1
|
Verdejo HE, Parra V, Del Campo A, Vasquez-Trincado C, Gatica D, Lopez-Crisosto C, Kuzmicic J, Venegas-Zamora L, Zuñiga-Cuevas U, Troncoso MF, Troncoso R, Rothermel BA, Chiong M, Abel ED, Lavandero S. mTOR inhibition triggers mitochondrial fragmentation in cardiomyocytes through proteosome-dependent prohibitin degradation and OPA-1 cleavage. Cell Commun Signal 2025; 23:256. [PMID: 40450326 DOI: 10.1186/s12964-025-02240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 05/09/2025] [Indexed: 06/03/2025] Open
Abstract
INTRODUCTION Cardiac mitochondrial function is intricately regulated by various processes, ultimately impacting metabolic performance. Additionally, protein turnover is crucial for sustained metabolic homeostasis in cardiomyocytes. OBJECTIVE Here, we studied the role of mTOR in OPA-1 cleavage and its consequent effects on mitochondrial dynamics and energetics in cardiomyocytes. RESULTS Cultured rat cardiomyocytes treated with rapamycin for 6-24 h showed a significant reduction in phosphorylation of p70S6K, indicative of sustained inhibition of mTOR. Structural and functional analysis revealed increased mitochondrial fragmentation and impaired bioenergetics characterized by decreases in ROS production, oxygen consumption, and cellular ATP. Depletion of either the mitochondrial protease OMA1 or the mTOR regulator TSC2 by siRNA, coupled with an inducible, cardiomyocyte-specific knockout of mTOR in vivo, suggested that inhibition of mTOR promotes mitochondrial fragmentation through a mechanism involving OMA1 processing of OPA-1. Under homeostatic conditions, OMA1 activity is kept under check through an interaction with microdomains in the inner mitochondrial membrane that requires prohibitin proteins (PHB). Loss of these microdomains releases OMA1 to cleave its substrates. We found that rapamycin both increased ubiquitination of PHB1 and decreased its abundance, suggesting proteasomal degradation. Consistent with this, the proteasome inhibitor MG-132 maintained OPA-1 content in rapamycin-treated cardiomyocytes. Using pharmacological activation and inhibition of AMPK our data supports the hypothesis that this mTOR-PHB1-OMA-OPA-1 pathway impacts mitochondrial morphology under stress conditions, where it mediates dynamic changes in metabolic status. CONCLUSIONS These data suggest that mTOR inhibition disrupts mitochondrial integrity in cardiomyocytes by promoting the degradation of prohibitins and OPA-1, leading to mitochondrial fragmentation and metabolic dysfunction, particularly under conditions of metabolic stress.
Collapse
Grants
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- FONDECYT [1211270 to H.E.V., 1230428 to A.D.C, 1220392 to M.Ch., 1230195 to V.P., 1240443 to S.L.], FONDAP [15130011 and 1523A0008 to H.E.V, R.T., M.Ch., V.P., S.L.], Anillo ACT210004 to V.P. Agencia Nacional de Investigación y Desarrollo
- R01HL108379 and R01DK092065, to E. D. A and R01NS055028, R01HD101006, and P50HD087351 to B.A.R. NIH HHS
- R01HL108379 and R01DK092065, to E. D. A and R01NS055028, R01HD101006, and P50HD087351 to B.A.R. NIH HHS
Collapse
Affiliation(s)
- Hugo E Verdejo
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Departamento Enfermedades Cardiovasculares, Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Valentina Parra
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Andrea Del Campo
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Damian Gatica
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago, Chile
| | - Jovan Kuzmicic
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leslye Venegas-Zamora
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ursula Zuñiga-Cuevas
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Disease (ACCDiS), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Daumke O, van der Laan M. Molecular machineries shaping the mitochondrial inner membrane. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00854-z. [PMID: 40369159 DOI: 10.1038/s41580-025-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F1Fo-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein-lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.
Collapse
Affiliation(s)
- Oliver Daumke
- Structural Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Martin van der Laan
- Medical Biochemistry & Molecular Biology, Center for Molecular Signalling (PZMS), Saarland University Medical School, Homburg/Saar, Germany.
| |
Collapse
|
3
|
Che W, Guo S, Wang Y, Wan X, Tan B, Li H, Alifu J, Zhu M, Chen Z, Li P, Zhang L, Zhang Z, Wang Y, Huang X, Wang X, Zhu J, Pan X, Zhang F, Wang P, Sui SF, Zhao J, Xu Y, Liu Z. SARS-CoV-2 damages cardiomyocyte mitochondria and implicates long COVID-associated cardiovascular manifestations. J Adv Res 2025:S2090-1232(25)00306-6. [PMID: 40354933 DOI: 10.1016/j.jare.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION With the COVID-19 pandemic becoming endemic, vigilance for Long COVID-related cardiovascular issues remains essential, though their specific pathophysiology is largely unexplored. OBJECTIVES Our study investigates the persistent cardiovascular symptoms observed in individuals long after contracting SARS-CoV-2, a condition commonly referred to as "Long COVID", which has significantly affected millions globally. METHODS We meticulously describe the cardiovascular outcomes in five patients, encompassing a range of severe conditions such as sudden cardiac death during exercise, coronary atherosclerotic heart disease, palpitation, chest tightness, and acute myocarditis. RESULTS All five patients were diagnosed with myocarditis, confirmed through endomyocardial biopsy and histochemical staining, which identified inflammatory cell infiltration in their heart tissue. Crucially, electron microscopy revealed widespread mitochondrial vacuolations and the presence of myofilament degradation within the cardiomyocytes of these patients. These findings were mirrored in SARS-CoV-2-infected mice, suggesting a potential underlying cellular mechanism for the cardiac effects associated with Long COVID. CONCLUSION Our findings demonstrate a profound impact of SARS-CoV-2 on mitochondrial integrity, shedding light on the cardiovascular implications of Long COVID.
Collapse
Affiliation(s)
- Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Guo
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bingyu Tan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiasuer Alifu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengyun Zhu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zesong Chen
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyao Li
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zhang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinsheng Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Sen-Fang Sui
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Wang C, Zhu F, Zhou L, Zhang S, Wang R, Tian H, Zhang B, Wu J, Xu X, Jiang R, Hou X, Liu J, Tian W. Krüppel like factor 7 regulates mitochondrial dynamics balance in myocardial infarction. Commun Biol 2025; 8:722. [PMID: 40346382 PMCID: PMC12064834 DOI: 10.1038/s42003-025-08139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Targeting the balance of mitochondrial fission and fusion can effectively alleviate the cardiac energy supply efficiency, to restore cardiac systolic dysfunction and reduce mortality. We previously found that Klf7 is closely related to cardiac energy metabolism. Here we generated cardiomyocyte-specific Klf7 knockout and overexpression mice that underwent myocardial infarction (MI) surgery. Klf7 expression increased in the ischemic myocardium of mice, and cardiomyocyte-specific knockout Klf7 significantly lowered the mortality of MI-inflicted mice and improved ATP insufficiency in MI. Subsequently, Klf7 overexpression aggravated adverse cardiac remodeling and mitochondrial fission and fusion imbalance after MI. Our results also demonstrated that Klf7 inhibited mitochondrial fusion and promoted mitochondrial fission by targeting prohibitin 2 (Phb2) and mitofusin 2 (Mfn2). Our study revealed a crucial role in upholding the overall balance of mitochondrial fission and fusion during MI. Furthermore, our findings indicated that the Klf7/Mfn2/Phb2 axis holds promise as a potential target for therapeutic interventions of MI.
Collapse
Affiliation(s)
- Cao Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Fuxing Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Lan Zhou
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 150001, China, Harbin
| | - Situo Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Hui Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiahui Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Ruixian Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Xiaolu Hou
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jian Liu
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
5
|
Mróz D, Jagłowska J, Wevers RA, Ziętkiewicz S. CLPB Deficiency, a Mitochondrial Chaperonopathy With Neutropenia and Neurological Presentation. J Inherit Metab Dis 2025; 48:e70025. [PMID: 40194906 PMCID: PMC11975511 DOI: 10.1002/jimd.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Affiliation(s)
- D. Mróz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| | - J. Jagłowska
- Department of Pediatrics, Hematology and OncologyMedical University of GdanskGdanskPoland
| | - R. A. Wevers
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - S. Ziętkiewicz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| |
Collapse
|
6
|
Rani H, Saini N. MiR-718-mediated inhibition of prohibitin 1 influences mitochondrial dynamics, proliferation, and migration of keratinocytes. Mitochondrion 2025; 84:102041. [PMID: 40252889 DOI: 10.1016/j.mito.2025.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Keratinocyte hyperproliferation is a key characteristic of psoriasis. Prohibitins (PHB) are known to be associated with keratinocyte proliferation and cell cycle regulation, influenced by mitochondrial processes. The objective of this study was to examine the impact of miR-718 overexpression and downregulation on the various PHB1-mitochondria-driven activities in HaCaT keratinocytes. We demonstrated that PHB1 expression is downregulated through direct targeting by miR-718, which then leads to a reduction in the expression of MFN1, MFN2, and OPA1 in miR-718-transfected cells, as evidenced by western blot analysis. Mitochondrial fusion and DRP1-mediated fission, as indicated by western blot results, were further validated using confocal imaging with CMXRoS labeling, contrasting with the effects of AM-718. JC-1 dye staining results demonstrated the miR-718 overexpression facilitates the mitochondrial membrane depolarization that highlighting the PHB1-OPA1 mediated depolarization. Moreover, OPA1 maintains mitochondrial cristae structure and its dysfunction can trigger cell death. Further PHB1 is known to regulate OPA1 function, alters mitochondrial morphology and significantly influences epithelial cell migration. Herein, our data demonstrated a reduction in keratinocyte proliferation and migration, as evidenced by the CCK assay and wound healing assay, respectively, following 24 h of transfection. Ultimately, our data indicates the potential involvement of miR-718 in the mitochondria-mediated suppression of cell proliferation and migration in HaCaT keratinocytes, likely due to modified mitochondrial processes via PHB1.
