysed in patients with RAS/BRAF wild-type mCRC receiving second-line or third-line irinotecan/cetuximab. Survival distribution was assessed by the Kaplan-Meier method, while the log-rank test was used for survival comparison. RESULTS Among 120 patients with RAS/BRAF wild-type mCRC included in our analysis, 52 (59%) and 19 (59%) patients showed p53 overexpression in the exploratory and validation cohort, respectively. In the exploratory cohort, low p53 expression was correlated with better median progression-free survival (hazard ratio 0.39; p < 0.0001), median overall survival (hazard ratio: 0.23; p < 0.0001) and response rate (p < 0.0001). These results were confirmed by data of the validation cohort where we observed better median progression-free survival (hazard ratio: 0.48; p = 0.0399), median overall survival (hazard ratio: 0.26; p = 0.0027) and response rate (p =0.0007) in patients with p53 normal expression mCRC. CONCLUSIONS In our study, p53 overexpression was associated with anti-EGFR treatment resistance in patients with RAS/BRAF WT mCRC, as confirmed in a validation cohort. Larger studies are needed to validate the role of p53 and investigate EGFR cross-talk in these patients.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Marta Schirripa
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giada Munari
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Nicole Liscia
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
- Medical Oncology Unit, Sapienza University of Rome, Rome, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Fotios Loupakis
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | | | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy
| | - Riccardo Giampieri
- Medical Oncology Unit, University Hospital and Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, S.S. 554 Bivio per Sestu Km 4, 500, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
49
|
Mazar J, Gordon C, Naga V, Westmoreland TJ. The Killing of Human Neuroblastoma Cells by the Small Molecule JQ1 Occurs in a p53-Dependent Manner. Anticancer Agents Med Chem 2021; 20:1613-1625. [PMID: 32329693 PMCID: PMC7527568 DOI: 10.2174/1871520620666200424123834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 02/07/2020] [Indexed: 11/30/2022]
Abstract
Background MYCN amplification is a prognostic biomarker associated with poor prognosis of neuroblastoma in children. The overall survival of children with MYCN-amplified neuroblastoma has only marginally improved within the last 20 years. The Bromodomain and Extra-Terminal motif (BET) inhibitor, JQ1, has been shown to downregulate MYCN in neuroblastoma cells. Objective To determine if JQ1 downregulation of MYCN in neuroblastomas can offer a target- specific therapy for this, difficult to treat, pediatric cancer. Methods Since MYCN-amplified neuroblastoma accounts for as much as 40 to 50 percent of all high-risk cases, we compared the effect of JQ1 on both MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines and investigated its mechanism of action. Results In this study, we show that JQ1 can specifically target MYCN for downregulation, though this effect is not specific to only MYCN-amplified cells. And although we can confirm that the loss of MYCN alone can induce apoptosis, the exogenous rescue of MYCN expression can abrogate much of this cytotoxicity. More fascinating, however, was the discovery that the JQ1-induced knockdown of MYCN, which led to the loss of the human double minute 2 homolog (HDM2) protein, also led to the accumulation of tumor protein 53 (also known as TP53 or p53), which ultimately induced apoptosis. Likewise, the knockdown of p53 also blunted the cytotoxic effects of JQ1. Conclusion These data suggest a mechanism of action for JQ1 cytotoxicity in neuroblastomas and offer a possible prognostic target for determining its efficacy as a therapeutic.
Collapse
Affiliation(s)
- Joseph Mazar
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Caleb Gordon
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | - Varun Naga
- Nemours Children's Hospital, 13535 Nemours Parkway, Orlando, FL 32827, United States
| | | |
Collapse
|
50
|
Sarmah DT, Bairagi N, Chatterjee S. The interplay between DNA damage and autophagy in lung cancer: A mathematical study. Biosystems 2021; 206:104443. [PMID: 34019917 DOI: 10.1016/j.biosystems.2021.104443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022]
Abstract
The rising mortality in lung cancer, as well as the constraints of the existing drugs, have made it a major research topic. DNA damage marks the early onset of cancer as it often results from vulnerabilities due to UV rays, oxidative stress, ionizing radiation, and various types of genotoxic attacks. p53 plays an unequivocal role in the DNA repair process and has an abiding presence at the crossroads of the pathways linking DNA damage and cancer. p53 also regulates autophagy in a dual manner based on its cellular localization. The plexus of autophagy regulated by p53 includes AMPK and BCL2, which are positive and negative regulators of prime autophagy inducer beclin1, respectively. Although autophagy is a quintessential process, its levels need to be monitored as uncontrolled autophagy may lead to cell death. The association of p53 and autophagic cell death is very vital as the former acts whenever any threat comes to DNA while the latter may play a role in getting rid of the culprit cell. Therefore, in this paper, we have formulated a seven-dimensional mathematical model connecting p53, DNA damage, and autophagy in lung cancer. We performed both local and global sensitivity analysis along with parameter recalibration analysis to understand the system dynamics. We hypothesized that, by the modulation of beclin1 level, the regulation of AMPK and BCL2 could be a possible strategy to mitigate the progression of lung cancer.
Collapse
Affiliation(s)
- Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|