1
|
Seiler J, Beye M. Honeybees' novel complementary sex-determining system: function and origin. Trends Genet 2024; 40:969-981. [PMID: 39232877 DOI: 10.1016/j.tig.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.
Collapse
Affiliation(s)
- Jana Seiler
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Chen L, Huang Y, Pan QH, Wang MY, Liang JJ, Chen TS. The Chinese medaka (Oryzias sinensis) dmrt1 gene converts females to males in medaka (Oryzias latipes). Biochim Biophys Acta Gen Subj 2024; 1868:130664. [PMID: 38942152 DOI: 10.1016/j.bbagen.2024.130664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Chinese medaka (Oryzias sinensis) is widely distributed in freshwater rivers in China. Similar to the medaka (Oryzias latipes), Chinese medaka has the characteristics of small size, rapid reproductive cycle, and strong adaptability, which makes it suitable as a model organism for studies in basic biology and environmental toxicology. Chinese medaka exhibits distinct sexual dimorphism. However, due to the lack of complete genomic information, the regulation of sex determination and differentiation-related genes in Chinese medaka remains unclear. METHODS Chinese medaka dmrt1 (Osdmrt1) was cloned by PCR, and transgenic individuals of medaka [Tg(CMV:Osdmrt1)] overexpressing Osdmrt1 were generated to investigate the role of Osdmrt1 in sex determination. Western blot was used to validate the integration of the Osdmrt1 into the medaka genome. Tissue sectioning and HE staining were used to identify Tg(CMV:Osdmrt1) physiological gender and phenotype. qRT-PCR was used to analyze the expression of gonad-specific genes. RESULTS Osdmrt1 was cloned and identified, and it shared similar evolutionary relationships with medaka dmrt1. Tg(CMV:Osdmrt1) exhibited partial sex reversal from female to male in the F2 generation, with genetically female individuals developing testes and producing functional sperm. Additionally, the secondary sexual characteristics of the transgenic females also changed to males. CONCLUSION The Chinese medaka dmrt1 gene could convert females to males in medaka. GENERAL SIGNIFICANCE These results not only elucidate the function of Chinese medaka dmrt1, but also accumulate knowledge for studying the function of economically important fish genes in model fish by transgenic technology.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Yan Huang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Qi-Hua Pan
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Meng-Yang Wang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Jing-Jie Liang
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China
| | - Tian-Sheng Chen
- State Key Laboratory of Mariculture Breeding; Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, 43 Yindou Road, Jimei District, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College of Jimei University, Xiamen 361021, China.
| |
Collapse
|
3
|
Huang J, Wan H, Jiang J, Huang Y, Zou P, Zhang Z, Jia X, Wang Y. miR-34 negatively regulates the expression of Dmrt and related genes in the testis of mud crab Scylla paramamosain. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111018. [PMID: 39128537 DOI: 10.1016/j.cbpb.2024.111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The mud crab (Scylla paramamosain) is a commercially significant marine decapod crustacean. Due to its obvious sexual dimorphism, the mechanism of sex differentiation and gonadal development has attracted significant research interest. The Dmrt (double-sex and mab-3 related transcription factor) genes are vital in animal gonadal development and sex differentiation. In the present study, miR-34 was predicted to target the 3' end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like genes by prediction software, and the interactions between miR-34 and these Dmrt genes were validated by in vivo and in vitro experiments. Dual luciferase assay results indicated that miR-34 mimics/inhibitors co-transfected with plasmid vectors with 3' end of Dmrt-1, idmrt-2, Dmrt-3, Dsx and Dmrt-like, respectively, led to a significant decrease/increase of fluorescence activity in HEK293T cells. In vivo experiments showed that injection of agomir-34 significantly inhibited Dmrt-1, idmrt-2, Dsx and Dmrt-like expression, while injection of antagomir-34 caused the opposite result. However, Dmrt-3 expression was not affected by injection of miR-34 reagents. Meanwhile, the expression of spermatogenesis and testicular development-related molecular marker genes (IAG, foxl2 and vasa) in mud crabs was significantly changed after injecting the miR-34 reagent in vivo. Furthermore, the result of immunoblotting proved that the expression level of Dmrt-like protein can be regulated by miR-34. These results imply that miR-34 is indirectly involved in sex differentiation and testicular development of S. paramamosain by regulating Dmrt-1, idmrt-2, Dsx and Dmrt-like genes.
Collapse
Affiliation(s)
- Jinkun Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Haifu Wan
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Jiang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yicong Huang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiwei Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
4
|
Toyota K, Mekuchi M, Akashi H, Miyagawa S, Ohira T. Sexual dimorphic eyestalk transcriptome of kuruma prawn Marsupenaeus japonicus. Gene 2023; 885:147700. [PMID: 37572801 DOI: 10.1016/j.gene.2023.147700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
Kuruma prawn (Marsupenaeus japonicus) is a benthic decapod crustacean that is widely distributed in the Indo-West Pacific region. It is one of the most important fishery resources in Japan, but its annual catches have declined sharply since the 1990s. To increase stocks, various approaches such as seed production and aquaculture were attempted. Since the demand for important fishery species, including kuruma prawn, is expected to increase worldwide in the future, there is a need to develop new technologies that will make aquaculture more efficient. Historically, the eyestalk endocrine organ is known to consist of the X-organ and sinus gland (XO/SG) complex that synthesizes and secrets various neuropeptide hormones that regulate growth, molt, sexual maturation, reproduction, and changes in body color. In the current study, eyestalk-derived neuropeptides were identified in the transcriptome. In addition, most orthologs of sex-determination genes were expressed in eyestalks. We identified two doublesex genes (MjapDsx1 and MjapDsx2) and found that MjapDsx1 showed male-biased expression in the eyestalk ganglion with no sex-specific splicing, unlike insect species. Therefore, this study will provide an opportunity to advance the research of neuropeptides and sex determination in the kuruma prawn.
Collapse
Affiliation(s)
- Kenji Toyota
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan; Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| | - Miyuki Mekuchi
- Yokohama Field Station, Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4 Hukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Hiroshi Akashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan.
| |
Collapse
|
5
|
Liu M, Li Z, Chen J, Lin J, Lu Q, Ye Y, Zhang H, Zhang B, Ouyang S. Structural transitions upon guide RNA binding and their importance in Cas12g-mediated RNA cleavage. PLoS Genet 2023; 19:e1010930. [PMID: 37729124 PMCID: PMC10511118 DOI: 10.1371/journal.pgen.1010930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Cas12g is an endonuclease belonging to the type V RNA-guided CRISPR-Cas family. It is known for its ability to cleave RNA substrates using a conserved endonuclease active site located in the RuvC domain. In this study, we determined the crystal structure of apo-Cas12g, the cryo-EM structure of the Cas12g-sgRNA binary complex and investigated conformational changes that occur during the transition from the apo state to the Cas12g-sgRNA binary complex. The conserved zinc finger motifs in Cas12g undergo an ordered-to-disordered transition from the apo to the sgRNA-bound state and their mutations negatively impact on target RNA cleavage. Moreover, we identified a lid motif in the RuvC domain that undergoes transformation from a helix to loop to regulate the access to the RuvC active site and subsequent cleavage of the RNA substrate. Overall, our study provides valuable insights into the mechanisms by which Cas12g recognizes sgRNA and the conformational changes it undergoes from sgRNA binding to the activation of the RNase active site, thereby laying a foundation for the potential repurposing of Cas12g as a tool for RNA-editing.
