1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Zhang C, Luo X, Wei M, Jing B, Wang J, Lin L, Shi B, Zheng Q, Li C. Lithium chloride promotes mesenchymal-epithelial transition in murine cutaneous wound healing via inhibiting CXCL9 and IGF2. Exp Dermatol 2024; 33:e15078. [PMID: 38610097 DOI: 10.1111/exd.15078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Cutaneous wound healing is a challenge in plastic and reconstructive surgery. In theory, cells undergoing mesenchymal transition will achieve re-epithelialization through mesenchymal-epithelial transition at the end of wound healing. But in fact, some pathological stimuli will inhibit this biological process and result in scar formation. If mesenchymal-epithelial transition can be activated at the corresponding stage, the ideal wound healing may be accomplished. Two in vivo skin defect mouse models and dermal-derived mesenchymal cells were used to evaluate the effect of lithium chloride in wound healing. The mesenchymal-epithelial transition was detected by immunohistochemistry staining. In vivo, differentially expressed genes were analysed by transcriptome analyses and the subsequent testing was carried out. We found that lithium chloride could promote murine cutaneous wound healing and facilitate mesenchymal-epithelial transition in vivo and in vitro. In lithium chloride group, scar area was smaller and the collagen fibres are also orderly arranged. The genes related to mesenchyme were downregulated and epithelial mark genes were activated after intervention. Moreover, transcriptome analyses suggested that this effect might be related to the inhibition of CXCL9 and IGF2, subsequent assays demonstrated it. Lithium chloride can promote mesenchymal-epithelial transition via downregulating CXCL9 and IGF2 in murine cutaneous wound healing, the expression of IGF2 is regulated by β-catenin. It may be a potential promising therapeutic drug for alleviating postoperative scar and promoting re-epithelialization in future.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mianxing Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bingshuai Jing
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jue Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lanling Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Li C, He X, Wu Y, Li J, Zhang R, An X, Yue Y. Single-Cell Transcriptome Sequence Profiling on the Morphogenesis of Secondary Hair Follicles in Ordos Fine-Wool Sheep. Int J Mol Sci 2024; 25:584. [PMID: 38203755 PMCID: PMC10779399 DOI: 10.3390/ijms25010584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The Ordos fine-wool sheep is a high-quality breed in China that produces superior natural textiles and raw materials such as wool and lamb meat. However, compared to the Australian Merino sheep, there is still a gap in terms of the wool fiber fineness and wool yield. The hair follicle is the main organ that controls the type of wool fiber, and the morphological changes in the secondary hair follicle are crucial in determining wool quality. However, the process and molecular mechanisms of hair follicle morphogenesis in Ordos fine-wool sheep are not yet clear. Therefore, analyzing the molecular mechanisms underlying the process of follicle formation is of great significance for improving the fiber diameter and wool production of Ordos fine-wool sheep. The differential expressed genes, APOD, POSTN, KRT5, and KRT15, which related to primary hair follicles and secondary hair follicles, were extracted from the dermal papillae. Based on pseudo-time analysis, the differentiation trajectories of dermal lineage cells and epidermal lineage cells in the Ordos fine-wool sheep were successfully constructed, providing a theoretical basis for breeding research in Ordos fine-wool sheep.
Collapse
Affiliation(s)
- Chenglan Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xue He
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yi Wu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rui Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (C.L.)
- Sheep Breeding Engineering Technology Research Center, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
4
|
Yang F, Ruixin Y, Xiaochun M, Fan Z, Junbin L, Pengmei D, Guoyan J. Extremely hair follicle density is associated with a significantly different cecal microbiota in rex rabbits. Exp Dermatol 2023; 32:1361-1370. [PMID: 37160722 DOI: 10.1111/exd.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
It has become increasingly clear that gut microbiota and skin are interconnected since the discovery of the 'gut-brain-skin' axis. Hair follicles (HFs) are skin microorganisms, but few studies have investigated their relationship to gut microbiota. Hence, we hypothesize that HFs have a close relationship with the gut, similarly to what was reported for the skin. Using rex rabbits as an animal model, one hundred healthy half-sibling rex rabbits were selected for the experiment, and 16 s rRNA gene sequencing was performed on the cecal microbiota of nine rabbits with the extremely high (HS) and low (LS) hair density (n = 9 per group) to determine differences between the composition and function of these communities. In comparison with the LS group, several alpha diversity index values were significantly lower in the HS group, although the higher variation in species composition in the HS group. Additionally, species diversity and abundance differed significantly in the cecum microbiota of HS and LS rabbits. Further, primary and secondary HF density was significantly correlated with the families Muribaculaceae and Bacteroidaceae, and genera Blautia, Bacteroides and Desulfovibrio. In particular, Muribaculaceae, Bacteroidaceae, Blautia and Bacteroides may support the development of HFs. Moreover, the expression of WNT4, WNT10a, WNT10b, CTNNB1 (β-catenin) and LEF1 in the skin was significantly higher in the HS group compared with the LS group. Altogether, the results of this study suggest that the extremely high density of HF in rabbits is associated with a significantly different microbiota diversity and community structure, and the Wnt/β-catenin signalling pathway was activated in the HS group. Thus, key bacteria may promote the development of HF.
Collapse
Affiliation(s)
- Feng Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yang Ruixin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ma Xiaochun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhang Fan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liu Junbin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Pengmei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Guoyan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Doucet D, Brubaker C, Turner D, Gregory CA. Factors affecting the role of canonical Wnt inhibitor Dickkopf-1 in cancer progression. Front Oncol 2023; 13:1114822. [PMID: 37007131 PMCID: PMC10050559 DOI: 10.3389/fonc.2023.1114822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundThe canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to modulate homeostasis between canonical and non-canonical Wnt pathways and also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor physiology are therefore unpredictable with examples of Dkk-1 serving as either a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a potential treatment for some types of cancer, we questioned whether it is possible to predict the role of Dkk-1 on tumor progression based on the tissue origin of the tumor.MethodsOriginal research articles that described Dkk-1 in terms a tumor suppressor or driver of cancer growth were identified. To determine the association between tumor developmental origin and the role of Dkk-1, a logistic regression was performed. The Cancer Genome Atlas database was interrogated for survival statistics based on tumor Dkk-1 expression.ResultsWe report that Dkk-1 is statistically more likely to serve as a suppressor in tumors arising from the ectoderm (p = 0.0198) or endoderm (p = 0.0334) but more likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155). Survival analyses indicated that in cases where Dkk-1 expression could be stratified, high Dkk-1 expression is usually associated with poor prognosis. This in part may be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its influence on immunomodulatory and angiogenic processes in the tumor stroma.ConclusionDkk-1 has a context-specific dual role as a tumor suppressor or driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors arising from ectoderm and endoderm while the converse is true for mesodermal tumors. Patient survival data indicated high Dkk-1 expression is generally a poor prognostic indicator. These findings provide further support for the importance of Dkk-1 as a therapeutic cancer target in some cases.
Collapse
Affiliation(s)
- Dakota Doucet
- Medical Sciences Program, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
| | - Connor Brubaker
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Donald Turner
- Department of Statistics, Texas A&M University, College Station, TX, United States
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, Texas A&M Health Science Center School of Medicine, Texas A&M University, Bryan, TX, United States
- *Correspondence: Carl A. Gregory,
| |
Collapse
|
6
|
Li J, Zhao B, Dai Y, Zhang X, Chen Y, Wu X. Exosomes Derived from Dermal Papilla Cells Mediate Hair Follicle Stem Cell Proliferation through the Wnt3a/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9042345. [PMID: 36388171 PMCID: PMC9663250 DOI: 10.1155/2022/9042345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 08/18/2023]
Abstract
Both hair follicle stem cells (HFSC) and dermal papilla cells (DPC) are essential for hair follicle growth and proliferation. In this study, HFSCs and DPCs that made signature proteins like KRT14, KRT15, KRT19, α-SMA, and Versican were obtained. Cell coculture systems between HFSCs and DPCs were used to measure the increased PCNA protein content in HFSCs. Additionally, exosomes from dermal papilla cells (DPC-Exos), the overexpression and silencing of Wnt3a, could regulate the Wnt/β-catenin signaling pathway downstream genes. After collecting DPC-ExosOE-Wnt3a, the treatment of HFSC with DPC-ExosOE-Wnt3a showed that DPC-ExosOE-Wnt3a could upregulate the mRNA expression of downstream genes in the Wnt/β-catenin signaling pathway and that DPC-ExosOE-Wnt3a enhanced the proliferation of HFSCs while inhibiting their apoptosis. These findings suggest that DPC-Exos could regulate HFSC cell proliferation via the Wnt3a/β-catenin signaling pathway. This research offers novel concepts for the molecular breeding and efficient production of Angora rabbits, as well as for the treatment of human hair problems.
