1
|
Shi CJ, Xue ZH, Zeng WQ, Deng LQ, Pang FX, Zhang FW, Fu WM, Zhang JF. LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling. Cancer Gene Ther 2023:10.1038/s41417-023-00595-1. [PMID: 36782047 DOI: 10.1038/s41417-023-00595-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
A major cause of oxaliplatin chemoresistance in colorectal cancer (CRC) is acquired epithelial-mesenchymal transition (EMT) in cancer cells, making the cancer cells easy to metastasis and recurrence. LncRNA Neighboring Enhancer of FOXA2 (lncRNA-NEF) has been characterized as a tumor suppressor to mediate cancer metastasis in multiple cancer types. However, whether it mediated the drug resistance remains unknown. In the present study, an oxaliplatin-resistant CRC cell line (SW620R) was established and lncRNA-NEF was obviously down-regulated in this resistant cell line. The further loss and gain-of-function studies demonstrated that this lncRNA suppressed oxaliplatin resistance as well as EMT programme in vitro and inhibited metastasis in vivo. Mechanistically, lncRNA-NEF epigenetically promoted the expression of DOK1 (Downstream of Tyrosine kinase 1), a negative regulator of MEK/ERK signaling, by disrupting DNA methyltransferases (DNMTs)-mediated DNA methylation. DOK1, in turn, induced the inactivation of MEK/ERK signaling, forming the lncRNA-NEF/DOK1/MEK/ERK regulatory axis to mediate oxaliplatin resistance in CRC. Collectively, our work reveals the critical function of lncRNA-NEF in mediating the oxaliplatin chemotherapy resistance in CRC, and provides a promising therapeutic strategy for CRC patients with oxaliplatin resistance.
Collapse
Affiliation(s)
- Chuan-Jian Shi
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, PR China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Zhi-He Xue
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei-Qiang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Li-Qiang Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China
| | - Feng-Xiang Pang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Feng-Wei Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, PR China.
| | - Jin-Fang Zhang
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, 518000, Guangdong, PR China.
| |
Collapse
|
2
|
Kim YK, Jung YS, Song J. Transcriptome Profile in the Mouse Brain of Hepatic Encephalopathy and Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010675. [PMID: 36614117 PMCID: PMC9821016 DOI: 10.3390/ijms24010675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Hepatic encephalopathy (HE) is a chronic metabolic disease accompanied by neuropathological and neuropsychiatric features, including memory deficits, psychomotor dysfunction, depression, and anxiety. Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by tau hyperphosphorylation, excessive amyloid beta (Aβ) accumulation, the formation of fibrillary tangles, hippocampus atrophy, and neuroinflammation. Recent studies have suggested a positive correlation between HE and AD. Some studies reported that an impaired cholesterol pathway, abnormal bile acid secretion, excessive ammonia level, impaired Aβ clearance, astrocytic dysfunction, and abnormal γ-aminobutyric acid GABAergic neuronal signaling in HE may also be involved in AD pathology. However, the mechanisms and related genes involved in AD-like pathology in the HE brain are unclear. Thus, we compared the cortical transcriptome profile between an HE mouse model, bile duct ligation (BDL), and an AD mouse model, the 5×FAD. Our study showed that the expression of many genes implicated in HE is associated with neuronal dysfunction in AD mice. We found changes in various protein-coding RNAs, implicated in synapses, neurogenesis, neuron projection, neuron differentiation, and neurite outgrowth, and non-coding RNAs possibly associated with neuropathology. Our data provide an important resource for further studies to elucidate AD-like pathophysiology in HE patients.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
3
|
Dok-1 regulates mast cell degranulation negatively through inhibiting calcium-dependent F-actin disassembly. Clin Immunol 2022; 238:109008. [PMID: 35421591 DOI: 10.1016/j.clim.2022.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
Abstract
In food allergies, antigen-induced aggregation of FcεRI on mast cells initiates highly ordered and sequential signaling events. Dok-1(downstream of tyrosine kinase 1), undergoes intense tyrosine phosphorylation upon FcεRI stimulation, which negatively regulates Ras/Erk signaling and the subsequent cytokine release, but it remains unclear whether Dok-1 regulates Fc-mediated degranulation. In this study, we investigated the role of Dok-1 in FcεRI-mediated degranulation. Dok-1 overexpressing RBL-2H3 cells were established. Degranulation, immunoprecipitation, co-immunoprecipitation, immunoblotting and flow cytometry assay were performed to explore the effects of Dok-1 and its underlying mechanisms. We found that, following FcεRI activation, Dok-1 was recruited to the plasma membrane, leading to tyrosine phosphorylation. Phosphorylated Dok-1 inhibits FcεRI-operated calcium influx, and negatively regulated degranulation by inhibiting calcium-dependent disassembly of actin filaments. Our data revealed that Dok-1 is a negative regulator of FcεRI-mediated mast cell degranulation. These findings contribute to the identification of therapeutic targets for food allergies.
Collapse
|
4
|
Getahun A. Role of inhibitory signaling in peripheral B cell tolerance*. Immunol Rev 2022; 307:27-42. [PMID: 35128676 PMCID: PMC8986582 DOI: 10.1111/imr.13070] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
At least 20% of B cells in the periphery expresses an antigen receptor with a degree of self-reactivity. If activated, these autoreactive B cells pose a risk as they can contribute to the development of autoimmune diseases. To prevent their activation, both B cell-intrinsic and extrinsic tolerance mechanisms are in place in healthy individuals. In this review article, I will focus on B cell-intrinsic mechanisms that prevent the activation of autoreactive B cells in the periphery. I will discuss how inhibitory signaling circuits are established in autoreactive B cells, focusing on the Lyn-SHIP-1-SHP-1 axis, how they contribute to peripheral immune tolerance, and how disruptions of these circuits can contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology University of Colorado SOM Aurora Colorado USA
- Department of Immunology and Genomic Medicine National Jewish Health Denver Colorado USA
| |
Collapse
|
5
|
Purwada A, Shah SB, Béguelin W, August A, Melnick AM, Singh A. Ex vivo synthetic immune tissues with T cell signals for differentiating antigen-specific, high affinity germinal center B cells. Biomaterials 2019; 198:27-36. [PMID: 30041943 PMCID: PMC6355359 DOI: 10.1016/j.biomaterials.2018.06.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 12/28/2022]
Abstract
Most antigen discovery and vaccine development aimed at driving functional B cell responses rely on mouse immunizations studies. To date, there is no 3D ex vivo immune tissues, which are capable of driving antigen-specific B cell responses to rapidly determine the humoral immunogenicity of antigens, understand the role of extracellular matrix in humoral immunity, and generate high affinity antibody responses. This can be attributed to the complexity of B cell differentiation and affinity maturation process in the germinal center (GC) reaction, which makes these highly specialized cells susceptible to rapid apoptosis ex vivo. We have previously reported immune tissues that show ex vivo GC-like response, however in a non-antigen specific manner. Here, we report a maleimide (MAL)-functionalized polyethylene glycol (PEG)-based designer immune tissues that modulate B cell differentiation and enriches antigen-specific GC B cells in the presence of T-cell like signals. With the 3D synthetic immune tissue platform, we assessed various hydrogel design parameters to control ex vivo GC reaction. Using an Ezh2fl/fl Cγ1-cre transgenic mouse model, we demonstrated ex vivo IgG1 antibody class switching. Using immune tissues developed from a B1-8hi mutant mouse that represents a recombined antibody variable region derived from a 4-hydroxy-3-nitrophenylacetyl (NP) hapten binding antibody (B1-8), we demonstrate antigen specificity and selective enrichment of antigen-specific B cells with high affinity at both cell surface and secreted levels in integrin ligand-dependent manner. The ex vivo antigen-specific platform technology offers use in scientific understanding of immunobiology, matrix immunology, and in biotechnology applications, ranging from the antigen testing, vaccine development, and generation of antibodies against diseases.