Collapse
Affiliation(s)
- Himani Rani
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007 Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeru Saini
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007 Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Roy M, Nandy S, Marchesan E, Banerjee C, Mondal R, Caicci F, Ziviani E, Chakraborty J. Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). Autophagy 2025; 21:897-909. [PMID: 39513197 DOI: 10.1080/15548627.2024.2426116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024] Open
Abstract
Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through in vitro biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance in vivo, we utilized porin (equivalent to VDAC1) knockout Drosophila line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.
Collapse
Affiliation(s)
- Moumita Roy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumangal Nandy
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Chayan Banerjee
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rupsha Mondal
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Elena Ziviani
- Department of Biology, University of Padova, Padova, Italy
| | - Joy Chakraborty
- Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Biological Sciences, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Hashimi H, Gahura O, Pánek T. Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion. Biol Rev Camb Philos Soc 2025; 100:920-935. [PMID: 39557625 PMCID: PMC11885689 DOI: 10.1111/brv.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Mitochondria are dynamic and plastic, undergoing continuous fission and fusion and rearrangement of their bioenergetic sub-compartments called cristae. These fascinating processes are best understood in animal and fungal models, which are taxonomically grouped together in the expansive Opisthokonta supergroup. In opisthokonts, crista remodelling and inner membrane fusion are linked by dynamin-related proteins (DRPs). Animal Opa1 (optical atrophy 1) and fungal Mgm1 (mitochondrial genome maintenance 1) are tacitly considered orthologs because their similar mitochondria-shaping roles are mediated by seemingly shared biochemical properties, and due to their presence in the two major opisthokontan subdivisions, Holozoa and Holomycota, respectively. However, molecular phylogenetics challenges this notion, suggesting that Opa1 and Mgm1 likely had separate, albeit convergent, evolutionary paths. Herein, we illuminate disparities in proteolytic processing, structure, and interaction network that may have bestowed on Opa1 and Mgm1 distinct mechanisms of membrane remodelling. A key disparity is that, unlike Mgm1, Opa1 directly recruits the mitochondrial phospholipid cardiolipin to remodel membranes. The differences outlined herein between the two DRPs could have broader impacts on mitochondrial morphogenesis. Outer and inner membrane fusion are autonomous in animals, which may have freed Opa1 to repurpose its intrinsic activity to remodel cristae, thereby regulating the formation of respiratory chain supercomplexes. More significantly, Opa1-mediated crista remodelling has emerged as an integral part of cytochrome c-regulated apoptosis in vertebrates, and perhaps in the cenancestor of animals. By contrast, outer and inner membrane fusion are coupled in budding yeast. Consequently, Mgm1 membrane-fusion activity is inextricable from its role in the biogenesis of fungal lamellar cristae. These disparate mitochondrial DRPs ultimately may have contributed to the different modes of multicellularity that have evolved within Opisthokonta.
Collapse
Affiliation(s)
- Hassan Hashimi
- Institute of Parasitology, Biology CentreCzech Academy of SciencesBranišovská 31České Budějovice370 05Czechia
- Department of Molecular Biology and Genetics, Faculty of ScienceUniversity of South BohemiaBranišovská 31České Budějovice370 05Czechia
| | - Ondřej Gahura
- Institute of Parasitology, Biology CentreCzech Academy of SciencesBranišovská 31České Budějovice370 05Czechia
| | - Tomáš Pánek
- Department of Zoology, Faculty of ScienceCharles UniversityViničná 7Prague 2128 00Czechia
| |
Collapse
|
9
|
Hu X, Lv J, Zhao Y, Li X, Qi W, Wang X. Important regulatory role of mitophagy in diabetic microvascular complications. J Transl Med 2025; 23:269. [PMID: 40038741 PMCID: PMC11877814 DOI: 10.1186/s12967-025-06307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 03/06/2025] Open
Abstract
Microvascular complications of diabetes pose a significant threat to global health, mainly including diabetic kidney disease (DKD), diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and diabetic cardiomyopathy (DCM), which can ultimately lead to kidney failure, blindness, disability, and heart failure. With the increasing prevalence of diabetes, the search for new therapeutic targets for diabetic microvascular complications is imminent. Mitophagy is a widespread and strictly maintained process of self-renewal and energy metabolism that plays an important role in reducing inflammatory responses, inhibiting reactive oxygen species accumulation, and maintaining cellular energy metabolism. Hyperglycemia results in impaired mitophagy, which leads to mitochondrial dysfunction and ultimately exacerbates disease progression. This article summarizes the relevant molecular mechanisms of mitophagy and reviews the current status of research on regulating mitophagy as a potential treatment for diabetic microvascular complications, attempting to give new angles on the treatment of diabetic microvascular complications.
Collapse
Affiliation(s)
- Xiangjie Hu
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiao Lv
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yunyun Zhao
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130017, China.
| | - Xiuge Wang
- Endocrinology Department, First Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China.
| |
Collapse
|
10
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Xu J, Li C, Huang T, Zhou L, Zhao X, Sun Y, Ma J. Prohibitin of swine antagonizes SADS-CoV replication and virus-induced apoptosis. J Gen Virol 2025; 106. [PMID: 39932402 DOI: 10.1099/jgv.0.002073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Swine acute diarrhoea syndrome coronavirus (SADS-CoV) is an enveloped, single-stranded positive-sense RNA virus that causes acute diarrhoea and death in piglets, resulting in significant economic losses to the pig farming industry. Studying the interaction patterns between SADS-CoV and host proteins can provide guidance for the development of antiviral drugs. In previous work, we identified 289 host proteins interacting with the SADS-CoV M protein through glutathione S-transferase pull down combined with LC-MS/MS. Here, we focus on prohibitin (PHB), which is associated with the stability of mitochondrial function in cells, and demonstrate that there is a physical interaction and cellular co-localization relationship between the SADS-CoV M protein and PHB protein. Additionally, SADS-CoV-mediated infection has a strong correlation with PHB expression, and regulating PHB expression dose-dependently antagonizes SADS-CoV replication. Moreover, we discovered that PHB has an antagonistic effect on apoptosis induced by SADS-CoV infection. Overall, this work helps to elucidate the role of the PHB protein in the SADS-CoV life cycle, providing a potential target for antiviral research.
Collapse
Affiliation(s)
- Jingya Xu
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Cheng Li
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Tuoxin Huang
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
12
|
Ban T, Kuroda K, Nishigori M, Yamashita K, Ohta K, Koshiba T. Prohibitin 1 tethers lipid membranes and regulates OPA1-mediated membrane fusion. J Biol Chem 2025; 301:108076. [PMID: 39675719 PMCID: PMC11760825 DOI: 10.1016/j.jbc.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Prohibitins (PHBs) are ubiquitously expressed proteins in the mitochondrial inner membrane (MIM) that provide membrane scaffolds for both mitochondrial proteins and phospholipids. Eukaryotic PHB complexes contain two highly homologous PHB subunits, PHB1 and PHB2, which are involved in various cellular processes, including metabolic control through the regulation of mitochondrial dynamics and integrity. Their mechanistic actions at the molecular level, however, particularly those of PHB1, remain poorly understood. To gain insight into the mechanistic actions of PHB1, we established an overexpression system for the full-length recombinant protein using silkworm larvae and characterized its biophysical properties in vitro. Using recombinant PHB1 proteoliposomes reconstituted into MIM-mimicking phospholipids, we found that PHB1 forms an oligomer via its carboxy-terminal coiled-coil region. A proline substitution into the PHB1 coiled-coil collapsed its well-ordered oligomeric state, and its destabilization correlated with mitochondrial morphologic defects. Negative-staining electron microscopy revealed that homotypic PHB1-PHB1 interactions via the coiled-coil also induced liposome tethering with remodeling of the lipid membrane structure. We clarified that PHB1 promotes membrane fusion mediated by optic atrophy 1 (OPA1), a key regulator of MIM fusion. Additionally, the presence of PHB1 reduces the dependency of lipids and OPA1 for completing the fusion process. Our in vitro study provides structural insight into how the mitochondrial scaffold plays a crucial role in regulating mitochondrial dynamics. Modulating the structure and/or function of PHB1 may offer new therapeutic potential, not only for mitochondrial dysfunction but also for other cell-related disorders.