Collapse
Affiliation(s)
- Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Xiao Q, Wang L, Zhang J, Zhong X, Guo Z, Yu J, Ma Y, Wu H. Activation of Wnt/β-Catenin Signaling Involves 660 nm Laser Radiation on Epithelium and Modulates Lipid Metabolism. Biomolecules 2022; 12:1389. [PMID: 36291598 PMCID: PMC9599573 DOI: 10.3390/biom12101389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Research has proven that light treatment, specifically red light radiation, can provide more clinical benefits to human health. Our investigation was firstly conducted to characterize the tissue morphology of mouse breast post 660 nm laser radiation with low power and long-term exposure. RNA sequencing results revealed that light exposure with a higher intervention dosage could cause a number of differentially expressed genes compared with a low intervention dosage. Gene ontology analysis, protein-protein interaction network analysis, and gene set enrichment analysis results suggested that 660 nm light exposure can activate more transcription-related pathways in HC11 breast epithelial cells, and these pathways may involve modulating critical gene expression. To consider the critical role of the Wnt/T-catenin pathway in light-induced modulation, we hypothesized that this pathway might play a major role in response to 660 nm light exposure. To validate our hypothesis, we conducted qRT-PCR, immunofluorescence staining, and Western blot assays, and relative results corroborated that laser radiation could promote expression levels of β-catenin and relative phosphorylation. Significant changes in metabolites and pathway analysis revealed that 660 nm laser could affect nucleotide metabolism by regulating purine metabolism. These findings suggest that the Wnt/β-catenin pathway may be the major sensor for 660 nm laser radiation, and it may be helpful to rescue drawbacks or side effects of 660 nm light exposure through relative interventional agents.
Collapse
Affiliation(s)
- Qiyang Xiao
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| | - Lijing Wang
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Juling Zhang
- Center for Faculty Development, South China Normal University, Guangzhou 510631, China
| | - Xinyu Zhong
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Zhou Guo
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Jiahao Yu
- Shandong Zhongbaokang Medical Implements Co., Ltd., Zibo 255000, China
| | - Yuanyuan Ma
- School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Haigang Wu
- School of Artificial Intelligence, Henan University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Li J, Ma J, Zhang Q, Gong H, Gao D, Wang Y, Li B, Li X, Zheng H, Wu Z, Zhu Y, Leng L. Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth. Nat Commun 2022; 13:4012. [PMID: 35817779 PMCID: PMC9273758 DOI: 10.1038/s41467-022-31659-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Human skin comprises stratified squamous epithelium and dermis with various stromal cells and the extracellular matrix (ECM). The basement membrane (BM), a thin layer at the top of the dermis, serves as a unique niche for determining the fate of epidermal stem cells (EpSCs) by transmitting physical and biochemical signals to establish epidermal cell polarity and maintain the hierarchical structure and function of skin tissue. However, how stem cell niches maintain tissue homeostasis and control wound healing by regulating the behavior of EpSCs is still not completely understood. In this study, a hierarchical skin proteome map is constructed using spatial quantitative proteomics combined with decellularization, laser capture microdissection, and mass spectrometry. The specific functions of different structures of normal native skin tissues or tissues with a dermatologic disease are analyzed in situ. Transforming growth factor-beta (TGFβ)-induced protein ig-h3 (TGFBI), an ECM glycoprotein, in the BM is identified that could enhance the growth and function of EpSCs and promote wound healing. Our results provide insights into the way in which ECM proteins facilitate the growth and function of EpSCs as part of an important niche. The results may benefit the clinical treatment of skin ulcers or diseases with refractory lesions that involve epidermal cell dysfunction and re-epithelialization block in the future. Ling Leng et al. construct a hierarchical skin proteome map and identify an extracellular matrix glycoprotein TGFBI, which is located in basement membrane and could enhance the growth and function of epidermal stem cells and promote wound healing.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Qiyu Zhang
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huizi Gong
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Wang
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biyou Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| | - Xiao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Heyi Zheng
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Basic Medical School, Anhui Medical University, Anhui, China.
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Detecting genetic epistasis by differential departure from independence. Mol Genet Genomics 2022; 297:911-924. [PMID: 35606612 DOI: 10.1007/s00438-022-01893-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
Abstract
Countering prior beliefs that epistasis is rare, genomics advancements suggest the other way. Current practice often filters out genomic loci with low variant counts before detecting epistasis. We argue that this practice is far from optimal because it can throw away strong epistatic patterns. Instead, we present the compensated Sharma-Song test to infer genetic epistasis in genome-wide association studies by differential departure from independence. The test does not require a minimum number of replicates for each variant. We also introduce algorithms to simulate epistatic patterns that differentially depart from independence. Using two simulators, the test performed comparably to the original Sharma-Song test when variant frequencies at a locus are marginally uniform; encouragingly, it has a marked advantage over alternatives when variant frequencies are marginally nonuniform. The test further revealed uniquely clean epistatic variants associated with chicken abdominal fat content that are not prioritized by other methods. Genes involved in most numbers of inferred epistasis between single nucleotide polymorphisms (SNPs) belong to pathways known for obesity regulation; many top SNPs are located on chromosome 20 and in intergenic regions. Measuring differential departure from independence, the compensated Sharma-Song test offers a practical choice for studying epistasis robust to nonuniform genetic variant frequencies.
Collapse
|
10
|
Guo X, Schaudinn C, Blume-Peytavi U, Vogt A, Rancan F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022; 11:cells11071198. [PMID: 35406762 PMCID: PMC8998073 DOI: 10.3390/cells11071198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
Adult stem cells have been extensively investigated for tissue repair therapies. Adipose-derived stem cells (ASCs) were shown to improve wound healing by promoting re-epithelialization and vascularization as well as modulating the inflammatory immune response. In this study, we used ex vivo human skin cultured in a six-well plate with trans-well inserts as a model for superficial wounds. Standardized wounds were created and treated with allogeneic ASCs, ASCs conditioned medium (ASC-CM), or cell culture medium (DMEM) supplemented with fetal calf serum (FCS). Skin viability (XTT test), histology (hematoxylin and eosin, H and E), β-catenin expression as well as inflammatory mediators and growth factors were monitored over 12 days of skin culture. We observed only a moderate time-dependent decrease in skin metabolic activity while skin morphology was preserved, and re-epithelialization occurred at the wound edges. An increase in β-catenin expression was observed in the newly formed epithelia, especially in the samples treated with ASC-CM. In general, increased growth factors and inflammatory mediators, e.g., hepatocytes growth factor (HGF), platelet-derived growth factor subunit AA (PDGF-AA), IL-1α, IL-7, TNF-α, and IL-10, were observed over the incubation time. Interestingly, different expression profiles were observed for the different treatments. Samples treated with ASC-CM significantly increased the levels of inflammatory cytokines and PDGF-AA with respect to control, whereas the treatment with ASCs in DMEM with 10% FCS resulted in significantly increased levels of fibroblast growth factor-basic (FGF-basic) and moderate increases of immunomodulatory cytokines. These results confirm that the wound microenvironment can influence the type of mediators secreted by ASCs and the mode as to how they improve the wound healing process. Comparative investigations with pre-activated ASCs will elucidate further aspects of the wound healing mechanism and improve the protocols of ACS application.
Collapse
Affiliation(s)
- Xiao Guo
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Zentrum für Biologische Gefahren und Spezielle Pathogene 4 (ZBS4), Robert Koch Institute, 13353 Berlin, Germany;
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and and Allergy, Charité–Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (X.G.); (U.B.-P.); (A.V.)
- Correspondence: ; Tel.: +49-30-450518347
| |
Collapse
|
11
|
Transit Amplifying Progenitors in the Cerebellum: Similarities to and Differences from Transit Amplifying Cells in Other Brain Regions and between Species. Cells 2022; 11:cells11040726. [PMID: 35203375 PMCID: PMC8870322 DOI: 10.3390/cells11040726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Transit amplification of neural progenitors/precursors is widely used in the development of the central nervous system and for tissue homeostasis. In most cases, stem cells, which are relatively less proliferative, first differentiate into transit amplifying cells, which are more proliferative, losing their stemness. Subsequently, transit amplifying cells undergo a limited number of mitoses and differentiation to expand the progeny of differentiated cells. This step-by-step proliferation is considered an efficient system for increasing the number of differentiated cells while maintaining the stem cells. Recently, we reported that cerebellar granule cell progenitors also undergo transit amplification in mice. In this review, we summarize our and others’ recent findings and the prospective contribution of transit amplification to neural development and evolution, as well as the molecular mechanisms regulating transit amplification.