Collapse
Affiliation(s)
- Mengxi Liu
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zekai Li
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jing Chen
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jinying Lin
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qiuhua Lu
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yangmiao Ye
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Bo Zhang
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions-Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Zhang P, Yang Y, Xu Y, Cui Z. Analyses of the Dmrt family in a decapod crab, Eriocheir sinensis uncover new facets on the evolution of DM domain genes. Front Physiol 2023; 14:1201846. [PMID: 37304820 PMCID: PMC10252143 DOI: 10.3389/fphys.2023.1201846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DM domain genes are a group of transcription factors that are integral to sexual development and its evolution in metazoans. Their functions and regulatory mechanisms are not well understood in Malacostraca (crabs and crayfish) while these sex regulators have been widely identified in the past decade. In this study, the Dmrt family was investigated in the decapod crab, Eriocheir sinensis. We find that most members of the EsDmrt family begin to enrich around the juvenile 1 stage. In reproductive organs, EsDsx1, EsDsx2, EsiDMY and EsiDmrt1a highly express in the male-specific androgenic gland (AG), while EsDmrt-like, EsDsx-like, EsDmrt11E, and EsiDmrt1b show relatively high expression in testis. Also, we find the highly aberrant expression of EsiDMY and EsiDmrt1a in the chimeric AG, strongly indicating their function in AG development. Moreover, RNA interference of EsDsx1, EsiDMY, and EsiDmrt1a results in a significant decrease in transcription of the Insulin-like androgenic hormone (IAG), respectively. Our findings suggest that Dmrt genes in E. sinensis primarily function in male sexual differentiation, especially in AG development. Besides, this study identifies two unique groups of Dmrt genes in Malacostraca: Dsx and iDmrt1. In Malacostraca Dsx, we uncover a cryptic mutation in the eight zinc motif-specific residues, which were firmly believed to be invariant across the Dmrt family. This mutation sets the Malacostraca Dsx apart from all the other Dmrt genes and implies a different way of transcriptional regulation. Genes from the iDmrt1 group show phylogenetical limitation to the malacostracan species and underwent positive selection, suggesting their highly specialized gene function to this class. Based on these findings, we propose that Dsx and iDmrt1 in Malacostraca have developed unique transcriptional regulation mechanisms to facilitate AG development. We hope that this study would contribute to our understandings of sexual development in Malacostraca and provide new insights into the evolutionary history of the Dmrt family.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
7
|
Feng Y, Zhong Z, Wan H, Zhang Z, Zou P, Lin P, Jiang Y, Wang Y. dmrtb1 is involved in the testicular development in Larimichthys crocea. Reproduction 2023; 165:159-170. [PMID: 36342669 DOI: 10.1530/rep-22-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
In brief dmrtb1 performs critical functions in sex determination/differentiation and gonadal development in many organisms, but its role in teleost is rarely studied. Through gene cloning, in situ hybridization, and RNA interference technology, the function of dmrtb1 in testicular development of large yellow croaker (Larimichthys crocea) was studied; our study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea, and our results enrich the theory of fish dmrts involved in reproductive regulation and provide a new idea for sex control breeding of L. crocea by manipulating reproductive pathway. Abstract Doublesex- and mab-3-related transcription factor B1 (dmrtb1/dmrt6) belongs to one of the members of DMRT family, which performs critical functions in sex determination and differentiation, gonadal development, and functional maintenance. However, knowledge of its exact mechanism remains unclear in teleost. Very little is known about the role of dmrtb1 in the gonad development of Larimichthys crocea. In this study, a dmrtb1 homolog in L. crocea named as Lcdmrtb1 with the full-length cDNA was isolated and characterized. Except for the conserved DM domain, the other regions had low homology. Of the tissues sampled, Lcdmrtb1 was only found to be highly expressed in the testis. In situ hybridization of testis revealed Lcdmrtb1 in both spermatogonia and spermatocytes. After Lcdmrtb1 interference in the testis cells (LYCT) of L. crocea, the expression levels of Lcdmrtb1 and Lcdmrt1 were significantly decreased; subsequently, testicular cell morphology changed from fibrous to round and their growth rate slowed. Similarly, the expression levels of Lcdmrtb1, Lcdmrt1, sox9a/b, and amh were significantly decreased after RNAi in the testis. Furthermore, it was discovered that the spermatogonia had disappeared, and the Sertoli cells had been reduced. The results of immunohistochemistry showed that the expression of Sox9 protein in the testis was not detected after dmrtb1 was knocked down. These results indicated that the absence of Lcdmrtb1 not only greatly inhibited cell growth and destroyed the morphology of testis cells but also down-regulated Lcdmrt1 expression in the testis. This study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
8
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
9
|
Zhong Z, Wang Y, Feng Y, Xu Y, Zhao L, Jiang Y, Zhang Z. The molecular regulation mechanism of dmrt1-based on the establishment of the testis cell line derived from two-spot puffer Takifugu bimaculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1475-1494. [PMID: 36445491 DOI: 10.1007/s10695-022-01150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The establishment of fish cell lines can provide an important in vitro model for developmental biology, pathology, and genetics and also an effective tool to investigate the interactions and related functions of genes. Two-spot puffer Takifugu bimaculatus is a high economic and nutritional value marine fish in Fujian in recent years. Nevertheless, dmrt1 plays a key role in the male differentiation from invertebrates to vertebrates. To understand the molecular regulatory mechanisms of dmrt1 in T. bimaculatus, a testis cell line called TBTc from a juvenile testis of this organism was established with modified Leibovitz's L-15 medium supplemented with 20% FBS, fish serum, embryo extract, and other growth factors. The TBTc with a stable karyotype can be passaged continuously, which was composed of fibroblast-like cells and expressed the marker genes of male-special cells, dmrt1, and amh, and the absence of vasa expression may rule out the possibility of the presence of germ cells. Therefore, TBTc appeared to consist of the mixture of the Sertoli cell and germ cell of the testis. The dmrt1 was significantly expressed in the testes and slightly expressed in the late embryonic development, illustrating that the dmrt1 may participate in the molecular regulation of gonads development and sex differentiation. With the high transfection efficiency of TBTc by electroporation, the cell lines could be used effectively in the study for the expression of exogenous and endogenous genes. Meanwhile, after the knockdown of dmrt1, the morphological changes and survival rates of cells proved that dmrt1 could affect the growth of testicular cells. Furthermore, with the loss of dmrt1, the expression of male-bias genes amh, sox9, and cyp11a was significantly decreased, and the expression of female-bias genes foxl2, sox3, and cyp19a was increased, which suggested that dmrt1 upregulates amh, sox9, and cyp11a and downregulates foxl2, sox3, and cyp19a to participate in the testis development. As a first fish gonadal cell lines of T. bimaculatus, which can be a more convenient, efficient, and rapid model for the investigation of the expression and function of genes, the results will lay a foundation for the next study of the molecular regulation mechanism in gonadal development and sex determination of fish in the future.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Liping Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Identification and Expression Analysis of Dsx and Its Positive Transcriptional Regulation of IAG in Black Tiger Shrimp ( Penaeus monodon). Int J Mol Sci 2022; 23:ijms232012701. [PMID: 36293554 PMCID: PMC9604489 DOI: 10.3390/ijms232012701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5′-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.
Collapse
|
11
|
A novel Dmrt gene of crustacean: functional analysis of idmrt-2 gene in the male reproductive system from Scylla paramamosain. Gene 2022; 850:146922. [PMID: 36179966 DOI: 10.1016/j.gene.2022.146922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022]
Abstract
The Dmrt (double-sex and mab-3 related transcription factor) gene family is considered to be a highly conserved gene family related to sex determination and sexual differentiation across species. In order to better understand the role of the idmrt-2 gene in gonad development in Scylla paramamosain, the idmrt-2 gene was cloned and analyzed. The cDNA contains a 1659 bp ORF region encoding 552 amino acids. The qRT-PCR results showed that idmrt-2 was significantly more expressed in the testis than in other tissues (p<0.05). The expression of idmrt-2 was highest in the spermatids stage (T2 stage), followed by the mature sperms stage (T3 stage) and significantly higher than in the spermatocytes stage (T1 stage) (p<0.05) during testicular development and the expression difference was not significant in different stages of ovarian development. RNAi studies revealed that after idmrt-2 was knocked down, the expression of Dmrt-like and foxl-2 genes in the testis decreased, as well as IAG expression in the androgenic gland. The findings suggest that idmrt-2 may be an IAG regulator and involved in testicular development.