Collapse
Affiliation(s)
- Tadato Ban
- Department of Protein Biochemistry, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Kimiya Kuroda
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Mitsuhiro Nishigori
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Keisuke Yamashita
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Fukuoka, Japan
| | - Takumi Koshiba
- Department of Chemistry, Faculty of Science, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
13
|
Keerthiga R, Xie Y, Pei DS, Fu A. The multifaceted modulation of mitochondrial metabolism in tumorigenesis. Mitochondrion 2025; 80:101977. [PMID: 39505244 DOI: 10.1016/j.mito.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Changes in mitochondrial metabolism produce a malignant transformation from normal cells to tumor cells. Mitochondrial metabolism, comprising bioenergetic metabolism, biosynthetic process, biomolecular decomposition, and metabolic signal conversion, obviously forms a unique sign in the process of tumorigenesis. Several oncometabolites produced by mitochondrial metabolism maintain tumor phenotype, which are recognized as tumor indicators. The mitochondrial metabolism synchronizes the metabolic and genetic outcome to the potent tumor microenvironmental signals, thereby further promoting tumor initiation. Moreover, the bioenergetic and biosynthetic metabolism within tumor mitochondria orchestrates dynamic contributions toward cancer progression and invasion. In this review, we describe the contribution of mitochondrial metabolism in tumorigenesis through shaping several hallmarks such as microenvironment modulation, plasticity, mitochondrial calcium, mitochondrial dynamics, and epithelial-mesenchymal transition. The review will provide a new insight into the abnormal mitochondrial metabolism in tumorigenesis, which will be conducive to tumor prevention and therapy through targeting tumor mitochondria.
Collapse
Affiliation(s)
- Rajendiran Keerthiga
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China; Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
14
|
Chan SW. CRISPR-editing of the virus vector Aedes albopictus cell line C6/36, illustrated by prohibitin 2 gene knockout. MethodsX 2024; 13:102817. [PMID: 39049926 PMCID: PMC11267050 DOI: 10.1016/j.mex.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
15
|
Krestinin R, Kobyakova M, Baburina Y, Sotnikova L, Krestinina O. Astaxanthin Protects Against H 2O 2- and Doxorubicin-Induced Cardiotoxicity in H9c2 Rat Myocardial Cells. Life (Basel) 2024; 14:1409. [PMID: 39598207 PMCID: PMC11595901 DOI: 10.3390/life14111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Astaxanthin (AST) is a carotenoid that has positive effects on various organs and tissues. It also exhibits a cardioprotective action. In this study, the influence of AST on the survival of H9c2 cardiomyocytes under hydrogen peroxide (H2O2)- and doxorubicin (DOX)-induced cardiotoxicity was investigated. Under these conditions, the content of cytosolic Ca2+ was measured, and changes in the area of the mitochondrial mass, as well as in the content of the voltage-dependent anion channel 1 (VDAC1), the autophagy marker LC3A/B, and the pro-apoptotic transcription factor homologous protein (CHOP), were determined. It was found that AST removed the cytotoxic effect of H2O2 and DOX, while cell survival increased, and the mitochondrial mass did not differ from the control. At the same time, a decrease in the content of cytosolic Ca2+ and the restoration of the VDAC1 level to values close to the control were observed. The restoration of the CHOP level suggests a reduction in endoplasmic reticulum (ER) stress in cells. The results allow us to consider AST as a potential agent in the prevention and/or treatment of cardiac diseases associated with oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (R.K.); (M.K.); (Y.B.); (L.S.)
| |
Collapse
|
16
|
Kaur H, Carrillo O, Garcia I, Ramos I, St Vallier S, De La Torre P, Lopez A, Keniry M, Bazan D, Elizondo J, Grishma KC, Ann MacMillan-Crow L, Gilkerson R. Differentiation activates mitochondrial OPA1 processing in myoblast cell lines. Mitochondrion 2024; 78:101933. [PMID: 38986925 PMCID: PMC11390305 DOI: 10.1016/j.mito.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial optic atrophy-1 (OPA1) plays key roles in adapting mitochondrial structure to bioenergetic function. When transmembrane potential across the inner membrane (Δψm) is intact, long (L-OPA1) isoforms shape the inner membrane through membrane fusion and the formation of cristal junctions. When Δψm is lost, however, OPA1 is cleaved to short, inactive S-OPA1 isoforms by the OMA1 metalloprotease, disrupting mitochondrial structure and priming cellular stress responses such as apoptosis. Previously, we demonstrated that L-OPA1 of H9c2 cardiomyoblasts is insensitive to loss of Δψm via challenge with the protonophore carbonyl cyanide chlorophenyl hydrazone (CCCP), but that CCCP-induced OPA1 processing is activated upon differentiation in media with low serum supplemented with all-trans retinoic acid (ATRA). Here, we show that this developmental induction of OPA1 processing in H9c2 cells is independent of ATRA; moreover, pretreatment of undifferentiated H9c2s with chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, recapitulates the Δψm-sensitive OPA1 processing observed in differentiated H9c2s. L6.C11 and C2C12 myoblast lines display the same developmental and CAP-sensitive induction of OPA1 processing, demonstrating a general mechanism of OPA1 regulation in mammalian myoblast cell settings. Restoration of CCCP-induced OPA1 processing correlates with increased apoptotic sensitivity. Moreover, OPA1 knockdown indicates that intact OPA1 is necessary for effective myoblast differentiation. Taken together, our results indicate that a novel developmental mechanism acts to regulate OMA1-mediated OPA1 processing in myoblast cell lines, in which differentiation engages mitochondrial stress sensing.
Collapse
Affiliation(s)
- Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Iraselia Garcia
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Department of Biology, South Texas College, United States
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Shaynah St Vallier
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Patrick De La Torre
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Alma Lopez
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Megan Keniry
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Daniel Bazan
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Jorge Elizondo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - K C Grishma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Medical Laboratory Sciences/Health & Biomedical Sciences, The University of Texas Rio Grande Valley, United States.
| |
Collapse
|
17
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
18
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
19
|
Lu Y, Li L, Li J, Wang M, Yang J, Zhang M, Jiang Q, Tang X. Prx1/PHB2 axis mediates mitophagy in oral leukoplakia cellular senescence. Pathol Res Pract 2024; 260:155411. [PMID: 38936092 DOI: 10.1016/j.prp.2024.155411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Oral leukoplakia (OLK) is the most common oral potentially malignant disorder (OPMD), which can be malignantly transformed into oral squamous cell carcinoma (OSCC). Peroxiredoxin1(Prx1) has been predicted to bind to Prohibitin2 (PHB2), which confers to affect OLK progression; however, the mechanism of Prx1/PHB2 mediated mitophagy involved in OLK remains unclear. METHODS This study aimed to explore the mechanism of the Prx1/PHB2 axis on senescence in OLK through mediating mitophagy. The positive rate of Ki67 and the expression of p21, p16, PHB2, and LC3 in human normal, OLK, and OSCC tissues were detected by immunohistochemical staining. The mitophagy and mitochondrial function changes were then analyzed in Prx1 knockdown and Prx1C52S mutations in dysplastic oral keratinocyte (DOK) cells treated with H2O2. In situ Proximity Ligation Assay combined with co-immunoprecipitation was used to detect the interaction between Prx1 and PHB2. RESULTS Clinically, the positive rate of Ki67 progressively increased from normal to OLK, OLK with dysplasia, and OSCC. Higher p21, p16, PHB2, and LC3 expression levels were observed in OLK with dysplasia than in normal and OSCC tissues. In vitro, PHB2 and LC3II expression gradually increased with the degree of DOK cell senescence. Prx1/PHB2 regulated mitophagy and affected senescence in H2O2-induced DOK cells. Furthermore, Prx1C52S mutation specifically reduced interaction between Prx1 and PHB2. Prx1Cys52 is associated with mitochondrial reactive oxygen species (ROS) accumulated and cell cycle arrest. CONCLUSION Prx1Cys52 functions as a redox sensor that binds to PHB2 and regulates mitophagy in the senescence of OLK, suggesting its potential as a clinical target.
Collapse
Affiliation(s)
- Yunping Lu
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Lingyu Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Li
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Wang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Jing Yang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Min Zhang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatology Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Xiaofei Tang
- Division of Oral Pathology, Beijing Institute of Dental Research, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
20
|
Tao J, Qiu J, Zheng J, Li R, Chang X, He Q. Phosphoglycerate mutase 5 exacerbates alcoholic cardiomyopathy in male mice by inducing prohibitin-2 dephosphorylation and impairing mitochondrial quality control. Clin Transl Med 2024; 14:e1806. [PMID: 39143739 PMCID: PMC11324691 DOI: 10.1002/ctm2.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The induction of mitochondrial quality control (MQC) mechanisms is essential for the re-establishment of mitochondrial homeostasis and cellular bioenergetics during periods of stress. Although MQC activation has cardioprotective effects in various cardiovascular diseases, its precise role and regulatory mechanisms in alcoholic cardiomyopathy (ACM) remain incompletely understood. METHODS We explored whether two mitochondria-related proteins, phosphoglycerate mutase 5 (Pgam5) and prohibitin 2 (Phb2), influence MQC in male mice during ACM. RESULTS Myocardial Pgam5 expression was upregulated in a male mouse model of ACM. Notably, following ACM induction, heart dysfunction was markedly reversed in male cardiomyocyte-specific Pgam5 knockout (Pgam5cKO) mice. Meanwhile, in alcohol-treated male mouse-derived neonatal cardiomyocytes, Pgam5 depletion preserved cell survival and restored mitochondrial dynamics, mitophagy, mitochondrial biogenesis and the mitochondrial unfolded protein response (mtUPR). We further found that in alcohol-treated cardiomyocyte, Pgam5 binds Phb2 and induces its dephosphorylation at Ser91. Alternative transduction of phospho-mimetic (Phb2S91D) and phospho-defective (Phb2S9A) Phb2 mutants attenuated and enhanced, respectively, alcohol-related mitochondrial dysfunction in cardiomyocytes. Moreover, transgenic male mice expressing Phb2S91D were resistant to alcohol-induced heart dysfunction. CONCLUSIONS We conclude that ACM-induced Pgam5 upregulation results in Pgam5-dependent Phb2S91 dephosphorylation, leading to MQC destabilisation and mitochondrial dysfunction in heart. Therefore, modulating the Pgam5/Phb2 interaction could potentially offer a novel therapeutic strategy for ACM in male mice. HIGHLIGHTS Pgam5 knockout attenuates alcohol-induced cardiac histopathology and heart dysfunction in male mice. Pgam5 KO reduces alcohol-induced myocardial inflammation, lipid peroxidation and metabolic dysfunction in male mice. Pgam5 depletion protects mitochondrial function in alcohol-exposed male mouse cardiomyocytes. Pgam5 depletion normalises MQC in ACM. EtOH impairs MQC through inducing Phb2 dephosphorylation at Ser91. Pgam5 interacts with Phb2 and induces Phb2 dephosphorylation. Transgenic mice expressing a Ser91 phospho-mimetic Phb2 mutant are resistant to ACM.