Collapse
Affiliation(s)
- Alberto Purwada
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shivem B Shah
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
6
|
Guittard G, Pontarotti P, Granjeaud S, Rodrigues M, Abi-Rached L, Nunès JA. Evolutionary and expression analyses reveal a pattern of ancient duplications and functional specializations in the diversification of the Downstream of Kinase (DOK) genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:193-198. [PMID: 29453999 DOI: 10.1016/j.dci.2018.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Downstream of Kinase (DOK) proteins represent a multigenic family of adaptors that includes negative regulators of immune cell signaling. Using phylogenetics and intron/exon structure data, we show here that the seven human DOK genes (DOK1 to DOK7) form three highly divergent groups that emerged before the protostome-deuterostome split: DOK1/2/3, DOK4/5/6, and DOK7. For two of these three groups (DOK1/2/3 and DOK4/5/6), further gene duplications occurred in vertebrates and so while chordates only have three DOK genes, vertebrates have seven DOK genes over the three groups. From our expression analysis in humans, we show that each group of DOK genes has a distinct pattern of expression. The DOK1/2/3 group is immune specific, yet each of the three genes in the group has a distinct pattern of expression in immune cells. This immune specificity could thus be ancestral, with the DOK1/2/3 gene also being immune-related in protostomes. The DOK4/5/6 and DOK7 groups represent genes that are much less expressed in immune system than the DOK1/2/3 group. Interestingly, we identify a novel tyrosine based motif that is specific to the vertebrate DOK4/5/6 sequences. The evolution of the DOK genes is thus marked by a pattern of ancient duplications and functional specializations.
Collapse
Affiliation(s)
- Geoffrey Guittard
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Pierre Pontarotti
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, équipe évolution Biologique Modélisation, Marseille, France
| | - Samuel Granjeaud
- Centre de Recherche en Cancérologie de Marseille, CiBi Platform, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Magda Rodrigues
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France
| | - Laurent Abi-Rached
- Equipe ATIP, Aix Marseille Université, CNRS, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Jacques A Nunès
- Centre de Recherche en Cancérologie de Marseille, Immunity and Cancer Team, Institut Paoli-Calmettes, Inserm, U1068, CNRS, UMR7258, Aix-Marseille Université UM 105, Marseille, France.
| |
Collapse
|
7
|
Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders. Mol Metab 2017; 6:494-502. [PMID: 28580280 PMCID: PMC5444017 DOI: 10.1016/j.molmet.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 01/23/2023] Open
Abstract
Objective Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2), in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice). Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Rasal2-deficient mice show decreased adiposity fed on either high-fat or normal-chow diet. Rasal2-deficient mice are resistant to high-fat diet-induced obesity and related metabolic disorders. Rasal2 deficiency causes a decrease in adipogenesis in vivo and in vitro. Rasal2 likely regulates adipogenesis by repressing Ras activity through an ERK-independent mechanism.
Collapse
|
8
|
Deshpande RP, Chandra Sekhar YBVK, Panigrahi M, Babu PP. Region-Specific Dok2 Overexpression Associates with Poor Prognosis in Human Astrocytoma. Mol Neurobiol 2016; 55:402-408. [PMID: 27975172 DOI: 10.1007/s12035-016-0324-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023]
Abstract
Astrocytoma is the most frequent malignancies of the brain. Despite present clinical advancements, median survival time in malignant forms remains poor. Downstream of kinase protein 2 (Dok2) is adaptor protein known to modulate the effect of tyrosine kinase. Previously, Dok2 is shown to be marker of poor prognosis in colorectal and gastric cancer, and reduced levels of Dok2 were reported in lung adenocarcinoma and gastric cancer. The aim of the present study was to evaluate prognostic significance of pDok2 expression in surgically resected astrocytoma tissue samples. In the present study, 47 numbers of tissue samples were collected from patients who underwent surgery for astrocytoma. Temporal lobe epilepsy tissues were used as control. Real-time PCR was used to study transcript expression while protein expression was studied by western blotting and immunohistochemistry. The pDok2 expression was categorized as pDok2 positive and pDok2 negative on the basis of intensity of protein expression. This observation was confirmed by two independent pathologists. Control and few GII tissues were used as reference on account for low expression of pDok2 protein. Basic information of patients as anatomic origin of tumor and follow-up details were retrieved from hospital registry. Kaplan-Meier test was used to analyze the association of pDok2 expression and survival outcome in clinical cases. Real-time PCR signifies pDok2 is overexpressed in high-grade (GIII + GIV) tissue samples compared with low-grade (GII) and control brain tissue samples (p < 0.005). Western blotting and immunohistochemistry analysis signifies overexpression of pDok2 protein expression in tumor tissue samples as compared with control brain tissues. Clinico-pathological analysis reveals 83% of high-grade astrocytoma (GIII + GIV) and 30% of low-grade (GII) tissue samples which were detected with pDok2 expression. Tumor location was found to be predominant at the frontal and temporal lobes. Survival studies underline prognostic importance of pDok2 protein. Median survival of 20 months was reported with patients with positive pDok2 expression (95% CI 0.083 to 0.49). Taken together, pDok2 protein overexpression is associated with poor prognosis in astrocytoma clinical cases and appears to be an attractive target for therapeutic intervention. Noticeable anatomic origin at the frontal and temporal lobe suggests site-specific role of developmental factors in tumor occurrence.
Collapse
Affiliation(s)
- Ravindra Pramod Deshpande
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Y B V K Chandra Sekhar
- Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana State, 500003, India
| | - Manas Panigrahi
- Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana State, 500003, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
9
|
Understanding the molecular basis of substrate binding specificity of PTB domains. Sci Rep 2016; 6:31418. [PMID: 27526776 PMCID: PMC4985636 DOI: 10.1038/srep31418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/20/2016] [Indexed: 11/21/2022] Open
Abstract
Protein-protein interactions mediated by phosphotyrosine binding (PTB) domains play a crucial role in various cellular processes. In order to understand the structural basis of substrate recognition by PTB domains, multiple explicit solvent atomistic simulations of 100ns duration have been carried out on 6 PTB-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these MD trajectories and residue based statistical pair potential score show good correlation with the experimental dissociation constants. Our analysis also shows that the modeled structures of PTB domains can be used to develop less compute intensive residue level statistical pair potential based approaches for predicting interaction partners of PTB domains.
Collapse
|
10
|
Coppin E, De Grandis M, Pandolfi PP, Arcangeli ML, Aurrand-Lions M, Nunès JA. Dok1 and Dok2 Proteins Regulate Cell Cycle in Hematopoietic Stem and Progenitor Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4110-21. [DOI: 10.4049/jimmunol.1501037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 03/11/2016] [Indexed: 01/27/2023]
|
11
|
TRAF6-mediated degradation of DOK3 is required for production of IL-6 and TNFα in TLR9 signaling. Mol Immunol 2015; 68:699-705. [DOI: 10.1016/j.molimm.2015.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023]
|
12
|
Jiang X, Huang L, Xing D. Photoactivation of Dok1/ERK/PPARγ signaling axis inhibits excessive lipolysis in insulin-resistant adipocytes. Cell Signal 2015; 27:1265-75. [PMID: 25813581 DOI: 10.1016/j.cellsig.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/07/2015] [Accepted: 03/16/2015] [Indexed: 12/19/2022]
Abstract
Insulin resistance is a hallmark of the metabolic syndrome and type 2 diabetes. Increased plasma FFA level is an important cause of obesity-associated insulin resistance. Over-activated ERK is closely related with FFA release from adipose tissues in patients with type 2 diabetes. Nevertheless, there are no effective strategies to lower plasma FFA level. Low-power laser irradiation (LPLI) has been reported to regulate multiple biological processes. However, whether LPLI could ameliorate metabolic disorders and the molecular mechanisms involved remain unknown. In this study, we first demonstrated that LPLI suppresses excessive lipolysis of insulin-resistant adipocytes by activating tyrosine kinases-1(Dok1)/ERK/PPARγ pathway. Our data showed that LPLI inhibits ERK phosphorylation through the activation of Dok1, resulting in decreased phospho-PPARγ level. Non-phosphorylated PPARγ maintains in nucleus to promote the expression of adipogenic genes, reversing excessive lipolysis in insulin-resistant adipocytes. In summary, the present research highlights the important roles of Dok1/ERK/PPARγ pathway in lowering FFA release from adipocytes, and our research extends the knowledge of the biological effects induced by LPLI.