Collapse
|
12
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
13
|
Zhang X, Li G, Zhou J, Lv M, Li L, Chen J. Full-length gonad transcriptome analysis of Amur sturgeon Dmrt family genes: identification, characterization, and expression patterns during gonadal differentiation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:839-852. [PMID: 35650309 DOI: 10.1007/s10695-022-01087-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The regulatory mechanisms that govern sex differentiation in sturgeon are still poorly understood. The doublesex and Mab-3-related transcription factor (Dmrt) gene family is known for its extensive roles in sex determination and differentiation across vertebrates. This study aimed to identify new members of sturgeon Dmrt family genes and core actors in the gonadal differentiation of Amur sturgeon. A full-length gonad transcriptome database was exploited to identify Dmrt gene orthologs. Analyses of phylogenetic relationships and selection pressure were performed, and tissue expression profiles and spatiotemporal expression patterns in gonads were then analyzed using real-time PCR. In total, five Dmrt family genes were identified from the full-length gonad transcriptome, including Dmrt2, DmrtA1, DmrtA2, DmrtB1a, and DmrtB1b. Phylogenetic analysis showed that these genes were clustered into clades corresponding to the doublesex/Mav-3 (DM) genes of vertebrates. Furthermore, the analysis of evolutionary selective pressure indicated that DmrtB1a and DmrtB1b were subject to positive selection, suggesting the existence of adaptive evolution in sturgeon. The extensive tissue expression profiling of each Dmrt family gene revealed typical characteristics. Remarkably, according to a spatiotemporal expression pattern analysis, in later stages, DmrtB1b expression increased in testes and was significantly higher in testes than in ovaries at 24 months after hatching (M) and 36 M. This study provides a genetic resource of full-length Dmrt family genes and increases the understanding of Dmrt functions in sex differentiation in sturgeon.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Guanyu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jiabin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Mei Lv
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|
15
|
Comparative Transcriptomics of Gonads Reveals the Molecular Mechanisms Underlying Gonadal Development in Giant Freshwater Prawns (Macrobrachium rosenbergii). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10060737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is a prawn that has economic significance throughout the world. It exhibits sex-related growth dimorphism, whereby the males grow significantly more rapidly than the females. Therefore, a study on the molecular regulatory mechanism, which underlies the sexual differentiation of M. rosenbergii, is of both scientific and commercial importance. However, a scarcity of genomic and transcriptomic resources severely limits our knowledge of the sexual differentiation mechanisms in M. rosenbergii. Here, transcriptome sequencing of several gonadic samples of males and females in M. rosenbergii was performed to investigate the molecular basis underlying gonadal development. Our results showed that 2149 unigenes presented as differentially expressed genes (DEGs) in the ovaries of females compared to the testes of males, which contained 484 down-regulated and 1665 up-regulated genes. Enrichment analysis of DEGs revealed many of these genes to be related to sexual differentiation and gonadal development. From our transcriptome analyses, and as confirmed by quantitative real-time PCR, male-related genes (Mrr, MRPINK, IR, IAGBP, TESK1, and dsx) in the testes were significantly up-regulated, and female-related genes (ERR, Sxl3, cyclinB, Dmrt99B, PPP2A, and ADCY9) in the ovaries were also significantly up-regulated. This indicates the potential role these genes play in the gonadal development of M. rosenbergii. Furthermore, multiple signal transduction pathways relating to gonadal maturation and spermatogenesis, including MAPK, were identified herein. Our data also supports previous ideas that IAG and IAGBP-IR signaling schemes could help in the regulation of testis’ development in M. rosenbergii and the ERR gene could regulate ovarian development by affecting the expression of cyclinB, PPP2A, and ADCY9. The data from this study provides incredibly usefully genomic resources for future research on the sexual differentiation and practical aquaculture of M. rosenbergii.
Collapse
|
16
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Kasahara R, Yuzawa T, Fujii T, Aoki F, Suzuki MG. dmrt11E ortholog is a crucial factor for oogenesis of the domesticated silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103517. [PMID: 33422636 DOI: 10.1016/j.ibmb.2020.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/26/2023]
Abstract
DMRT (Doublesex and Mab-3-related transcription factor) is a highly conserved transcription factor family involved in sex determination in numerous animal species. One DMRT, dmrt2/dmrt11E, has entirely different functions in invertebrate and vertebrate species, indicating unpredicted functions. Here, we performed functional analysis of the dmrt11E gene in the domesticated silkworm, Bombyx mori. This gene was preferentially expressed in ovarioles at the last larval instar stage. Its mRNA accumulated in ovarian eggs during the adult stage. CRISPR/Cas9-mediated knockout of Bombyx dmrt11E (Bmdmrt11E) caused defects in oogenesis, resulting in the production of abnormal eggs with transparent liquids. These eggs had significantly reduced fertility and lipid levels. Transcriptomic comparisons between ovaries of control and mutant insects at two developmental stages identified six genes that may be under the control of Bmdmrt11E. Finally, we provide a possible model for lipid uptake and storage in eggs of Bombyx mori.
Collapse
Affiliation(s)
- Ryota Kasahara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Tomohisa Yuzawa
- Japan Water Systems Corporation, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Takehsi Fujii
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, 45-1 Nagao-Togecho, Hirakata-shi, Osaka, 573-0101, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
18
|
Amterat Abu Abayed F, Manor R, Aflalo ED, Sagi A. Screening for Dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen Comp Endocrinol 2019; 282:113205. [PMID: 31201800 DOI: 10.1016/j.ygcen.2019.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/19/2023]
Abstract
The doublesex and mab-3 related transcription factor (Dmrt) gene family is known to be related to the sexual regulators doublesex of arthropods and mab-3 of annelids and to hold highly conserved functions in sexual determination and differentiation across phyla. Here, we report a study of the Dmrt gene family in the freshwater prawn Macrobrachium rosenbergii, a crustacean whose sexual differentiation has been widely researched. A wide transcriptomic screen, from the embryo to the adult M. rosenbergii, identified five novel Dmrt genes (MroDmrts) and confirmed two known MroDmrts. The seven MroDmrts encode proteins of 275-855 amino acids; each protein contained at least one conserved DNA-binding DM domain, which is typical of Dmrt proteins, and five proteins contained 1-4 transactivation domains (TADs). Importantly, in the embryonic, larval and post-larval stages, MroDmrt genes exhibited time-dependent expression patterns rather than sex-specific expression. In-silico screening of the expression of the MroDmrt genes in adult males revealed the enrichment of MroiDmrt1b and MroiDmrt1c in the androgenic gland (AG) as compared to the eyestalks. In vivo silencing of the androgenic gland insulin-like (IAG) encoding gene significantly decreased the expression of the above two Dmrt genes, while not affecting the expression of control genes, thereby suggesting the possible role of these two genes in the IAG-switch and in sex-differentiation processes.
Collapse
Affiliation(s)
- Faiza Amterat Abu Abayed
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
| |
Collapse
|
19
|
Ghosh N, Bakshi A, Khandelwal R, Rajan SG, Joshi R. The Hox gene Abdominal-B uses Doublesex F as a cofactor to promote neuroblast apoptosis in the Drosophila central nervous system. Development 2019; 146:dev.175158. [PMID: 31371379 PMCID: PMC6737903 DOI: 10.1242/dev.175158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Highly conserved DM domain-containing transcription factors (Doublesex/MAB-3/DMRT1) are responsible for generating sexually dimorphic features. In the Drosophila central nervous system, a set of Doublesex (Dsx)-expressing neuroblasts undergo apoptosis in females whereas their male counterparts proliferate and give rise to serotonergic neurons crucial for adult mating behaviour. Our study demonstrates that the female-specific isoform of Dsx collaborates with Hox gene Abdominal-B (Abd-B) to bring about this apoptosis. Biochemical results suggest that proteins AbdB and Dsx interact through their highly conserved homeodomain and DM domain, respectively. This interaction is translated into a cooperative binding of the two proteins on the apoptotic enhancer in the case of females but not in the case of males, resulting in female-specific activation of apoptotic genes. The capacity of AbdB to use the sex-specific isoform of Dsx as a cofactor underlines the possibility that these two classes of protein are capable of cooperating in selection and regulation of target genes in a tissue- and sex-specific manner. We propose that this interaction could be a common theme in generating sexual dimorphism in different tissues across different species.
Collapse
Affiliation(s)
- Neha Ghosh
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Asif Bakshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Risha Khandelwal
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | | | - Rohit Joshi
- Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India
| |
Collapse
|
20
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel. Gen Comp Endocrinol 2019; 279:154-163. [PMID: 30902612 DOI: 10.1016/j.ygcen.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Dmrt1, doublesex- and mab-3-related transcription factor-1, has been suggested to play critical roles in male gonadogenesis, testicular differentiation and development, including spermatogenesis, among different vertebrates. Vasa is a putative molecular marker of germ cells in vertebrates. In this study, we cloned the full-length dmrt1 cDNA from Japanese eel, and the protein comprised 290 amino acids and presented an extremely conserved Doublesex and Mab-3 (DM) domain. Vasa proteins were expressed in gonadal germ cells in a stage-specific manner, and were expressed at high levels in PGC and spermatogonia, low levels in spermatocytes, and were absent in spermatids and spermatozoa of Japanese eels. Dmrt1 proteins were abundantly expressed in spermatogonia B cells, spermatocytes, spermatids, but not in spermatozoa, spermatogonia A and Sertoli cells. To our knowledge, this study is the first to show a restricted expression pattern for the Dmrt1 protein in spermatogonia B cells, but not spermatogonia A cells, of teleosts. Therefore, Dmrt1 might play vital roles at the specific stages during spermatogenesis from spermatogonia B cells to spermatids in the Japanese eel. Moreover, the Dmrt1 protein exhibited a restricted localization in differentiating oogonia in the early differentiating gonad (ovary-like structure) of male Japanese eels and in E2-induced feminized Japanese eels. We proposed that dmrt1 may be not only required for spermatogenesis but might also play a role in oogenesis in the Japanese eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Museum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
21
|
Yan N, Hu J, Li J, Dong J, Sun C, Ye X. Genomic organization and sexually dimorphic expression of the Dmrt1 gene in largemouth bass (Micropterus salmoides). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:68-77. [PMID: 31078703 DOI: 10.1016/j.cbpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Doublesex and Mab-3 related transcription factor (Dmrt) genes play important roles in the process of sex determination and differentiation. In this study, a Dmrt1 gene open reading frame sequence was obtained from the gonadal transcriptome data of largemouth bass (Micropterus salmoides), and identified by cloning and sequencing. The ORF of Dmrt1 is 900 bp long, encodes 298 amino acids, and contains the DM region which is characteristic of Dmrt1. Full gDNA sequence of Dmrt1 was composed of five exons and four introns. RT-PCR and Q-PCR analysis of Dmrt1 were conducted in eight tissues and three developmental stages of mature male and female individuals. In situ hybridization was used to locate the expression of Dmrt1 in the testis and ovary of largemouth bass. The results showed that Dmrt1 was highly expressed in the testis of mature fish, but only weakly expressed in other tissues such as heart, liver, and brain, and exhibited gender dimorphism in the gonads of male and female fish at different stages. Furthermore, the expression level in female fish was very low and decreased gradually with ovary maturation. In situ hybridization indicated positive signals were found in early oocytes, but not in mature oocytes, while strong positive signals were found in all types of mature testis cells. The study showed that the sequence and structure of Dmrt1 were highly conserved and exhibited significant gender dimorphism in largemouth bass, as in other fish species. It is suggested that Dmrt1 plays an important role in sex determination and differentiation in largemouth bass.
