1
|
Bisia AM, Xypolita ME, Bikoff EK, Robertson EJ, Costello I. Eomesodermin in conjunction with the BAF complex promotes expansion and invasion of the trophectoderm lineage. Nat Commun 2025; 16:5079. [PMID: 40450029 DOI: 10.1038/s41467-025-60417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
The T-box transcription factor (TF) Eomesodermin/Tbr2 (Eomes) is essential for maintenance of the trophectoderm (TE) lineage, but the molecular mechanisms underlying this critical role remain obscure. Here, we show in trophoblast stem cells (TSCs) that Eomes partners with several TE-specific TFs as well as chromatin remodellers, including Brg1 and other subunits of the BAF complex. Degron-mediated Eomes protein depletion results in genome-wide loss of chromatin accessibility at TSC-specific loci. These overlap with a subset of sites that lose accessibility following Brg1 inhibition, suggesting that Eomes acts as a "doorstop" controlling TSC chromatin accessibility. Eomes depletion also causes transcriptional misregulation of TSC maintenance and early differentiation markers. An additional subset of Eomes-dependent genes encode intercellular/matricellular interaction and cytoskeletal components, likely explaining the implantation defects of Eomes-null embryos. Thus, Eomes promotes TE lineage maintenance by sustaining trophectoderm-specific chromatin accessibility, while promoting the gene regulatory networks that modulate expansion and cell behaviour during implantation.
Collapse
Affiliation(s)
| | | | | | | | - Ita Costello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Rosario GX, Brown S, Karmakar S, Rumi MAK, Nayak NR. Super-Enhancers in Placental Development and Diseases. J Dev Biol 2025; 13:11. [PMID: 40265369 PMCID: PMC12015882 DOI: 10.3390/jdb13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
The proliferation of trophoblast stem (TS) cells and their differentiation into multiple lineages are pivotal for placental development and functions. Various transcription factors (TFs), such as CDX2, EOMES, GATA3, TFAP2C, and TEAD4, along with their binding sites and cis-regulatory elements, have been studied for their roles in trophoblast cells. While previous studies have primarily focused on individual enhancer regions in trophoblast development and differentiation, recent attention has shifted towards investigating the role of super-enhancers (SEs) in different trophoblast cell lineages. SEs are clusters of regulatory elements enriched with transcriptional regulators, forming complex gene regulatory networks via differential binding patterns and the synchronized stimulation of multiple target genes. Although the exact role of SEs remains unclear, they are commonly found near master regulator genes for specific cell types and are implicated in the transcriptional regulation of tissue-specific stem cells and lineage determination. Additionally, super-enhancers play a crucial role in regulating cellular growth and differentiation in both normal development and disease pathologies. This review summarizes recent advances on SEs' role in placental development and the pathophysiology of placental diseases, emphasizing the potential for identifying SE-driven networks in the placenta to provide valuable insights for developing therapeutic strategies to address placental dysfunctions.
Collapse
Affiliation(s)
- Gracy X. Rosario
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Samuel Brown
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Nihar R. Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| |
Collapse
|
3
|
Lodewijk GA, Kozuki S, Han CJ, Topacio BR, Lee S, Nixon L, Zargari A, Knight G, Ashton R, Qi LS, Shariati SA. Self-organization of mouse embryonic stem cells into reproducible pre-gastrulation embryo models via CRISPRa programming. Cell Stem Cell 2025:S1934-5909(25)00083-9. [PMID: 40118066 DOI: 10.1016/j.stem.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Embryonic stem cells (ESCs) can self-organize into structures with spatial and molecular similarities to natural embryos. During development, embryonic and extraembryonic cells differentiate through activation of endogenous regulatory elements while co-developing via cell-cell interactions. However, engineering regulatory elements to self-organize ESCs into embryo models remains underexplored. Here, we demonstrate that CRISPR activation (CRISPRa) of two regulatory elements near Gata6 and Cdx2 generates embryonic patterns resembling pre-gastrulation mouse embryos. Live single-cell imaging revealed that self-patterning occurs through orchestrated collective movement driven by cell-intrinsic fate induction. In 3D, CRISPRa-programmed embryo models (CPEMs) exhibit morphological and transcriptomic similarity to pre-gastrulation mouse embryos. CPEMs allow versatile perturbations, including dual Cdx2-Elf5 activation to enhance trophoblast differentiation and lineage-specific activation of laminin and matrix metalloproteinases, uncovering their roles in basement membrane remodeling and embryo model morphology. Our findings demonstrate that minimal intrinsic epigenome editing can self-organize ESCs into programmable pre-gastrulation embryo models with robust lineage-specific perturbation capabilities.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sayaka Kozuki
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Clara J Han
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Benjamin R Topacio
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Seungho Lee
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lily Nixon
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Abolfazl Zargari
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Gavin Knight
- Neurosetta LLC, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA
| | - Randolph Ashton
- Neurosetta LLC, Madison, WI, USA; Wisconsin Institute for Discovery, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - S Ali Shariati
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA; Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Institute for The Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
4
|
Hu A, Pickup ME, Lawal MA, Patel HJ, Ahmed MI. The involvement of Elf5 in regulating keratinocyte proliferation and differentiation processes in skin. PLoS One 2025; 20:e0316134. [PMID: 39752333 PMCID: PMC11698348 DOI: 10.1371/journal.pone.0316134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025] Open
Abstract
Skin and hair development is regulated by multitude of programs of activation and silencing of gene expression to maintain normal skin and hair follicle (HF) development, homeostasis, and cycling. Here, we have identified E74-like factor 5 (Elf5) transcription factor, as a novel regulator of keratinocyte proliferation and differentiation processes in skin. Expression analysis has revealed that Elf5 expression was localised and elevated in stem/progenitor cell populations of both the epidermis (basal and suprabasal) and in HF bulge and hair germ stem cell (SCs) compartments during skin and hair development and cycling. Expressional and functional analysis using RT-qPCR, western blot and colony forming assays, revealed that Elf5 plays an important role in regulating keratinocyte proliferation and differentiation processes as well as potentially determining cell fate by regulating the stem/progenitor cell populations in skin and HFs. These data will provide a platform for pharmacological manipulation of Elf5 in skin, leading to advancements in many areas of research, including stem cell, regenerative medicine, and ageing.
Collapse
Affiliation(s)
- Anhua Hu
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maximilian E. Pickup
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Maryam A. Lawal
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Hetal J. Patel
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Mohammed I. Ahmed
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
5
|
Angelova DM, Tsolova A, Prater M, Ballasy N, Bacon W, Hamilton RS, Blackwell D, Yu Z, Li X, Liu X, Hemberger M, Charnock-Jones DS. Single-cell RNA sequencing identifies CXADR as a fate determinant of the placental exchange surface. Nat Commun 2025; 16:142. [PMID: 39747179 PMCID: PMC11695997 DOI: 10.1038/s41467-024-55597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The placenta is the critical interface between mother and fetus, and consequently, placental dysfunction underlies many pregnancy complications. Placental formation requires an adequate expansion of trophoblast stem and progenitor cells followed by finely tuned lineage specification events. Here, using single-cell RNA sequencing of mouse trophoblast stem cells during the earliest phases of differentiation, we identify gatekeepers of the stem cell state, notably Nicol1, and uncover unsuspected trajectories of cell lineage diversification as well as regulators of lineage entry points. We show that junctional zone precursors and precursors of one of the two syncytial layers of the mouse placental labyrinth, the Syncytiotrophoblast-I lineage, initially share similar trajectories. Importantly, our functional analysis of one such lineage precursor marker, CXADR, demonstrates that this cell surface protein regulates the differentiation dynamics between the two syncytial layers of the mouse labyrinth, ensuring the correct establishment of the placental exchange surface. Deciphering the mechanisms underlying trophoblast lineage specification will inform our understanding of human pregnancy in health and disease.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Tsolova
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Malwina Prater
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Functional Genomics Centre, Cancer Research Horizons, Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | - Noura Ballasy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Wendi Bacon
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - Russell S Hamilton
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Danielle Blackwell
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Ziyi Yu
- College of Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xin Li
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Xin Liu
- Sphere Fluidics Ltd., Building One, Granta Centre, Granta Park, Great Abington, Cambridge, England, United Kingdom
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada.