Collapse
|
12
|
Kossard S. Eruptive Necrotizing Infundibular Crystalline Folliculitis: An Expression of an Abortive Sebaceous Follicular Repair Pathway Linked to Committed Infundibular Stem Cells? Am J Dermatopathol 2021; 43:867-870. [PMID: 34735106 PMCID: PMC8601669 DOI: 10.1097/dad.0000000000002022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ABSTRACT Necrotizing infundibular crystalline folliculitis is a rare entity, which is a distinctive clinical and histopathological entity. Eruptive yellow waxy umbilicated folliculocentric plugs clinically correspond to pale crystalline filaments embedded in an amorphous sebum-rich material. Remarkably, only the superficial infundibular ostia remain, and the distended cavity is devoid of a follicular or sebaceous gland remnant. The pathogenesis of this enigmatic event remains to be established. The emergence of necrotizing infundibular crystalline folliculitis (NICF) as a paradoxical side effect of antitumor inhibitors epidermal growth factor receptor vascular endothelial growth factor and more recently programmed death-1 represents the expression of altered molecular pathways that underpin the pathogenesis of NICF. To explore these pathways, it is necessary to explore the hierarchy of follicular stem cells, particularly the potential role of committed infundibular stem cells that play a key role in wound healing. Committed infundibular stem cells are closely linked to the sebaceous gland stem cell axis, and this has relevance in the process of homeostatic repair of sebaceous follicles in the wake of folliculitis. The unscheduled modulation of this infundibular homeostatic sebaceous repair axis by epidermal growth factor receptor vascular endothelial growth factor, and programmed death-1 may lead to an aberrant outcome with metaplasia of infundibular keratinocytes to sebocytes. In the absence of sebaceous gland differentiation, these metaplastic infundibular sebocyte cells would lead to the consumption and loss of the infundibulum as a result of holocrine sebum production. This conceptual pathogenic pathway for NICF is constructed by incorporating recent advances in the fields of follicular stem cells, wound repair, follicular homeostasis, regulatory T cells, and molecular pathways linked to the biologicals inducing NICF.
Collapse
Affiliation(s)
- Steven Kossard
- Laverty Pathology, Kossard Dermatopatholgists, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
WNT/β-Catenin Pathway in Soft Tissue Sarcomas: New Therapeutic Opportunities? Cancers (Basel) 2021; 13:cancers13215521. [PMID: 34771683 PMCID: PMC8583315 DOI: 10.3390/cancers13215521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The WNT/β-catenin signaling pathway is involved in fundamental processes for the proliferation and differentiation of mesenchymal stem cells. However, little is known about its relevance for mesenchymal neoplasms, such us soft tissue sarcomas (STS). Chemotherapy based on doxorubicin (DXR) still remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be an unmatched goal. This review covers the most important molecular alterations of the WNT signaling pathway in STS, broadening the current knowledge about STS as well as identifying novel drug targets. Furthermore, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are discussed. Abstract Soft tissue sarcomas (STS) are a very heterogeneous group of rare tumors, comprising more than 50 different histological subtypes that originate from mesenchymal tissue. Despite their heterogeneity, chemotherapy based on doxorubicin (DXR) has been in use for forty years now and remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be a largely unmatched goal. The WNT/β-catenin signaling pathway is involved in various fundamental processes for embryogenic development, including the proliferation and differentiation of mesenchymal stem cells. Although the role of this pathway has been widely researched in neoplasms of epithelial origin, little is known about its relevance for mesenchymal neoplasms. This review covers the most important molecular alterations of the WNT signaling pathway in STS. The detection of these alterations and the understanding of their functional consequences for those pathways controlling sarcomagenesis development and progression are crucial to broaden the current knowledge about STS as well as to identify novel drug targets. In this regard, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are also discussed.
Collapse
|
14
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|
15
|
Ankawa R, Goldberger N, Yosefzon Y, Koren E, Yusupova M, Rosner D, Feldman A, Baror-Sebban S, Buganim Y, Simon DJ, Tessier-Lavigne M, Fuchs Y. Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Dev Cell 2021; 56:1900-1916.e5. [PMID: 34197726 DOI: 10.1016/j.devcel.2021.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/14/2020] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
Stem cells (SCs) play a key role in homeostasis and repair. While many studies have focused on SC self-renewal and differentiation, little is known regarding the molecular mechanism regulating SC elimination and compensation upon loss. Here, we report that Caspase-9 deletion in hair follicle SCs (HFSCs) attenuates the apoptotic cascade, resulting in significant temporal delays. Surprisingly, Casp9-deficient HFSCs accumulate high levels of cleaved caspase-3 and are improperly cleared due to an essential caspase-3/caspase-9 feedforward loop. These SCs are retained in an apoptotic-engaged state, serving as mitogenic signaling centers by continuously releasing Wnt3 and instructing proliferation. Investigating the underlying mechanism, we reveal a caspase-3/Dusp8/p38 module responsible for Wnt3 induction, which operates in both normal and Casp9-deleted HFSCs. Notably, Casp9-deleted mice display accelerated wound repair and de novo hair follicle regeneration. Taken together, we demonstrate that apoptotic cells represent a dynamic SC niche, from which emanating signals drive SC proliferation and tissue regeneration.
Collapse
Affiliation(s)
- Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitzan Goldberger
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marianna Yusupova
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Daniel Rosner
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alona Feldman
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shulamit Baror-Sebban
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - David J Simon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol 2020; 28:332-344. [PMID: 30887615 DOI: 10.1111/exd.13913] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hair follicle (HF) formation in developing embryonic skin requires stepwise signalling between the epithelial epidermis and mesenchymal dermis, and their specialized derivatives, the placode/germ/peg and dermal condensate/papilla, respectively. Classically, distinct stages of HF morphogenesis have been defined, in the mouse model, based on (a) changes in cell morphology and aggregation; (b) expression of few known molecular markers; (c) the extent of follicle downgrowth; and (d) the presence of differentiating cell types. Refined genetic strategies and recent emerging technologies, such as live imaging and transcriptome analyses of isolated cell populations or single cells, have enabled a closer dissection of the signalling requirements at different stages of HF formation, particularly early on. They have also led to the discovery of precursor cells for placode, dermal condensate and future bulge stem cells that, combined with molecular insights into their fate specification and subsequent formation, serve as novel landmarks for early HF morphogenetic events and studies of the signalling networks mediating these processes. In this review, we integrate the emergence of HF precursor cell states and novel molecular markers of fate and formation to update the widely used 20-year-old seminal classification guide of HF morphogenetic stages by Paus et al. We then temporally describe the latest insights into the early cellular and molecular events and signalling requirements for HF morphogenesis in relation to one another in a holistic manner.
Collapse
Affiliation(s)
- Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ka-Wai Mok
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
17
|
Yuan J, Hou Q, Zhong L, Dai X, Lu Q, Li M, Fu X. Sustained release of inhibitor from bionic scaffolds for wound healing and functional regeneration. Biomater Sci 2020; 8:5647-5655. [PMID: 33049013 DOI: 10.1039/d0bm00929f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecules play remarkable roles in promoting tissue regeneration, but are limited by their burst release. Small molecules such as deferoxamine (DFO) have been released slowly from silk hydrogels and stimulated angiogenesis and wound healing, but failed to achieve functional recovery of skin. Various bioactive molecules are required to create a suitable niche for better skin regeneration by controlling their release behaviors. Herein, a small molecule SB216763, a GSK-3 inhibitor, was loaded on silk fibroin nanofibers (SNF), and then mixed with chitosan (CS) to prepare the small molecule-loaded composite bionic scaffolds (CSNF-SB). Given the interaction of SNF and SB216763, the sustained release of SB216763 for more than 21 days was achieved for SNF and CSNF-SB composite scaffolds. Compared to drug-free CSNF scaffolds, CSNF-SB showed better cell adhesion and proliferation capacity, suggesting bioactivity. The upregulated expression of β-catenin in fibroblasts in vitro revealed that the released small molecules maintained their function in composite scaffolds. Quicker and better wound healing was realized with the drug-loaded scaffolds, which was significantly superior to that treated with drug-free scaffolds. Unlike the DFO-loaded silk hydrogel system, hair follicle neogenesis was also found in the drug-loaded-scaffold treatment wounds, demonstrating functional recovery. Therefore, silk nanofibers as versatile carriers for different small bioactive molecules could be used to fabricate scaffolds with optimized niches and then achieve functional recovery of tissues. The small molecule-loaded bionic scaffolds have a promising future in skin tissue regeneration.
Collapse
Affiliation(s)
- Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Hafezi F, Shorter S, Tabriz AG, Hurt A, Elmes V, Boateng J, Douroumis D. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration. Pharmaceutics 2020; 12:pharmaceutics12060550. [PMID: 32545741 PMCID: PMC7356948 DOI: 10.3390/pharmaceutics12060550] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) bioprinting is considered as a novel approach in biofabricating cell-laden constructs that could potentially be used to promote skin regeneration following injury. In this study, a novel crosslinked chitosan (CH)–genipin (GE) bioink laden with keratinocyte and human dermal fibroblast cells was developed and printed successfully using an extruder-based bioprinter. By altering the composition and degree of CH–GE crosslinking, bioink printability was further assessed and compared with a commercial bioink. Rheological analysis showed that the viscosity of the optimised bioink was in a suitable range that facilitated reproducible and reliable printing by applying low pressures ranging from 20–40 kPa. The application of low printing pressures proved vital for viability of cells loaded within the bioinks. Further characterisation using MTT assay showed that cells were still viable within the printed construct at 93% despite the crosslinking, processing and after subjecting to physiological conditions for seven days. The morphological study of the printed cells showed that they were mobile within the bioink. Furthermore, the multi-layered 3D printed constructs demonstrated excellent self-supportive structures in a consistent manner.