Collapse
Affiliation(s)
- Ningning Yan
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI-Shenzhen, Shenzhen 518083, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
22
|
Wang Y, Jin S, Fu H, Qiao H, Sun S, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y. Identification and Characterization of the DMRT11E Gene in the Oriental River Prawn Macrobrachium nipponense. Int J Mol Sci 2019; 20:ijms20071734. [PMID: 30965605 PMCID: PMC6480115 DOI: 10.3390/ijms20071734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
The doublesex and mab-3 related transcription factor (DMRT) gene family involvement in sex development is widely conserved from invertebrates to humans. In this study, we identified a DM (Doublesex/Mab-3)-domain gene in Macrobrachium nipponense, which we named MniDMRT11E because it has many similarities to and phylogenetically close relationships with the arthropod DMRT11E. Amino acid alignments and structural prediction uncovered conservation and putative active sites of the DM domain. Real-time PCR analysis showed that the MniDMRT11E was highly expressed in the ovary and testis in both males and females. Cellular localization analysis showed that DMRT11E was mainly located in the oocytes of the ovary and the spermatocyte of the testis. During embryogenesis, the expression level of MniDMRT11E was higher at the cleavage stage than at other stages. During the different stages of ovarian development, MniDMRT11E expression gradually increased from OI to OIII and decreased to the lowest level at the end of OIV. The results indicated that MniDMRT11E probably played important roles in embryonic development and sex maturity in M. nipponense. MniDMRT11E dsRNA injection also significantly reduced vitellogenin (VG) expression and significantly increased insulin-like androgenic gland factor (IAG) expression, indicating a close relationship in gonad development.
Collapse
Affiliation(s)
- Yabing Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
23
|
Roth A, Vleurinck C, Netschitailo O, Bauer V, Otte M, Kaftanoglu O, Page RE, Beye M. A genetic switch for worker nutrition-mediated traits in honeybees. PLoS Biol 2019; 17:e3000171. [PMID: 30897091 PMCID: PMC6428258 DOI: 10.1371/journal.pbio.3000171] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
Highly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. The worker nutrition-driven size reduction of reproductive organs was restricted to the female sex, suggesting input from the sex determination pathway. Genetic screens on the sex determination genes in genetic females for size polyphenism revealed that doublesex (dsx) mutants display size-reduced reproductive organs irrespective of the sexual morphology of the organ tissue. In contrast, feminizer (fem) mutants lost the response to worker nutrition-driven size control. The first morphological worker mutants in honeybees demonstrate that the response to nutrition relies on a genetic program that is switched “ON” by the fem gene. Thus, the genetic instruction provided by the fem gene provides an entry point to genetically dissect the underlying processes that implement the size polyphenism. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. A study using the first induced morphological mutants in honeybees demonstrates that this developmental plasticity requires a genetic program that is switched on by the “feminizer” gene. In honeybees, nutrition drives dimorphic size development of reproductive organs in fertile queens and sterile workers. The first induced morphological mutants in honeybees demonstrate that this developmental plasticity requires a genetic program that is switched “ON” by the feminizer (fem) gene.
Collapse
Affiliation(s)
- Annika Roth
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Christina Vleurinck
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Oksana Netschitailo
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Vivien Bauer
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Marianne Otte
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Phoenix, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
24
|
Jia LY, Chen L, Keller L, Wang J, Xiao JH, Huang DW. Doublesex Evolution Is Correlated with Social Complexity in Ants. Genome Biol Evol 2018; 10:3230-3242. [PMID: 30476039 PMCID: PMC6300070 DOI: 10.1093/gbe/evy250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
The Dmrt (doublesex and mab-3-related transcription factor) genes are transcription factors crucial for sex determination and sexual differentiation. In some social insects, doublesex (dsx) exhibits widespread caste-specific expression across different tissues and developmental stages and has been suggested as a candidate gene for regulating division of labor in social insects. We therefore conducted a molecular evolution analysis of the Dmrt gene family in 20 ants. We found that the insect-specific oligomerization domain of DSX, oligomerization domain 2, was absent in all ants, except for the two phylogenetically basal ant species (Ponerinae), whose social structure and organization resemble the presumed ancestral condition in ants. Phylogenetic reconstruction and selection analysis revealed that dsx evolved faster than the other three members of the Dmrt family. We found evidence for positive selection for dsx in the ant subfamilies with more advanced social organization (Myrmicinae and Formicinae), but not in the Ponerinae. Furthermore, we detected expression of two Dmrt genes, dsx and DMRT11E, in adult ants, and found a clear male-biased expression pattern of dsx in most species for which data are available. Interestingly, we did not detect male-biased expression of dsx in the two ant species that possess a genetic caste determination system. These results possibly suggest an association between the evolution of dsx and social organization as well as reproductive division of labor in ants.