| | - D Stephen Charnock-Jones
- Department of Obstetrics and Gynaecology, University of Cambridge, NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
- Loke Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
6
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. JCI Insight 2024; 10:e186471. [PMID: 39625795 PMCID: PMC11790029 DOI: 10.1172/jci.insight.186471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/26/2024] [Indexed: 12/11/2024] Open
Abstract
Transcription factor AP-2 gamma (TFAP2C) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c. In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
Affiliation(s)
- Esteban M. Dominguez
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology & Laboratory Medicine, and
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Liu L, Tang L, Chen S, Zheng L, Ma X. Decoding the molecular pathways governing trophoblast migration and placental development; a literature review. Front Endocrinol (Lausanne) 2024; 15:1486608. [PMID: 39665023 PMCID: PMC11631628 DOI: 10.3389/fendo.2024.1486608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Placental development is a multifaceted process critical for a fruitful pregnancy, reinforced by a complex network of molecular pathways that synchronize trophoblast migration, differentiation, and overall placental function. This review provides an in-depth analysis of the key signaling pathways, such as Wnt, Notch, TGF-β, and VEGF, which play fundamental roles in trophoblast proliferation, invasion, and the complicated process of placental vascular development. For instance, the Wnt signaling pathway is essential to balance trophoblast stem cell proliferation and differentiation, while Notch signaling stimulates cell fate decisions and invasive behavior. TGF-β signaling plays a critical role in trophoblast invasion and differentiation, predominantly in response to the low oxygen environment of early pregnancy, regulated by hypoxia-inducible factors (HIFs). These factors promote trophoblast adaptation, ensure proper placental attachment and vascularization, and facilitate adequate fetal-maternal exchange. Further, we explore the epigenetic and post-transcriptional regulatory mechanisms that regulate trophoblast function, including DNA methylation and the contribution of non-coding RNAs, which contribute to the fine-tuning of gene expression during placental development. Dysregulation of these pathways is associated with severe pregnancy complications, such as preeclampsia, intrauterine growth restriction, and recurrent miscarriage, emphasizing the critical need for targeted therapeutic strategies. Finally, emerging technologies like trophoblast organoids, single-cell RNA sequencing, and placenta-on-chip models are discussed as innovative tools that hold promise for advancing our understanding of placental biology and developing novel interventions to improve pregnancy outcomes. This review emphasizes the importance of understanding these molecular mechanisms to better address placental dysfunctions and associated pregnancy disorders.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lin Tang
- Obstetrics Department, Foshan Maternity and Child Health Care Hospital, Foshan, China
| | - Shuai Chen
- Pathology Department, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoyan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Dominguez EM, Moreno-Irusta A, Scott RL, Iqbal K, Soares MJ. TFAP2C is a key regulator of intrauterine trophoblast cell invasion and deep hemochorial placentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621324. [PMID: 39554130 PMCID: PMC11565979 DOI: 10.1101/2024.10.31.621324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Transcription factor AP-2 gamma ( TFAP2C ) has been identified as a key regulator of the trophoblast cell lineage and hemochorial placentation. The rat possesses deep placentation characterized by extensive intrauterine trophoblast cell invasion, which resembles human placentation. Tfap2c is expressed in multiple trophoblast cell lineages, including invasive trophoblast cells situated within the uterine-placental interface of the rat placentation site. Global genome-editing was used to explore the biology of Tfap2c in rat placenta development. Homozygous global disruption of Tfap2c resulted in prenatal lethality. Heterozygous global disruption of Tfap2c was associated with diminished invasive trophoblast cell infiltration into the uterus. The role of TFAP2C in the invasive trophoblast cell lineage was explored using Cre-lox conditional mutagenesis. Invasive trophoblast cell-specific disruption of Tfap2c resulted in inhibition of intrauterine trophoblast cell invasion and intrauterine and postnatal growth restriction. The invasive trophoblast cell lineage was not impaired following conditional monoallelic disruption of Tfap2c . In summary, TFAP2C contributes to the progression of distinct stages of placental development. TFAP2C is a driver of early events in trophoblast cell development and reappears later in gestation as an essential regulator of the invasive trophoblast cell lineage. A subset of TFAP2C actions on trophoblast cells are dependent on gene dosage.
Collapse
|
9
|
Kuna M, Soares MJ. Cited2 is a key regulator of placental development and plasticity. Bioessays 2024; 46:e2300118. [PMID: 38922923 PMCID: PMC11331489 DOI: 10.1002/bies.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.
Collapse
Affiliation(s)
- Marija Kuna
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO
| |
Collapse
|
10
|
Li L, Lai F, Liu L, Lu X, Hu X, Liu B, Lin Z, Fan Q, Kong F, Xu Q, Xie W. Lineage regulators TFAP2C and NR5A2 function as bipotency activators in totipotent embryos. Nat Struct Mol Biol 2024; 31:950-963. [PMID: 38243114 DOI: 10.1038/s41594-023-01199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
During the first lineage segregation, a mammalian totipotent embryo differentiates into the inner cell mass (ICM) and trophectoderm (TE). However, how transcription factors (TFs) regulate this earliest cell-fate decision in vivo remains elusive, with their regulomes primarily inferred from cultured cells. Here, we investigated the TF regulomes during the first lineage specification in early mouse embryos, spanning the pre-initiation, initiation, commitment, and maintenance phases. Unexpectedly, we found that TFAP2C, a trophoblast regulator, bound and activated both early TE and inner cell mass (ICM) genes at the totipotent (two- to eight-cell) stages ('bipotency activation'). Tfap2c deficiency caused downregulation of early ICM genes, including Nanog, Nr5a2, and Tdgf1, and early TE genes, including Tfeb and Itgb5, in eight-cell embryos. Transcription defects in both ICM and TE lineages were also found in blastocysts, accompanied by increased apoptosis and reduced cell numbers in ICMs. Upon trophoblast commitment, TFAP2C left early ICM genes but acquired binding to late TE genes in blastocysts, where it co-bound with CDX2, and later to extra-embryonic ectoderm (ExE) genes, where it cooperatively co-occupied with the former ICM regulator SOX2. Finally, 'bipotency activation' in totipotent embryos also applied to a pluripotency regulator NR5A2, which similarly bound and activated both ICM and TE lineage genes at the eight-cell stage. These data reveal a unique transcription circuity of totipotency underpinned by highly adaptable lineage regulators.
Collapse
Affiliation(s)
- Lijia Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Fangnong Lai
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xiaoyu Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bofeng Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zili Lin
- College of Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
11
|
Lee M, Guo Q, Kim M, Choi J, Segura A, Genceroglu A, LeBlanc L, Ramirez N, Jang YJ, Jang Y, Lee BK, Marcotte EM, Kim J. Systematic mapping of TF-mediated cell fate changes by a pooled induction coupled with scRNA-seq and multi-omics approaches. Genome Res 2024; 34:484-497. [PMID: 38580401 PMCID: PMC11067882 DOI: 10.1101/gr.277926.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/21/2024] [Indexed: 04/07/2024]
Abstract
Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.
Collapse
Affiliation(s)
- Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Joonhyuk Choi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alia Segura
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Alper Genceroglu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yeejin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York 12144, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
12
|
Lodewijk GA, Kozuki S, Han C, Topacio BR, Zargari A, Lee S, Knight G, Ashton R, Qi LS, Shariati SA. Self-organization of embryonic stem cells into a reproducible embryo model through epigenome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583597. [PMID: 38496557 PMCID: PMC10942404 DOI: 10.1101/2024.03.05.583597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Embryonic stem cells (ESCs) can self-organize in vitro into developmental patterns with spatial organization and molecular similarity to that of early embryonic stages. This self-organization of ESCs requires transmission of signaling cues, via addition of small molecule chemicals or recombinant proteins, to induce distinct embryonic cellular fates and subsequent assembly into structures that can mimic aspects of early embryonic development. During natural embryonic development, different embryonic cell types co-develop together, where each cell type expresses specific fate-inducing transcription factors through activation of non-coding regulatory elements and interactions with neighboring cells. However, previous studies have not fully explored the possibility of engineering endogenous regulatory elements to shape self-organization of ESCs into spatially-ordered embryo models. Here, we hypothesized that cell-intrinsic activation of a minimum number of such endogenous regulatory elements is sufficient to self-organize ESCs into early embryonic models. Our results show that CRISPR-based activation (CRISPRa) of only two endogenous regulatory elements in the genome of pluripotent stem cells is sufficient to generate embryonic patterns that show spatial and molecular resemblance to that of pre-gastrulation mouse embryonic development. Quantitative single-cell live fluorescent imaging showed that the emergence of spatially-ordered embryonic patterns happens through the intrinsic induction of cell fate that leads to an orchestrated collective cellular motion. Based on these results, we propose a straightforward approach to efficiently form 3D embryo models through intrinsic CRISPRa-based epigenome editing and independent of external signaling cues. CRISPRa-Programmed Embryo Models (CPEMs) show highly consistent composition of major embryonic cell types that are spatially-organized, with nearly 80% of the structures forming an embryonic cavity. Single cell transcriptomics confirmed the presence of main embryonic cell types in CPEMs with transcriptional similarity to pre-gastrulation mouse embryos and revealed novel signaling communication links between different embryonic cell types. Our findings offer a programmable embryo model and demonstrate that minimum intrinsic epigenome editing is sufficient to self-organize ESCs into highly consistent pre-gastrulation embryo models.