Collapse
Affiliation(s)
- Xiaoxiao Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Lei Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
13
|
Hobeika E, Nielsen PJ, Medgyesi D. Signaling mechanisms regulating B-lymphocyte activation and tolerance. J Mol Med (Berl) 2015; 93:143-58. [PMID: 25627575 DOI: 10.1007/s00109-015-1252-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/15/2014] [Accepted: 12/25/2014] [Indexed: 01/01/2023]
Abstract
It is becoming more and more accepted that, in addition to producing autoantibodies, B lymphocytes have other important functions that influence the development of autoimmunity. For example, autoreactive B cells are able to produce inflammatory cytokines and activate pathogenic T cells. B lymphocytes can react to extracellular signals with a range of responses from anergy to autoreactivity. The final outcome is determined by the relative contribution of signaling events mediated by activating and inhibitory pathways. Besides the B cell antigen receptor (BCR), several costimulatory receptors expressed on B cells can also induce B cell proliferation and survival, or regulate antibody production. These include CD19, CD40, the B cell activating factor receptor, and Toll-like receptors. Hyperactivity of these receptors clearly contributes to breaking B-cell tolerance in several autoimmune diseases. Inhibitors of these activating signals (including protein tyrosine phosphatases, deubiquitinating enzymes and several adaptor proteins) are crucial to control B-cell activation and maintain B-cell tolerance. In this review, we summarize the inhibitory signaling mechanisms that counteract B-cell activation triggered by the BCR and the coreceptors.
Collapse
Affiliation(s)
- Elias Hobeika
- BIOSS Centre of Biological Signalling Studies, University of Freiburg and Department for Molecular Immunology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
14
|
Adaptor protein DOK3 promotes plasma cell differentiation by regulating the expression of programmed cell death 1 ligands. Proc Natl Acad Sci U S A 2014; 111:11431-6. [PMID: 25053811 DOI: 10.1073/pnas.1400539111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adaptor Downstream-of-Kinase (DOK) 3 functions as a negative regulator and attenuates B-cell receptor-mediated calcium signaling. Although DOK3 is dispensable for early B-cell development, its role in plasma cell (PC) differentiation is unknown. Here, we show that Dok3(-/-) mice have increased populations of T follicular-helper (Tfh) and germinal center (GC) B cells upon immunization with a T-cell-dependent antigen. However, interestingly, they generate significantly fewer PCs. Bone marrow reconstitution experiments show that the PC defect is B-cell intrinsic and due to the inability of Dok3(-/-) B cells to sustain programmed cell death 1 (PD-1) ligand 1 (PDL1) and up-regulate PD-1 ligand 2 (PDL2) expressions that are critical for PC differentiation. Overexpression of PDL2 rectifies the PC differentiation defect in Dok3(-/-) B cells. We further demonstrate that calcium signaling suppresses the transcription of PD-1 ligands. Abrogation of calcium signaling in B cells by deleting BTK or PLCγ2 or inhibiting calcineurin with cyclosporine A leads to increased expression of PD-1 ligands. Thus, our study reveals DOK3 as a nonredundant regulator of PC differentiation by up-regulating PD-1 ligand expression through the attenuation of calcium signaling.
Collapse
|
15
|
Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity. Oncogene 2014; 34:2650-9. [PMID: 25043303 PMCID: PMC4302068 DOI: 10.1038/onc.2014.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
The Crk SH2/SH3 adaptor and the Abl nonreceptor tyrosine kinase were first identified as oncoproteins, and both can induce tumorigenesis when overexpressed or mutationally activated. We previously reported the surprising finding that inhibition or knockdown of Abl family kinases enhanced transformation of mouse fibroblasts by CrkI. Abl family inhibitors are currently used or are being tested for treatment of human malignancies, and our finding raised concerns that such inhibitors might actually promote the growth of tumors overexpressing CrkI. Here, we identify the Dok1 adaptor as the key effector for the enhancement of CrkI transformation by Abl inhibition. We show that phosphorylation of tyrosines 295 and 361 of Dok1 by Abl family kinases suppresses CrkI transforming activity, and that upon phosphorylation these tyrosines bind the SH2 domains of the Ras inhibitor p120 RasGAP. Knockdown of RasGAP resulted in a similar enhancement of CrkI transformation, consistent with a critical role for Ras activity. Imaging studies using a FRET sensor of Ras activation revealed alterations in the localization of activated Ras in CrkI-transformed cells. Our results support a model in which Dok1 phosphorylation normally suppresses localized Ras pathway activity in Crk-transformed cells via recruitment and/or activation of RasGAP, and that preventing this negative feedback mechanism by inhibiting Abl family kinases leads to enhanced transformation by Crk.
Collapse
|
16
|
Kim SSY, Lee KG, Chin CS, Ng SK, Pereira NA, Xu S, Lam KP. DOK3 is required for IFN-β production by enabling TRAF3/TBK1 complex formation and IRF3 activation. THE JOURNAL OF IMMUNOLOGY 2014; 193:840-8. [PMID: 24929003 DOI: 10.4049/jimmunol.1301601] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The downstream of kinase (DOK) family of adaptors is generally involved in the negative regulation of signaling pathways. DOK1, 2, and 3 were shown to attenuate TLR4 signaling by inhibiting Ras-ERK activation. In this study, we elucidated a novel role for DOK3 in IFN-β production. Macrophages lacking DOK3 were impaired in IFN-β synthesis upon influenza virus infection or polyinosinic-polyribocytidylic acid stimulation. In the absence of DOK3, the transcription factor IFN regulatory factor 3 was not phosphorylated and could not translocate to the nucleus to activate ifn-β gene expression. Interestingly, polyinosinic-polyribocytidylic acid-induced formation of the upstream TNFR-associated factor (TRAF) 3/TANK-binding kinase (TBK) 1 complex was compromised in dok3(-/-) macrophages. DOK3 was shown to bind TBK1 and was required for its activation. Furthermore, we demonstrated that overexpression of DOK3 and TBK1 could significantly enhance ifn-β promoter activity. DOK3 was also shown to bind TRAF3, and the binding of TRAF3 and TBK1 to DOK3 required the tyrosine-rich C-terminal domain of DOK3. We further revealed that DOK3 was phosphorylated by Bruton's tyrosine kinase. Hence, DOK3 plays a critical and positive role in TLR3 signaling by enabling TRAF3/TBK1 complex formation and facilitating TBK1 and IFN regulatory factor 3 activation and the induction of IFN-β production.
Collapse
Affiliation(s)
- Susana Soo-Yeon Kim
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Koon-Guan Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Ching-Siang Chin
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Say-Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Natasha Ann Pereira
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and
| | - Kong-Peng Lam
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668; and Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|
17
|
Hughan SC, Spring CM, Schoenwaelder SM, Sturgeon S, Alwis I, Yuan Y, McFadyen JD, Westein E, Goddard D, Ono A, Yamanashi Y, Nesbitt WS, Jackson SP. Dok-2 adaptor protein regulates the shear-dependent adhesive function of platelet integrin αIIbβ3 in mice. J Biol Chem 2014; 289:5051-60. [PMID: 24385425 DOI: 10.1074/jbc.m113.520148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Dok proteins are a family of adaptor molecules that have a well defined role in regulating cellular migration, immune responses, and tumor progression. Previous studies have demonstrated that Doks-1 to 3 are expressed in platelets and that Dok-2 is tyrosine-phosphorylated downstream of integrin αIIbβ3, raising the possibility that it participates in integrin αIIbβ3 outside-in signaling. We demonstrate that Dok-2 in platelets is primarily phosphorylated by Lyn kinase. Moreover, deficiency of Dok-2 leads to dysregulated integrin αIIbβ3-dependent cytosolic calcium flux and phosphatidylinositol(3,4)P2 accumulation. Although agonist-induced integrin αIIbβ3 affinity regulation was unaltered in Dok-2(-/-) platelets, Dok-2 deficiency was associated with a shear-dependent increase in integrin αIIbβ3 adhesive function, resulting in enhanced platelet-fibrinogen and platelet-platelet adhesive interactions under flow. This increase in adhesion was restricted to discoid platelets and involved the shear-dependent regulation of membrane tethers. Dok-2 deficiency was associated with an increased rate of platelet aggregate formation on thrombogenic surfaces, leading to accelerated thrombus growth in vivo. Overall, this study defines an important role for Dok-2 in regulating biomechanical adhesive function of discoid platelets. Moreover, they define a previously unrecognized prothrombotic mechanism that is not detected by conventional platelet function assays.