Collapse
Affiliation(s)
- Ling-Yi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, Switzerland
| | - John Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jin-Hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-Wei Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Zhuo JC, Hu QL, Zhang HH, Zhang MQ, Jo SB, Zhang CX. Identification and functional analysis of the doublesex gene in the sexual development of a hemimetabolous insect, the brown planthopper. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 102:31-42. [PMID: 30237076 DOI: 10.1016/j.ibmb.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/25/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
In the sex determination cascade, the genes dsx (doublesex) in insects, mab-3 (male abnormal 3) in nematodes, and Dmrt1 (dsx/mab-3 related transcription factor-1) in vertebrates act as the base molecular switches and play important roles. Moreover, these genes share the same conserved feature domain-DNA-binding oligomerization domain (OD1), and female-specific dsx also has a conserved oligomerization domain 2 (OD2). Although sex determination and the functions of dsx in several holometabolous insects have been well documented, sex determination and the function of dsx in hemimetabolous insects remain a mystery. In this study, four dsx homologs were unexpectedly found in the Nilaparvata lugens (brown planthopper, BPH, order Hemiptera), which also showed a different evolutionary status. We found that only one of the four homologs, Nldsx, which has three alternative splicing variants (female-specific NldsxF, male-specific NldsxM, non-sex-specific NldsxC), was required in the sexual development of N. lugens. Compared with that of holometabolous species, the dsx of N. lugens contains a less conserved OD1, while the OD2 domain of BPH was not identifiable because the common region is poorly conserved, and the female-specific region is short. RNAi-mediated knockdown of Nldsx in female BPH resulted in a larger body size with a normal abdomen and reproductive system, while no changes in fertility were noted. However, adult males with RNA interference knockdown of NldsxM in nymphs became pseudofemales, were infertile, had abnormal copulatory organs, and had impassable deferent ducts with hyperplastic walls; additionally, the pseudofemales could not produce the normal courtship signals. Our results suggest that dsx plays a critical role in male BPH somatic development and mating behavior. This is the first study to show that dsx is essential for sexual development in a hemipteran species.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Meng-Qiu Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Song Bok Jo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; Kim Jong Suk University of Education, Democratic People's Republic of Korea
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Chandler JC, Fitzgibbon QP, Smith G, Elizur A, Ventura T. Y-linked iDmrt1 paralogue (iDMY) in the Eastern spiny lobster, Sagmariasus verreauxi: The first invertebrate sex-linked Dmrt. Dev Biol 2017; 430:337-345. [PMID: 28864068 DOI: 10.1016/j.ydbio.2017.08.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 08/28/2017] [Indexed: 02/04/2023]
Abstract
Sex determination pathways are extensively diverse across species, with the master sex-determinants being the most variable element. Despite this, there is a family of DM-domain transcription factors (Dmrts), which hold a highly conserved function in sexual development. This work is the first to describe a heterogametic sex-linked Dmrt in an invertebrate species, the Eastern spiny lobster, Sagmariasus verreauxi. We have termed the Y-linked, truncated paralogue of the autosomal iDmrt1, Sv-iDMY. Considering the master sex-determining function of both DMY in medaka and DM-W in frog, we hypothesised a similar function of Sv-iDMY. By conducting temporal expression analyses during embryogenesis we have identified a putative male sex-determining period during which iDMY>iDmrt1. Employing a GAL4-transactivation assay we then demonstrate the dominant negative suppression of iDMY over its autosomal iDmrt1 paralogue, suggesting the mechanism with which iDMY determines sex. Comparative analyses of Sv-iDMY, DM-W and medaka DMY, highlight the C'-mediated features of oligomerisation and transactivation as central to the mechanism that each exerts. Indeed, these features may underpin the plasticity facilitating the convergent emergence of these three sporadic sex-linked master-Dmrts.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GenEcology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast (USC), 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| | - Quinn P Fitzgibbon
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Greg Smith
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Abigail Elizur
- GenEcology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast (USC), 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Tomer Ventura
- GenEcology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast (USC), 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
27
|
Zhang T, Zarkower D. DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res 2017; 24:195-202. [PMID: 28774758 DOI: 10.1016/j.scr.2017.07.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022] Open
Abstract
DMRT genes encode a deeply conserved family of transcription factors that share a unique DNA binding motif, the DM domain. DMRTs regulate development in a broad variety of metazoans and they appear to have controlled sexual differentiation for hundreds of millions of years. In mice, starting during embryonic development, three Dmrt genes act sequentially to help establish and maintain spermatogenesis. Dmrt1 has notably diverse functions that include repressing pluripotency genes and promoting mitotic arrest in embryonic germ cells, reactivating prospermatogonia perinatally, establishing and maintaining spermatogonial stem cells (SSCs), promoting spermatogonial differentiation, and controlling the mitosis/meiosis switch. Dmrt6 acts in differentiating spermatogonia to coordinate an orderly exit from the mitotic/spermatogonial program and allow proper timing of entry to the meiotic/spermatocyte program. Finally, Dmrt7 takes over during the first meiotic prophase to help choreograph a transition in histone modifications that maintains transcriptional silencing of the sex chromosomes. The combined action of these three Dmrt genes helps ensure robust and sustainable spermatogenesis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota Medical School, 6-160 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Wagamitsu S, Takase D, Aoki F, Suzuki MG. Identification of the Doublesex protein binding sites that activate expression of lozenge in the female genital disc in Drosophila melanogaster. Mech Dev 2017; 143:26-31. [PMID: 28087460 DOI: 10.1016/j.mod.2017.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/28/2016] [Accepted: 01/08/2017] [Indexed: 11/29/2022]
Abstract
Normal sexual differentiation in the genital organs is essential for the animal species that use sexual reproduction. Although it is known that doublesex (dsx) is required for the sexual development of the genitalia in various insect species, the direct target genes responsible for the sexual differentiation of the genitalia have not been identified. The lozenge (lz) gene is expressed in the female genital disc and is essential for developments of spermathecae and accessory glands in Drosophila melanogaster. The female-specific isoform of DSX (DSXF) is required for activating lz expression in the female genital disc. However, it still remains unclear whether the DSXF directly activates the transcription of lz in the female genital disc. In this study, we found two sequences (lz-DBS1 and lz-DBS2) within lz locus that showed high homoloty to the DSX binding motif identified previously. Competition assays using recombinant DSX DNA-binding domain (DSX-DBD) protein verified that the DSX-DBD protein bound to lz-DBS1 and lz-DBS2 in a sequence-specific manner with lower affinity than to the known DSX binding site in the bric-à-brac 1 (bab1) gene. Reporter gene analyses revealed that a 2.5-kbp lz genomic fragment containing lz-DBS1 and lz-DBS2 drove reporter gene (EGFP) expression in a manner similar to endogenous lz expression in the female genital disc. Mutations in lz-DBS1 alone significantly reduced the area of EGFP-expressing region, while EGFP expression in the female genital disc was abolished when both sites were mutated. These results demonstrated that DSX directly activates female-specific lz expression in the genital disc through lz-DBS1 and lz-DBS2.
Collapse
Affiliation(s)
- Shunsuke Wagamitsu
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Dan Takase
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Fugaku Aoki
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Masataka G Suzuki
- Division of Biological Sciences, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 302 Bioscience-Bldg, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
29
|
Leng XQ, Du HJ, Li CJ, Cao H. Molecular characterization and expression pattern of dmrt1 in the immature Chinese sturgeon Acipenser sinensis. JOURNAL OF FISH BIOLOGY 2016; 88:567-579. [PMID: 26706998 DOI: 10.1111/jfb.12852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
In this study, the cDNA of dmrt1 gene from the Chinese sturgeon Acipenser sinensis was isolated and its expression pattern was characterized in different tissues of immature A. sinensis. By real-time quantitative PCR (qrtPCR) analysis, the A. sinensis dmrt1 mRNA was detected mainly in gonad and with a higher level in the testis than the ovary, especially in 3 and 4 year-old samples. This indicated that the dmrt1 expression exhibited gradual testis specificity with development. The subcellular localization analysis indicated that the Dmrt1 protein exists only in germ cells and not in somatic cells. These results suggest that A. sinensis dmrt1 might be a highly specific sex differentiation gene for testis development and spermatogenesis.
Collapse
Affiliation(s)
- X Q Leng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H J Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - C J Li
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Agriculture Ministry of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - H Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| |
Collapse
|
30
|
Chen CJ, Shikina S, Chen WJ, Chung YJ, Chiu YL, Bertrand JAM, Lee YH, Chang CF. A Novel Female-Specific and Sexual Reproduction-Associated Dmrt Gene Discovered in the Stony Coral, Euphyllia ancora. Biol Reprod 2016; 94:40. [PMID: 26740592 DOI: 10.1095/biolreprod.115.133173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/28/2015] [Indexed: 11/01/2022] Open
Abstract
Transcription factors encoded by the Dmrt gene family regulate multiple aspects of animal reproduction. Most studies investigating the Dmrt gene family were conducted in model organisms from bilateral species, with a particular emphasis on gene function in male sex determination. It is still unclear whether the E. ancora Dmrt (EaDmrt) genes found in basal metazoans such as cnidarians share similar characteristics with orthologs in other metazoans. In this study, seven full Dmrt gene transcript sequences for a gonochoric coral, Euphyllia ancora (phylum: Cnidaria; class: Anthozoa), were obtained through transcriptome data mining, RT-PCR analysis, rapid amplification of cDNA ends, and sequencing. These EaDmrts were subjected to quantitative assays measuring temporal and tissue-specific expression. Results demonstrated a unique gene expression pattern for EaDmrtE, which is enriched in female germ cells during the spawning season. Based on the phylogenetic analyses performed across the homologous Dmrt genes in metazoans, we found that the female-specific EaDmrtE gene is not related to the DM1 gene of Acropora spp. coral nor to Dmrt1 of vertebrates, which are involved in sexual reproduction, especially in sex determination (vertebrate Dmrt1). Additionally, high levels of EaDmrtE transcripts detected in unfertilized mature eggs are retained in newly formed zygotes but decrease during embryonic development. We suggest that the newly discovered gene may play a role in oogenesis and early embryogenesis as a maternal factor in corals. Therefore, the sexual reproduction-associated Dmrt gene(s) should have arisen in cnidarians and might have evolved multiple times in metazoans.