Collapse
Affiliation(s)
- Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxiong Qiu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junmeng Zheng
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruibing Li
- Department of Clinical Laboratory Medicine, The First Medical Centre, Medical School of Chinese People's Liberation Army, Beijing, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China, Xianning, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
22
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
23
|
Chumchanchira C, Ramphan S, Paemanee A, Roytrakul S, Lithanatudom P, Smith DR. A 2D-proteomic analysis identifies proteins differentially regulated by two different dengue virus serotypes. Sci Rep 2024; 14:8287. [PMID: 38594317 PMCID: PMC11003990 DOI: 10.1038/s41598-024-57930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
The mosquito transmitted dengue virus (DENV) is a major public health problem in many tropical and sub-tropical countries around the world. Both vaccine development and drug development are complex as the species Dengue virus consist of four distinct viruses (DENV 1 to DENV 4) each of which is composed of multiple lineages and strains. To understand the interaction of DENV with the host cell machinery, several studies have undertaken in vitro proteomic analysis of different cell lines infected with DENV. Invariably, these studies have utilized DENV 2. In this study we sought to define proteins that are differentially regulated by two different DENVs, DENV 2 and DENV 4. A 2-dimensional proteomic analysis identified some 300 protein spots, of which only 11 showed differential expression by both DENVs. Of these, only six were coordinately regulated. One protein, prohibitin 1 (PHB1) was downregulated by infection with both DENVs. Overexpression of PHB1 increased DENV protein expression, level of infection and genome copy number. DENV E protein colocalized with PHB, and there was a direct interaction between DENV 2 E protein and PHB1, but not between DENV 4 E protein and PHB1. The low number of proteins showing coordinate regulation after infection by different DENVs is a cause for concern, particularly in determining new druggable targets, and suggests that studies should routinely investigate multiple DENVs.
Collapse
Affiliation(s)
- Chanida Chumchanchira
- PhD Degree Program in Biology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
24
|
Mise K, Long J, Galvan DL, Ye Z, Fan G, Sharma R, Serysheva II, Moore TI, Jeter CR, Anna Zal M, Araki M, Wada J, Schumacker PT, Chang BH, Danesh FR. NDUFS4 regulates cristae remodeling in diabetic kidney disease. Nat Commun 2024; 15:1965. [PMID: 38438382 PMCID: PMC10912198 DOI: 10.1038/s41467-024-46366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jianyin Long
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel L Galvan
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zengchun Ye
- Division of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rajesh Sharma
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Travis I Moore
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Collene R Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Anna Zal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology & Metabolism, Okayama University Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama, Japan
| | - Paul T Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Benny H Chang
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad R Danesh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Li W, Zhu H, Chen J, Ru B, Peng Q, Miao J, Liu X. PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae. Nat Commun 2024; 15:1967. [PMID: 38438368 PMCID: PMC10912746 DOI: 10.1038/s41467-024-46290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Host-derived reactive oxygen species (ROS) are an important defense means to protect against pathogens. Although mitochondria are the main intracellular targets of ROS, how pathogens regulate mitochondrial physiology in response to oxidative stress remains elusive. Prohibitin 2 (PHB2) is an inner mitochondrial membrane (IMM) protein, recognized as a mitophagy receptor in animals and fungi. Here, we find that an ANK and FYVE domain-containing protein PsAF5, is an adapter of PsPHB2, interacting with PsATG8 under ROS stress. Unlike animal PHB2 that can recruit ATG8 directly to mitochondria, PsPHB2 in Phytophthora sojae cannot recruit PsATG8 to stressed mitochondria without PsAF5. PsAF5 deletion impairs mitophagy under ROS stress and increases the pathogen's sensitivity to H2O2, resulting in the attenuation of P. sojae virulence. This discovery of a PsPHB2-PsATG8 adapter (PsAF5) in plant-pathogenic oomycetes reveals that mitophagy induction by IMM proteins is conserved in eukaryotes, but with differences in the details of ATG8 recruitment.
Collapse
Affiliation(s)
- Wenhao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongwei Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinzhu Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Binglu Ru
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qin Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing, 100193, China.
| |
Collapse
|
26
|
Polanco CM, Cavieres VA, Galarza AJ, Jara C, Torres AK, Cancino J, Varas-Godoy M, Burgos PV, Tapia-Rojas C, Mardones GA. GOLPH3 Participates in Mitochondrial Fission and Is Necessary to Sustain Bioenergetic Function in MDA-MB-231 Breast Cancer Cells. Cells 2024; 13:316. [PMID: 38391929 PMCID: PMC10887169 DOI: 10.3390/cells13040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.
Collapse
Affiliation(s)
- Catalina M. Polanco
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
| | - Viviana A. Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Campus Los Leones, Providencia, Santiago 7510156, Chile
| | - Abigail J. Galarza
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Claudia Jara
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Angie K. Torres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Patricia V. Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Cheril Tapia-Rojas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago 7510156, Chile; (C.M.P.); (V.A.C.); (C.J.); (A.K.T.); (J.C.); (M.V.-G.); (P.V.B.)
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile
| | - Gonzalo A. Mardones
- Escuela de Medicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia 5110693, Chile;
| |
Collapse
|
27
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. EMBO J 2024; 43:391-413. [PMID: 38225406 PMCID: PMC10897290 DOI: 10.1038/s44318-024-00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria, while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and show a compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Paula P Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Virly Y Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Juan C Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Bridget E Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai, China
| | - Julie L McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Leillani L Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
29
|
Xu L, Xiang W, Yang J, Gao J, Wang X, Meng L, Ye K, Zhao XH, Zhang XD, Jin L, Ye Y. PHB2 promotes SHIP2 ubiquitination via the E3 ligase NEDD4 to regulate AKT signaling in gastric cancer. J Exp Clin Cancer Res 2024; 43:17. [PMID: 38200519 PMCID: PMC10782615 DOI: 10.1186/s13046-023-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Prohibitin 2 (PHB2) exhibits opposite functions of promoting or inhibiting tumour across various cancer types. In this study, we aim to investigate its functions and underlying mechanisms in the context of gastric cancer (GC). METHODS PHB2 protein expression levels in GC and normal tissues were examined using western blot and immunohistochemistry. PHB2 expression level associations with patient outcomes were examined through Kaplan-Meier plotter analysis utilizing GEO datasets (GSE14210 and GSE29272). The biological role of PHB2 and its subsequent regulatory mechanisms were elucidated in vitro and in vivo. GC cell viability and proliferation were assessed using MTT cell viability analysis, clonogenic assays, and BrdU incorporation assays, while the growth of GC xenografted tumours was measured via IHC staining of Ki67. The interaction among PHB2 and SHIP2, as well as between SHIP2 and NEDD4, was identified through co-immunoprecipitation, GST pull-down assays, and deletion-mapping experiments. SHIP2 ubiquitination and degradation were assessed using cycloheximide treatment, plasmid transfection and co-immunoprecipitation, followed by western blot analysis. RESULTS Our analysis revealed a substantial increase in PHB2 expression in GC tissues compared to adjacent normal tissues. Notably, higher PHB2 levels correlated with poorer patient outcomes, suggesting its clinical relevance. Functionally, silencing PHB2 in GC cells significantly reduced cell proliferation and retarded GC tumour growth, whereas overexpression of PHB2 further enhanced GC cell proliferation. Mechanistically, PHB2 physically interacted with Src homology 2-containing inositol 5-phosphatase 2 (SHIP2) in the cytoplasm of GC cells, thus leading to SHIP2 degradation via its novel E3 ligase NEDD4. It subsequently activated the PI3K/Akt signaling pathway and thus promoted GC cell proliferation. CONCLUSIONS Our findings highlight the importance of PHB2 upregulation in driving GC progression and its association with adverse patient outcomes. Understanding the functional impact of PHB2 on GC growth contributes valuable insights into the molecular underpinnings of GC and may pave the way for the development of targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Kaihong Ye
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, 2308, Australia.