Collapse
Affiliation(s)
- Sascha C Hughan
- From the Australian Centre for Blood Diseases, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Alfred Medical Research and Education Precinct, Commercial Road, Melbourne, Victoria 3004
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Mol Cell Neurosci 2013; 56:148-58. [DOI: 10.1016/j.mcn.2013.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
|
19
|
Kim TH, Kim MY, Jo SH, Park JM, Ahn YH. Modulation of the transcriptional activity of peroxisome proliferator-activated receptor gamma by protein-protein interactions and post-translational modifications. Yonsei Med J 2013; 54:545-59. [PMID: 23549795 PMCID: PMC3635639 DOI: 10.3349/ymj.2013.54.3.545] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a nuclear receptor superfamily; members of which play key roles in the control of body metabolism principally by acting on adipose tissue. Ligands of PPARγ, such as thiazolidinediones, are widely used in the treatment of metabolic syndromes and type 2 diabetes mellitus (T2DM). Although these drugs have potential benefits in the treatment of T2DM, they also cause unwanted side effects. Thus, understanding the molecular mechanisms governing the transcriptional activity of PPARγ is of prime importance in the development of new selective drugs or drugs with fewer side effects. Recent advancements in molecular biology have made it possible to obtain a deeper understanding of the role of PPARγ in body homeostasis. The transcriptional activity of PPARγ is subject to regulation either by interacting proteins or by modification of the protein itself. New interacting partners of PPARγ with new functions are being unveiled. In addition, post-translational modification by various cellular signals contributes to fine-tuning of the transcriptional activities of PPARγ. In this review, we will summarize recent advancements in our understanding of the post-translational modifications of, and proteins interacting with, PPARγ, both of which affect its transcriptional activities in relation to adipogenesis.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Young Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Seong-Ho Jo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Joo-Man Park
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
- Integrative Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Mashima R, Arimura S, Kajikawa S, Oda H, Nakae S, Yamanashi Y. Dok adaptors play anti-inflammatory roles in pulmonary homeostasis. Genes Cells 2012. [PMID: 23205702 DOI: 10.1111/gtc.12016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Asthma is a chronic inflammatory disease of the lung with airflow obstruction and bronchospasm, characterized by pulmonary eosinophilia, airway remodeling, increased airway hyperresponsiveness to environmental stimuli, and excessive Th2-type cytokine production. Recent studies indicate that crosstalk between the innate and adaptive immune systems is crucial for this disease. We and others have showed that the Dok (downstream of tyrosine kinases) family adaptors, Dok-1, Dok-2, and Dok-3, play essential roles in negative regulation of a wide variety of signaling pathways in both innate and adaptive immunities. Here, histopathology and bronchoalveolar lavage fluid (BALF) cellularity showed spontaneous pulmonary inflammation in Dok-1-/- Dok-2-/- Dok-3-/- (TKO) mice, but not in Dok-1-/- Dok-2-/- or Dok-3-/- mice, with hallmarks of asthma, including eosinophilia, goblet cell hyperplasia, and subepithelial fibrosis. Consistently, TKO mice, but not the other mutants, showed increased airway hyperresponsiveness to methacholine inhalation. In addition, Th2-type cytokine concentrations in BALF were increased in TKO mice. These findings provide strong evidence that Dok-1, Dok-2, and Dok-3 cooperatively play critical anti-inflammatory roles in lung homeostasis.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Williams EL, Tutt AL, French RR, Chan HTC, Lau B, Penfold CA, Mockridge CI, Roghanian A, Cox KL, Verbeek JS, Glennie MJ, Cragg MS. Development and characterisation of monoclonal antibodies specific for the murine inhibitory FcγRIIB (CD32B). Eur J Immunol 2012; 42:2109-20. [DOI: 10.1002/eji.201142302] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 04/03/2012] [Accepted: 05/09/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Emily L. Williams
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Alison L. Tutt
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ruth R. French
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - H. T. Claude Chan
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Betty Lau
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Christine A. Penfold
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - C. Ian Mockridge
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Ali Roghanian
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Kerry L. Cox
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - J. Sjef Verbeek
- Department of Human Genetics; Leiden University Medical Centre; Leiden; The Netherlands
| | - Martin J. Glennie
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| | - Mark S. Cragg
- Antibody and Vaccine Group; Cancer Sciences Unit; Faculty of Medicine; University of Southampton; General Hospital; Southampton; UK
| |
Collapse
|
22
|
Kawamata A, Inoue A, Miyajima D, Hemmi H, Mashima R, Hayata T, Ezura Y, Amagasa T, Yamanashi Y, Noda M. Dok-1 and Dok-2 deficiency induces osteopenia via activation of osteoclasts. J Cell Physiol 2011; 226:3087-93. [DOI: 10.1002/jcp.22909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, Têtu B, Bairati I, Bachvarov D. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol 2011; 5:438-53. [PMID: 21856257 DOI: 10.1016/j.molonc.2011.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022] Open
Abstract
In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Pierre-Luc Mercier
- Department of Molecular Medicine, Laval University, Quebec (Quebec), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Czyzyk J, Chen HC, Bottomly K, Flavell RA. p21 Ras/impedes mitogenic signal propagation regulates cytokine production and migration in CD4 T cells. J Biol Chem 2008; 283:23004-15. [PMID: 18577512 DOI: 10.1074/jbc.m804084200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The propensity of T cells to generate coordinated cytokine responses is critical for the host to develop resistance to pathogens while maintaining the state of immunotolerance to self-antigens. The exact mechanisms responsible for preventing the overproduction of proinflammatory cytokines including interferon (IFN)-gamma are not fully understood, however. In this study, we examined the role of a recently described Ras GTPase effector and repressor of the Raf/MEK/ERK cascade called impedes mitogenic signal propagation (Imp) in limiting the induction of T-cell cytokines. We found that stimulation of the T cell receptor complex leads to the rapid development of a physical association between Ras and Imp. Consistent with the hypothesis that Imp inhibits signal transduction, we also found that disengagement of this molecule by the Ras(V12G37) effector loop mutant or RNA interference markedly enhances the activation of the NFAT transcription factor and IFN-gamma secretion. A strong output of IFN-gamma is responsible for the distinct lymphocyte traffic pattern observed in vivo because the transgenic or retroviral expression of Ras(V12G37) caused T cells to accumulate preferentially in the lymph nodes and delayed their escape from the lymphoid tissue, respectively. Together, our results describe a hitherto unrecognized negative regulatory role for Imp in the production of IFN-gamma in T cells and point to Ras-Imp binding as an attractive target for therapeutic interventions in conditions involving the production of this inflammatory cytokine.
Collapse
Affiliation(s)
- Jan Czyzyk
- Departments of Pathology and Immunobiology
| | | | | | | |
Collapse
|
25
|
MacGlashan D, Vilariño N. Nonspecific desensitization, functional memory, and the characteristics of SHIP phosphorylation following IgE-mediated stimulation of human basophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:1040-51. [PMID: 16818760 DOI: 10.4049/jimmunol.177.2.1040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies of secretion from basophils have demonstrated the phenomenon called nonspecific desensitization, the ability of one IgE-mediated stimulus to alter the cell's response to other non-cross-reacting IgE-mediated stimuli, and a process that would modify phosphatidylinositol 3,4,5-phosphate levels was speculated to be responsible for nonspecific desensitization. The current studies examined the changes and characteristics of SHIP1 phosphorylation as a measure of SHIP1 participation in the reaction. Based on the earlier studies, two predictions were made that were not observed. First, the kinetics of SHIP1 phosphorylation were similar to reaction kinetics of other early signals and returned to resting levels while nonspecific desensitization remained. Second, in contrast to an expected exaggerated SHIP phosphorylation, cells in a state of nonspecific desensitization showed reduced SHIP phosphorylation (compared with cells not previously exposed to a non-cross-reacting Ag). Discordant with expectations concerning partial recovery from nonspecific desensitization, treatment of cells with DNP-lysine to dissociate bound DNP-HSA, either enhanced or had no effect on SHIP phosphorylation following a second Ag. These experiments also showed a form of desensitization that persisted despite dissociation of the desensitizing Ag. Recent studies and the results of these studies suggest that loss of early signaling components like syk kinase may account for some of the effects of nonspecific desensitization and result in a form of immunological memory of prior stimulation. Taken together, the various characteristics of SHIP phosphorylation were not consistent with expectations for a signaling element involved in nonspecific desensitization, but instead one which itself undergoes nonspecific desensitization.