Collapse
Affiliation(s)
- Forough Hafezi
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Susan Shorter
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Atabak Ghanizadeh Tabriz
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| | - Andrew Hurt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Victoria Elmes
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Correspondence: (J.B.); (D.D.)
| | - Dennis Douroumis
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (F.H.); (S.S.); (A.G.T.); (A.H.); (V.E.)
- Centre for Innovation and Process Engineering Research, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Correspondence: (J.B.); (D.D.)
| |
Collapse
|
19
|
Zhou Y, Tang G, Li X, Sun W, Liang Y, Gan D, Liu G, Song W, Wang Z. Study on the chemical constituents of nut oil from Prunus mira Koehne and the mechanism of promoting hair growth. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112831. [PMID: 32283192 DOI: 10.1016/j.jep.2020.112831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus mira Koehne (P. mira, Tibetan name: ཁམབུ།) is a kind of medicinal plant commonly used in Tibetan areas. The classic Tibetan medicine book Jingzhu Materia Medica records that "the nut oil from P. mira is used to cure loss of hair, eyebrows, beards, etc." but the clinical experience has not been explored. Hair loss (alopecia) is a skin disease that becomes a common concern in Chinese society since it affects the appearance of a person. This paper studies the effectiveness of nut oil from P. mira in promoting hair growth and its working mechanism. MATERIALS AND METHODS The content of different components in the nut oil from P. mira was determined by HPLC. Two hair removal methods (sodium sulfide and hair removal cream) were used to study the effect of different doses on hair growth in KM mice. Then select the effective group, and use C57BL/6 mice to determine the number of hair follicles, dermal thickness, β-catenin, GSK3β and Wnt10 b mRNA and protein expression. RESULTS The contents of α-tocopherol, β-sitosterol, Vitamin E, Oleic acid and linoleic acid in nut oil from P. mira growing in 12 different regions were determined by HPLC. The linearity reached 0.999. The RSD of precision, stability, repeatability, and sample recovery was less than 3%. The dose-effect relationship suggested that 30.13 and 14.07 mg medicinal material·(cm2·d)-1 oil promoted hair growth and the dose effect was positively correlated. 30.13 mg medicinal material·(cm2·d)-1 nut oil from P. mira can accelerate hair follicles into the anagen, increasing Wnt 10 b mRNA expression, β-catenin mRNA and protein expression, and GSK-3 β protein expression. CONCLUSION This study improved the quality control of nut oil from P. mira and found that it has the effect of promoting hair growth in mice. The working mechanism may be related to Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- You Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangmin Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weijun Sun
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dali Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangli Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wenjie Song
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
21
|
Sanz Ressel BL, Massone AR, Barbeito CG. Aberrant Expression of E-cadherin/β-catenin During Epidermal Tumourigenesis in Dogs. J Comp Pathol 2020; 176:1-9. [PMID: 32359620 DOI: 10.1016/j.jcpa.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Clinically relevant epidermal tumours in dogs include cutaneous papillomas (CPs) and cutaneous squamous cell carcinomas (CSCCs). The development of CPs and CSCCs involves dysregulation in expression of E-cadherin/β-catenin; however, knowledge about the contribution of these molecules to epidermal tumourigenesis in dogs is limited. This study examined the immunohistochemical expression pattern of E-cadherin/β-catenin in samples of normal canine epidermis, CPs, preneoplastic epidermis and CSCCs, using tissue microarrays, in order to elucidate whether the dysregulated expression of these molecules may contribute to the pathogenesis of clinically relevant epidermal tumours in dogs. We also investigated the correlation between the immunohistochemical expression pattern of E-cadherin/β-catenin in these tissue microarrays to further evaluate whether the disruption of the adherens junction interactions plays a relevant role in canine epidermal tumourigenesis. In samples of CP and preneoplastic epidermis, the membrane immunoreactivity of E-cadherin/β-catenin was conserved, while in CSCC, the immunoreactivity of these molecules was significantly reduced, independently of the tumour location. There was significant correlation between the membrane expression of E-cadherin/β-catenin in CSCC. β-catenin also showed cytoplasmic and nuclear expression in samples of CP, preneoplastic epidermis and CSCC. These results support the hypothesis that dysregulated expression of E-cadherin/β-catenin may play a critical role in the pathogenesis of relevant canine epidermal tumours, not only due to the disruption of the intercellular adherens junctions, but also due to the dysregulated activity of the signalling pathways in which these molecules are involved.
Collapse
Affiliation(s)
- B L Sanz Ressel
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina.
| | - A R Massone
- Laboratorio de Patología Especial Veterinaria Dr. Bernardo Epstein, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina
| | - C G Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Veterinarias, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Calle 60 y 118, La Plata, Buenos Aires, Argentina
| |
Collapse
|
22
|
Han Q, Wang X, Liao X, Han C, Yu T, Yang C, Li G, Han B, Huang K, Zhu G, Liu Z, Zhou X, Su H, Shang L, Gong Y, Song X, Peng T, Ye X. Diagnostic and prognostic value of WNT family gene expression in hepatitis B virus‑related hepatocellular carcinoma. Oncol Rep 2019; 42:895-910. [PMID: 31322232 PMCID: PMC6667889 DOI: 10.3892/or.2019.7224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to investigate the diagnostic and prognostic value of Wingless-type MMTV integration site (WNT) gene family expression in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). The clinical data of the patients and gene expression levels were downloaded from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Receiver operating characteristic curve analysis was used to investigate the diagnostic value of WNT genes. Cox proportional hazard regression analysis and Kaplan-Meier survival analysis were performed to evaluate the association of WNT gene expression level with overall survival (OS) and recurrence-free survival (RFS). A nomogram was constructed for the prediction of prognosis. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated. Diagnostic receiver operating characteristic curve analysis suggested that WNT2 had a high diagnostic value, with an area under the curve (AUC) of >0.800 (P<0.0001, AUC=0.810, 95% CI: 0.767–0.852). Survival analysis indicated that the expression level of WNT1 was significantly associated with OS and RFS (adjusted P=0.033, adjusted HR=0.607, 95% CI: 0.384–0.960; and adjusted P=0.007, adjusted HR=0.592, 95% CI: 0.404–0.868, respectively). In the TCGA validation cohort, we also observed that WNT2 was significantly differentially expressed between HCC tissues and adjacent non-tumor tissues, and WNT1 was associated with both the OS and RFS of HCC. Therefore, through the GSE14520 HBV-related HCC cohort we concluded that WNT2 may serve as a diagnostic biomarker and WNT1 may serve as a prognostic biomarker. These results may also be extended to TCGA HCC verification cohort.
Collapse
Affiliation(s)
- Quanfa Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guanghui Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bowen Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hao Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Liming Shang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yizhen Gong
- Department of Colorectal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaowei Song
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
23
|
Pedone E, Marucci L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes (Basel) 2019; 10:genes10020176. [PMID: 30823613 PMCID: PMC6410200 DOI: 10.3390/genes10020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
24
|
Skin Stem Cells, Their Niche and Tissue Engineering Approach for Skin Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:107-126. [PMID: 31065940 DOI: 10.1007/5584_2019_380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin is the main organ that covers the human body and acts as a protective barrier between the human body and the environment. Skin tissue as a stem cell source can be used for transplantation in therapeutic application in terms of its properties such as abundant, easy to access, high plasticity and high ability to regenerate. The immunological profile of these cells makes it a suitable resource for autologous and allogeneic applications. The lack of major histo-compatibility complex 1 is also advantageous in its use. Epidermal stem cells are the main stem cells in the skin and are suitable cells in tissue engineering studies for their important role in wound repair. In the last 30 years, many studies have been conducted to develop substitutions that mimic human skin. Stem cell-based skin substitutions have been developed to be used in clinical applications, to support the healing of acute and chronic wounds and as test systems for dermatological and pharmacological applications. In this chapter, tissue specific properties of epidermal stem cells, composition of their niche, regenerative approaches and repair of tissue degeneration have been examined.