Collapse
Affiliation(s)
- Chieh-Jhen Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yi-Jou Chung
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Tungkang, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
31
|
Su L, Zhou F, Ding Z, Gao Z, Wen J, Wei W, Wang Q, Wang W, Liu H. Transcriptional variants of Dmrt1 and expression of four Dmrt genes in the blunt snout bream, Megalobrama amblycephala. Gene 2015; 573:205-15. [DOI: 10.1016/j.gene.2015.07.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 06/20/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
|
32
|
The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom. C R Biol 2015; 338:451-62. [DOI: 10.1016/j.crvi.2015.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
|
33
|
Pomerantz AF, Hoy MA. Expression analysis of Drosophila doublesex, transformer-2, intersex, fruitless-like, and vitellogenin homologs in the parahaploid predator Metaseiulus occidentalis (Chelicerata: Acari: Phytoseiidae). EXPERIMENTAL & APPLIED ACAROLOGY 2015; 65:1-16. [PMID: 25344448 DOI: 10.1007/s10493-014-9855-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Characterization and expression analyses are essential to gain insight into sex-determination pathways in members of the Acari. Little is known about sex determination at the molecular level in the western orchard predatory mite Metaseiulus occidentalis (Arthropoda: Chelicerata: Arachnida: Acari: Phytoseiidae), a parahaploid species. In this study, eight genes previously identified as putative homologs to genes involved in the sex-determination pathway in Drosophila melanogaster were evaluated for sex-specific alternative splicing and sex-biased expression using reverse-transcriptase PCR and quantitative real-time PCR techniques, respectively. The homologs evaluated in M. occidentalis included two doublesex-like genes (Moccdsx1 and Moccdsx2), transformer-2 (Mocctra-2), intersex (Moccix), two fruitless-like genes (MoccBTB1 and MoccBTB2), as well as two vitellogenin-like genes (Moccvg1 and Moccvg2). Single transcripts of equal size were detected in males and females for Moccdsx1, Moccdsx2, Mocctra-2, Moccix, and MoccBTB2, suggesting that their pre-mRNAs do not undergo alternative splicing in a sex-specific manner. Three genes, Moccdsx1, Moccdsx2 and MoccBTB2, displayed male-biased expression relative to females. One gene, Moccix, displayed female-biased expression relative to males. Two genes, Mocctra-2 and MoccBTB1, did not display detectable differences in transcript abundance in males and females. Expression of Moccvg1 and Moccvg2 were detected in females only, and transcript levels were up-regulated in mated females relative to unmated females. To our knowledge, this represents the first attempt to elucidate expression patterns of putative sex-determination genes in an acarine. This study is an initial step towards understanding the sex-determination pathway in the parahaploid M. occidentalis.
Collapse
Affiliation(s)
- Aaron F Pomerantz
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA,
| | | |
Collapse
|
34
|
Zhang T, Murphy MW, Gearhart MD, Bardwell VJ, Zarkower D. The mammalian Doublesex homolog DMRT6 coordinates the transition between mitotic and meiotic developmental programs during spermatogenesis. Development 2014; 141:3662-71. [PMID: 25249458 DOI: 10.1242/dev.113936] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In mammals, a key transition in spermatogenesis is the exit from spermatogonial differentiation and mitotic proliferation and the entry into spermatocyte differentiation and meiosis. Although several genes that regulate this transition have been identified, how it is controlled and coordinated remains poorly understood. Here, we examine the role in male gametogenesis of the Doublesex-related gene Dmrt6 (Dmrtb1) in mice and find that Dmrt6 plays a crucial role in directing germ cells through the mitotic-to-meiotic germ cell transition. DMRT6 protein is expressed in late mitotic spermatogonia. In mice of the C57BL/6J strain, a null mutation in Dmrt6 disrupts spermatogonial differentiation, causing inappropriate expression of spermatogonial differentiation factors, including SOHLH1, SOHLH2 and DMRT1 as well as the meiotic initiation factor STRA8, and causing most late spermatogonia to undergo apoptosis. In mice of the 129Sv background, most Dmrt6 mutant germ cells can complete spermatogonial differentiation and enter meiosis, but they show defects in meiotic chromosome pairing, establishment of the XY body and processing of recombination foci, and they mainly arrest in mid-pachynema. mRNA profiling of Dmrt6 mutant testes together with DMRT6 chromatin immunoprecipitation sequencing suggest that DMRT6 represses genes involved in spermatogonial differentiation and activates genes required for meiotic prophase. Our results indicate that Dmrt6 plays a key role in coordinating the transition in gametogenic programs from spermatogonial differentiation and mitosis to spermatocyte development and meiosis.
Collapse
Affiliation(s)
- Teng Zhang
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark W Murphy
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D Gearhart
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vivian J Bardwell
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - David Zarkower
- Developmental Biology Center, Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 2014; 91:136. [PMID: 25320148 DOI: 10.1095/biolreprod.114.121418] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The dmrt6 gene has been isolated from tetrapods and recently from a coelacanth, Latimeria chalumnae. Its evolutionary history and exact function remain unclear. In the present study, dmrt6 was isolated from Perciformes (five cichlids and stickleback), Siluriformes (southern catfish), and Lepisosteiformes (spotted gar). Syntenic and phylogenetic analyses indicated that dmrt6 experienced gene transposition after the divergence of teleosts from other bony fish as gene loci surrounding dmrt6 were conserved among teleosts (but was completely different from gene loci surrounding dmrt6 in tetrapods and spotted gar), while these gene loci were conserved among nonteleost species. Real-time PCR and in situ hybridization revealed that dmrt6 was highly expressed in the XY gonads from 90 days after hatching (dah) onward and was observed exclusively in spermatocytes of the testes in tilapia. Dmrt6 knockout by CRISPR/Cas9 resulted in fewer spermatocytes, down-regulated Cyp11b2 in testes, and consequently produced a lower level of serum 11-ketotestosterone (11-KT) in Dmrt6-deficient XY fish compared with the XY control at 120 dah. From 150 to 180 dah, spermatogenesis gradually recovered, and cyp11b2 expression and serum 11-KT level were restored to the same levels as those of the XY control fish. In addition, a Dmrt6 mutation was observed in genomic DNA of sperm of G0 mutant fish and F1 fish. Taken together, our data suggest that dmrt6 also exists in bony fish. Its absence in most fish genomes was probably due to incomplete sequencing and/or secondary loss. The dmrt6 gene is highly expressed in spermatocytes and is involved in spermatogenesis in tilapia.
Collapse
Affiliation(s)
- Xianbo Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yunying Cheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Pan-metazoan phylogeny of the DMRT gene family: a framework for functional studies. Dev Genes Evol 2014; 224:175-81. [DOI: 10.1007/s00427-014-0473-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 01/04/2023]
|
37
|
Ubeda-Manzanaro M, Merlo MA, Ortiz-Delgado JB, Rebordinos L, Sarasquete C. Expression profiling of the sex-related gene Dmrt1 in adults of the Lusitanian toadfish Halobatrachus didactylus (Bloch and Schneider, 1801). Gene 2013; 535:255-65. [PMID: 24275345 DOI: 10.1016/j.gene.2013.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/06/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023]
Abstract
Doublesex and mab-3 related transcription factor 1 (Dmrt1) gene is a widely conserved gene involved in sex determination and differentiation across phyla. To gain insights on Dmrt1 implication for fish gonad cell differentiation and gametogenesis development, its mRNA was isolated from testis and ovary from the Lusitanian toadfish (Halobatrachus didactylus). The cDNA from Dmrt1 was synthesized and cloned, whereas its quantitative and qualitative gene expression, as well as its protein immunolocalization, were analyzed. A main product of 1.38 kb, which encodes a protein of 295 aa, was reported, but other minority Dmrt1 products were also identified by RACE-PCR. This gene is predominantly expressed in testis (about 20 times more than in other organs or tissues), specially in spermatogonia, spermatocytes and spermatids, as well as in somatic Sertoli cells, indicating that Dmrt1 plays an important role in spermatogenesis. Although Dmrt1 transcripts also seem to be involved in oogenesis development, and it cannot be excluded that toadfish Dmrt1 could be functionally involved in other processes not related to sex.