Collapse
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Center, Baltimore, MD 21224, USA.
| | | |
Collapse
|
26
|
Niu Y, Roy F, Saltel F, Andrieu-Soler C, Dong W, Chantegrel AL, Accardi R, Thépot A, Foiselle N, Tommasino M, Jurdic P, Sylla BS. A nuclear export signal and phosphorylation regulate Dok1 subcellular localization and functions. Mol Cell Biol 2006; 26:4288-301. [PMID: 16705178 PMCID: PMC1489083 DOI: 10.1128/mcb.01817-05] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dok1 is believed to be a mainly cytoplasmic adaptor protein which down-regulates mitogen-activated protein kinase activation, inhibits cell proliferation and transformation, and promotes cell spreading and cell migration. Here we show that Dok1 shuttles between the nucleus and cytoplasm. Treatment of cells with leptomycin B (LMB), a specific inhibitor of the nuclear export signal (NES)-dependent receptor CRM1, causes nuclear accumulation of Dok1. We have identified a functional NES (348LLKAKLTDPKED359) that plays a major role in the cytoplasmic localization of Dok1. Src-induced tyrosine phosphorylation prevented the LMB-mediated nuclear accumulation of Dok1. Dok1 cytoplasmic localization is also dependent on IKKbeta. Serum starvation or maintaining cells in suspension favor Dok1 nuclear localization, while serum stimulation, exposure to growth factor, or cell adhesion to a substrate induce cytoplasmic localization. Functionally, nuclear NES-mutant Dok1 had impaired ability to inhibit cell proliferation and to promote cell spreading and cell motility. Taken together, our results provide the first evidence that Dok1 transits through the nucleus and is actively exported into the cytoplasm by the CRM1 nuclear export system. Nuclear export modulated by external stimuli and phosphorylation may be a mechanism by which Dok1 is maintained in the cytoplasm and membrane, thus regulating its signaling functions.
Collapse
Affiliation(s)
- Yamei Niu
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao M, Janas JA, Niki M, Pandolfi PP, Van Aelst L. Dok-1 independently attenuates Ras/mitogen-activated protein kinase and Src/c-myc pathways to inhibit platelet-derived growth factor-induced mitogenesis. Mol Cell Biol 2006; 26:2479-89. [PMID: 16537894 PMCID: PMC1430334 DOI: 10.1128/mcb.26.7.2479-2489.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Dok adaptor proteins play key regulatory roles in receptor and non-receptor kinase-initiated signaling pathways. Dok-1, the prototype member of this family, negatively regulates cell proliferation elicited by numerous growth factors, including platelet-derived growth factor (PDGF). However, how Dok-1 exerts its negative effect on mitogenesis has remained elusive. Using Dok-1 knockout cells and Dok-1 mutants deficient in binding to specific Dok-1-interacting proteins, we show that Dok-1 interferes with PDGF-stimulated c-myc induction and Ras/mitogen-activated protein kinase (MAPK) activation by tethering different signaling components to the cell membrane. Specifically, Dok-1 attenuates PDGF-elicited c-myc induction by recruiting Csk to active Src kinases, whereupon their activities and consequent c-myc induction are diminished. On the other hand, Dok-1 negatively regulates PDGF-induced MAPK activation by acting on Ras-GAP and at least one other Dok-1-interacting protein. Importantly, we demonstrate that Dok-1's actions on both of these signaling pathways contribute to its inhibitory effect on mitogenesis. Our data suggest a mechanistic basis for the inhibitory effect of Dok-1 on growth factor-induced mitogenesis and its role as a tumor suppressor.
Collapse
Affiliation(s)
- Mingming Zhao
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
28
|
Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, Niki M, Pandolfi PP, Field EH, Rothman PB. Downstream of Tyrosine Kinases-1 and Src Homology 2-Containing Inositol 5′-Phosphatase Are Required for Regulation of CD4+CD25+ T Cell Development. THE JOURNAL OF IMMUNOLOGY 2006; 176:3958-65. [PMID: 16547230 DOI: 10.4049/jimmunol.176.7.3958] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adaptor protein, downstream of tyrosine kinases-1 (Dok-1), and the phosphatase SHIP are both tyrosine phosphorylated in response to T cell stimulation. However, a function for these molecules in T cell development has not been defined. To clarify the role of Dok-1 and SHIP in T cell development in vivo, we compared the T cell phenotype of wild-type, Dok-1 knockout (KO), SHIP KO, and Dok-1/SHIP double-knockout (DKO) mice. Dok-1/SHIP DKO mice were runted and had a shorter life span compared with either Dok-1 KO or SHIP KO mice. Thymocyte numbers from Dok-1/SHIP DKO mice were reduced by 90%. Surface expression of both CD25 and CD69 was elevated on freshly isolated splenic CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO, suggesting these cells were constitutively activated. However, these T cells did not proliferate or produce IL-2 after stimulation. Interestingly, the CD4(+) T cells from SHIP KO and Dok-1/SHIP DKO mice produced higher levels of TGF-beta, expressed Foxp3, and inhibited IL-2 production by CD3-stimulated CD4(+)CD25(-) T cells in vitro. These findings suggest Dok-1 and SHIP function in pathways that influence regulatory T cell development.
Collapse
Affiliation(s)
- Masaki Kashiwada
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boulay I, Némorin JG, Duplay P. Phosphotyrosine Binding-Mediated Oligomerization of Downstream of Tyrosine Kinase (Dok)-1 and Dok-2 Is Involved in CD2-Induced Dok Phosphorylation. THE JOURNAL OF IMMUNOLOGY 2005; 175:4483-9. [PMID: 16177091 DOI: 10.4049/jimmunol.175.7.4483] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To date, five members of the downstream of tyrosine kinase (Dok) family have been characterized. In T cells, two members, Dok-1 and Dok-2, are expressed. CD2 or CD28 stimulation, but not CD3/TCR stimulation, induces Dok phosphorylation. Recent evidence suggests that they act as negative regulators of the CD2 and CD28 signaling pathways. To identify the molecular mechanisms involved in Dok-mediated inhibition, we have identified proteins that bind to the phosphotyrosine-binding (PTB) domain of Dok-1 and Dok-2. We showed that the Dok PTB domain mediates phosphotyrosine-dependent homotypic and heterotypic interactions of Dok-1 and Dok-2. Moreover, in CD2-stimulated Jurkat cells, Dok-1 coimmunoprecipitates with tyrosine-phosphorylated Dok-2. To study the involvement of PTB-mediated oligomerization in Dok function, we have generated Jurkat clones overexpressing Dok-1 or Dok-2 with a mutation that prevents oligomerization (in either the PTB domain or Tyr146 of Dok-1 and Tyr139 of Dok-2). These mutations abrogate CD2-induced phosphorylation and the ability of Dok-1 or Dok-2 to inhibit CD2-induced ERK1/2 and NFAT activation. Moreover, overexpression of Dok-1Y146F or Dok-2Y139F interferes with CD2-induced phosphorylation of endogenous Dok, whereas overexpression of PTB mutant or wild-type Dok does not. Taken together, these data indicate that PTB-mediated oligomerization of Dok-1 and Dok-2 represents an essential step for Dok phosphorylation and function.
Collapse
Affiliation(s)
- Iohann Boulay
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
30
|
Van Slyke P, Coll ML, Master Z, Kim H, Filmus J, Dumont DJ. Dok-R mediates attenuation of epidermal growth factor-dependent mitogen-activated protein kinase and Akt activation through processive recruitment of c-Src and Csk. Mol Cell Biol 2005; 25:3831-41. [PMID: 15831486 PMCID: PMC1084282 DOI: 10.1128/mcb.25.9.3831-3841.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dok-R has previously been shown to associate with the epidermal growth factor receptor (EGFR) and become tyrosine phosphorylated in response to EGF stimulation. The recruitment of Dok-R to the EGFR, which is mediated through its phosphotyrosine binding (PTB) domain, results in attenuation of mitogen-activated protein kinase (MAPK) activation. Dok-R's ability to attenuate EGF-driven MAPK activation is independent of its ability to recruit rasGAP, a known attenuator of MAPK activity, suggesting an alternate Dok-R-mediated pathway. Herein, we have determined the structural determinants within Dok-R that are required for its ability to attenuate EGF signaling and to associate with c-Src and with the Src family kinase (SFK)-inhibitory kinase, Csk. We demonstrate that Dok-R associates constitutively with c-Src through an SH3-dependent interaction and that this association is essential to Dok-R's ability to attenuate c-Src activity and diminish MAPK and Akt/PKB activity. We further illustrate that EGF-dependent phosphorylation of Dok-R requires SFK activity and, more specifically, that SFK-dependent phosphorylation of tyrosine 402 on Dok-R facilitates the inducible recruitment of Csk. We propose that recruitment of Csk to Dok-R serves to bring Csk to c-Src and down-regulate its activity, resulting in a concomitant attenuation of MAPK and Akt/PKB activity. Furthermore, we demonstrate that Dok-R can abrogate c-Src's ability to protect the breast cancer cell line SKBR3 from anoikis and that an association with c-Src and Csk is required for this activity. Collectively these results demonstrate that Dok-R acts as an EGFR-recruited scaffolding molecule that processively assembles c-Src and Csk to attenuate signaling from the EGFR.