Collapse
|
25
|
Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, Ben-Yosef R, Bar-Sela G, Fuchs Y. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun 2018; 9:4582. [PMID: 30389919 PMCID: PMC6214937 DOI: 10.1038/s41467-018-06941-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
Stem cells (SCs) play a pivotal role in fueling homeostasis and regeneration. While much focus has been given to self-renewal and differentiation pathways regulating SC fate, little is known regarding the specific mechanisms utilized for their elimination. Here, we report that the pro-apoptotic protein ARTS (a Septin4 isoform) is highly expressed in cells comprising the intestinal SC niche and that its deletion protects Lgr5+ and Paneth cells from undergoing apoptotic cell death. As a result, the Sept4/ARTS−/− crypt displays augmented proliferation and, in culture, generates massive cystic-like organoids due to enhanced Wnt/β-catenin signaling. Importantly, Sept4/ARTS−/− mice exhibit resistance against intestinal damage in a manner dependent upon Lgr5+ SCs. Finally, we show that ARTS interacts with XIAP in intestinal crypt cells and that deletion of XIAP can abrogate Sept4/ARTS−/−-dependent phenotypes. Our results indicate that intestinal SCs utilize specific apoptotic proteins for their elimination, representing a unique target for regenerative medicine. The mechanisms regulating intestinal stem cell elimination remain unclear. Here, the authors identify that the pro-apoptotic protein ARTS (a Septin4 isoform) interacts with XIAP in the intestinal stem cell niche to regulate stem cell survival during intestinal homeostasis and regeneration.
Collapse
Affiliation(s)
- Elle Koren
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yahav Yosefzon
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Despina Soteriou
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel.,Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Avi Jacob
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Alexander Nevelsky
- Oncology Division, Rambam Health Care Campus, P.O.B. 9602, Haifa, 31096, Israel
| | - Rahamim Ben-Yosef
- Oncology Division, Rambam Health Care Campus, P.O.B. 9602, Haifa, 31096, Israel
| | - Gil Bar-Sela
- Oncology Division, Rambam Health Care Campus, P.O.B. 9602, Haifa, 31096, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, 3200003, Israel. .,Lorry Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel. .,Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
26
|
Abstract
Obesity has become epidemic worldwide, which triggers several obesity-associated complications. Obesity is characterized by excess fat storage mainly in the visceral white adipose tissue (vWAT), subcutaneous WAT (sWAT), and other tissues. Myriad studies have demonstrated the crucial role of canonical Wnt/β-catenin cascade in the development of organs and physiological homeostasis, whereas recent studies show that genetic variations/mutations in the Wnt/β-catenin pathway are associated with human metabolic diseases. In this review, we highlight the regulation of updated Wnt/β-catenin signaling in obesity, especially the distinctly depot-specific roles between subcutaneous and visceral adipose tissue under high-fed diet stimulation and WAT browning process.
Collapse
Affiliation(s)
- Na Chen
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, China National Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Kim YE, Choi HC, Nam G, Choi BY. Costunolide promotes the proliferation of human hair follicle dermal papilla cells and induces hair growth in C57BL/6 mice. J Cosmet Dermatol 2018; 18:414-421. [PMID: 29808617 PMCID: PMC7379667 DOI: 10.1111/jocd.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Costunolide (COS), a naturally occurring sesquiterpene lactone, is known to exert anti-inflammatory, antioxidant, and anticancer effects. This study was undertaken to investigate the effects of costunolide on the promotion of hair growth. METHODS Real-time cell analyzer (RTCA), measurement of 5α-reductase activity, mRNA expression, and Western blotting were adopted to address whether COS can stimulate the proliferation of human hair follicle dermal papilla cells (hHFDPCs). The effect of COS on in vivo hair growth was examined by reconstitution assay and shaven dorsal skin in C57BL/6 mice. RESULTS Costunolide significantly promoted the proliferation of hHFDPCs, which is comparable to that of tofacitinib. COS also inhibited the 5α-reductase activity in hHFDPCs. While COS increased the level of β-catenin and Gli1 mRNA and proteins, it suppressed transforming growth factor (TGF)-β1-induced phosphorylation of Smad-1/5 in hHFDPCs. COS increased the number of cultured hHFDPCs to induce hair follicles from mouse epidermal cells in Spheres formation of reconstitution assay. Topical application of COS on the shaven back of C57BL/6 mice significantly improved the hair growth. CONCLUSIONS Our results illustrate that COS promotes hair growth in vitro and in vivo by regulating the amount of growth factors and/or the activity of cellular responses through coordination of the WNT-β-catenin, hedgehog-Gli, and TGF-β1-Smad pathways.
Collapse
Affiliation(s)
- Young Eun Kim
- Cosmecutical R&D Center, HP&C, Cheongju, South Korea
| | | | - Gaewon Nam
- Department of Cosmetics, Seowon University, Cheongju, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, South Korea
| |
Collapse
|
28
|
Li Z, Xu Z, Duan C, Liu W, Sun J, Han B. Role of TCF/LEF Transcription Factors in Bone Development and Osteogenesis. Int J Med Sci 2018; 15:1415-1422. [PMID: 30275770 PMCID: PMC6158667 DOI: 10.7150/ijms.26741] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022] Open
Abstract
Bone formation occurs by two distinct mechanisms, namely, periosteal ossification and endochondral ossification. In both mechanisms, osteoblasts play an important role in the secretion and mineralization of bone-specific extracellular matrix. Differentiation and maturation of osteoblasts is a prerequisite to bone formation and is regulated by many factors. Recent experiments have shown that transcription factors play an important role in regulating osteoblast differentiation, proliferation, and function. Osteogenesis related transcription factors are the central targets and key mediators of the function of growth factors, such as cytokines. Transcription factors play a key role in the transformation of mesenchymal progenitor cells into functional osteoblasts. These transcription factors are closely linked with each other and in conjunction with bone-related signaling pathways form a complex network that regulates osteoblast differentiation and bone formation. In this paper, we discuss the structure of T-cell factor/lymphoid enhancer factor (TCF/LEF) and its role in embryonic skeletal development and the crosstalk with related signaling pathways and factors.
Collapse
Affiliation(s)
- Zhengqiang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Stomatological Hospital of Southern Medical University & Guangdong Provincial Stomatological Hospital, Guangzhou 510280, China
| | - Zhimin Xu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Congcong Duan
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Jingchun Sun
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Jilin University, Changchun 130021, China.,Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China
| |
Collapse
|
29
|
Lin X, Gao Q, Zhu L, Zhou G, Ni S, Han H, Yue Z. Long noncoding RNAs regulate Wnt signaling during feather regeneration. Development 2018; 145:dev.162388. [DOI: 10.1242/dev.162388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are non-protein coding transcripts that are involved in a broad range of biological processes. Here, we examined the functional roles of lncRNAs in feather regeneration. RNA-seq profiling of the regenerating feather blastema revealed that the Wnt signaling is among the most active pathways during feather regeneration, with the Wnt ligands and their inhibitors showing distinct expression patterns. Co-expression analysis identified hundreds of lncRNAs with similar expression patterns to either the Wnt ligands (the Lwnt group) or their downstream target genes (the Twnt group). Among these, we randomly picked two lncRNAs in the Lwnt group, and three lncRNAs in the Twnt group to validate their expression and function. Members in the Twnt group regulated feather regeneration and axis formation, whereas members in the Lwnt group showed no obvious phenotype. Further analysis confirmed that the three Twnt group members inhibit Wnt signal transduction and at the same time are down-stream target genes of this pathway. Our results suggested that the feather regeneration model can be utilized to systematically annotate the functions of lncRNAs in the chicken genome.
Collapse
Affiliation(s)
- Xiang Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - LiYan Zhu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - ShiWei Ni
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Hao Han
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - ZhiCao Yue
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
30
|
Differential activity of 2-methylene-19-nor vitamin D analogs on growth factor gene expression in rhino mouse skin and comparison to all-trans retinoic acid. PLoS One 2017; 12:e0188887. [PMID: 29182680 PMCID: PMC5705097 DOI: 10.1371/journal.pone.0188887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022] Open
Abstract
While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.
Collapse
|
31
|
Michel L, Reygagne P, Benech P, Jean-Louis F, Scalvino S, Ly Ka So S, Hamidou Z, Bianovici S, Pouch J, Ducos B, Bonnet M, Bensussan A, Patatian A, Lati E, Wdzieczak-Bakala J, Choulot JC, Loing E, Hocquaux M. Study of gene expression alteration in male androgenetic alopecia: evidence of predominant molecular signalling pathways. Br J Dermatol 2017; 177:1322-1336. [PMID: 28403520 DOI: 10.1111/bjd.15577] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Male androgenetic alopecia (AGA) is the most common form of hair loss in men. It is characterized by a distinct pattern of progressive hair loss starting from the frontal area and the vertex of the scalp. Although several genetic risk loci have been identified, relevant genes for AGA remain to be defined. OBJECTIVES To identify biomarkers associated with AGA. METHODS Molecular biomarkers associated with premature AGA were identified through gene expression analysis using cDNA generated from scalp vertex biopsies of hairless or bald men with premature AGA, and healthy volunteers. RESULTS This monocentric study reveals that genes encoding mast cell granule enzymes, inflammatory mediators and immunoglobulin-associated immune mediators were significantly overexpressed in AGA. In contrast, underexpressed genes appear to be associated with the Wnt/β-catenin and bone morphogenic protein/transforming growth factor-β signalling pathways. Although involvement of these pathways in hair follicle regeneration is well described, functional interpretation of the transcriptomic data highlights different events that account for their inhibition. In particular, one of these events depends on the dysregulated expression of proopiomelanocortin, as confirmed by polymerase chain reaction and immunohistochemistry. In addition, lower expression of CYP27B1 in patients with AGA supports the notion that changes in vitamin D metabolism contributes to hair loss. CONCLUSIONS This study provides compelling evidence for distinct molecular events contributing to alopecia that may pave the way for new therapeutic approaches.
