1
|
Klempnauer KH. C/EBPβ cooperates with MYB to maintain the oncogenic program of AML cells. Oncotarget 2023; 14:174-177. [PMID: 36913305 PMCID: PMC10010626 DOI: 10.18632/oncotarget.28377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
Studies on the role of transcription factor MYB in acute myeloid leukemia (AML) have identified MYB as a key regulator of a transcriptional program for self-renewal of AML cells. Recent work summarized here has now highlighted the CCAAT-box/enhancer binding protein beta (C/EBPβ) as an essential factor and potential therapeutic target that cooperates with MYB and coactivator p300 in the maintenance of the leukemic cells.
Collapse
Affiliation(s)
- Karl-Heinz Klempnauer
- Correspondence to:Karl-Heinz Klempnauer, Institute for Biochemistry, Westfälische-Wilhelms-Universität, Muenster D-48149, Germany email
| |
Collapse
|
2
|
Schmidt TJ, Klempnauer KH. Natural Products with Antitumor Potential Targeting the MYB-C/EBPβ-p300 Transcription Module. Molecules 2022; 27:molecules27072077. [PMID: 35408476 PMCID: PMC9000602 DOI: 10.3390/molecules27072077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The transcription factor MYB is expressed predominantly in hematopoietic progenitor cells, where it plays an essential role in the development of most lineages of the hematopoietic system. In the myeloid lineage, MYB is known to cooperate with members of the CCAAT box/enhancer binding protein (C/EBP) family of transcription factors. MYB and C/EBPs interact with the co-activator p300 or its paralog CREB-binding protein (CBP), to form a transcriptional module involved in myeloid-specific gene expression. Recent work has demonstrated that MYB is involved in the development of human leukemia, especially in acute T-cell leukemia (T-ALL) and acute myeloid leukemia (AML). Chemical entities that inhibit the transcriptional activity of the MYB-C/EBPβ-p300 transcription module may therefore be of use as potential anti-tumour drugs. In searching for small molecule inhibitors, studies from our group over the last 10 years have identified natural products belonging to different structural classes, including various sesquiterpene lactones, a steroid lactone, quinone methide triterpenes and naphthoquinones that interfere with the activity of this transcriptional module in different ways. This review gives a comprehensive overview on the various classes of inhibitors and the inhibitory mechanisms by which they affect the MYB-C/EBPβ-p300 transcriptional module as a potential anti-tumor target. We also focus on the current knowledge on structure-activity relationships underlying these biological effects and on the potential of these compounds for further development.
Collapse
Affiliation(s)
- Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus-Corrensstraße 48, D-48149 Munster, Germany
- Correspondence: (T.J.S.); (K.-H.K.)
| | - Karl-Heinz Klempnauer
- Institute of Biochemistry, University of Münster, Corrensstraße 36, D-48149 Munster, Germany
- Correspondence: (T.J.S.); (K.-H.K.)
| |
Collapse
|
3
|
Klempnauer KH. C/EBPβ sustains the oncogenic program of AML cells by cooperating with MYB and co-activator p300 in a transcriptional module. Exp Hematol 2022; 108:8-15. [PMID: 35032593 DOI: 10.1016/j.exphem.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Transcription factor MYB is a key regulator of gene expression in hematopoietic cells and has emerged as a novel drug target for acute myeloid leukemia (AML). Studies aiming to identify potential MYB inhibitors have shown that the natural compound helenalin acetate (HA) inhibits viability and induces cell death and differentiation of AML cells by disrupting the MYB-induced gene expression program. Interestingly, CCAAT-box/enhancer binding protein beta (C/EBPβ), a transcription factor known to cooperate with MYB and the co-activator p300 in myeloid cells, rather than MYB itself, was identified as the primary target of HA. This supports a model in which MYB, C/EBPβ and p300 form the core of a transcriptional module that is essential for the maintenance of proliferative potential of AML cells, highlighting a novel role of C/EBPβ as a pro-leukemogenic factor.
Collapse
Affiliation(s)
- Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany.