Collapse
Affiliation(s)
- Paul Van Slyke
- Sunnybrook and Women's Research Institute, 2075 Bayview Avenue, Research Building S-218, Toronto, Ontario, Canada M4N 3M5
| | | | | | | | | | | |
Collapse
|
31
|
Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Normal and Oncogenic Forms of the Receptor Tyrosine Kinase Kit. Stem Cells 2005; 23:16-43. [PMID: 15625120 DOI: 10.1634/stemcells.2004-0117] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kit is a receptor tyrosine kinase (RTK) that binds stem cell factor. This receptor ligand combination is important for normal hematopoiesis, as well as pigmentation, gut function, and reproduction. Structurally, Kit has both an extracellular and intracellular region. Theintra-cellular region is comprised of a juxtamembrane domain (JMD), a kinase domain, a kinase insert, and a carboxyl tail. Inappropriate expression or activation of Kit is associated with a variety of diseases in humans. Activating mutations in Kit have been identified primarily in the JMD and the second part of the kinase domain and have been associated with gastrointestinal stromal cell tumors and mastocytosis, respectively. There are also reports of activating mutations in some forms of germ cell tumors and core binding factor leukemias. Since the cloning of the Kit ligand in the early 1990s, there has been an explosion of information relating to the mechanism of action of normal forms of Kit as well as activated mutants. This is important because understanding this RTK at the biochemical level could assist in the development of therapeutics to treat primary and secondary defects in the tissues that require Kit. Furthermore, understanding the mechanisms mediating transformation of cells by activated Kit mutants will help in the design of interventions for human disease associated with these mutations. The objective of this review is to summarize what is known about normal and oncogenic forms of Kit. We will place particular emphasis on recent developments in understanding the mechanisms of action of normal and activated forms of this RTK and its association with human disease, particularly in hematopoietic cells.
Collapse
Affiliation(s)
- Johan Lennartsson
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, Maryland, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
The Src-family protein tyrosine kinases (SFKs) are known to play key roles in initiating signal transduction by the B-cell antigen receptor (BCR). In addition, numerous studies have shown that this family of molecules also contributes to signaling by BCR surrogates during B-lymphocyte lineage development and maturation. Paradoxically, ablation of SFKs not only results in obvious defects in B-cell development but also in the onset of autoimmunity. Thus SFKs, most notably Lyn, play both activating and inhibitory roles in B-cell function. Confounding analyses of SFK function in B cells is the varied coexpression of family members that mediate redundant as well as unique functions. In this review, we will focus mainly on the role of Lyn in mediating positive and negative roles in B-cell activation and how these affect immune signaling and disease progression.
Collapse
Affiliation(s)
- Stephen B Gauld
- Integrated Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | |
Collapse
|
33
|
Abstract
The negative regulation of lymphocyte activation and function is mediated by inhibition of signaling through antigen-receptor, co-stimulation receptor or cytokine receptor. The suppression of downstream signaling through antigen-receptor is mediated by negative regulators including adaptors and effectors such as phosphatases. "Inhibitory adaptors" exhibit their inhibitory function directly or indirectly by the localization to the vicinity of the antigen-receptor on the membrane. The strategy of inhibition by inhibitory adaptors includes the recruitment of inhibitory effector molecules, sequestration of positive regulators, internalization/degradation of receptor complexes, and the blockade of the dynamic movement of positive regulators.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | |
Collapse
|
34
|
Lee S, Andrieu C, Saltel F, Destaing O, Auclair J, Pouchkine V, Michelon J, Salaun B, Kobayashi R, Jurdic P, Kieff ED, Sylla BS. IkappaB kinase beta phosphorylates Dok1 serines in response to TNF, IL-1, or gamma radiation. Proc Natl Acad Sci U S A 2004; 101:17416-21. [PMID: 15574499 PMCID: PMC536032 DOI: 10.1073/pnas.0408061101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dok1 is an abundant Ras-GTPase-activating protein-associated tyrosine kinase substrate that negatively regulates cell growth and promotes migration. We now find that IkappaB kinase beta (IKKbeta) associated with and phosphorylated Dok1 in human epithelial cells and B lymphocytes. IKKbeta phosphorylation of Dok1 depended on Dok1 S(439), S(443), S(446), and S(450). Recombinant IKKbeta also phosphorylated Dok1 or Dok1 amino acids 430-481 in vitro. TNF-alpha, IL-1, gamma radiation, or IKKbeta overexpression phosphorylated Dok1 S(443), S(446), and S(450) in vivo, as detected with Dok1 phospho-S site-specific antisera. Moreover, Dok1 with S(439), S(443), S(446), and S(450) mutated to A was not phosphorylated by IKKbeta in vivo. Surprisingly, mutant Dok1 A(439), A(443), A(446), and A(450) differed from wild-type Dok1 in not inhibiting platelet-derived growth factor-induced extracellular signal-regulated kinase 1/2 phosphorylation or cell growth. Mutant Dok1 A(439), A(443), A(446), and A(450) also did not promote cell motility, whereas wild-type Dok1 promoted cell motility, and Dok1 E(439), E(443), E(446), and E(450) further enhanced cell motility. These data indicate that IKKbeta phosphorylates Dok1 S(439)S(443) and S(446)S(450) after TNF-alpha, IL-1, or gamma-radiation and implicate the critical Dok1 serines in Dok1 effects after tyrosine kinase activation.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert Thomas, 69008 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang S, Cherwinski H, Sedgwick JD, Phillips JH. Molecular Mechanisms of CD200 Inhibition of Mast Cell Activation. THE JOURNAL OF IMMUNOLOGY 2004; 173:6786-93. [PMID: 15557172 DOI: 10.4049/jimmunol.173.11.6786] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD200 and its receptor CD200R are both type I membrane glycoproteins that contain two Ig-like domains. Engagement of CD200R by CD200 inhibits activation of myeloid cells. Unlike the majority of immune inhibitory receptors, CD200R lacks an ITIM in the cytoplasmic domain. The molecular mechanism of CD200R inhibition of myeloid cell activation is unknown. In this study, we examined the CD200R signaling pathways that control degranulation of mouse bone marrow-derived mast cells. We found that upon ligand binding, CD200R is phosphorylated on tyrosine and subsequently binds to adapter proteins Dok1 and Dok2. Upon phosphorylation, Dok1 binds to SHIP and both Dok1 and Dok2 recruit RasGAP, which mediates the inhibition of the Ras/MAPK pathways. Activation of ERK, JNK, and p38 MAPK are all inhibited by CD200R engagement. The reduced activation of these MAPKs is responsible for the observed inhibition of mast cell degranulation and cytokine production. Similar signaling events were also observed upon CD200R engagement in mouse peritoneal cells. These data define a novel inhibitory pathway used by CD200R in modulating mast cell function and help to explain how engagement of this receptor in vivo regulates myeloid cell function.