Collapse
Affiliation(s)
- Gerrald A Lodewijk
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
- Equal contribution to this work
| | - Sayaka Kozuki
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
- Equal contribution to this work
| | - Clara Han
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Benjamin R Topacio
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Abolfazl Zargari
- Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA
| | - Seungho Lee
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| | - Gavin Knight
- Neurosetta LLC, Madison, WI
- Wisconsin Institute for Discovery, Madison, WI
| | - Randolph Ashton
- Neurosetta LLC, Madison, WI
- Wisconsin Institute for Discovery, Madison, WI
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA
- Sarafan ChEM-H, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA
| | - S Ali Shariati
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
- Institute for The Biology of Stem Cells, University of California, Santa Cruz, CA
| |
Collapse
|
13
|
Khoa LTP, Yang W, Shan M, Zhang L, Mao F, Zhou B, Li Q, Malcore R, Harris C, Zhao L, Rao RC, Iwase S, Kalantry S, Bielas SL, Lyssiotis CA, Dou Y. Quiescence enables unrestricted cell fate in naive embryonic stem cells. Nat Commun 2024; 15:1721. [PMID: 38409226 PMCID: PMC10897426 DOI: 10.1038/s41467-024-46121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Quiescence in stem cells is traditionally considered as a state of inactive dormancy or with poised potential. Naive mouse embryonic stem cells (ESCs) can enter quiescence spontaneously or upon inhibition of MYC or fatty acid oxidation, mimicking embryonic diapause in vivo. The molecular underpinning and developmental potential of quiescent ESCs (qESCs) are relatively unexplored. Here we show that qESCs possess an expanded or unrestricted cell fate, capable of generating both embryonic and extraembryonic cell types (e.g., trophoblast stem cells). These cells have a divergent metabolic landscape comparing to the cycling ESCs, with a notable decrease of the one-carbon metabolite S-adenosylmethionine. The metabolic changes are accompanied by a global reduction of H3K27me3, an increase of chromatin accessibility, as well as the de-repression of endogenous retrovirus MERVL and trophoblast master regulators. Depletion of methionine adenosyltransferase Mat2a or deletion of Eed in the polycomb repressive complex 2 results in removal of the developmental constraints towards the extraembryonic lineages. Our findings suggest that quiescent ESCs are not dormant but rather undergo an active transition towards an unrestricted cell fate.
Collapse
Affiliation(s)
- Le Tran Phuc Khoa
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Wentao Yang
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mengrou Shan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qiang Li
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Rebecca Malcore
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lili Zhao
- Beaumont Hospital, Wayne, 33155 Annapolis St., Wayne, MI, 48184, USA
| | - Rajesh C Rao
- Department of Ophthalmology & Visual Sciences, W.K. Kellogg Eye Center, University of Michigan, 1000 Wall St., Ann Arbor, MI, 48105, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
Kim M, Jang YJ, Lee M, Guo Q, Son AJ, Kakkad NA, Roland AB, Lee BK, Kim J. The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation. Nat Commun 2024; 15:1285. [PMID: 38346993 PMCID: PMC10861538 DOI: 10.1038/s41467-024-45669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.
Collapse
Affiliation(s)
- Mijeong Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Jin Jang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Qingqing Guo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Albert J Son
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nikita A Kakkad
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Abigail B Roland
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Dou C, Wu L, Zhang J, He H, Xu T, Yu Z, Su P, Zhang X, Wang J, Miao YL, Zhou J. The transcriptional activator Klf5 recruits p300-mediated H3K27ac for maintaining trophoblast stem cell pluripotency. J Mol Cell Biol 2024; 15:mjad045. [PMID: 37533201 PMCID: PMC10768793 DOI: 10.1093/jmcb/mjad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 08/04/2023] Open
Abstract
The effective proliferation and differentiation of trophoblast stem cells (TSCs) is indispensable for the development of the placenta, which is the key to maintaining normal fetal growth during pregnancy. Kruppel-like factor 5 (Klf5) is implicated in the activation of pluripotency gene expression in embryonic stem cells (ESCs), yet its function in TSCs is poorly understood. Here, we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes, consequently causing rapid differentiation of TSCs. Consistently, Klf5-depleted embryos lost the ability to establish TSCs in vitro. At the molecular level, Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes. Deprivation of Klf5 impaired the enrichment of p300, a major histone acetyl transferase of H3 lysine 27 acetylation (H3K27ac), and further reduced the occupancy of H3K27ac at promoter regions, leading to decreased transcriptional activity of TSC pluripotency genes. Thus, our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.
Collapse
Affiliation(s)
- Chengli Dou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Jingjing Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Hainan He
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Zhisheng Yu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xia Zhang
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic, Edong Healthcare Group, Huangshi 435000, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
16
|
Wang F, Chander A, Yoon Y, Welton JM, Wallingford MC, Espejo-Serrano C, Bustos F, Findlay GM, Mager J, Bach I. Roles of the Rlim-Rex1 axis during X chromosome inactivation in mice. Proc Natl Acad Sci U S A 2023; 120:e2313200120. [PMID: 38113263 PMCID: PMC10756295 DOI: 10.1073/pnas.2313200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.
Collapse
Affiliation(s)
- Feng Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Ashmita Chander
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Yeonsoo Yoon
- Division of Genes and Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA01605
| | - Janelle M. Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Mary C. Wallingford
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Carmen Espejo-Serrano
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Francisco Bustos
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Greg M. Findlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA01003
| | - Ingolf Bach
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA01605
| |
Collapse
|
17
|
Sadovsky E, Chu T, Barak O, Sadovsky Y, Ouyang Y. The impact of opioids on the transcriptional landscape of human villous trophoblasts. Placenta 2023; 143:54-61. [PMID: 37832183 PMCID: PMC10841529 DOI: 10.1016/j.placenta.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Opioid use disorder (OUD) is implicated in major obstetrical diseases such as fetal growth restriction. Whether or not opioids directly impact placental trophoblast development and function remains unclear. We sought to examine the expression of opioid receptors (OPRs) in villous trophoblasts and the effect of opioids on placental transcriptomics. METHODS Trophoblast stem (TS) cells and primary human trophoblast (PHT) cells from healthy term placentas were used to assess OPR expression in conditions that enhance trophoblast stemness vs differentiation. Placental RNAseq was conducted using our retrospective cohorts of pregnant people with OUD vs controls, both without major obstetrical complications. RT-qPCR was used to determine the effect of fentanyl on the expression of putative opioid targets and stemness or differentiation-associated genes in TS and PHT cells. RESULTS Three main OPRs, including OPRM1, OPRD1, and OPRK1 were expressed in term PHT cells cultured in the stemness medium, whereas only OPRD1 and OPRK1 were expressed in TS cells. Interestingly, upon induction of differentiation, the expressed OPR mRNAs in TS or in PHT cells were downregulated. We found 286 differentially expressed long RNAs in placentas from the OUD participants vs controls. While three putative opioid targets differed their expression in stemness vs differentiation states of trophoblasts, fentanyl had no effect on their expression or the expression of major stemness or differentiation-relevant genes in TS and PHT cells. DISCUSSION Trophoblastic expression of OPRs and opioid RNA targets is impacted by cell differentiation, suggesting differential susceptibility of villous trophoblasts to the effect of opioids.
Collapse
Affiliation(s)
- Elena Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oren Barak
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Varberg KM, Dominguez EM, Koseva B, Varberg JM, McNally RP, Moreno-Irusta A, Wesley ER, Iqbal K, Cheung WA, Schwendinger-Schreck C, Smail C, Okae H, Arima T, Lydic M, Holoch K, Marsh C, Soares MJ, Grundberg E. Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape. Nat Commun 2023; 14:4826. [PMID: 37563143 PMCID: PMC10415281 DOI: 10.1038/s41467-023-40424-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for TFAP2C, SNAI1, and EPAS1 in the regulation of extravillous trophoblast cell development. EPAS1 is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including ASCL2 and SNAI1 and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Esteban M Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Ross P McNally
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Emily R Wesley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Carl Schwendinger-Schreck
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Michael Lydic
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kristin Holoch
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Courtney Marsh
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Elin Grundberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
19
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. Core conserved transcriptional regulatory networks define the invasive trophoblast cell lineage. Development 2023; 150:dev201826. [PMID: 37417811 PMCID: PMC10445752 DOI: 10.1242/dev.201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO 64108, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
20
|
Lackner A, Müller M, Gamperl M, Stoeva D, Langmann O, Papuchova H, Roitinger E, Dürnberger G, Imre R, Mechtler K, Latos PA. The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate. Nat Commun 2023; 14:2559. [PMID: 37137875 DOI: 10.1038/s41467-023-38101-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/15/2023] [Indexed: 05/05/2023] Open
Abstract
Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.
Collapse
Affiliation(s)
- Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Michael Müller
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Delyana Stoeva
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Olivia Langmann
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria
| | | | | | - Richard Imre
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Pathology, A-1030, Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090, Vienna, Austria.
| |
Collapse
|
21
|
Vu HTH, Scott RL, Iqbal K, Soares MJ, Tuteja G. CORE CONSERVED TRANSCRIPTIONAL REGULATORY NETWORKS DEFINE THE INVASIVE TROPHOBLAST CELL LINEAGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534962. [PMID: 37066272 PMCID: PMC10103937 DOI: 10.1101/2023.03.30.534962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The invasive trophoblast cell lineage in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model to study hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus (sn) ATAC-seq data from gestation day (gd) 15.5 and 19.5 rat uterine-placental interface tissues and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial, and smooth muscle cells, and compared invasive trophoblast chromatin accessibility to extravillous trophoblast (EVT) cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.