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial and Zhengzhou City Key Laboratory of Non-Coding RNA and Cancer Metabolism, Henan International Join Laboratory of Non-Coding RNA and Metabolism in Cancer, Henan Provincial People's Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450053, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, 2308, Australia.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
30
|
Abstract
During placentation, villous cytotrophoblast (CTB) stem cells proliferate and fuse, giving rise to the multinucleated syncytiotrophoblast (STB), which represents the terminally differentiated villous layer as well as the maternal-fetal interface. The syncytiotrophoblast is at the forefront of nutrient, gas, and waste exchange while also harboring essential endocrine functions to support pregnancy and fetal development. Considering that mitochondrial dynamics and respiration have been implicated in stem cell fate decisions of several cell types and that the placenta is a mitochondria-rich organ, we will highlight the role of mitochondria in facilitating trophoblast differentiation and maintaining trophoblast function. We discuss both the process of syncytialization and the distinct metabolic characteristics associated with CTB and STB sub-lineages prior to and during syncytialization. As mitochondrial respiration is tightly coupled to redox homeostasis, we emphasize the adaptations of mitochondrial respiration to the hypoxic placental environment. Furthermore, we highlight the critical role of mitochondria in conferring the steroidogenic potential of the STB following differentiation. Ultimately, mitochondrial function and morphological changes centrally regulate respiration and influence trophoblast fate decisions through the production of reactive oxygen species (ROS), whose levels modulate the transcriptional activation or suppression of pluripotency or commitment genes.
Collapse
Affiliation(s)
- Tina Podinić
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andie MacAndrew
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Sandeep Raha
- Department of Pediatrics and Graduate Program in Medical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
31
|
Caron C, Bertolin G. Cristae shaping and dynamics in mitochondrial function. J Cell Sci 2024; 137:jcs260986. [PMID: 38197774 DOI: 10.1242/jcs.260986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
32
|
Zhou X, Li Y, Liu J, Lu W, Liu S, Li J, He Q. Pan-cancer Analysis Combined with Experiments Deciphers PHB Regulation for Breast Cancer Cell Survival and Predicts Biomarker Function. Comb Chem High Throughput Screen 2024; 27:2753-2763. [PMID: 37957856 PMCID: PMC11497141 DOI: 10.2174/0113862073266248231024113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Breast carcinoma has become the leading fatal disease among women. The location of prohibitin in the chromosome is close to the breast cancer susceptibility gene 1 (BRCA1). Accumulated research reported that prohibitin could interact with a variety of transcription factors and cell cycle-regulating proteins. OBJECTIVE This present study aims to comprehensively explore and reveal the biological functions of prohibitin on breast cancer via The Cancer Genome Atlas (TCGA) and validation experiment in vitro. METHODS Exploring the expression level of prohibitin across 27 tumors based on the TGGA database by bioinformatic methods and its relationship with tumor immune infiltration. Furthermore, we thus analyzed the biological roles of prohibitin on human breast cancer cell line MCF- 7 with pEGFP-prohibitin overexpression plasmid by western blotting and transwell-assay. RESULTS Firstly, we found prohibitin is overexpressed in most tumors based on The Cancer Genome Atlas database, and the negative relationships between prohibitin and tumors infiltrating lymphocytes including B lymphocyte, CD4 T lymphocyte, CD8 T lymphocyte, Neutrophil, Macrophage and Dendritic, and its significant correlation with the prognosis of human cancer. In vitro, expression not only inhibited cell viability and invasive abilities but also increased the apoptosis percentage of cells with a decreased percentage of the S phase and an increased G2 phase. The reduction of Bcl-2 was observed when prohibitin was upregulated, although the expression of E2F-1 did not change. CONCLUSION Although prohibitin is over-expressed in various cancer types, it functions as an important tumor suppressor that may suppress breast cancer cell proliferation and the invasive ability of MCF-7 by influencing its DNA synthesis and promoting cell apoptosis. All these may be likely associated with P53, erbB-2, and Bcl-2.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Yue Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Jiali Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Wei Lu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Sanyuan Liu
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Jing Li
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| | - Qian He
- Department of Clinical Laboratories, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
33
|
Sun J, Liu C, Liu YY, Guo ZA. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 2024; 56:167-179. [PMID: 37450241 DOI: 10.1007/s11255-023-03686-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.
Collapse
Affiliation(s)
- Jun Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Ying Liu
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhao-An Guo
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
34
|
Sánchez-Vera I, Saura-Esteller J, Núñez-Vázquez S, Cosialls AM, Ghashghaei O, Lavilla R, Pons G, Gil J, Iglesias-Serret D. The prohibitin-binding compound fluorizoline induces the pro-inflammatory cytokines interleukin-8 and interleukin-6 through the activation of JNK and p38 MAP kinases. Biochem Pharmacol 2023; 218:115860. [PMID: 37884196 DOI: 10.1016/j.bcp.2023.115860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Fluorizoline is a prohibitin (PHB)-binding compound that induces apoptosis in several cancer cell lines as well as in primary cells from hematologic malignancies. In this study, we show that fluorizoline treatment triggers the activation of the stress-activated kinases c-Jun N-terminal kinase (JNK) and p38 prior to caspase activation in human cell lines. However, the blockage of p38 and JNK activity with chemical inhibitors or siRNA-mediated downregulation of MAPK14 (p38) does not prevent fluorizoline-induced apoptosis, suggesting that the activation of these kinases plays an alternative role in the cell response to fluorizoline treatment. Here, we describe that fluorizoline treatment leads to the secretion of pro-inflammatory cytokines interleukin-8 (IL-8) and interleukin-6 (IL-6). Importantly, we demonstrate that the activation of the stress-activated kinases JNK and p38 mediates the secretion of both IL-8 and IL-6. This study shows novel insights into the pro-inflammatory role exhibited by a compound that binds to PHB, thus supporting the potential of PHBs as anti-inflammatory proteins.
Collapse
Affiliation(s)
- Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain; Departament d'Infermeria Fonamental i Clínica, Facultat d'Infermeria, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry. Faculty of Pharmacy and Food Sciences and Institute of Biomedicine (IBUB), University of Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Daniel Iglesias-Serret
- Departament d'Infermeria Fonamental i Clínica, Facultat d'Infermeria, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Vic, Barcelona, Spain
| |
Collapse
|
35
|
Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, Landoni JC, Rath S, Inde Z, Lugo CM, Luce BE, Ge Y, McDonald JL, Ali I, Ha LL, Kleinstiver BP, Chan DC, Sarosiek KA, Chao LH. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524176. [PMID: 36711707 PMCID: PMC9882235 DOI: 10.1101/2023.01.16.524176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cristae membrane state plays a central role in regulating mitochondrial function and cellular metabolism. The protein Optic atrophy 1 (Opa1) is an important crista remodeler that exists as two forms in the mitochondrion, a membrane-anchored long form (l-Opa1) and a processed short form (s-Opa1). The mechanisms for how Opa1 influences cristae shape have remained unclear due to lack of native three-dimensional views of cristae. We perform in situ cryo-electron tomography of cryo-focused ion beam milled mouse embryonic fibroblasts with defined Opa1 states to understand how each form of Opa1 influences cristae architecture. In our tomograms, we observe a variety of cristae shapes with distinct trends dependent on s-Opa1:l-Opa1 balance. Increased l-Opa1 levels promote cristae stacking and elongated mitochondria while increased s-Opa1 levels correlated with irregular cristae packing and round mitochondria shape. Functional assays indicate a role for l-Opa1 in wild-type apoptotic and calcium handling responses, and compromised respiratory function under Opa1 imbalance. In summary, we provide three-dimensional visualization of cristae architecture to reveal relationships between mitochondrial ultrastructure and cellular function dependent on Opa1-mediated membrane remodeling.
Collapse
Affiliation(s)
- Michelle Y. Fry
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Paula P. Navarro
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Pusparanee Hakim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Virly Y. Ananda
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Juan C. Landoni
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sneha Rath
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
| | | | - Bridget E. Luce
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
| | - Yifan Ge
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
- Current address: Interdisciplinary Research Center of Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, China
| | - Julie L. McDonald
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Current address: Massachusetts Institute of Technology, Biology, Cambridge, USA
| | - Ilzat Ali
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| | - Leillani L. Ha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Massachusetts General Hospital, Boston, USA
- Department of Pathology, Harvard Medical School, Boston, USA
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
- Molecular and Integrative Physiological Sciences (MIPS) Program, Harvard T.H. Chan School of Public Health, Boston, USA
- Lab of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Luke H. Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, USA
| |
Collapse
|
36
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
37
|
Nikiforova AB, Baburina YL, Borisova MP, Surin AK, Kharechkina ES, Krestinina OV, Suvorina MY, Kruglova SA, Kruglov AG. Mitochondrial F-ATP Synthase Co-Migrating Proteins and Ca 2+-Dependent Formation of Large Channels. Cells 2023; 12:2414. [PMID: 37830628 PMCID: PMC10572550 DOI: 10.3390/cells12192414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Monomers, dimers, and individual FOF1-ATP synthase subunits are, presumably, involved in the formation of the mitochondrial permeability transition pore (PTP), whose molecular structure, however, is still unknown. We hypothesized that, during the Ca2+-dependent assembly of a PTP complex, the F-ATP synthase (subunits) recruits mitochondrial proteins that do not interact or weakly interact with the F-ATP synthase under normal conditions. Therefore, we examined whether the PTP opening in mitochondria before the separation of supercomplexes via BN-PAGE will increase the channel stability and channel-forming capacity of isolated F-ATP synthase dimers and monomers in planar lipid membranes. Additionally, we studied the specific activity and the protein composition of F-ATP synthase dimers and monomers from rat liver and heart mitochondria before and after PTP opening. Against our expectations, preliminary PTP opening dramatically suppressed the high-conductance channel activity of F-ATP synthase dimers and monomers and decreased their specific "in-gel" activity. The decline in the channel-forming activity correlated with the reduced levels of as few as two proteins in the bands: methylmalonate-semialdehyde dehydrogenase and prohibitin 2. These results indicate that proteins co-migrating with the F-ATP synthase may be important players in PTP formation and stabilization.