Collapse
Affiliation(s)
- Shuli Zhang
- DNAX Research Institute, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
36
|
Sitko JC, Guevara CI, Cacalano NA. Tyrosine-phosphorylated SOCS3 Interacts with the Nck and Crk-L Adapter Proteins and Regulates Nck Activation. J Biol Chem 2004; 279:37662-9. [PMID: 15173187 DOI: 10.1074/jbc.m404007200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressors of cytokine signaling (SOCS) are negative feedback inhibitors of cytokine and growth factor signal transduction. Although the affect of SOCS proteins on the Jak-STAT pathway has been well characterized, their role in the regulation of other signaling modules is not well understood. In the present study, we demonstrate that SOCS3 physically interacts with the SH2/SH3-containing adapter proteins Nck and Crk-L, which are known to couple activated receptors to multiple downstream signaling pathways and the actin cytoskeleton. Our data show that the SOCS3/Nck and SOCS3/Crk-L interactions depend on tyrosine phosphorylation of SOCS3 Tyr(221) within the conserved SOCS box motif and intact SH2 domains of Nck and Crk-L. Furthermore, SOCS3 Tyr(221) forms a YXXP motif, which is a consensus binding site for the Nck and Crk-L SH2 domains. Expression of SOCS3 in NIH3T3 cells induces constitutive recruitment of a Nck-GFP fusion protein to the plasma membrane and constitutive tyrosine phosphorylation of endogenous Nck. Our findings suggest that SOCS3 regulates multiple cytokine and growth factor-activated signaling pathways by acting as a recruitment factor for adapter proteins.
Collapse
Affiliation(s)
- John C Sitko
- Department of Radiation Oncology, University of California Los Angeles, School of Medicine, Center for Health Sciences, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
37
|
Crowder RJ, Enomoto H, Yang M, Johnson EM, Milbrandt J. Dok-6, a Novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 2004; 279:42072-81. [PMID: 15286081 DOI: 10.1074/jbc.m403726200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Activation of Ret, the receptor-tyrosine kinase for the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs), results in the recruitment and assembly of adaptor protein complexes that function to transduce signals downstream of the receptor. Here we identify Dok-6, a novel member of the Dok-4/5 subclass of the p62 Dok family of intracellular adaptor molecules, and characterize its interaction with Ret. Expression analysis reveals that Dok-6 is highly expressed in the developing central nervous system and is co-expressed with Ret in several locations, including sympathetic, sensory, and parasympathetic ganglia, as well as in the ureteric buds of the developing kidneys. Pull-down assays using the Dok-6 phosphotyrosine binding (PTB) domain and GDNF-activated Ret indicate that Dok-6 binds to the phosphorylated Ret Tyr(1062) residue. Moreover, ligand activation of Ret resulted in phosphorylation of tyrosine residue(s) located within the unique C terminus of Dok-6 predominantly through a Src-dependent mechanism, indicating that Dok-6 is a substrate of the Ret-Src signaling pathway. Interestingly, expression of Dok-6 potentiated GDNF-induced neurite outgrowth in GDNF family receptor alpha1 (GFRalpha1)-expressing Neuro2A cells that was dependent upon the C-terminal residues of Dok-6. Taken together, these data identify Dok-6 as a novel Dok-4/5-related adaptor molecule that may function in vivo to transduce signals that regulate Ret-mediated processes such as axonal projection.
Collapse
Affiliation(s)
- Robert J Crowder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
38
|
Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 2004; 279:35139-49. [PMID: 15151996 DOI: 10.1074/jbc.m404318200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee S, Roy F, Galmarini CM, Accardi R, Michelon J, Viller A, Cros E, Dumontet C, Sylla BS. Frameshift mutation in the Dok1 gene in chronic lymphocytic leukemia. Oncogene 2004; 23:2287-97. [PMID: 14730347 DOI: 10.1038/sj.onc.1207385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is a malignant disease characterized by an accumulation of monoclonal CD5+ mature B cells, with a high percentage of cells arrested in the G0/G1 phase of the cell cycle, and a particular resistance toward apoptosis-inducing agents. Dok1 (downstream of tyrosine kinases) is an abundant Ras-GTPase-activating protein (Ras-GAP)-associated tyrosine kinase substrate, which negatively regulates cell proliferation, downregulates MAP kinase activation and promotes cell migration. The gene encoding Dok1 maps to human chromosome 2p13, a region previously found to be rearranged in B-CLL. We have screened the Dok1 gene for mutations from 46 individuals with B-CLL using heteroduplex analysis. A four-nucleotide GGCC deletion in the coding region was found in the leukemia cells from one patient. This mutation causes a frameshift leading to protein truncation at the carboxyl-terminus, with the acquisition of a novel amino-acid sequence. In contrast to the wild-type Dok1 protein, which has cytoplasmic/membrane localization, the mutant Dok1 is a nuclear protein containing a functional bipartite nuclear localization signal. Whereas overexpression of wild-type Dok1 inhibited PDGF-induced MAP kinase activation, this inhibition was not observed with the mutant Dok1. Furthermore the mutant Dok1 forms heterodimers with Dok1 wild type and the association can be enhanced by Lck-mediated tyrosine-phosphorylation. This is the first example of a Dok1 mutation in B-CLL and the data suggest that Dok1 might play a role in leukemogenesis.
Collapse
Affiliation(s)
- Sanghoon Lee
- International Agency for Research on Cancer, 150 Cours Albert-Thomas, Lyon 69008, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bedirian A, Baldwin C, Abe JI, Takano T, Lemay S. Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells. J Biol Chem 2004; 279:19335-49. [PMID: 14963042 DOI: 10.1074/jbc.m310689200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-beta or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.
Collapse
Affiliation(s)
- Arda Bedirian
- Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
41
|
Gérard A, Favre C, Garçon F, Némorin JG, Duplay P, Pastor S, Collette Y, Olive D, Nunès JA. Functional interaction of RasGAP-binding proteins Dok-1 and Dok-2 with the Tec protein tyrosine kinase. Oncogene 2003; 23:1594-8. [PMID: 14647425 DOI: 10.1038/sj.onc.1207283] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Dok adaptor family of proteins binding to RasGAP, consisting of Dok-1 and Dok-2, are critical regulators in cell proliferation. These molecules are partners and/or substrates of different protein tyrosine kinases considered as oncoproteins. Here, we show that Dok-1 and Dok-2 are the major tyrosine-phosphorylated proteins associated to Tec, a protein tyrosine kinase expressed in T cells. Furthermore, we evaluate the effect of Dok-1 or Dok-2 on Tec-mediated signalling pathways in T cells. Here, we provide evidence that Dok-1 and Dok-2 proteins are involved in a negative feedback regulation of Tec via a downregulation of its tyrosine phosphorylation and downstream signalling pathways including the Ras pathway. Either Dok-1 or Dok-2 therefore represents a mean of potent retrograde control for protein tyrosine kinase signalling, and then possibly of tumor development.
Collapse
Affiliation(s)
- Audrey Gérard
- U119 INSERM, Institut de Cancérologie et d'Immunologie de Marseille, Université de la Méditerranée, 27 Bd Leï Roure, Marseille F-13009, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ehrhardt GRA, Davis RS, Hsu JT, Leu CM, Ehrhardt A, Cooper MD. The inhibitory potential of Fc receptor homolog 4 on memory B cells. Proc Natl Acad Sci U S A 2003; 100:13489-94. [PMID: 14597715 PMCID: PMC263841 DOI: 10.1073/pnas.1935944100] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fc receptor homolog 4 (FcRH4) is a B cell-specific member of the recently identified family of FcRHs whose intracellular domain contains three potential immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The signaling potential of this receptor, shown here to be preferentially expressed by memory B cells, was compared with the inhibitory receptor FcgammaRIIb in B cells expressing either WT FcgammaRIIb or chimeric proteins in which the intracellular domain of FcRH4 was fused to the transmembrane and extracellular domains of FcgammaRIIb. Coligation of the FcgammaRIIb/FcRH4 chimeric protein with the B cell receptor (BCR) led to tyrosine phosphorylation of the two membrane-distal tyrosines and profound inhibition of BCR-mediated calcium mobilization, whole cell tyrosine phosphorylation, and mitogen-activated protein (MAP)-kinase activation. Mutational analysis of the FcRH4 cytoplasmic region indicated that the two membrane-distal ITIMs are essential for this inhibitory potential. Phosphopeptides corresponding to these ITIMs could bind the Src homology 2 (SH2) domain-containing tyrosine phosphatases SHP-1 and SHP-2, which associated with the WT FcRH4 and with mutants having inhibitory capability. These findings indicate the potential for FcRH4 to abort B cell receptor signaling by recruiting SHP-1 and SHP-2 to its two membrane distal ITIMs.