Collapse
Affiliation(s)
- Ha T. H. Vu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| | - Regan L. Scott
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences and Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy, Kansas City, MO, 64108
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011
- Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011
| |
Collapse
|
22
|
Song E, Smalley K, Oyelakin A, Horeth E, Che M, Wrynn T, Osinski J, Romano R, Sinha S. Genetic Study of Elf5 and Ehf in the Mouse Salivary Gland. J Dent Res 2023; 102:340-348. [PMID: 36348499 PMCID: PMC9947810 DOI: 10.1177/00220345221130258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Salivary gland (SG) development, maturation, and homeostasis require coordinated roles of transcription factors (TFs) that dictate specific cell identities and fate. The ETS family of proteins are important transcriptional drivers of diverse cell lineages, tissue development, and differentiation programs and hence are also likely to play an important role in the SG. Here we have leveraged genomic and epigenomic data of the SG to examine the expression profile of ETS genes and identified 2 closely related paralogs, Elf5 and Ehf, that are highly expressed in distinct epithelial subpopulations. By using a well-defined mouse knockout model of Elf5, we show that Elf5, despite its enriched expression in the acinar cells, is functionally dispensable for maintaining the homeostatic state of the adult SG epithelium. The lack of a discernible phenotype of the Elf5-null SG might be due to possible functional redundancy with Ehf or other ETS factors. To probe this possibility and to examine the specific consequences of Ehf loss in the SG, we used CRISPR-Cas9 to generate mice in which the DNA-binding ETS domain of Ehf is disrupted due to an insertion mutation. We demonstrate that the Ehf mutant (EhfMut) mice exhibit a distinct cellular phenotype with decreased granular convoluted tubules that are accompanied by an increased accumulation of the intercalated Sox9-positive ductal cell population. Interestingly, the ductal phenotype of the EhfMut animals is highly pronounced in males, reaffirming the established sexual dimorphism of the SG that exists in rodents. Our results show that unlike Elf5, Ehf plays a nonredundant role in directing ductal cell differentiation of the SG and highlights the phenotypic subtlety in mutant mice of closely related TFs and the importance of careful consideration of cell type-specific studies.
Collapse
Affiliation(s)
- E.A.C. Song
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - K. Smalley
- Department of Biochemistry, Jacobs
School of Medicine and Biomedical Sciences, State University of New York at Buffalo,
Buffalo, NY, USA
| | - A. Oyelakin
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - E. Horeth
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - M. Che
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - T. Wrynn
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - J. Osinski
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | - R.A. Romano
- Department of Oral Biology, School of
Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biochemistry, Jacobs
School of Medicine and Biomedical Sciences, State University of New York at Buffalo,
Buffalo, NY, USA
| | - S. Sinha
- Department of Biochemistry, Jacobs
School of Medicine and Biomedical Sciences, State University of New York at Buffalo,
Buffalo, NY, USA
| |
Collapse
|
23
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
24
|
Yu W, Chakravarthi VP, Borosha S, Dilower I, Lee EB, Ratri A, Starks RR, Fields PE, Wolfe MW, Faruque MO, Tuteja G, Rumi MAK. Transcriptional regulation of Satb1 in mouse trophoblast stem cells. Front Cell Dev Biol 2022; 10:918235. [PMID: 36589740 PMCID: PMC9795202 DOI: 10.3389/fcell.2022.918235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
SATB homeobox proteins are important regulators of developmental gene expression. Among the stem cell lineages that emerge during early embryonic development, trophoblast stem (TS) cells exhibit robust SATB expression. Both SATB1 and SATB2 act to maintain the trophoblast stem-state. However, the molecular mechanisms that regulate TS-specific Satb expression are not yet known. We identified Satb1 variant 2 as the predominant transcript in trophoblasts. Histone marks, and RNA polymerase II occupancy in TS cells indicated an active state of the promoter. A novel cis-regulatory region with active histone marks was identified ∼21 kbp upstream of the variant 2 promoter. CRISPR/Cas9 mediated disruption of this sequence decreased Satb1 expression in TS cells and chromosome conformation capture analysis confirmed looping of this distant regulatory region into the proximal promoter. Scanning position weight matrices across the enhancer predicted two ELF5 binding sites in close proximity to SATB1 sites, which were confirmed by chromatin immunoprecipitation. Knockdown of ELF5 downregulated Satb1 expression in TS cells and overexpression of ELF5 increased the enhancer-reporter activity. Interestingly, ELF5 interacts with SATB1 in TS cells, and the enhancer activity was upregulated following SATB overexpression. Our findings indicate that trophoblast-specific Satb1 expression is regulated by long-range chromatin looping of an enhancer that interacts with ELF5 and SATB proteins.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Shaon Borosha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Iman Dilower
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Eun Bee Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Rebekah R. Starks
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - Patrick E. Fields
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Michael W. Wolfe
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - M. Omar Faruque
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, United States
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
25
|
Mannully CT, Bruck-Haimson R, Zacharia A, Orih P, Shehadeh A, Saidemberg D, Kogan NM, Alfandary S, Serruya R, Dagan A, Petit I, Moussaieff A. Lipid desaturation regulates the balance between self-renewal and differentiation in mouse blastocyst-derived stem cells. Cell Death Dis 2022; 13:1027. [PMID: 36477438 PMCID: PMC9729213 DOI: 10.1038/s41419-022-05263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Stem cells are defined by their ability to self-renew and differentiate, both shown in multiple studies to be regulated by metabolic processes. To decipher metabolic signatures of self-renewal in blastocyst-derived stem cells, we compared early differentiating embryonic stem cells (ESCs) and their extra-embryonic counterparts, trophoblast (T)SCs to their self-renewing counterparts. A metabolomics analysis pointed to the desaturation of fatty acyl chains as a metabolic signature of differentiating blastocyst-derived SCs via the upregulation of delta-6 desaturase (D6D; FADS2) and delta-5 desaturase (D5D; FADS1), key enzymes in the biosynthesis of polyunsaturated fatty acids (PUFAs). The inhibition of D6D or D5D by specific inhibitors or SiRNA retained stemness in ESCs and TSCs, and attenuated endoplasmic reticulum (ER) stress-related apoptosis. D6D inhibition in ESCs upregulated stearoyl-CoA desaturase-1 (Scd1), essential to maintain ER homeostasis. In TSCs, however, D6D inhibition downregulated Scd1. TSCs show higher Scd1 mRNA expression and high levels of monounsaturated fatty acyl chain products in comparison to ESCs. The addition of oleic acid, the product of Scd1 (essential for ESCs), to culture medium, was detrimental to TSCs. Interestingly, TSCs express a high molecular mass variant of Scd1 protein, hardly expressed by ESCs. Taken together, our data suggest that lipid desaturation is a metabolic regulator of the balance between differentiation and self-renewal of ESCs and TSCs. They point to lipid polydesaturation as a driver of differentiation in both cell types. Monounsaturated fatty acids (MUFAs), essential for ESCs are detrimental to TSCs.