Collapse
Affiliation(s)
- L Michel
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - P Reygagne
- Centre Sabouraud, F-75475, Paris, France
| | - P Benech
- NICN UMR 7259 CNRS Faculté de Médecine, 13344, Marseille, France.,GENEX, 91160, Longjumeau, France
| | - F Jean-Louis
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | - S Scalvino
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | - S Ly Ka So
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - Z Hamidou
- Centre Sabouraud, F-75475, Paris, France
| | | | - J Pouch
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France
| | - B Ducos
- Plateforme de qPCR à Haut Débit Genomic Paris Centre, IBENS, 75005, Paris, France.,Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, University Paris Diderot, Sorbonne Paris-Cité, CNRS, 75005, Paris, France
| | - M Bonnet
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France
| | - A Bensussan
- Inserm UMR976, Skin Research Institute, F-75475, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, Hôpital Saint-Louis, F-75475, Paris, France
| | | | - E Lati
- GENEX, 91160, Longjumeau, France.,Laboratoire BIO-EC, 91160, Longjumeau, France
| | | | | | - E Loing
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| | - M Hocquaux
- IEB-Lucas Meyer Cosmetics, 31520, Ramonville, France
| |
Collapse
|
32
|
MAD2B acts as a negative regulatory partner of TCF4 on proliferation in human dermal papilla cells. Sci Rep 2017; 7:11687. [PMID: 28916740 PMCID: PMC5601462 DOI: 10.1038/s41598-017-10350-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022] Open
Abstract
Dermal papilla cells (DPCs) are important components of hair follicles and play a critical role in hair follicle development. However, the mechanisms by which DPCs induce hair follicle development remain unclear. In the present study, we identified the mitotic arrest deficient protein MAD2B as a modifier of DPCs. Overexpression of MAD2B inhibited DPC aggregative growth and proliferation induced by the Wnt signaling activator T cell factor 4 (TCF4), and decreased TCF4-induced expression and the release of hair growth-related cytokines, including hepatocyte growth factor, insulin-like growth factor-1, and vascular endothelial growth factor in DPCs. In contrast, knockdown of MAD2B promoted TCF4-induced DPC proliferation, but did not affect the expression and secretion of cytokines by TCF4-induced DPCs. These results suggest a functional antagonism between MAD2B and TCF4 in DPC-induced hair follicle development. Mechanistically, MAD2B physically interacted with TCF4 to repress TCF4 transcriptional activity via β-catenin mediation, leading to reduced β-catenin/TCF4-dependent transactivation and Wnt signaling activity. These results demonstrate, for the first time, that MAD2B plays a negative role in TCF4-induced DPC growth and proliferation.
Collapse
|
33
|
Hussain M, Xu C, Lu M, Wu X, Tang L, Wu X. Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3226-3242. [PMID: 28866134 DOI: 10.1016/j.bbadis.2017.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022]
Abstract
Embryonic lung development requires reciprocal endodermal-mesodermal interactions; mediated by various signaling proteins. Wnt/β-catenin is a signaling protein that exhibits the pivotal role in lung development, injury and repair while aberrant expression of Wnt/β-catenin signaling leads to asthmatic airway remodeling: characterized by hyperplasia and hypertrophy of airway smooth muscle cells, alveolar and vascular damage goblet cells metaplasia, and deposition of extracellular matrix; resulting in decreased lung compliance and increased airway resistance. The substantial evidence suggests that Wnt/β-catenin signaling links embryonic lung development and asthmatic airway remodeling. Here, we summarized the recent advances related to the mechanistic role of Wnt/β-catenin signaling in lung development, consequences of aberrant expression or deletion of Wnt/β-catenin signaling in expansion and progression of asthmatic airway remodeling, and linking early-impaired pulmonary development and airway remodeling later in life. Finally, we emphasized all possible recent potential therapeutic significance and future prospectives, that are adaptable for therapeutic intervention to treat asthmatic airway remodeling.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China
| | - Meiping Lu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Xiling Wu
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China.
| | - Lanfang Tang
- Department of Respiratory Medicine, the Affiliated Children Hospital, School of Medicine, Zhejiang University, Hangzhou City 310006, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310058, China; The Key Respiratory Drug Research Laboratory of China Food and Drug Administration, School of Medicine, Zhejiang University, Hangzhou City 310058, China.
| |
Collapse
|
34
|
Dermal Blimp1 Acts Downstream of Epidermal TGFβ and Wnt/β-Catenin to Regulate Hair Follicle Formation and Growth. J Invest Dermatol 2017; 137:2270-2281. [PMID: 28668474 PMCID: PMC5646946 DOI: 10.1016/j.jid.2017.06.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/18/2022]
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp1) is a transcriptional repressor that regulates cell growth and differentiation in multiple tissues, including skin. Although in the epidermis Blimp1 is important for keratinocyte and sebocyte differentiation, its role in dermal fibroblasts is unclear. Here we show that Blimp1 is dynamically regulated in dermal papilla cells during hair follicle (HF) morphogenesis and the postnatal hair cycle, preceding dermal Wnt/β-catenin activation. Blimp1 ablation in E12.5 mouse dermal fibroblasts delayed HF morphogenesis and growth and prevented new HF formation after wounding. By combining targeted quantitative PCR screens with bioinformatic analysis and experimental validation we demonstrated that Blimp1 is both a target and a mediator of key dermal papilla inductive signaling pathways including transforming growth factor-β and Wnt/β-catenin. Epidermal overexpression of stabilized β-catenin was able to override the HF defects in Blimp1 mutant mice, underlining the close reciprocal relationship between the dermal papilla and adjacent HF epithelial cells. Overall, our study reveals the functional role of Blimp1 in promoting the dermal papilla inductive signaling cascade that initiates HF growth.
Collapse
|
35
|
Shin JW, Choi HR, Nam KM, Lee HS, Kim SA, Joe HJ, Kazumi T, Park KC. The Co-Expression Pattern of p63 and HDAC1: A Potential Way to Disclose Stem Cells in Interfollicular Epidermis. Int J Mol Sci 2017; 18:ijms18071360. [PMID: 28672879 PMCID: PMC5535853 DOI: 10.3390/ijms18071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell markers of interfollicular epidermis (IEF) have not been established thus far. The aim of this study is to suggest a new way to disclose IFE-stem cells by combining the expression of histone deacetylases (HDAC) 1 and p63. Immunohistochemical staining of HDAC1 and p63 was performed in six normal human samples. Moreover, a skin equivalent (SE) model was treated with suberoylanilohydroxamic acid (SAHA, an HDAC inhibitor) to elucidate the role of HDAC1. Finally, rapidly adhering (RA) keratinocytes to a type IV collagen, which have been identified to represent epidermal stem cells, were subjected to Western blot analysis with antibodies against HDAC1. In normal samples, there was a minor subpopulation comprised of p63-positive and HDAC1-negative cells in the basal layers. The proportion of this subpopulation was decreased with age. In the SE model, SAHA treatment increased the epidermal thickness and number of p63-positive cells in a dose dependent manner. After SAHA treatment, the expression of differentiation markers was decreased, while that of basement membrane markers was increased. In a Western blot analysis, HDAC1 was not expressed in RA cells. In conclusion, the combination of p63-positive and HDAC1-negative expressions can be a potential new way for distinguishing epidermal stem cells.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Kyung-Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hyun-Sun Lee
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Sung-Ae Kim
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | - Hyun-Jae Joe
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | | | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| |
Collapse
|
36
|
Zagni C, Almeida LO, Balan T, Martins MT, Rosselli-Murai LK, Papagerakis P, Castilho RM, Squarize CH. PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports 2017; 9:304-314. [PMID: 28602615 PMCID: PMC5511049 DOI: 10.1016/j.stemcr.2017.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Tissue integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. In the skin, hair follicle stem cells (HFSCs) that reside within the bulge maintain tissue homeostasis in response to activating cues that occur with each new hair cycle or upon injury. We found that PTEN, a major regulator of the PI3K-AKT pathway, controlled HFSC number and size in the bulge and maintained genomically stable pluripotent cells. This regulatory function is central for HFSC quiescence, where PTEN-deficiency phenotype is in part regulated by BMAL1. Furthermore, PTEN ablation led to downregulation of BMI-1, a critical regulator of adult stem cell self-renewal, and elevated senescence, suggesting the presence of a protective system that prevents transformation. We found that short- and long-term PTEN depletion followed by activated BMAL1, a core clock protein, contributed to accumulation of HFSC. PTEN downregulation leads to the enrichment of stem cells in the niche PTEN activates core clock protein BMAL1 BMAL1 plays a role in PTEN-associated stem cell accumulation via AKT
Collapse
Affiliation(s)
- Chiara Zagni
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana O Almeida
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Tarek Balan
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Marco T Martins
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Luciana K Rosselli-Murai
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Petros Papagerakis
- OPD, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Center for Organogenesis, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Fodde R, Schmitt M, Schewe M, Augenlicht LH. Modelling western dietary habits in the mouse: easier said than done. Hepatobiliary Surg Nutr 2017; 6:138-140. [PMID: 28503564 DOI: 10.21037/hbsn.2017.01.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Riccardo Fodde
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Mark Schmitt
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Matthias Schewe
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Leonard H Augenlicht
- Department of Medicine and Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Ikehata M, Yamada A, Morimura N, Itose M, Suzawa T, Shirota T, Chikazu D, Kamijo R. Wnt/β-catenin signaling activates nephronectin expression in osteoblasts. Biochem Biophys Res Commun 2017; 484:231-234. [PMID: 28093227 DOI: 10.1016/j.bbrc.2017.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
Abstract
Nephronectin (Npnt), an extracellular matrix protein, is considered to play critical roles as an adhesion molecule in the development and functions of various organs and tissues, such as the kidneys and bone. In the present study, we found that Wnt3a strongly enhanced Npnt mRNA expression in osteoblast-like MC3T3-E1 cells, while it also induced an increase in Npnt gene expression in both time- and dose-dependent manners via the Wnt/β-catenin signaling pathway. These results suggest novel mechanisms for Wnt3a-induced osteoblast proliferation and cell survival via Npnt gene expression.