Collapse
Affiliation(s)
- Gotz R A Ehrhardt
- Divisions of Developmental and Clinical Immunology and Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
43
|
Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem 2003; 278:25323-30. [PMID: 12730241 DOI: 10.1074/jbc.m212430200] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have identified two new human genes that encode proteins with tandem pleckstrin homology-phosphotyrosine binding (PH-PTB) domains at their amino termini. Because the other known PH-PTB proteins (insulin receptor substrates: IRS-1, IRS-2, IRS-3, and IRS-4, and the downstream of kinases: DOK-1, DOK-2, and DOK-3) are substrates of insulin and insulin-like growth factor (IGF)-1 receptors, we asked whether these new proteins, termed IRS5/DOK4 and IRS6/DOK5, might also have roles in insulin and IGF-1 signaling. Northern analyses indicate that IRS5/DOK4 is ubiquitously expressed but most abundant in kidney and liver. IRS6/DOK5 expression is highest in skeletal muscle. Both proteins are tyrosine-phosphorylated in response to insulin and IGF-1 in transfected cells, although the kinetics differ. Insulin receptor-phosphorylated IRS5/DOK4 associates with RasGAP, Crk, Src, and Fyn, but not phosphatidylinositol 3-kinase p85, Grb2, SHP-2, Nck, or phospholipase Cgamma Src homology 2 domains, and activates MAPK in cells. IRS6/DOK5 neither associates with these Src homology 2 domains nor activates MAPK. IRS5/DOK4 and IRS6/DOK5 represent two new signaling proteins with potential roles in insulin and IGF-1 action.
Collapse
Affiliation(s)
- Dongsheng Cai
- Joslin Diabetes Center and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
44
|
Yamamoto T, Yumioka T, Sekine Y, Sato N, Minoguchi M, Yoshimura A, Matsuda T. Regulation of FcepsilonRI-mediated signaling by an adaptor protein STAP-2/BSK in rat basophilic leukemia RBL-2H3 cells. Biochem Biophys Res Commun 2003; 306:767-73. [PMID: 12810085 DOI: 10.1016/s0006-291x(03)01042-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crosslinking of multivalent antigen bound IgE transduces FcepsilonRI mediated signaling cascades, which activate nonreceptor-type protein-tyrosine kinases and subsequent tyrosine phosphorylation of cellular proteins, and these are critical elements for degranulation in mast cells. We cloned a novel adaptor molecule, signal transducing adaptor protein (STAP)-2 containing PH and SH2-like domains as a c-fms interacting protein. STAP-2 was identical to a recently cloned adaptor molecule, BKS, a substrate of BRK (breast tumor kinase) tyrosine kinase, although its function is still unknown. To examine a novel function of STAP-2/BSK, we expressed STAP-2/BSK or its mutants in rat basophilic leukemia RBL-2H3 cells. Overexpression of STAP-2/BSK resulted in a suppression of FcepsilonRI-mediated calcium mobilization and degranulation. FcepsilonRI-induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) but not Syk was significantly suppressed in these cells. Furthermore, STAP-2/BSK associated with PLC-gamma in vivo. These data indicate that STAP-2/BSK negatively controls the FcepsilonRI-mediated calcium mobilization and degranulation by direct modulation of tyrosine phosphorylation of PLC-gamma.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, 060-0812, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Funaba M, Zimmerman CM, Mathews LS. Modulation of Smad2-mediated signaling by extracellular signal-regulated kinase. J Biol Chem 2002; 277:41361-8. [PMID: 12193595 DOI: 10.1074/jbc.m204597200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Components of the transforming growth factor-beta and mitogen-activated protein kinase pathways interact in controlling cell growth and differentiation. We show that phosphorylation of Smad2, a mediator of the activin/transforming growth factor-beta signal, by activated extracellular signal-regulated kinase 1 (ERK1) increases the amount of Smad2 protein and leads to enhanced transcriptional activity. Epidermal growth factor increased phosphorylation of Smad2 in COS7 cells, and Smad2-dependent transcription in a mink lung epithelial cell line, L17, was enhanced by co-transfection of a constitutively active MEK1. In addition, transfection of Smad2 mutants lacking ERK sites resulted in reduced transcription, whereas mutants that mimicked ERK phosphorylation stimulated transcription. The amount of Smad2 protein was increased by transfection with a constitutively active MEK1 and reduced by co-transfection with the ERK phosphatase, HVH2. The elevation of Smad2 protein levels was because of increased half-life and resulted in increased complex formation with Smad4. A site of ERK-dependent phosphorylation on Smad2 was located to Thr(8), a site that overlaps with the calmodulin binding region. We show that calmodulin inhibits Smad2 phosphorylation by ERK1, and overexpressing calmodulin, or stimulating calmodulin activity with ionomycin, reduces Smad2 levels. These findings suggest that the ERK pathway positively regulates Smad2 signaling by phosphorylating Smad2 and that negative regulation of Smad2 signaling by calmodulin is achieved in part by inhibiting this phosphorylation.
Collapse
Affiliation(s)
- Masayuki Funaba
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA.
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Toshiyuki Takai
- Department of Experimental Immunology, Japan Science and Technology Corporation, Institute of Development, Ageing and Cancer, Tohoku University, Seiryo, Sendai, Japan.
| |
Collapse
|
47
|
Ott VL, Tamir I, Niki M, Pandolfi PP, Cambier JC. Downstream of kinase, p62(dok), is a mediator of Fc gamma IIB inhibition of Fc epsilon RI signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4430-9. [PMID: 11970986 DOI: 10.4049/jimmunol.168.9.4430] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Antigens, CD/metabolism
- Calcium/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- DNA-Binding Proteins
- Mast Cells/immunology
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinases/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoproteins/genetics
- Phosphoproteins/physiology
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Proteins/metabolism
- RNA-Binding Proteins
- Rats
- Receptor Aggregation
- Receptors, IgE/antagonists & inhibitors
- Receptors, IgG/metabolism
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Tumor Cells, Cultured
- ras GTPase-Activating Proteins/metabolism
Collapse
Affiliation(s)
- Vanessa L Ott
- Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO 80206, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
An important role has emerged for adaptor molecules in linking cell-surface receptors, such as the B-cell antigen receptor, with effector enzymes. Adaptor proteins direct the appropriate subcellular localization of effectors and regulate their activity by inducing conformational changes, both of which, in turn, contribute to the spatio-temporal precision of B-cell signal-transduction events. In addition, adaptor molecules participate in establishing negative- or positive-feedback regulatory loops in signalling networks, thereby fine-tuning the B-cell response.
Collapse
Affiliation(s)
- Tomohiro Kurosaki
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, Japan.
| |
Collapse
|
49
|
Liang X, Wisniewski D, Strife A, Clarkson B, Resh MD. Phosphatidylinositol 3-kinase and Src family kinases are required for phosphorylation and membrane recruitment of Dok-1 in c-Kit signaling. J Biol Chem 2002; 277:13732-8. [PMID: 11825908 DOI: 10.1074/jbc.m200277200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dok-1 is an adaptor protein that is a substrate for Bcr-Abl and other tyrosine protein kinases. The presence of pleckstrin homology and phosphotyrosine binding domains as well as multiple tyrosine phosphorylation sites suggests that Dok-1 is involved in protein-protein and/or protein-lipid interactions. Here we show that stimulation of Mo7 hematopoietic cells with c-Kit ligand (KL) induces phosphatidylinositol (PI) 3-kinase-dependent tyrosine phosphorylation and membrane recruitment of Dok-1. Addition of the K-Ras membrane-targeting motif to Dok-1 generated a constitutively membrane-bound Dok-1 protein whose tyrosine phosphorylation was independent of PI 3-kinase. Membrane localization of Dok-1 was required for its ability to function as a negative regulator of cell proliferation. Additional experiments revealed that Dok-1 associated with the juxtamembrane region and C-terminal tail of c-Kit. Lyn promoted phosphorylation of c-Kit and association of c-Kit and Dok-1. Both Lyn and Tec were capable of phosphorylating Dok-1. However, the use of primary bone marrow mast cells from normal and Lyn-deficient mice demonstrated that Lyn is required for KL-dependent Dok-1 tyrosine phosphorylation. Taken together, these data indicate that activation of PI 3-kinase by KL promotes binding of the Dok pleckstrin homology domain and Dok-1 recruitment to the plasma membrane where Dok-1 is phosphorylated by Src and/or Tec family kinases.
Collapse
Affiliation(s)
- Xiquan Liang
- Cell Biology Program and the Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
50
|
Billadeau DD, Leibson PJ. ITAMs versus ITIMs: striking a balance during cell regulation. J Clin Invest 2002. [DOI: 10.1172/jci0214843] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|