Collapse
Affiliation(s)
- Chanchal Thomas Mannully
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Bruck-Haimson
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Anish Zacharia
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Orih
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alaa Shehadeh
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Saidemberg
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M. Kogan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Alfandary
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Serruya
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arie Dagan
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Petit
- grid.465261.20000 0004 1793 5929Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Arieh Moussaieff
- grid.9619.70000 0004 1937 0538The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Suzuki D, Sasaki K, Kumamoto S, Tanaka K, Ogawa H. Dynamic Changes of Gene Expression in Mouse Mural Trophectoderm Regulated by Cdx2 During Implantation. Front Cell Dev Biol 2022; 10:945241. [PMID: 36051443 PMCID: PMC9425295 DOI: 10.3389/fcell.2022.945241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Implantation of the blastocyst into the uterus is a specific and essential process for mammalian embryonic development. In mice, implantation is initiated from the mural trophectoderm of the blastocyst and the mTE controls implantation progression by acquiring the ability to attach and invade into the endometrium while differentiating into primary trophoblast giant cells. Nevertheless, it remains largely unclear when and how the mTE differentiates and acquires this ability during implantation. Here, by RNA sequencing analysis with the pre- and peri-implantation mTE, we show that the mTE undergoes stage-specific and dynamic changes of gene expression during implantation. We also reveal that the mTE begins down-regulating Cdx2 and up-regulating differentiation marker genes during the peri-implantation stage. In addition, using trophectoderm (TE) -specific lentiviral vector-mediated gene transduction, we demonstrate that TE-specific Cdx2 overexpression represses differentiation of the mTE into the primary trophoblast giant cells. Moreover, we reveal that TE-specific Cdx2 overexpression also represses the up-regulation of cell adhesion- and migration-related genes, including Slc6a14, Slc16a3, Itga7, Itgav and Itgb3, which are known to regulate migration of trophectoderm cells. In particular, the expression of Itgb3, an integrin subunit gene, exhibits high inverse correlation with that of Cdx2 in the TE. Reflecting the down-regulation of the genes for TE migration, TE-specific Cdx2 overexpression causes suppression of the blastocyst outgrowth in vitro and abnormal progression of implantation in vivo. Thus, our results specify the time-course changes of global gene expression in the mTE during implantation and uncover the significance of Cdx2 down-regulation for implantation progression.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Sasaki
- Bioresource Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Soichiro Kumamoto
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Graduate School of Life Science, Tokyo University of Agriculture, Tokyo, Japan
- *Correspondence: Hidehiko Ogawa,
| |
Collapse
|
27
|
Padi2/3 Deficiency Alters the Epigenomic Landscape and Causes Premature Differentiation of Mouse Trophoblast Stem Cells. Cells 2022; 11:cells11162466. [PMID: 36010543 PMCID: PMC9406452 DOI: 10.3390/cells11162466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Histone citrullination is a relatively poorly studied epigenetic modification that involves the irreversible conversion of arginine residues into citrulline. It is conferred by a small family of enzymes known as protein arginine deiminases (PADIs). PADI function supports the pluripotent state of embryonic stem cells, but in other contexts, also promotes efficient cellular differentiation. In the current study, we sought to gain deeper insights into the possible roles of PADIs in mouse trophoblast stem cells (TSCs). We show that Padi2 and Padi3 are the most highly expressed PADI family members in TSCs and are rapidly down-regulated upon differentiation. Padi2/3 double knockout (DKO) TSCs express lower levels of stem cell transcription factors CDX2 and SOX2 and are prone to differentiate into extremely large trophoblast giant cells, an effect that may be mediated by centrosome duplication defects. Interestingly, Padi2/3 DKO TSCs display alterations to their epigenomic landscape, with fewer H3K9me3-marked chromocentric foci and globally reduced 5-methylcytosine levels. DNA methylation profiling identifies that this effect is specifically evident at CpG islands of critical trophoblast genes, such as Gata3, Peg3, Socs3 and Hand1. As a consequence of the hypomethylated state, these factors are up-regulated in Padi2/3 DKO TSCs, driving their premature differentiation. Our data uncover a critical epigenetic role for PADI2/3 in safeguarding the stem cell state of TSCs by modulating the DNA methylation landscape to restrict precocious trophoblast differentiation.
Collapse
|
28
|
Seong J, Frias-Aldeguer J, Holzmann V, Kagawa H, Sestini G, Heidari Khoei H, Scholte Op Reimer Y, Kip M, Pradhan SJ, Verwegen L, Vivié J, Li L, Alemany A, Korving J, Darmis F, van Oudenaarden A, Ten Berge D, Geijsen N, Rivron NC. Epiblast inducers capture mouse trophectoderm stem cells in vitro and pattern blastoids for implantation in utero. Cell Stem Cell 2022; 29:1102-1118.e8. [PMID: 35803228 DOI: 10.1016/j.stem.2022.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/21/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
The embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage. When exposed to suboptimal inducers, these stem cells fluctuate to form interconvertible subpopulations with reduced self-renewal and facilitated differentiation, resembling peri-implantation cells, known as TR stem cells (TSCs). TESCs have enhanced capacity to form blastoids that implant more efficiently in utero due to inducers maintaining not only local TR proliferation and self-renewal, but also WNT6/7B secretion that stimulates uterine decidualization. Overall, the epiblast maintains sustained growth and decidualization potential of abutting TR cells, while, as known, distancing imposed by the blastocyst cavity differentiates TR cells for uterus adhesion, thus patterning the essential functions of implantation.
Collapse
Affiliation(s)
- Jinwoo Seong
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Javier Frias-Aldeguer
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands; Maastricht University, Maastricht, the Netherlands
| | - Viktoria Holzmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Giovanni Sestini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Heidar Heidari Khoei
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Yvonne Scholte Op Reimer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Maarten Kip
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | - Saurabh J Pradhan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Lucas Verwegen
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Judith Vivié
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | - Linfeng Li
- Maastricht University, Maastricht, the Netherlands
| | - Anna Alemany
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | - Frank Darmis
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands
| | | | - Derk Ten Berge
- Department of Cell Biology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Niels Geijsen
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands; Department of Anatomy and Embryology, LUMC, Leiden University, Leiden, the Netherlands
| | - Nicolas C Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria; Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, the Netherlands; Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
29
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
30
|
Transcription factor networks in trophoblast development. Cell Mol Life Sci 2022; 79:337. [PMID: 35657505 PMCID: PMC9166831 DOI: 10.1007/s00018-022-04363-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022]
Abstract
The placenta sustains embryonic development and is critical for a successful pregnancy outcome. It provides the site of exchange between the mother and the embryo, has immunological functions and is a vital endocrine organ. To perform these diverse roles, the placenta comprises highly specialized trophoblast cell types, including syncytiotrophoblast and extravillous trophoblast. The coordinated actions of transcription factors (TFs) regulate their emergence during development, subsequent specialization, and identity. These TFs integrate diverse signaling cues, form TF networks, associate with chromatin remodeling and modifying factors, and collectively determine the cell type-specific characteristics. Here, we summarize the general properties of TFs, provide an overview of TFs involved in the development and function of the human trophoblast, and address similarities and differences to their murine orthologs. In addition, we discuss how the recent establishment of human in vitro models combined with -omics approaches propel our knowledge and transform the human trophoblast field.
Collapse
|
31
|
Johansen S, Traynor S, Ebstrup ML, Terp MG, Pedersen CB, Ditzel HJ, Gjerstorff MF. ZBED1 Regulates Genes Important for Multiple Biological Processes of the Placenta. Genes (Basel) 2022; 13:genes13010133. [PMID: 35052473 PMCID: PMC8775481 DOI: 10.3390/genes13010133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
The transcription factor ZBED1 is highly expressed in trophoblast cells, but its functions in the processes of trophoblast and placental biology remain elusive. Here, we characterized the role of ZBED1 in trophoblast cell differentiation using an in vitro BeWo cell model. We demonstrate that ZBED1 is enhanced in its expression early after forskolin-induced differentiation of BeWo cells and regulates many of the genes that are differentially expressed as an effect of forskolin treatment. Specifically, genes encoding markers for the differentiation of cytotrophoblast into syncytiotrophoblast and factors essential for trophoblast cell fusion and invasion were negatively regulated by ZBED1, indicating that ZBED1 might be important for maintaining a steady pool of cytotrophoblast cells. In addition, ZBED1 affected genes involved in the regulation of trophoblast cell survival and apoptosis, in agreement with the observed increase in apoptosis upon knockdown of ZBED1 in forskolin-treated BeWo cells. In addition, genes implicated in the differentiation, recruitment, and function of innate immune cells by the placenta were affected by ZBED1, further suggesting a role for this protein in the regulation of maternal immune tolerance. In conclusion, our study implicates ZBED1 in major biological processes of placental biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Malene Laage Ebstrup
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Christina Bøg Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
| | - Henrik Jørn Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, 5230 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5230 Odense, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.J.); (S.T.); (M.L.E.); (M.G.T.); (C.B.P.); (H.J.D.)
- Department of Oncology, Odense University Hospital, 5230 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-2126-1563
| |
Collapse
|
32
|
Hornbachner R, Lackner A, Papuchova H, Haider S, Knöfler M, Mechtler K, Latos PA. MSX2 safeguards syncytiotrophoblast fate of human trophoblast stem cells. Proc Natl Acad Sci U S A 2021; 118:e2105130118. [PMID: 34507999 PMCID: PMC8449346 DOI: 10.1073/pnas.2105130118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/18/2022] Open
Abstract
Multiple placental pathologies are associated with failures in trophoblast differentiation, yet the underlying transcriptional regulation is poorly understood. Here, we discovered msh homeobox 2 (MSX2) as a key transcriptional regulator of trophoblast identity using the human trophoblast stem cell model. Depletion of MSX2 resulted in activation of the syncytiotrophoblast transcriptional program, while forced expression of MSX2 blocked it. We demonstrated that a large proportion of the affected genes were directly bound and regulated by MSX2 and identified components of the SWItch/Sucrose nonfermentable (SWI/SNF) complex as strong MSX2 interactors and target gene cobinders. MSX2 cooperated specifically with the SWI/SNF canonical BAF (cBAF) subcomplex and cooccupied, together with H3K27ac, a number of differentiation genes. Increased H3K27ac and cBAF occupancy upon MSX2 depletion imply that MSX2 prevents premature syncytiotrophoblast differentiation. Our findings established MSX2 as a repressor of the syncytiotrophoblast lineage and demonstrated its pivotal role in cell fate decisions that govern human placental development and disease.