Collapse
Affiliation(s)
- María Ubeda-Manzanaro
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Manuel A Merlo
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Juan B Ortiz-Delgado
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| | - Laureana Rebordinos
- Laboratory of Genetics, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus Río San Pedro, 11510, Puerto Real, Cadiz, Spain.
| | - Carmen Sarasquete
- Institute of Marine Sciences of Andalusia (ICMAN.CSIC), University Campus, 11519 Puerto Real, Cadiz, Spain.
| |
Collapse
|
38
|
Male-specific splicing of the silkworm Imp gene is maintained by an autoregulatory mechanism. Mech Dev 2013; 131:47-56. [PMID: 24231282 DOI: 10.1016/j.mod.2013.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/18/2013] [Accepted: 10/29/2013] [Indexed: 11/24/2022]
Abstract
Sexual differentiation in the silkworm Bombyx mori is controlled by sex-specific splicing of Bmdsx, in which exons 3 and 4 are skipped in males. B. mori insulin-like growth factor II mRNA-binding protein (Imp) is a factor involved in the male-specific splicing of Bmdsx. In this study, we found that the male-specific Imp mRNA is formed as a result of the inclusion of exon 8 and the promoter-distal poly(A) site choice, whereas non-sex-specific polyadenylation occurs at the promoter-proximal poly(A) site downstream of exon 7. Recent studies revealed that Drosophila Sxl, tra in several dipteran and hymenopteran insects, and fem in Apis mellifera, play a central role in sex determination and maintain their productive mode of expression via an autoregulatory function. To determine whether Imp protein is required for the maintenance of the male-specific splicing of its own pre-mRNA, we knocked down endogenous Imp in male cells and assessed the male-specific splicing of an exogenous Imp minigene. Knockdown of endogenous Imp inhibited the male-specific splicing of the Imp minigene transcript. In contrast, overexpression of Imp in female cells induced the male-specific splicing of the Imp minigene transcript. Moreover, deletion of adenine-rich (A-rich) sequences located downstream of the proximal poly(A) site repressed the male-specific splicing of the Imp minigene transcript. Finally, gel shift analysis demonstrated that Imp binds to the A-rich sequences. These data suggest that Imp binds to the A-rich sequences in its own pre-mRNA to induce the male-specific splicing of its pre-mRNA.
Collapse
|
39
|
Bellefroid EJ, Leclère L, Saulnier A, Keruzore M, Sirakov M, Vervoort M, De Clercq S. Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis. Cell Mol Life Sci 2013; 70:3829-45. [PMID: 23463235 PMCID: PMC11113232 DOI: 10.1007/s00018-013-1288-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/18/2013] [Accepted: 01/31/2013] [Indexed: 01/20/2023]
Abstract
Dmrt genes encode a large family of transcription factors characterized by the presence of a DM domain, an unusual zinc finger DNA binding domain. While Dmrt genes are well known for their important role in sexual development in arthropodes, nematodes and vertebrates, several new findings indicate emerging functions of this gene family in other developmental processes. Here, we provide an overview of the evolution, structure and mechanisms of action of Dmrt genes. We summarize recent findings on their function in sexual regulation and discuss more extensively the role played by these proteins in somitogenesis and neural development.
Collapse
Affiliation(s)
- Eric J Bellefroid
- Laboratoire de Génétique du Développement, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Profs. Jeener et Brachet 12, 6041, Gosselies, Belgium,
| | | | | | | | | | | | | |
Collapse
|
40
|
Quinonez SC, Park JM, Rabah R, Owens KM, Yashar BM, Glover TW, Keegan CE. 9p partial monosomy and disorders of sex development: Review and postulation of a pathogenetic mechanism. Am J Med Genet A 2013; 161A:1882-96. [DOI: 10.1002/ajmg.a.36018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/27/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Shane C. Quinonez
- Department of Pediatrics, Division of Genetics; University of Michigan; Ann Arbor; Michigan
| | - John M. Park
- Department of Urology; University of Michigan; Ann Arbor; Michigan
| | - Raja Rabah
- Department of Pathology; University of Michigan; Ann Arbor; Michigan
| | - Kailey M. Owens
- Department of Pediatrics, Division of Genetics; University of Michigan; Ann Arbor; Michigan
| | - Beverly M. Yashar
- Department of Human Genetics; University of Michigan; Ann Arbor; Michigan
| | | | | |
Collapse
|
41
|
Agbor VA, Tao S, Lei N, Heckert LL. A Wt1-Dmrt1 transgene restores DMRT1 to sertoli cells of Dmrt1(-/-) testes: a novel model of DMRT1-deficient germ cells. Biol Reprod 2013; 88:51. [PMID: 23255335 DOI: 10.1095/biolreprod.112.103135] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DMRT1 is an evolutionarily conserved transcriptional factor expressed only in the postnatal testis, where it is produced in Sertoli cells and germ cells. While deletion of Dmrt1 in mice demonstrated it is required for postnatal testis development and fertility, much is still unknown about its temporal- and cell-specific functions. This study characterized a novel mouse model of DMRT1-deficient germ cells that was generated by breeding Dmrt1-null (Dmrt1(-/-)) mice with Wt1-Dmrt1 transgenic (Dmrt1(+/-;tg)) mice, which express a rat Dmrt1 cDNA in gonadal supporting cells by directing it from the Wilms tumor 1 locus in a yeast artificial chromosome transgene. Like Dmrt1(-/-) mice, male Dmrt1(-/-) transgenic mice (Dmrt1(-/-;tg)) were infertile, while female mice were fertile. Immunohistochemistry and Western blot analysis showed transgenic DMRT1 expressed in supporting cells of the newborn gonads of both sex and in Sertoli cells of the testis afterbirth. Sertoli cells were evaluated by electron microscopy, revealing that maturation of Dmrt1(-/-;tg) Sertoli cells was incomplete. Morphological analysis of testes from 42-day-old mice showed that, compared to Dmrt1(-/-) mice, Dmrt1(-/-;tg) mice have improved seminiferous tubule structure, with lumens present in many. Immunohistochemistry of the polarity markers ESPIN and NECTIN-2 showed that DMRT1 in Sertoli cells is required for NECTIN-2 expression and influences organization of ectoplasmic specializations. Further functional analyses of the transgene on a Dmrt1(-/-) background showed that it did not rescue the decrease in Dmrt1(-/-) testis size, but when expressed on a wild-type background, exogenous DMRT1 prevented the normal age-related decline in testis size and enhanced sperm progressive motility. The studies suggest that DMRT1 in Sertoli cells regulates tubule morphology, spermatogenesis, and sperm function via its effects on Sertoli cell maturation and polarity. Furthermore, expression and function of transgenic DMRT1 in Sertoli cells establishes a novel mouse model of DMRT1-deficient germ cells generated by breeding Dmrt1-null mice with Wt1-Dmrt1 transgenic mice (rescue; Dmrt1(-/-;tg)).
Collapse
Affiliation(s)
- Valentine A Agbor
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
42
|
Xu S, Xia W, Zohar Y, Gui JF. Zebrafish dmrta2 regulates the expression of cdkn2c in spermatogenesis in the adult testis. Biol Reprod 2013; 88:14. [PMID: 23175770 DOI: 10.1095/biolreprod.112.105130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The exact function of the doublesex and mab-3 related transcription factor-like family a2 gene (dmrta2) has remained largely unknown possibly because of its functional redundancy with dmrta1 in most vertebrates. In this study, dmrta1 was demonstrated to likely be absent in the zebrafish genome, which facilitated our functional analysis of dmrta2 in this model organism. To analyze its gene function in embryos and adults, we generated a mutant form of Dmrta2 (R106Q, Dmrta2(RQ)) with its in vitro DNA-binding capacity abolished and a transgenic line for the inducible expression of this mutant Dmrta2(RQ) upon doxycycline (Dox) treatment. Preferential dmrta2 expression was detected in the developing brain during embryogenesis and in the adult testis. During embryogenesis, Dmrta2(RQ) expression caused severe embryonic development defects and dramatic expression changes of two telencephalic marker genes, fibroblast growth factor 8a (fgf8a), and empty spiracles homolog 1 (emx1). In adults, the inducible Dmrta2(RQ) expression occurred specifically in the adult testis and recapitulated the endogenous dmrta2 expression in this organ. Intriguingly, adult males expressing dmrta2(RQ) showed normal spermatogenesis and were fertile, but the expression of cyclin-dependent kinase inhibitor 2C (cdkn2c), which is evolutionarily clustered with dmrta2, was significantly suppressed during spermatogenesis. Further protein-binding and promoter mutation analysis indicated that a putative Dmrta2-binding site on the cdkn2c promoter was required for sustaining the normal expression of cdkn2c during zebrafish spermatogenesis, suggesting that Dmrta2 might regulate the expression of cdkn2c.
Collapse
Affiliation(s)
- Shan Xu
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
43
|
Multiple cis-elements and trans-acting factors regulate dynamic spatio-temporal transcription of let-7 in Caenorhabditis elegans. Dev Biol 2012. [PMID: 23201578 DOI: 10.1016/j.ydbio.2012.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The let-7 microRNA (miRNA) is highly conserved across animal phyla and generally regulates cellular differentiation and developmental timing pathways. In Caenorhabditis elegans, the mature let-7 miRNA starts to accumulate in the last stages of larval development where it directs cellular differentiation programs required for adult fates. Here, we show that expression of the let-7 gene in C. elegans is under complex transcriptional control. The onset of let-7 transcription begins as early as the first larval stage in some tissues, and as late as the third larval stage in others, and is abrogated at the gravid adult stage. Transcription from two different start sites in the let-7 promoter oscillates during each larval stage. We show that transcription is regulated by two distinct cis-elements in the promoter of let-7, the previously described temporal regulatory element (TRE), and a novel element downstream of the TRE that we have named the let-7 transcription element (LTE). These elements play distinct and redundant roles in regulating let-7 expression in specific tissues. In the absence of the TRE and LTE, transcription of let-7 is undetectable and worms exhibit the lethal phenotype characteristic of let-7 null mutants. We also identify several genes that affect the transcription of let-7 generally and tissue-specifically. Overall, spatio-temporal regulation of let-7 transcription is orchestrated by multiple cis- and trans-acting factors to ensure appropriate expression of this essential miRNA during worm development.