Collapse
Affiliation(s)
- Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Yulia L. Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Marina P. Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Alexey K. Surin
- Branch of the Shemyakin—Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, 142290 Pushchino, Russia;
- State Research Centre for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Ekaterina S. Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Olga V. Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| | - Maria Y. Suvorina
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Russia;
| | - Svetlana A. Kruglova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia;
| | - Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (A.B.N.); (Y.L.B.); (M.P.B.); (E.S.K.); (O.V.K.)
| |
Collapse
|
38
|
Ježek P, Jabůrek M, Holendová B, Engstová H, Dlasková A. Mitochondrial Cristae Morphology Reflecting Metabolism, Superoxide Formation, Redox Homeostasis, and Pathology. Antioxid Redox Signal 2023; 39:635-683. [PMID: 36793196 PMCID: PMC10615093 DOI: 10.1089/ars.2022.0173] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Significance: Mitochondrial (mt) reticulum network in the cell possesses amazing ultramorphology of parallel lamellar cristae, formed by the invaginated inner mitochondrial membrane. Its non-invaginated part, the inner boundary membrane (IBM) forms a cylindrical sandwich with the outer mitochondrial membrane (OMM). Crista membranes (CMs) meet IBM at crista junctions (CJs) of mt cristae organizing system (MICOS) complexes connected to OMM sorting and assembly machinery (SAM). Cristae dimensions, shape, and CJs have characteristic patterns for different metabolic regimes, physiological and pathological situations. Recent Advances: Cristae-shaping proteins were characterized, namely rows of ATP-synthase dimers forming the crista lamella edges, MICOS subunits, optic atrophy 1 (OPA1) isoforms and mitochondrial genome maintenance 1 (MGM1) filaments, prohibitins, and others. Detailed cristae ultramorphology changes were imaged by focused-ion beam/scanning electron microscopy. Dynamics of crista lamellae and mobile CJs were demonstrated by nanoscopy in living cells. With tBID-induced apoptosis a single entirely fused cristae reticulum was observed in a mitochondrial spheroid. Critical Issues: The mobility and composition of MICOS, OPA1, and ATP-synthase dimeric rows regulated by post-translational modifications might be exclusively responsible for cristae morphology changes, but ion fluxes across CM and resulting osmotic forces might be also involved. Inevitably, cristae ultramorphology should reflect also mitochondrial redox homeostasis, but details are unknown. Disordered cristae typically reflect higher superoxide formation. Future Directions: To link redox homeostasis to cristae ultramorphology and define markers, recent progress will help in uncovering mechanisms involved in proton-coupled electron transfer via the respiratory chain and in regulation of cristae architecture, leading to structural determination of superoxide formation sites and cristae ultramorphology changes in diseases. Antioxid. Redox Signal. 39, 635-683.
Collapse
Affiliation(s)
- Petr Ježek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Jabůrek
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Engstová
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Andrea Dlasková
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
39
|
Bernstein HG, Smalla KH, Keilhoff G, Dobrowolny H, Kreutz MR, Steiner J. The many "Neurofaces" of Prohibitins 1 and 2: Crucial for the healthy brain, dysregulated in numerous brain disorders. J Chem Neuroanat 2023; 132:102321. [PMID: 37524128 DOI: 10.1016/j.jchemneu.2023.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are nearly ubiquitously expressed. They are localized in mitochondria, cytosol and cell nuclei. In the healthy CNS, they occur in neurons and non-neuronal cells (oligodendrocytes, astrocytes, microglia, and endothelial cells) and fulfill pivotal functions in brain development and aging, the regulation of brain metabolism, maintenance of structural integrity, synapse formation, aminoacidergic neurotransmission and, probably, regulation of brain action of certain hypothalamic-pituitary hormones.With regard to the diseased brain there is increasing evidence that prohibitins are prominently involved in numerous major diseases of the CNS, which are summarized and discussed in the present review (brain tumors, neurotropic viruses, Alzheimer disease, Down syndrome, Fronto-temporal and vascular dementia, dementia with Lewy bodies, Parkinson disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral sclerosis, stroke, alcohol use disorder, schizophrenia and autism). Unfortunately, there is no PHB-targeted therapy available for any of these diseases.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology, RG Neuroplasticity, D-39118 Magdeburg, Germany; Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany, Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael R Kreutz
- Leibniz Institute for Neurobiology, RG Neuroplastcity, D-39118 Magdeburg, Germany; University Medical Center Hamburg Eppendorf, Leibniz Group "Dendritic Organelles and Synaptic Function" ZMNH, Hamburg, Germany
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
40
|
Wang S, Zhao H, Lin S, Lv Y, Lin Y, Liu Y, Peng R, Jin H. New therapeutic directions in type II diabetes and its complications: mitochondrial dynamics. Front Endocrinol (Lausanne) 2023; 14:1230168. [PMID: 37670891 PMCID: PMC10475949 DOI: 10.3389/fendo.2023.1230168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
As important organelles of energetic and metabolism, changes in the dynamic state of mitochondria affect the homeostasis of cellular metabolism. Mitochondrial dynamics include mitochondrial fusion and mitochondrial fission. The former is coordinated by mitofusin-1 (Mfn1), mitofusin-2 (Mfn2), and optic atrophy 1 (Opa1), and the latter is mediated by dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1) and mitochondrial fission factor (MFF). Mitochondrial fusion and fission are generally in dynamic balance and this balance is important to preserve the proper mitochondrial morphology, function and distribution. Diabetic conditions lead to disturbances in mitochondrial dynamics, which in return causes a series of abnormalities in metabolism, including decreased bioenergy production, excessive production of reactive oxygen species (ROS), defective mitophagy and apoptosis, which are ultimately closely linked to multiple chronic complications of diabetes. Multiple researches have shown that the incidence of diabetic complications is connected with increased mitochondrial fission, for example, there is an excessive mitochondrial fission and impaired mitochondrial fusion in diabetic cardiomyocytes, and that the development of cardiac dysfunction induced by diabetes can be attenuated by inhibiting mitochondrial fission. Therefore, targeting the restoration of mitochondrial dynamics would be a promising therapeutic target within type II diabetes (T2D) and its complications. The molecular approaches to mitochondrial dynamics, their impairment in the context of T2D and its complications, and pharmacological approaches targeting mitochondrial dynamics are discussed in this review and promise benefits for the therapy of T2D and its comorbidities.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Haiyang Zhao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Suxian Lin
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yang Lv
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yue Lin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huanzhi Jin
- General Practitioner, The Third Affiliated Hospital of Shanghai University, Wenzhou No.3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, China
| |
Collapse
|
41
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, García-Báez J, Vadovsky A, Bazil JN, Javadov S. The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro. Cells 2023; 12:2017. [PMID: 37626827 PMCID: PMC10453793 DOI: 10.3390/cells12162017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Optic atrophy-1 (OPA1) plays a crucial role in the regulation of mitochondria fusion and participates in maintaining the structural integrity of mitochondrial cristae. Here we elucidate the role of OPA1 cleavage induced by calcium swelling in the presence of Myls22 (an OPA1 GTPase activity inhibitor) and TPEN (an OMA1 inhibitor). The rate of ADP-stimulated respiration was found diminished by both inhibitors, and they did not prevent Ca2+-induced mitochondrial respiratory dysfunction, membrane depolarization, or swelling. L-OPA1 cleavage was stimulated at state 3 respiration; therefore, our data suggest that L-OPA1 cleavage produces S-OPA1 to maintain mitochondrial bioenergetics in response to stress.
Collapse
Affiliation(s)
- Xavier R. Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Keishla M. Rodríguez-Graciani
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Jorge García-Báez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| | - Alyssa Vadovsky
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824-1046, USA; (A.V.); (J.N.B.)