Collapse
Affiliation(s)
- Ruth Hornbachner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andreas Lackner
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Henrieta Papuchova
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | - Karl Mechtler
- Protein Chemistry Facility, Institute of Molecular Pathology, A-1030 Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
33
|
Bai T, Peng CY, Aneas I, Sakabe N, Requena DF, Billstrand C, Nobrega M, Ober C, Parast M, Kessler JA. Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Res 2021; 56:102507. [PMID: 34454392 PMCID: PMC8551050 DOI: 10.1016/j.scr.2021.102507] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Human trophoblast stem cells (hTSC) can be isolated from first trimester placenta but not from term placenta. Here we demonstrate that villous cytotrophoblasts (vCTB) from term placenta can be reprogrammed into induced trophoblastic stem-like cells (iTSC) by introducing sets of transcription factors. The iTSCs express TSC markers such as GATA3, TEAD4 and ELF5, and are multipotent, validated by their differentiation into both extravillous trophoblasts (EVT) and syncytiotrophoblasts (STB) in vitro and in vivo. The iTSC can be passaged indefinitely in vitro without slowing of growth. The transcriptome profile of these cells closely resembles the profile of hTSC isolated from first trimester placentae but different from the term placental vCTB from which they originated. The ability to reprogram cells from term placenta into iTSC will allow study of early gestation events which impact placental function later in gestation, including preeclampsia and spontaneous preterm birth.
Collapse
Affiliation(s)
- Tao Bai
- Department of Neurology, Northwestern University, Chicago, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University, Chicago, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Noboru Sakabe
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Daniela F Requena
- Department of Pathology and Sanford Consortium for Regenerative Medicine, University of California, San Diego, USA
| | | | - Marcelo Nobrega
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Mana Parast
- Department of Pathology and Sanford Consortium for Regenerative Medicine, University of California, San Diego, USA
| | - John A Kessler
- Department of Neurology, Northwestern University, Chicago, USA.
| |
Collapse
|
34
|
Girgin MU, Broguiere N, Hoehnel S, Brandenberg N, Mercier B, Arias AM, Lutolf MP. Bioengineered embryoids mimic post-implantation development in vitro. Nat Commun 2021; 12:5140. [PMID: 34446708 PMCID: PMC8390504 DOI: 10.1038/s41467-021-25237-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The difficulty of studying post-implantation development in mammals has sparked a flurry of activity to develop in vitro models, termed embryoids, based on self-organizing pluripotent stem cells. Previous approaches to derive embryoids either lack the physiological morphology and signaling interactions, or are unconducive to model post-gastrulation development. Here, we report a bioengineering-inspired approach aimed at addressing this gap. We employ a high-throughput cell aggregation approach to simultaneously coax mouse embryonic stem cells into hundreds of uniform epiblast-like aggregates in a solid matrix-free manner. When co-cultured with mouse trophoblast stem cell aggregates, the resulting hybrid structures initiate gastrulation-like events and undergo axial morphogenesis to yield structures, termed EpiTS embryoids, with a pronounced anterior development, including brain-like regions. We identify the presence of an epithelium in EPI aggregates as the major determinant for the axial morphogenesis and anterior development seen in EpiTS embryoids. Our results demonstrate the potential of EpiTS embryoids to study peri-gastrulation development in vitro.
Collapse
Affiliation(s)
- Mehmet U Girgin
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Nicolas Broguiere
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylke Hoehnel
- SUN bioscience, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Bastien Mercier
- Faculty of Medicine and Pharmacy, University of Grenoble Alpes, Grenoble, France
| | | | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland.
| |
Collapse
|
35
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
36
|
Wang L, Chakraborty D, Iqbal K, Soares MJ. SUV39H2 controls trophoblast stem cell fate. Biochim Biophys Acta Gen Subj 2021; 1865:129867. [PMID: 33556426 PMCID: PMC8052280 DOI: 10.1016/j.bbagen.2021.129867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The placenta is formed by the coordinated expansion and differentiation of trophoblast stem (TS) cells along a multi-lineage pathway. Dynamic regulation of histone 3 lysine 9 (H3K9) methylation is pivotal to cell differentiation for many cell lineages, but little is known about its involvement in trophoblast cell development. METHODS Expression of H3K9 methyltransferases was surveyed in rat TS cells maintained in the stem state and following differentiation. The role of suppressor of variegation 3-9 homolog 2 (SUV39H2) in the regulation of trophoblast cell lineage development was investigated using a loss-of-function approach in rat TS cells and ex vivo cultured rat blastocysts. RESULTS Among the twelve-known H3K9 methyltransferases, only SUV39H2 exhibited robust differential expression in stem versus differentiated TS cells. SUV39H2 transcript and protein expression were high in the stem state and declined as TS cells differentiated. Disruption of SUV39H2 expression in TS cells led to an arrest in TS cell proliferation and activation of trophoblast cell differentiation. SUV39H2 regulated H3K9 methylation status at loci exhibiting differentiation-dependent gene expression. Analyses of SUV39H2 on ex vivo rat blastocyst development supported its role in regulating TS cell expansion and differentiation. We further identified SUV39H2 as a downstream target of caudal type homeobox 2, a master regulator of trophoblast lineage development. CONCLUSIONS Our findings indicate that SUV39H2 contributes to the maintenance of TS cells and restrains trophoblast cell differentiation. GENERAL SIGNIFICANCE SUV39H2 serves as a contributor to the epigenetic regulation of hemochorial placental development.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Damayanti Chakraborty
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, United States of America.
| |
Collapse
|
37
|
Huang Y, Chen L, Feng Z, Chen W, Yan S, Yang R, Xiao J, Gao J, Zhang D, Ke X. EPC-Derived Exosomal miR-1246 and miR-1290 Regulate Phenotypic Changes of Fibroblasts to Endothelial Cells to Exert Protective Effects on Myocardial Infarction by Targeting ELF5 and SP1. Front Cell Dev Biol 2021; 9:647763. [PMID: 34055778 PMCID: PMC8155602 DOI: 10.3389/fcell.2021.647763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
Myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Endothelial progenitor cell (EPC)-derived exosomes have been found to be effective in alleviating MI, while the detailed mechanisms remain unclear. The present study aimed to determine the protective effects of EPC-derived exosomal miR-1246 and miR-1290 on MI-induced injury and to explore the underlying molecular mechanisms. The exosomes were extracted from EPCs; gene expression levels were determined by quantitative real-time PCR, and protein expression levels were determined by western blot and immunofluorescence staining, respectively. The angiogenesis and proliferation of human cardiac fibroblasts (HCFs) were determined by tube formation assay and immunofluorescence staining of PKH67, respectively. Luciferase reporter, CHIP, and EMSA assays determined the interaction between miR-1246/1290 and the targeted genes (EFL5 and SP1). The protective effects of miR-1246/1290 on MI were evaluated in a rat model of MI. EPC-derived exosomes significantly upregulated miR-1246 and miR-1290 expression and promoted phenotypic changes of fibroblasts to endothelial cells, angiogenesis, and proliferation in HCFs. Exosomes from EPCs with miR-1246 or miR-1290 mimics transfection promoted phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs, while exosomes from EPCs with miR-1246 or miR-1290 knockdown showed opposite effects in HCFs. Mechanistically, miR-1246 and miR-1290 from EPC-derived exosomes induced upregulation of ELF5 and SP1, respectively, by targeting the promoter regions of corresponding genes. Overexpression of both ELF5 and SP1 enhanced phenotypic changes of fibroblasts to endothelial cells and angiogenesis in HCFs pretreated with exosomes from EPCs with miR-1246 or miR-1290 mimics transfection, while knockdown of both EFL5 and SP1 exerted the opposite effects in HCFs. Both ELF5 and SP1 can bind to the promoter of CD31, leading to the upregulation of CD31 in HCFs. Furthermore, in vivo animal studies showed that exosomes from EPCs with miR-1246 or miR-1290 overexpression attenuated the MI-induced cardiac injury in the rats and caused an increase in ELF5, SP1, and CD31 expression, respectively, but suppressed α-SMA expression in the cardiac tissues. In conclusion, our study revealed that miR-1246 and miR-1290 in EPC-derived exosomes enhanced in vitro and in vivo angiogenesis in MI, and these improvements may be associated with amelioration of cardiac injury and cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Yulang Huang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Lifang Chen
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Zongming Feng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Weixin Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Shaodi Yan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Jian Xiao
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
| | - Debao Zhang
- Departmeng of Cardiology, Shenzhen Nanshan District Shekou People's Hospital, Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.,Shenzhen University School of Medicine and Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
38
|
Mapping the expression of transient receptor potential channels across murine placental development. Cell Mol Life Sci 2021; 78:4993-5014. [PMID: 33884443 PMCID: PMC8233283 DOI: 10.1007/s00018-021-03837-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Transient receptor potential (TRP) channels play prominent roles in ion homeostasis by their ability to control cation influx. Mouse placentation is governed by the processes of trophoblast proliferation, invasion, differentiation, and fusion, all of which require calcium signaling. Although certain TRP channels have been shown to contribute to maternal–fetal transport of magnesium and calcium, a role for TRP channels in specific trophoblast functions has been disregarded. Using qRT-PCR and in situ hybridisation, the spatio-temporal expression pattern of TRP channels in the mouse placenta across gestation (E10.5–E18.5) was assessed. Prominent expression was observed for Trpv2, Trpm6, and Trpm7. Calcium microfluorimetry in primary trophoblast cells isolated at E14.5 of gestation further revealed the functional activity of TRPV2 and TRPM7. Finally, comparing TRP channels expression in mouse trophoblast stem cells (mTSCs) and mouse embryonic stem cells (mESC) confirmed the specific expression of TRPV2 during placental development. Moreover, TRP channel expression was similar in mTSCs compared to primary trophoblasts and validate mTSC as a model to study TRP channels in placental development. Collectivity, our results identify a specific spatio-temporal TRP channel expression pattern in trophoblasts, suggesting a possible involvement in regulating the process of placentation.