Collapse
Affiliation(s)
- Mikiko Ikehata
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan.
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Shiga, Japan
| | - Masakatsu Itose
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tetsuo Suzawa
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
39
|
Augenlicht LH. Environmental Impact on Intestinal Stem Cell Functions in Mucosal Homeostasis and Tumorigenesis. J Cell Biochem 2017; 118:943-952. [PMID: 27584938 DOI: 10.1002/jcb.25719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Multiple cell compartments at or near the base of the intestinal crypt have been identified as contributing intestinal stem cells for homeostasis of the rapidly turning over intestinal mucosa and cells that can initiate tumor development upon appropriate genetic changes. There is a strong literature establishing the importance of the frequently dividing Lgr5+ crypt base columnar cells as the fundamental cell in providing these stem cell-associated functions, but there are also clear data that more quiescent cells from other compartments can be mobilized to provide these stem cell functions upon compromise of Lgr5+ cells. We review the data that vitamin D, a pleiotropic hormone, is essential for Lgr5 stem cell functions by signaling through the vitamin D receptor. Moreover, we discuss the implications of this role of vitamin D and its impact on relatively long-lived stem cells in regards to the fact that virtually all the data on normal functioning of mouse Lgr5 stem cells is derived from mice exposed to vitamin D levels well above those that characterize the human population. Thus, there are still many questions regarding how dietary and environmental factors influence the complement of cells providing stem cell functions and the mechanisms by which this is determined, and the importance of this in human colorectal tumor development. J. Cell. Biochem. 118: 943-952, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonard H Augenlicht
- Departments of Medicine and Cell Biology, Albert Einstein College of Medicine, New York 10461, New York
| |
Collapse
|
40
|
Shen Q, Yu W, Fang Y, Yao M, Yang P. Beta-catenin can induce hair follicle stem cell differentiation into transit-amplifying cells through c-myc activation. Tissue Cell 2016; 49:28-34. [PMID: 28049551 DOI: 10.1016/j.tice.2016.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 12/24/2022]
Abstract
Hair follicle stem cells play important roles in maintaining homeostasis and skin tissue self-renewal. Transit-amplifying cells represent the transition of cells from hair follicle stem cells into differentiated epidermal cells. Thus far, the signaling pathway and the molecular biological mechanism that regulate the proliferation and differentiation of hair follicle stem cells remain unclear. In this paper, we studied the relationship between β-catenin and c-myc during the process of the differentiation of hair follicle stem cells into transit-amplifying cells. Based on our results, the expression of β-catenin can activate the nuclear gene c-myc and regulate the expression of transit-amplifying cell markers K15, K19, a6-integrin and β1-integrin, indicating that β-catenin is involved in the transformation process from hair follicle stem cells to transit-amplifying cells and suggesting that β-catenin plays an important biological role in the induction of this differentiation process.
Collapse
Affiliation(s)
- Qiong Shen
- Department of Ultrasound Diagnosis, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Weirong Yu
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Yong Fang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China; Institute of Traumatic Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China
| | - Min Yao
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China; Institute of Traumatic Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Penggao Yang
- Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China.
| |
Collapse
|
41
|
Jain N, Kalailingam P, Tan KW, Tan HB, Sng MK, Chan JSK, Tan NS, Thanabalu T. Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure. Sci Rep 2016; 6:38109. [PMID: 27909303 PMCID: PMC5133560 DOI: 10.1038/srep38109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/04/2016] [Indexed: 12/15/2022] Open
Abstract
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice.
Collapse
Affiliation(s)
- Neeraj Jain
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Pazhanichamy Kalailingam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Kai Wei Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hui Bing Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology &Research, 138673, Singapore.,KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore
| | - Thirumaran Thanabalu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
42
|
Dastan M, Najafzadeh N, Abedelahi A, Sarvi M, Niapour A. Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways. Biomed Pharmacother 2016; 84:979-986. [PMID: 27764761 DOI: 10.1016/j.biopha.2016.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/21/2016] [Accepted: 10/07/2016] [Indexed: 12/30/2022] Open
Abstract
Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (P<0.05). Apoptosis in DP cells was also meaningfully decreased by HPL treatment (P=0.014). In addition, Kras, Akt, Erk, Shh and β-catenin mRNA levels were changed in response to minoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (P<0.05), but Kras and Akt mRNA levels were not considerably different in the HPL-treated cells. β-catenin mRNA level was also significantly increased in the bulge region by HPL. We also found that Shh mRNA level was considerably higher in HPL-treated bulge cells than in minoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways.