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (J.G.-B.)
| |
Collapse
|
42
|
Wang J, Gao X, Du C, Tang D, Hou C, Zhu J. The Effect of Prohibitins on Mitochondrial Function during Octopus tankahkeei Spermiogenesis. Int J Mol Sci 2023; 24:10030. [PMID: 37373178 DOI: 10.3390/ijms241210030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are essential for spermiogenesis. Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins that act as scaffolds in the inner mitochondrial membrane. In this study, we analyzed the molecular structure and dynamic expression characteristics of Ot-PHBs, observed the colocalization of Ot-PHB1 with mitochondria and polyubiquitin, and studied the effect of phb1 knockdown on mitochondrial DNA (mtDNA) content, reactive oxygen species (ROS) levels, and apoptosis-related gene expression in spermatids. Our aim was to explore the effect of Ot-PHBs on mitochondrial function during the spermiogenesis of Octopus tankahkeei (O. tankahkeei), an economically important species in China. The predicted Ot-PHB1/PHB2 proteins contained an N-terminal transmembrane, a stomatin/prohibitin/flotillin/HflK/C (SPFH) domain (also known as the prohibitin domain), and a C-terminal coiled-coil domain. Ot-phb1/phb2 mRNA were widely expressed in the different tissues, with elevated expression in the testis. Further, Ot-PHB1 and Ot-PHB2 were highly colocalized, suggesting that they may function primarily as an Ot-PHB compiex in O. tankahkeei. Ot-PHB1 proteins were mainly expressed and localized in mitochondria during spermiogenesis, implying that their function may be localized to the mitochondria. In addition, Ot-PHB1 was colocalized with polyubiquitin during spermiogenesis, suggesting that it may be a polyubiquitin substrate that regulates mitochondrial ubiquitination during spermiogenesis to ensure mitochondrial quality. To further investigate the effect of Ot-PHBs on mitochondrial function, we knocked down Ot-phb1 and observed a decrease in mtDNA content, along with increases in ROS levels and the expressions of mitochondria-induced apoptosis-related genes bax, bcl2, and caspase-3 mRNA. These findings indicate that PHBs might influence mitochondrial function by maintaining mtDNA content and stabilizing ROS levels; in addition, PHBs might affect spermatocyte survival by regulating mitochondria-induced apoptosis during spermiogenesis in O. tankahkeei.
Collapse
Affiliation(s)
- Jingqian Wang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chen Du
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Daojun Tang
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Congcong Hou
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology, Ningbo University, Ministry of Education, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
43
|
Krestinin R, Baburina Y, Odinokova I, Kruglov A, Sotnikova L, Krestinina O. The Effect of Astaxanthin on Mitochondrial Dynamics in Rat Heart Mitochondria under ISO-Induced Injury. Antioxidants (Basel) 2023; 12:1247. [PMID: 37371979 DOI: 10.3390/antiox12061247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are dynamic organelles that produce ATP in the cell and are sensitive to oxidative damage that impairs mitochondrial function in pathological conditions. Mitochondria are involved not only in a healthy heart but also in the development of heart disease. Therefore, attempts should be made to enhance the body's defense response against oxidative stress with the help of various antioxidants in order to decrease mitochondrial damage and reduce mitochondrial dysfunction. Mitochondrial fission and fusion play an important role in the quality control and maintenance of mitochondria. The ketocarotenoid astaxanthin (AX) is an antioxidant able to maintain mitochondrial integrity and prevent oxidative stress. In the present study, we investigated the effect of the protective effect of AX on the functioning of rat heart mitochondria (RHM). Changes in the content of proteins responsible for mitochondrial dynamics, prohibitin 2 (PHB2) as a protein that performs the function of quality control of mitochondrial proteins and participates in the stabilization of mitophagy, and changes in the content of cardiolipin (CL) in rat heart mitochondria after isoproterenol (ISO)-induced damage were examined. AX improved the respiratory control index (RCI), enhanced mitochondrial fusion, and inhibited mitochondrial fission in RHM after ISO injury. Rat heart mitochondria (RHM) were more susceptible to Ca2+-induced mitochondrial permeability pore (mPTP) opening after ISO injection, while AX abolished the effect of ISO. AX is able to perform a protective function in mitochondria, improving their efficiency. Therefore, AX can be considered an important ingredient in the diet for the prevention of cardiovascular disease. Therefore, AX can be examined as an important component of the diet for the prevention of heart disease.
Collapse
Affiliation(s)
- Roman Krestinin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
44
|
Roiz-Valle D, Caravia XM, López-Otín C. Mechanisms of mitochondrial microRNA regulation in cardiovascular diseases. Mech Ageing Dev 2023; 212:111822. [PMID: 37182718 DOI: 10.1016/j.mad.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
In the past years, microRNAs (miRNAs) have emerged as important biomarkers and essential regulators of many pathophysiological processes. Several studies have focused on the importance of these noncoding RNAs (ncRNAs) in maintaining mitochondrial function, introducing the term mitochondrial microRNAs (mitomiRs) to refer to those miRNAs controlling mitochondrial activity, either by targeting cytoplasmatic messenger RNAs (mRNAs) or by acting inside the mitochondria. Mitochondrial homeostasis is paramount in the cardiovascular system, where an important energy supply is needed to maintain the homeostasis of tissues, such as the myocardium. In this review, we will address the relevance of mitomiRs in cardiovascular pathologies by dissecting and categorizing their effect in mitochondrial function in order to provide a robust framework for new mitomiR-based therapeutical approaches to this group of diseases.
Collapse
Affiliation(s)
- David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo.
| | - Xurde M Caravia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| |
Collapse
|
45
|
Sánchez-Vera I, Núñez-Vázquez S, Saura-Esteller J, Cosialls AM, Heib J, Nadal Rodríguez P, Ghashghaei O, Lavilla R, Pons G, Gil J, Iglesias-Serret D. The Prohibitin-Binding Compound Fluorizoline Activates the Integrated Stress Response through the eIF2α Kinase HRI. Int J Mol Sci 2023; 24:ijms24098064. [PMID: 37175767 PMCID: PMC10179266 DOI: 10.3390/ijms24098064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Fluorizoline is a synthetic molecule that induces apoptosis, by selectively targeting prohibitins (PHBs), through induction of the BH3-only protein NOXA. This induction is transcriptionally regulated by the integrated stress response (ISR)-related transcription factors ATF3 and ATF4. Here, we evaluate the role of the four eIF2α kinases, to decipher which is responsible for the mechanism of ISR activation triggered by fluorizoline in HeLa and HAP1 cells. First, we demonstrated the involvement of the eIF2α kinases using ISR inhibitor (ISRIB) and by simultaneous downregulation of all four eIF2α kinases, as both approaches were able to increase cell resistance to fluorizoline-induced apoptosis. Furthermore, we confirmed that fluorizoline treatment results in endoplasmic reticulum (ER) stress, as evidenced by PERK activation. Despite PERK activation, this kinase was not directly involved in the ISR activation by fluorizoline. In this regard, we found that the eIF2α kinases are capable of compensating for each other's loss of function. Importantly, we demonstrated that the mitochondrial-stress-related eIF2α kinase HRI mediates ISR activation after fluorizoline treatment.
Collapse
Affiliation(s)
- Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Judith Heib
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Pau Nadal Rodríguez
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), 08907 L'Hospitalet de Llobregat, Spain
| | - Daniel Iglesias-Serret
- Departament d'Infermeria Fonamental i Medicoquirúrgica, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
| |
Collapse
|
46
|
Saini M, Julius Ngwa C, Marothia M, Verma P, Ahmad S, Kumari J, Anand S, Vandana V, Goyal B, Chakraborti S, Pandey KC, Garg S, Pati S, Ranganathan A, Pradel G, Singh S. Characterization of Plasmodium falciparum prohibitins as novel targets to block infection in humans by impairing the growth and transmission of the parasite. Biochem Pharmacol 2023; 212:115567. [PMID: 37088154 DOI: 10.1016/j.bcp.2023.115567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Prohibitins (PHBs) are highly conserved pleiotropic proteins as they have been shown to mediate key cellular functions. Here, we characterize PHBs encoding putative genes of Plasmodium falciparum by exploiting different orthologous models. We demonstrated that PfPHB1 (PF3D7_0829200) and PfPHB2 (PF3D7_1014700) are expressed in asexual and sexual blood stages of the parasite. Immunostaining indicated these proteins as mitochondrial residents as they were found to be localized as branched structures. We further validated PfPHBs as organellar proteins residing in Plasmodium mitochondria, where they interact with each other. Functional characterization was done in Saccharomyces cerevisiae orthologous model by expressing PfPHB1 and PfPHB2 in cells harboring respective mutants. The PfPHBs functionally complemented the yeast PHB1 and PHB2 mutants, where the proteins were found to be involved in stabilizing the mitochondrial DNA, retaining mitochondrial integrity and rescuing yeast cell growth. Further, Rocaglamide (Roc-A), a known inhibitor of PHBs and anti-cancerous agent, was tested against PfPHBs and as an antimalarial. Roc-A treatment retarded the growth of PHB1, PHB2, and ethidium bromide petite yeast mutants. Moreover, Roc-A inhibited growth of yeast PHBs mutants that were functionally complemented with PfPHBs, validating P. falciparum PHBs as one of the molecular targets for Roc-A. Roc-A treatment led to growth inhibition of artemisinin-sensitive (3D7), artemisinin-resistant (R539T) and chloroquine-resistant (RKL-9) parasites in nanomolar ranges. The compound was able to retard gametocyte and oocyst growth with significant morphological aberrations. Based on our findings, we propose the presence of functional mitochondrial PfPHB1 and PfPHB2 in P. falciparum and their druggability to block parasite growth.