Collapse
|
39
|
Melton S, Ramanathan S. Discovering a sparse set of pairwise discriminating features in high-dimensional data. Bioinformatics 2021; 37:202-212. [PMID: 32730566 PMCID: PMC8599814 DOI: 10.1093/bioinformatics/btaa690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. RESULTS We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. AVAILABILITY AND IMPLEMENTATION https://github.com/smelton/SMD. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Samuel Melton
- Applied Mathematics Harvard University, Cambridge, MA 02138, USA
| | - Sharad Ramanathan
- Applied Physics, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
40
|
Beal R, Alonso-Carriazo Fernandez A, Grammatopoulos DK, Matter K, Balda MS. ARHGEF18/p114RhoGEF Coordinates PKA/CREB Signaling and Actomyosin Remodeling to Promote Trophoblast Cell-Cell Fusion During Placenta Morphogenesis. Front Cell Dev Biol 2021; 9:658006. [PMID: 33842485 PMCID: PMC8027320 DOI: 10.3389/fcell.2021.658006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Coordination of cell-cell adhesion, actomyosin dynamics and gene expression is crucial for morphogenetic processes underlying tissue and organ development. Rho GTPases are main regulators of the cytoskeleton and adhesion. They are activated by guanine nucleotide exchange factors in a spatially and temporally controlled manner. However, the roles of these Rho GTPase activators during complex developmental processes are still poorly understood. ARHGEF18/p114RhoGEF is a tight junction-associated RhoA activator that forms complexes with myosin II, and regulates actomyosin contractility. Here we show that p114RhoGEF/ARHGEF18 is required for mouse syncytiotrophoblast differentiation and placenta development. In vitro and in vivo experiments identify that p114RhoGEF controls expression of AKAP12, a protein regulating protein kinase A (PKA) signaling, and is required for PKA-induced actomyosin remodeling, cAMP-responsive element binding protein (CREB)-driven gene expression of proteins required for trophoblast differentiation, and, hence, trophoblast cell-cell fusion. Our data thus indicate that p114RhoGEF links actomyosin dynamics and cell-cell junctions to PKA/CREB signaling, gene expression and cell-cell fusion.
Collapse
Affiliation(s)
- Robert Beal
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Dimitris K Grammatopoulos
- Translational and Experimental Medicine, Warwick Medical School, Coventry, United Kingdom.,Department of Pathology, Institute of Precision Diagnostics and Translational Medicine, University Hospital Coventry and Warwickshire National Health Service (NHS) Trust, Coventry, United Kingdom
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
41
|
Sun S, Yano S, Nakanishi MO, Hirose M, Nakabayashi K, Hata K, Ogura A, Tanaka S. Maintenance of mouse trophoblast stem cells in KSR-based medium allows conventional 3D culture. J Reprod Dev 2021; 67:197-205. [PMID: 33746143 PMCID: PMC8238679 DOI: 10.1262/jrd.2020-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse trophoblast stem cells (TSCs) can differentiate into trophoblast cells, which constitute the placenta. Under conventional culture conditions, in a medium supplemented with 20% fetal bovine serum (FBS), fibroblast growth factor 4 (FGF4), and heparin and in the presence of mouse embryonic fibroblast cells (MEFs) as feeder cells, TSCs maintain their undifferentiated, proliferative status. MEFs can be replaced by a 70% MEF-conditioned medium (MEF-CM) or by TGF-ß/activin A. To find out if KnockOutTM Serum Replacement (KSR) can replace FBS for TSC maintenance, we cultured mouse TSCs in KSR-based, FBS-free medium and investigated their proliferation capacity, stemness, and differentiation potential. The results indicated that fibronectin, vitronectin, or laminin coating was necessary for adhesion of TSCs under KSR-based conditions but not for their survival or proliferation. While the presence of FGF4, heparin, and activin A was not sufficient to support the proliferation of TSCs, the addition of a pan-retinoic acid receptor inverse agonist and a ROCK-inhibitor yielded a proliferation rate comparable to that obtained under the conventional FBS-based conditions. TSCs cultured under the KSR-based conditions had a gene expression and DNA methylation profile characteristic of TSCs and exhibited a differentiation potential. Moreover, under KSR-based conditions, we could obtain a suspension culture of TSCs using extracellular matrix (ECM) coating-free dishes. Thus, we have established here, KSR-based culture conditions for the maintenance of TSCs, which should be useful for future studies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shota Yano
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Momo O Nakanishi
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsuo Ogura
- RIKEN BRC, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Tanaka
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
42
|
Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells Int 2021; 2021:8817581. [PMID: 33603792 PMCID: PMC7872760 DOI: 10.1155/2021/8817581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 11/24/2022] Open
Abstract
The regulation of mammalian stem cell fate during differentiation is complex and can be delineated across many levels. At the chromatin level, the replacement of histone variants by chromatin-modifying proteins, enrichment of specific active and repressive histone modifications, long-range gene interactions, and topological changes all play crucial roles in the determination of cell fate. These processes control regulatory elements of critical transcriptional factors, thereby establishing the networks unique to different cell fates and initiate waves of distinctive transcription events. Due to the technical challenges posed by previous methods, it was difficult to decipher the mechanism of cell fate determination at early embryogenesis through chromatin regulation. Recently, single-cell approaches have revolutionised the field of developmental biology, allowing unprecedented insights into chromatin structure and interactions in early lineage segregation events during differentiation. Here, we review the recent technological advancements and how they have furthered our understanding of chromatin regulation during early differentiation events.
Collapse
|
43
|
Ma Y, Yu X, Li YX, Wang YL. HGF/c-Met signaling regulates early differentiation of placental trophoblast cells. J Reprod Dev 2021; 67:89-97. [PMID: 33455972 PMCID: PMC8075731 DOI: 10.1262/jrd.2020-107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Depletion of hepatocyte growth factor (HGF) or mesenchymal-epithelial transition factor (c-Met) in mice leads to fetal lethality and placental maldevelopment.
However, the dynamic change pattern of HGF/c-Met signaling during placental development and its involvement in the early differentiation of trophoblasts remain
to be elucidated. In this study, using in situ hybridization assay, we elaborately demonstrated the spatial-temporal expression of
Hgf and c-Met in mouse placenta from E5.5, the very early stage after embryonic implantation, to E12.5, when the placental
structure is well developed. The concentration of the soluble form of c-Met (sMet) in maternal circulation peaked at E10.5. By utilizing the induced
differentiation model of mouse trophoblast stem cells (mTSCs), we found that HGF significantly promoted mTSC differentiation into syncytiotrophoblasts (STBs)
and invasive parietal trophoblast giant cells (PTGCs). Interestingly, sMet efficiently reversed the effect of HGF on mTSC differentiation. These findings
indicate that HGF/c-Met signaling participates in regulating placental trophoblast cell fate at the early differentiation stage and that sMet acts as an
endogenous antagonist in this aspect.
Collapse
Affiliation(s)
- Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Xia Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Histone demethylase JMJD2B/KDM4B regulates transcriptional program via distinctive epigenetic targets and protein interactors for the maintenance of trophoblast stem cells. Sci Rep 2021; 11:884. [PMID: 33441614 PMCID: PMC7806742 DOI: 10.1038/s41598-020-79601-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Trophoblast stem cell (TSC) is crucial to the formation of placenta in mammals. Histone demethylase JMJD2 (also known as KDM4) family proteins have been previously shown to support self-renewal and differentiation of stem cells. However, their roles in the context of the trophoblast lineage remain unclear. Here, we find that knockdown of Jmjd2b resulted in differentiation of TSCs, suggesting an indispensable role of JMJD2B/KDM4B in maintaining the stemness. Through the integration of transcriptome and ChIP-seq profiling data, we show that JMJD2B is associated with a loss of H3K36me3 in a subset of embryonic lineage genes which are marked by H3K9me3 for stable repression. By characterizing the JMJD2B binding motifs and other transcription factor binding datasets, we discover that JMJD2B forms a protein complex with AP-2 family transcription factor TFAP2C and histone demethylase LSD1. The JMJD2B-TFAP2C-LSD1 complex predominantly occupies active gene promoters, whereas the TFAP2C-LSD1 complex is located at putative enhancers, suggesting that these proteins mediate enhancer-promoter interaction for gene regulation. We conclude that JMJD2B is vital to the TSC transcriptional program and safeguards the trophoblast cell fate via distinctive protein interactors and epigenetic targets.