Collapse
|
44
|
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012; 28:175-84. [PMID: 22425532 DOI: 10.1016/j.tig.2012.02.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
Most animals are sexually dimorphic, but different taxa have different sex-specific traits. Despite major differences in the genetic control of sexual development among animal lineages, the doublesex/mab-3 related (Dmrt) family of transcription factors has been shown to be involved in sex-specific differentiation in all animals that have been studied. In recent years the functions of Dmrt genes have been characterized in many animal groups, opening the way to a broad comparative perspective. This review focuses on the similarities and differences in the functions of Dmrt genes across the animal kingdom. I highlight a number of common themes in the sexual development of different taxa, discuss how Dmrt genes have acquired new roles during animal evolution, and show how they have contributed to the origin of novel sex-specific traits.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616 USA.
| |
Collapse
|
45
|
Sobrinho IS, de Brito RA. Positive and purifying selection influence the evolution of doublesex in the Anastrepha fraterculus species group. PLoS One 2012; 7:e33446. [PMID: 22428050 PMCID: PMC3302808 DOI: 10.1371/journal.pone.0033446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/09/2012] [Indexed: 11/19/2022] Open
Abstract
The gene doublesex (dsx) is considered to be under strong selective constraint along its evolutionary history because of its central role in somatic sex differentiation in insects. However, previous studies of dsx used global estimates of evolutionary rates to investigate its molecular evolution, which potentially miss signals of adaptive changes in generally conserved genes. In this work, we investigated the molecular evolution of dsx in the Anastrepha fraterculus species group (Diptera, Tephritidae), and test the hypothesis that this gene evolved solely by purifying selection using divergence-based and population-based methods. In the first approach, we compared sequences from Anastrepha and other Tephritidae with other Muscomorpha species, analyzed variation in nonsynonymous to synonymous rate ratios (dN/dS) in the Tephritidae, and investigated radical and conservative changes in amino acid physicochemical properties. We show a general selective constraint on dsx, but with signs of positive selection mainly in the common region. Such changes were localized in alpha-helices previously reported to be involved in dimer formation in the OD2 domain and near the C-terminal of the OD1 domain. In the population-based approach, we amplified a region of 540 bp that spanned almost all of the region common to both sexes from 32 different sites in Brazil. We investigated patterns of selection using neutrality tests based on the frequency spectrum and locations of synonymous and nonsynonymous mutations in a haplotype network. As in the divergence-based approach, these analyses showed that dsx has evolved under an overall selective constraint, but with some events of positive selection. In contrast to previous studies, our analyses indicate that even though dsx has indeed evolved as a conserved gene, the common region of dsx has also experienced bouts of positive selection, perhaps driven by sexual selection, during its evolution.
Collapse
Affiliation(s)
- Iderval S Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | |
Collapse
|
46
|
Yoshizawa A, Nakahara Y, Izawa T, Ishitani T, Tsutsumi M, Kuroiwa A, Itoh M, Kikuchi Y. Zebrafish Dmrta2 regulates neurogenesis in the telencephalon. Genes Cells 2012; 16:1097-109. [PMID: 22023386 DOI: 10.1111/j.1365-2443.2011.01555.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although recent findings showed that some Drosophila doublesex and Caenorhabditis elegans mab-3 related genes are expressed in neural tissues during development, their functions have not been fully elucidated. Here, we isolated a zebrafish mutant, ha2, that shows defects in telencephalic neurogenesis and found that ha2 encodes Doublesex and MAB-3 related transcription factor like family A2 (Dmrta2). dmrta2 expression is restricted to the telencephalon, diencephalon and olfactory placode during somitogenesis. We found that the expression of the proneural gene, neurogenin1, in the posterior and dorsal region of telencephalon (posterior-dorsal telencephalon) is markedly reduced in this mutant at the 14-somite stage without any defects in cell proliferation or cell death. In contrast, the telencephalic expression of her6, a Hes-related gene that is known to encode a negative regulator of neurogenin1, expands dramatically in the ha2 mutant. Based on over-expression experiments and epistatic analyses, we propose that zebrafish Dmrta2 controls neurogenin1 expression by repressing her6 in the posterior-dorsal telencephalon. Furthermore, the expression domains of the telencephalic marker genes, foxg1 and emx3, and the neuronal differentiation gene, neurod, are downregulated in the ha2 posterior-dorsal telencephalon during somitogenesis. These results suggest that Dmrta2 plays important roles in the specification of the posterior-dorsal telencephalic cell fate during somitogenesis.
Collapse
Affiliation(s)
- Akio Yoshizawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 2012; 13:163-74. [PMID: 22310892 PMCID: PMC3595575 DOI: 10.1038/nrg3161] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most animals reproduce sexually, but the genetic and molecular mechanisms that determine the eventual sex of each embryo vary remarkably. DM domain genes, which are related to the insect gene doublesex, are integral to sexual development and its evolution in many metazoans. Recent studies of DM domain genes reveal mechanisms by which new sexual dimorphisms have evolved in invertebrates and show that one gene, Dmrt1, was central to multiple evolutionary transitions between sex-determining mechanisms in vertebrates. In addition, Dmrt1 coordinates a surprising array of distinct cell fate decisions in the mammalian gonad and even guards against transdifferentiation of male cells into female cells in the adult testis.
Collapse
Affiliation(s)
- Clinton K Matson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
48
|
Luo SD, Shi GW, Baker BS. Direct targets of the D. melanogaster DSXF protein and the evolution of sexual development. Development 2011; 138:2761-71. [PMID: 21652649 DOI: 10.1242/dev.065227] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Uncovering the direct regulatory targets of doublesex (dsx) and fruitless (fru) is crucial for an understanding of how they regulate sexual development, morphogenesis, differentiation and adult functions (including behavior) in Drosophila melanogaster. Using a modified DamID approach, we identified 650 DSX-binding regions in the genome from which we then extracted an optimal palindromic 13 bp DSX-binding sequence. This sequence is functional in vivo, and the base identity at each position is important for DSX binding in vitro. In addition, this sequence is enriched in the genomes of D. melanogaster (58 copies versus approximately the three expected from random) and in the 11 other sequenced Drosophila species, as well as in some other Dipterans. Twenty-three genes are associated with both an in vivo peak in DSX binding and an optimal DSX-binding sequence, and thus are almost certainly direct DSX targets. The association of these 23 genes with optimum DSX binding sites was used to examine the evolutionary changes occurring in DSX and its targets in insects.
Collapse
Affiliation(s)
- Shengzhan D Luo
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
49
|
Herpin A, Schartl M. Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J 2011; 278:1010-9. [PMID: 21281449 DOI: 10.1111/j.1742-4658.2011.08030.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A plethora of corroborative genetic studies led to the view that, across the animal kingdom, the gene-regulatory cascades triggering sexual development bear little resemblance to each other. As a result, the common emerging picture is that the genes at the top of the cascade are not conserved, whereas the downstream genes have homologues in a much broader spectrum of species. Among these downstream effectors, a gene family involved in sex differentiation in organisms as phylogenetically divergent as corals, Caenorhabditis elegans, Drosophila, frogs, fish, birds and mammals is the dmrt gene family. Despite the attention that Dmrt1 factors have received, to date it has not been elucidated how Dmrt1s mediate their activities and putative downstream targets have yet to be characterized. However, a remarkable amount of descriptive expression data has been gathered in a large variety of fish, particularly with respect to early gonadal differentiation and sex change. This minireview aims at distilling the current knowledge of fish dmrt1s, in terms of expression and regulation. It is shown how gonadal identities correlate with dimorphic dmrt1 expression in gonochoristic and hermaphroditic fish species. It is also described how sex steroid hormones affect gonadal identity and dmrt1 expression. Emphasis is also given to recent findings dealing with transcriptional, post-transcriptional, post-translational and functional regulations of the dmrt1a/dmrt1bY gene pair in medaka.
Collapse
Affiliation(s)
- Amaury Herpin
- Physiological ChemistryI, University of Wuerzburg, Wuerzburg, Germany.
| | | |
Collapse
|
50
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|