Collapse
Affiliation(s)
- Maryam Dastan
- Department of Biology, Urmia University, Urmia, Iran; Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Abedelahi
- Department of Anatomy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sarvi
- Department of Medical Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomy and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
43
|
Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci 2016; 129:17-27. [PMID: 26729028 DOI: 10.1242/jcs.161190] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kindlin (or fermitin) family of proteins comprises three members (kindlin-1,-2 and -3) of evolutionarily conserved focal adhesion (FA) proteins, whose best-known task is to increase integrin affinity for a ligand (also referred as integrin activation) through binding of β-integrin tails. The consequence of kindlin-mediated integrin activation and integrin-ligand binding is cell adhesion, spreading and migration, assembly of the extracellular matrix (ECM), cell survival, proliferation and differentiation. Another hallmark of kindlins is their involvement in disease. Mutations in the KINDLIN-1 (also known as FERMT1) gene cause Kindler syndrome (KS)--in which mainly skin and intestine are affected, whereas mutations in the KINDLIN-3 (also known as FERMT3) gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by impaired extravasation of blood effector cells and severe, spontaneous bleedings. Also, aberrant expression of kindlins in various forms of cancer and in tissue fibrosis has been reported. Although the malfunctioning of integrins represent a major cause leading to kindlin-associated diseases, increasing evidence also point to integrin-independent functions of kindlins that play an important role in the pathogenesis of certain disease aspects. Furthermore, isoform-specific kindlin functions have been discovered, explaining, for example, why loss of kindlins differentially affects tissue stem cell homeostasis or tumor development. This Commentary focuses on new and isoform-specific kindlin functions in different tissues and discusses their potential role in disease development and progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Raphael Ruppert
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
44
|
Sharma P, Bhunia S, Poojary SS, Tekcham DS, Barbhuiya MA, Gupta S, Shrivastav BR, Tiwari PK. Global methylation profiling to identify epigenetic signature of gallbladder cancer and gallstone disease. Tumour Biol 2016; 37:14687-14699. [DOI: 10.1007/s13277-016-5355-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
|
45
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Koren E, Fuchs Y. The bad seed: Cancer stem cells in tumor development and resistance. Drug Resist Updat 2016; 28:1-12. [DOI: 10.1016/j.drup.2016.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/11/2016] [Accepted: 06/19/2016] [Indexed: 12/17/2022]
|
47
|
Houschyar KS, Momeni A, Pyles MN, Maan ZN, Whittam AJ, Siemers F. Wnt signaling induces epithelial differentiation during cutaneous wound healing. Organogenesis 2016; 11:95-104. [PMID: 26309090 DOI: 10.1080/15476278.2015.1086052] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cutaneous wound repair in adult mammals typically does not regenerate original dermal architecture. Skin that has undergone repair following injury is not identical to intact uninjured skin. This disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development and thus we seek a deeper understanding of the role that Wnt signaling plays in the mechanisms of skin repair in both fetal and adult wounds. The influence of secreted Wnt signaling proteins in tissue homeostasis has galvanized efforts to identify small molecules that target Wnt-mediated cellular responses. Wnt signaling is activated by wounding and participates in every subsequent stage of the healing process from the control of inflammation and programmed cell death, to the mobilization of stem cell reservoirs within the wound site. Endogenous Wnt signaling augmentation represents an attractive option to aid in the restoration of cutaneous wounds, as the complex mechanisms of the Wnt pathway have been increasingly investigated over the years. In this review, we summarize recent data elucidating the roles that Wnt signaling plays in cutaneous wound healing process.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA. ,b Clinic for Plastic and Reconstructive Surgery ; Bergmannstrost Halle , Germany
| | - Arash Momeni
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Malcolm N Pyles
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Zeshaan N Maan
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Alexander J Whittam
- a Division of Plastic and Reconstructive Surgery; Department of Surgery; Stanford School of Medicine ; Stanford , CA USA
| | - Frank Siemers
- b Clinic for Plastic and Reconstructive Surgery ; Bergmannstrost Halle , Germany
| |
Collapse
|
48
|
Rusu D, Calenic B, Greabu M, Kralev A, Boariu M, Bojin F, Anghel S, Paunescu V, Vela O, Calniceanu H, Stratul SI. Evaluation of oral keratinocyte progenitor and T-lymphocite cells response during early healing after augmentation of keratinized gingiva with a 3D collagen matrix - a pilot study. BMC Oral Health 2016; 17:9. [PMID: 27431208 PMCID: PMC4948093 DOI: 10.1186/s12903-016-0240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/11/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The aim of the present study is to analyze the behavior of selected populations of oral keratinocytes and T-lymphocytes, responsible for re-constructing and maintaining the oral epithelial tissue architecture, following augmentation of the keratinized oral mucosa using a 3D-collagen matrix. METHODS Different groups of oral keratinocytes were isolated from biopsies harvested from 3 patients before the surgical procedure, as well as 7 and 14 days after the augmentation procedure. T-lymphocytes were isolated from peripheral blood at same timepoints. Keratinocytes were characterized for stem and differentiation markers, such as p63, cytokeratin 10 and 14, and in vitro parameters, such as cell viability, cell size and colony-forming efficiency. T-lymphocytes were analyzed for viability and the expression of various cluster of differentiation markers. The methods included magnetic separation of cell populations, immunofluorescence, flow cytometry, and histology of oral biopsies. RESULTS Both at 7 and 14 days, the majority of cells that repopulate the matrix were actively proliferating/progenitor oral keratinocytes with the phenotype integrin alfa6beta4 + CD71+. These cells display in vitro characteristics similar to the progenitor cells analyzed before the matrix placement. T-lymphocytes expressed CD8 and CD69 markers, while CD25 was absent. CONCLUSION The study shows that two weeks after the collagen membrane placement, the healing process appeared to be histologically complete, with no abnormal immune response induced by the matrix, however, with a higher than usual content of active proliferating cells, the majority of keratinocytes being characterized as transit amplifying cells.
Collapse
Affiliation(s)
- Darian Rusu
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| | - Bogdan Calenic
- />Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy, Carol Davila, Blvd-ul Eroii Sanitari, No 8, Bucharest, Romania
- />Victor Babes National Institute of Pathology, Biochemistry-Proteomics Department, Blv. Splaiul Independenţei nr. 99 - 101, Bucharest, Romania
| | - Maria Greabu
- />Department of Biochemistry, Faculty of Dental Medicine, University of Medicine and Pharmacy, Carol Davila, Blvd-ul Eroii Sanitari, No 8, Bucharest, Romania
| | - Alexander Kralev
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| | - Marius Boariu
- />Department of Odontotherapy and Endodontics, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, 9, 300041 Timisoara, Romania
| | - Florina Bojin
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Simona Anghel
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Virgil Paunescu
- />Department of Functional Sciences-Immunology, Victor Babes University of Medicine and Pharmacy, Pta Eftimie Murgu nr.2, 300041 Timisoara, Romania
| | - Octavia Vela
- />Dental Clinic Dr.Stratul, Str.Emanoil Gojdu, nr.5, 300176 Timisoara, Romania
| | - Horia Calniceanu
- />Department of Dentistry, Faculty of Medicine and Pharmacy, University of Oradea, Pta 1 Decembrie nr.10, Oradea, Romania
| | - Stefan-Ioan Stratul
- />Department of Periodontology, Victor Babes University of Medicine and Pharmacy, Bv. Revolutiei 1989, Nr. 9, 300041 Timisoara, Romania
| |
Collapse
|
49
|
Lu GQ, Wu ZB, Chu XY, Bi ZG, Fan WX. An investigation of crosstalk between Wnt/β-catenin and transforming growth factor-β signaling in androgenetic alopecia. Medicine (Baltimore) 2016; 95:e4297. [PMID: 27472703 PMCID: PMC5265840 DOI: 10.1097/md.0000000000004297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Wnt and transforming growth factor-β (TGF-β) signaling pathways are known to be involved in the pathogenesis of androgenetic alopecia (AGA). However, the way that Wnt and TGF-β signaling is altered in patients with AGA and whether there exists a crosstalk between them in pathogenetic process of AGA remain unclear. OBJECTIVES To investigate the expression of Wnt and TGF-β signaling and the crosstalk between these 2 signaling pathways in AGA. METHODS Fifteen male patients with AGA were recruited for our research. Fifteen scalp specimens of the balding were collected from frontal areas, and 9 nonbalding were collected from occipital areas. We analyzed the expression and activation of downstream Wnt and TGF-β signaling molecules in both balding and nonbalding hair follicles isolated from scalp specimens. Furthermore, we evaluated the activation of Wnt and TGF-β signaling after either of them was blocked with the inhibitor in balding and nonbalding dermal papilla (DP) cells. RESULTS Compared with the nonbalding counterparts, the mRNA level of Wnt10a and LEF1 was decreased. But TβRI and TβRII, and the protein expression of TGF-β1 was elevated in balding hair follicles. To investigate the crosstalk between Wnt and TGF-β signaling, we used SB431542 to inhibit the TGF-β signaling in balding DP cells and found that SB431542 significantly attenuated the phosphorylation of Smad2 and Akt. However, the mRNA level of Wnt10a, LEF1, and the nuclear translocation of β-catenin was increased. On the other hand, we suppressed the Wnt signaling by XAV939 in nonbalding DP cells, which displayed that the level of β-catenin and LEF1 was significantly inhibited; however, the level of active TGF-β1 and the phosphorylation of Smad2 and Akt were up-regulated. CONCLUSIONS These data indicate that crosstalk between Wnt/β-catenin and TGF-β signaling pathways may exist as one of the important mechanisms contributing to AGA.
Collapse
Affiliation(s)
- Gui-Qing Lu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University
- Department of Dermatology, BenQ Medical Center, Nanjing Medical University
| | - Zhi-Bo Wu
- Department of Dermatology, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Xiao-Yan Chu
- Department of Dermatology, BenQ Medical Center, Nanjing Medical University
| | - Zhi-Gang Bi
- Department of Dermatology, BenQ Medical Center, Nanjing Medical University
| | - Wei-Xin Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University
- Correspondence: Wei-Xin Fan, Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Street 300#, Nanjing, Jiangsu 210029, P.R. China (e-mail: )
| |
Collapse
|
50
|
Javanmard AS, Bahrami AR, Mahmoudi Z, Saeinasab M, Mahdavi-Shahri N, Moghaddam Matin M. Studying the expression patterns of OCT4 and SOX2 proteins in regenerating rabbit ear tissue. WORLD RABBIT SCIENCE 2016. [DOI: 10.4995/wrs.2016.3965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Epimorphic regeneration in New Zealand rabbit ear is an interesting example of mammalian wound healing in which blastema formation is involved in replacement of injured tissues. It has been suggested that isolated cells from regenerating rabbit ear possess stem-like properties. In this study, we aimed to determine the expression of stemness markers, OCT4 and SOX2 proteins, in regenerating rabbit tissues by immunohistochemistry. Results indicated that both proteins could be detected in epithelial cells, hair follicle cells and perichondrium cells. Expression pattern analysis of OCT4 and SOX2 proteins showed no clear differences between regenerative and non-regenerative control tissues. According to several reports of OCT4 and SOX2 proteins expression in adult stem cells, it could be proposed that OCT4 and SOX2 expressing cells in regenerating rabbit ear tissues are progenitor/adult stem cells which are resident in these tissues, and other markers should be used for detection of blastema cells.
Collapse
|