Collapse
|
45
|
Moreira R, Romero A, Rey-Campos M, Pereiro P, Rosani U, Novoa B, Figueras A. Stimulation of Mytilus galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses. Front Immunol 2020; 11:606102. [PMID: 33391272 PMCID: PMC7773633 DOI: 10.3389/fimmu.2020.606102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mediterranean mussels (Mytilus galloprovincialis) are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
Collapse
Affiliation(s)
- Rebeca Moreira
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Alejandro Romero
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Patricia Pereiro
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Umberto Rosani
- Department of Biology, University of Padova, Padova, Italy.,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), List auf Sylt, Germany
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain
| |
Collapse
|
46
|
Hadas R, Gershon E, Cohen A, Atrakchi O, Lazar S, Golani O, Dassa B, Elbaz M, Cohen G, Eilam R, Dekel N, Neeman M. Hyaluronan control of the primary vascular barrier during early mouse pregnancy is mediated by uterine NK cells. JCI Insight 2020; 5:135775. [PMID: 33208556 PMCID: PMC7710306 DOI: 10.1172/jci.insight.135775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Successful implantation is associated with a unique spatial pattern of vascular remodeling, characterized by profound peripheral neovascularization surrounding a periembryo avascular niche. We hypothesized that hyaluronan controls the formation of this distinctive vascular pattern encompassing the embryo. This hypothesis was evaluated by genetic modification of hyaluronan metabolism, specifically targeted to embryonic trophoblast cells. The outcome of altered hyaluronan deposition on uterine vascular remodeling and postimplantation development were analyzed by MRI, detailed histological examinations, and RNA sequencing of uterine NK cells. Our experiments revealed that disruption of hyaluronan synthesis, as well as its increased cleavage at the embryonic niche, impaired implantation by induction of decidual vascular permeability, defective vascular sinus folds formation, breach of the maternal-embryo barrier, elevated MMP-9 expression, and interrupted uterine NK cell recruitment and function. Conversely, enhanced deposition of hyaluronan resulted in the expansion of the maternal-embryo barrier and increased diffusion distance, leading to compromised implantation. The deposition of hyaluronan at the embryonic niche is regulated by progesterone-progesterone receptor signaling. These results demonstrate a pivotal role for hyaluronan in successful pregnancy by fine-tuning the periembryo avascular niche and maternal vascular morphogenesis. Hyaluronan fine-tunes the periembryo avascular niche and maternal vascular morphogenesis during implantation.
Collapse
Affiliation(s)
- Ron Hadas
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Eran Gershon
- Agricultural Research Organization, Volcani Center, Israel
| | - Aviad Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel.,Department of Gynecology, Tel Aviv Sourasky Medical Center, Affiliated to the Sackler School of Medicine, Tel Aviv University, Israel
| | - Ofir Atrakchi
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Shlomi Lazar
- Department of Pharmacology, The Israel Institute for Biological Research, Nes Ziona, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities and
| | | | - Michal Elbaz
- Agricultural Research Organization, Volcani Center, Israel
| | - Gadi Cohen
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Raya Eilam
- Department of Veterinary Resources, Weizmann Institute, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| |
Collapse
|
47
|
Sozen B, Demir N, Zernicka-Goetz M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Dev Biol 2020; 470:84-94. [PMID: 33217407 DOI: 10.1016/j.ydbio.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
At implantation, the mouse embryo undergoes a critical transformation which requires the precise spatiotemporal control of signalling pathways necessary for morphogenesis and developmental progression. The role played by such signalling pathways during this transition are largely unexplored, due to the inaccessibility of the embryo during the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the role of BMPs during pre-to post-implantation transition by using a protocol permitting the development of the embryo beyond implantation stages in vitro and using stem cells to mimic post-implantation tissue organisation. By assessing both the canonical and non-canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling maintains stem cell populations within both embryonic/extra-embryonic tissues during pre-to post-implantation development. These results may provide insight into the role played by BMP signalling in controlling early embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
48
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
49
|
Salazar‐Roa M, Trakala M, Álvarez‐Fernández M, Valdés‐Mora F, Zhong C, Muñoz J, Yu Y, Peters TJ, Graña‐Castro O, Serrano R, Zapatero‐Solana E, Abad M, Bueno MJ, de Cedrón MG, Fernández‐Piqueras J, Serrano M, Blasco MA, Wang D, Clark SJ, Izpisua‐Belmonte JC, Ortega S, Malumbres M. Transient exposure to miR-203 enhances the differentiation capacity of established pluripotent stem cells. EMBO J 2020; 39:e104324. [PMID: 32614092 PMCID: PMC7429746 DOI: 10.15252/embj.2019104324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/09/2022] Open
Abstract
Full differentiation potential along with self-renewal capacity is a major property of pluripotent stem cells (PSCs). However, the differentiation capacity frequently decreases during expansion of PSCs in vitro. We show here that transient exposure to a single microRNA, expressed at early stages during normal development, improves the differentiation capacity of already-established murine and human PSCs. Short exposure to miR-203 in PSCs (miPSCs) induces a transient expression of 2C markers that later results in expanded differentiation potency to multiple lineages, as well as improved efficiency in tetraploid complementation and human-mouse interspecies chimerism assays. Mechanistically, these effects are at least partially mediated by direct repression of de novo DNA methyltransferases Dnmt3a and Dnmt3b, leading to transient and reversible erasure of DNA methylation. These data support the use of transient exposure to miR-203 as a versatile method to reset the epigenetic memory in PSCs, and improve their effectiveness in regenerative medicine.
Collapse
Affiliation(s)
- María Salazar‐Roa
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Marianna Trakala
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Fátima Valdés‐Mora
- Epigenetics Research Program, Genomics and Epigenetics DivisionGarvan Institute of Medical ResearchSydneyNSWAustralia
- St. Vincent's Clinical SchoolUNSW, SydneySydneyNSWAustralia
| | - Cuiqing Zhong
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCAUSA
| | | | - Yang Yu
- Gene Expression LaboratoryThe Salk Institute for Biological StudiesLa JollaCAUSA
| | - Timothy J Peters
- Epigenetics Research Program, Genomics and Epigenetics DivisionGarvan Institute of Medical ResearchSydneyNSWAustralia
| | | | | | | | | | - María José Bueno
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Marta Gómez de Cedrón
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José Fernández‐Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO)Consejo Superior de Investigaciones Científicas‐Universidad Autónoma de Madrid (CSIC‐UAM)MadridSpain
- Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER)Instituto de Salud Carlos IIIMadridSpain
- Instituto de Investigación BiosanitariaFundación Jimenez DíazMadridSpain
| | - Manuel Serrano
- Tumor Suppression GroupCNIOMadridSpain
- Institute for Research in Biomedicine (IRB Barcelona)The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | | | - Da‐Zhi Wang
- Cardiovascular Research DivisionBoston Children′s HospitalHarvard Medical SchoolBostonMAUSA
| | - Susan J Clark
- Epigenetics Research Program, Genomics and Epigenetics DivisionGarvan Institute of Medical ResearchSydneyNSWAustralia
- St. Vincent's Clinical SchoolUNSW, SydneySydneyNSWAustralia
| | | | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
50
|
Ishiuchi T, Ohishi H, Sato T, Kamimura S, Yorino M, Abe S, Suzuki A, Wakayama T, Suyama M, Sasaki H. Zfp281 Shapes the Transcriptome of Trophoblast Stem Cells and Is Essential for Placental Development. Cell Rep 2020; 27:1742-1754.e6. [PMID: 31067460 DOI: 10.1016/j.celrep.2019.04.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022] Open
Abstract
Placental development is a key event in mammalian reproduction and embryogenesis. However, the molecular basis underlying placental development is not fully understood. Here, we conduct a forward genetic screen to identify regulators for extraembryonic development and identify Zfp281 as a key factor. Zfp281 overexpression in mouse embryonic stem cells facilitates the induction of trophoblast stem-like cells. Zfp281 is preferentially expressed in the undifferentiated trophoblast stem cell population in an FGF-dependent manner, and disruption of Zfp281 in mice causes severe defects in early placental development. Consistently, Zfp281-depleted trophoblast stem cells exhibit defects in maintaining the transcriptome and differentiation capacity. Mechanistically, Zfp281 interacts with MLL or COMPASS subunits and occupies the promoters of its target genes. Importantly, ZNF281, the human ortholog of this factor, is required to stabilize the undifferentiated status of human trophoblast stem cells. Thus, we identify Zfp281 as a conserved factor for the maintenance of trophoblast stem cell plasticity.
Collapse
Affiliation(s)
- Takashi Ishiuchi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| | - Hiroaki Ohishi
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Kamimura
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masayoshi Yorino
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shusaku Abe
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Sasaki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|