Collapse
Affiliation(s)
- Monika Saini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Manisha Marothia
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pritee Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shakeel Ahmad
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Kumari
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sakshi Anand
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vandana Vandana
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Bharti Goyal
- ICMR-National Institute of Malaria Research, New Delhi, India
| | | | - Kailash C Pandey
- ICMR-National Institute of Malaria Research, New Delhi, India; Academic Council of Scientific and Innovative Research, Faridabad, India
| | - Swati Garg
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Pati
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India
| | - Anand Ranganathan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi NCR, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
47
|
Qi A, Lamont L, Liu E, Murray SD, Meng X, Yang S. Essential Protein PHB2 and Its Regulatory Mechanisms in Cancer. Cells 2023; 12:cells12081211. [PMID: 37190120 DOI: 10.3390/cells12081211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Prohibitins (PHBs) are a highly conserved class of proteins and have an essential role in transcription, epigenetic regulation, nuclear signaling, mitochondrial structural integrity, cell division, and cellular membrane metabolism. Prohibitins form a heterodimeric complex, consisting of two proteins, prohibitin 1 (PHB1) and prohibitin 2 (PHB2). They have been discovered to have crucial roles in regulating cancer and other metabolic diseases, functioning both together and independently. As there have been many previously published reviews on PHB1, this review focuses on the lesser studied prohibitin, PHB2. The role of PHB2 in cancer is controversial. In most human cancers, overexpressed PHB2 enhances tumor progression, while in some cancers, it suppresses tumor progression. In this review, we focus on (1) the history, family, and structure of prohibitins, (2) the essential location-dependent functions of PHB2, (3) dysfunction in cancer, and (4) the promising modulators to target PHB2. At the end, we discuss future directions and the clinical significance of this common essential gene in cancer.
Collapse
Affiliation(s)
- Amanda Qi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lillie Lamont
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Evelyn Liu
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sarina D Murray
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
48
|
Wu J, Zhou J, Chai Y, Qin C, Cai Y, Xu D, Lei Y, Mei Z, Li M, Shen L, Fang G, Yang Z, Cai S, Xiong N. Novel prognostic features and personalized treatment strategies for mitochondria-related genes in glioma patients. Front Endocrinol (Lausanne) 2023; 14:1172182. [PMID: 37091853 PMCID: PMC10113561 DOI: 10.3389/fendo.2023.1172182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common intracranial nervous system tumours that are highly malignant and aggressive, and mitochondria are an important marker of metabolic reprogramming of tumour cells, the prognosis of which cannot be accurately predicted by current histopathology. Therefore, Identify a mitochondrial gene with immune-related features that could be used to predict the prognosis of glioma patients. METHODS Gliomas data were downloaded from the TCGA database and mitochondrial-associated genes were obtained from the MITOCARTA 3.0 dataset. The CGGA, kamoun and gravendeel databases were used as external datasets. LASSO(Least absolute shrinkage and selection operator) regression was applied to identify prognostic features, and area and nomograms under the ROC(Receiver Operating Characteristic) curve were used to assess the robustness of the model. Single sample genomic enrichment analysis (ssGSEA) was employed to explore the relationship between model genes and immune infiltration, and drug sensitivity was used to identify targeting drugs. Cellular studies were then performed to demonstrate drug killing against tumours. RESULTS COX assembly mitochondrial protein homolog (CMC1), Cytochrome c oxidase protein 20 homolog (COX20) and Cytochrome b-c1 complex subunit 7 (UQCRB) were identified as prognostic key genes in glioma, with UQCRB, CMC1 progressively increasing and COX20 progressively decreasing with decreasing risk scores. ROC curve analysis of the TCGA training set model yielded AUC (Area Under The Curve) values >0.8 for 1-, 2- and 3-year survival, and the model was associated with both CD8+ T cells and immune checkpoints. Finally, using cellMiner database and molecular docking, it was confirmed that UQCRB binds covalently to Amonafide via lysine at position 78 and threonine at position 82, while cellular assays showed that Amonafide inhibits glioma migration and invasion. CONCLUSION Our three mitochondrial genomic composition-related features accurately predict Survival in glioma patients, and we also provide glioma chemotherapeutic agents that may be mitochondria-related targets.
Collapse
Affiliation(s)
- Ji Wu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jiabin Zhou
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yibo Chai
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Chengjian Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dongyuan Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yu Lei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhimin Mei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Muhua Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lei Shen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guoxing Fang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhaojian Yang
- Department of Neurosurgery, Red Cross Hospital of Yulin City, Yulin, China
| | - Songshan Cai
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Byun KA, Kim HM, Oh S, Son KH, Byun K. Radiofrequency Irradiation Attenuated UVB-Induced Skin Pigmentation by Modulating ATP Release and CD39 Expression. Int J Mol Sci 2023; 24:ijms24065506. [PMID: 36982581 PMCID: PMC10052073 DOI: 10.3390/ijms24065506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Hyperpigmentation stimulated by ultraviolet (UV)-induced melanin overproduction causes various cosmetic problems. UV radiation’s activation of the cyclic adenosine monophosphate (cAMP)-mediated cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)/microphthalmia-associated transcription factor (MITF) pathway is the main pathway for melanogenesis. However, the secretion of adenosine triphosphate (ATP) from keratinocytes due to UV radiation also leads to melanogenesis. Adenosine, converted from ATP by CD39 and CD73, can activate adenylate cyclase (AC) activity and increase intracellular cAMP expression. cAMP-mediated PKA activation results in dynamic mitochondrial changes that affect melanogenesis via ERK. We evaluated whether radiofrequency (RF) irradiation could decrease ATP release from keratinocytes and suppress the expression of CD39, CD73, and A2A/A2B adenosine receptors (ARs) and the activity of AC and downregulate the PKA/CREB/MITF pathway, which would eventually decrease melanogenesis in vitro in UV-irradiated cells and animal skin. Our results indicate that RF decreased ATP release from UVB-irradiated keratinocytes. When conditioned media (CM) from UVB-irradiated keratinocytes (CM-UVB) were administered to melanocytes, the expressions of CD39, CD73, A2A/A2BARs, cAMP, and PKA increased. However, the expression of these factors decreased when CM from UVB and RF-irradiated keratinocytes (CM-UVB/RF) was administered to melanocytes. The phosphorylation of DRP1 at Ser637, which inhibits mitochondrial fission, increased in UVB-irradiated animal skin and was decreased by RF irradiation. The expression of ERK1/2, which can degrade MITF, was increased using RF treatment in UVB-irradiated animal skin. Tyrosinase activity and melanin levels in melanocytes increased following CM-UVB administration, and these increases were reversed after CD39 silencing. Tyrosinase activity and melanin levels in melanocytes were decreased by CM-UVB/RF irradiation. In conclusion, RF irradiation decreased ATP release from keratinocytes and the expressions of CD39, CD73, and A2A/A2BARs, which decreased AC activity in melanocytes. RF irradiation downregulated the cAMP-mediated PKA/CREB/MITF pathway and tyrosinase activity, and these inhibitory effects can be mediated via CD39 inhibition.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | | | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Republic of Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| |
Collapse
|
50
|
Zhang X, Zhao J, Li Q, Qin D, Li W, Wang X, Bi M, Li Q, Li T. Lamprey prohibitin 2 inhibits non-small cell lung carcinoma cell proliferation by down-regulating the expression and phosphorylation levels of cell cycle-associated proteins. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108560. [PMID: 36681363 DOI: 10.1016/j.fsi.2023.108560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and functionally diverse protein that plays an important role in multiple cellular functions, including cell proliferation, cell migration, and apoptosis, and is also known to participate in the process of tumorigenesis and development. In this study, the lamprey PHB2 (Lm-PHB2) gene was over-expressed in KRAS (kirsten rat sarcoma viral oncogene homolog)-mutated non-small cell lung carcinoma (NSCLC) cells to investigate its effect on cell proliferation. The effects of Lm-PHB2 protein on the proliferation of NSCLC cells were determined by treating cells with the purified recombinant Lm-PHB2 protein (rLm-PHB2) followed by cell counting kit (CCK) assays and flow cytometry. Analysis showed that rLm-PHB2 blocked cells in the G2 phase and inhibited the cell proliferation of A549, Calu-1, and NCI-H226 to various degrees. The effect on Calu-1 cells was the most obvious and was concentration- and time-dependent. Similarly, cells transfected with the pEGFP-N1-Lm-PHB2 plasmid also resulted in the suppression of proliferation in A549 cells and Calu-1 cells. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that Lm-PHB2 inhibited cell proliferation by repressing the transcription of PLK1 (polo-like kinase 1), Wee1 (wee1 kinase), CCNB1 (cyclin B1), and CDC25C (cell division control protein 25C). According to western blot analysis, Lm-PHB2 not only down-regulated the expression of PLK1, Wee1, CCNB1, and CDC25C but also reduced the phosphorylation levels of CCNB1 and CDC25C, thus blocking Calu-1 cells in G2/M phase. Our findings demonstrate a function of lamprey PHB2 that may inhibit the proliferation of some NSCLC cells by down-regulating the expression and phosphorylation of cell cycle-associated proteins.
Collapse
Affiliation(s)
- Xue Zhang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Jianzhu Zhao
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qing Li
- School of Science and Engineering, University of Dundee, Dundee, DD1 5EN, UK
| | - Di Qin
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Wenwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Wang
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Mengfei Bi
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China
| | - Qingwei Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China
| | - Tiesong Li
- College of Life Sciences, Lamprey Research Center, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116023, China.
| |
Collapse
|