| |
Collapse
|
4
|
Ghani LA, Yusenko MV, Frank D, Moorthy R, Widen JC, Dörner W, Khandanpour C, Harki DA, Klempnauer KH. A synthetic covalent ligand of the C/EBPβ transactivation domain inhibits acute myeloid leukemia cells. Cancer Lett 2022; 530:170-180. [DOI: 10.1016/j.canlet.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
|
5
|
Yusenko MV, Trentmann A, Casolari DA, Abdel Ghani L, Lenz M, Horn M, Dörner W, Klempnauer S, Mootz HD, Arteaga MF, Mikesch JH, D'Andrea RJ, Gonda TJ, Müller-Tidow C, Schmidt TJ, Klempnauer KH. C/EBPβ is a MYB- and p300-cooperating pro-leukemogenic factor and promising drug target in acute myeloid leukemia. Oncogene 2021; 40:4746-4758. [PMID: 33958723 PMCID: PMC8298201 DOI: 10.1038/s41388-021-01800-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 02/05/2023]
Abstract
Transcription factor MYB has recently emerged as a promising drug target for the treatment of acute myeloid leukemia (AML). Here, we have characterized a group of natural sesquiterpene lactones (STLs), previously shown to suppress MYB activity, for their potential to decrease AML cell proliferation. Unlike what was initially thought, these compounds inhibit MYB indirectly via its cooperation partner C/EBPβ. C/EBPβ-inhibitory STLs affect the expression of a large number of MYB-regulated genes, suggesting that the cooperation of MYB and C/EBPβ broadly shapes the transcriptional program of AML cells. We show that expression of GFI1, a direct MYB target gene, is controlled cooperatively by MYB, C/EBPβ, and co-activator p300, and is down-regulated by C/EBPβ-inhibitory STLs, exemplifying that they target the activity of composite MYB-C/EBPβ-p300 transcriptional modules. Ectopic expression of GFI1, a zinc-finger protein that is required for the maintenance of hematopoietic stem and progenitor cells, partially abrogated STL-induced myelomonocytic differentiation, implicating GFI1 as a relevant target of C/EBPβ-inhibitory STLs. Overall, our data identify C/EBPβ as a pro-leukemogenic factor in AML and suggest that targeting of C/EBPβ may have therapeutic potential against AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Humans
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Cell Proliferation
- E1A-Associated p300 Protein/metabolism
- E1A-Associated p300 Protein/genetics
- Cell Line, Tumor
- Lactones/pharmacology
- Gene Expression Regulation, Leukemic/drug effects
- Sesquiterpenes/pharmacology
Collapse
Affiliation(s)
- Maria V Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Amke Trentmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Debora A Casolari
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Luca Abdel Ghani
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Mairin Lenz
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Melanie Horn
- Department of Medicine V, Hematology, Oncology, Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | | | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Maria Francisca Arteaga
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Jan-Henrik Mikesch
- Department of Medicine A, Hematology and Oncology, University Hospital, Westfälische-Wilhelms-Universität, Münster, Germany
| | - Richard J D'Andrea
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Thomas J Gonda
- Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology, Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas J Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, Münster, Germany
| | | |
Collapse
|
6
|
Frerich CA, Sedam HN, Kang H, Mitani Y, El-Naggar AK, Ness SA. N-Terminal Truncated Myb with New Transcriptional Activity Produced Through Use of an Alternative MYB Promoter in Salivary Gland Adenoid Cystic Carcinoma. Cancers (Basel) 2019; 12:E45. [PMID: 31877778 PMCID: PMC7016764 DOI: 10.3390/cancers12010045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Adenoid cystic carcinoma (ACC) is an aggressive salivary gland tumor that frequently displays perineural invasion and is often associated with translocations or overexpression of the MYB oncogene. Detailed analyses of MYB transcripts from ACC patient samples revealed that ACC tumors utilize an alternative MYB promoter, which is rarely used in normal cells or other tumor types. The alternative promoter transcripts produce N-terminally truncated Myb proteins lacking a highly conserved and phosphorylated domain, which includes the pS11 epitope that is frequently used to detect Myb proteins. In RNA-seq assays, Myb isoforms lacking the N-terminal domain displayed unique transcriptional activities, regulating many genes differently than full-length Myb. Thus, a regulatory pathway unique to ACC activates the alternative MYB promoter, leading to the production of a truncated Myb protein with altered transcriptional activities. This could provide new therapeutic opportunities for ACC patients.
Collapse
Affiliation(s)
- Candace A. Frerich
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Hailey N. Sedam
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Myriad Women’s Health, South San Francisco, CA 94080, USA
| | - Huining Kang
- Department of Internal Medicine, Division of Epidemiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Yoshitsugu Mitani
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA (A.K.E.-N.)
| | - Adel K. El-Naggar
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA (A.K.E.-N.)
| | - Scott A. Ness
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- UNM Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Dittmar G, Hernandez DP, Kowenz-Leutz E, Kirchner M, Kahlert G, Wesolowski R, Baum K, Knoblich M, Hofstätter M, Muller A, Wolf J, Reimer U, Leutz A. PRISMA: Protein Interaction Screen on Peptide Matrix Reveals Interaction Footprints and Modifications- Dependent Interactome of Intrinsically Disordered C/EBPβ. iScience 2019; 13:351-370. [PMID: 30884312 PMCID: PMC6424098 DOI: 10.1016/j.isci.2019.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
CCAAT enhancer-binding protein beta (C/EBPβ) is a pioneer transcription factor that specifies cell differentiation. C/EBPβ is intrinsically unstructured, a molecular feature common to many proteins involved in signal processing and epigenetics. The structure of C/EBPβ differs depending on alternative translation initiation and multiple post-translational modifications (PTM). Mutation of distinct PTM sites in C/EBPβ alters protein interactions and cell differentiation, suggesting that a C/EBPβ PTM indexing code determines epigenetic outcomes. Herein, we systematically explored the interactome of C/EBPβ using an array technique based on spot-synthesized C/EBPβ-derived linear tiling peptides with and without PTM, combined with mass spectrometric proteomic analysis of protein interactions. We identified interaction footprints of ∼1,300 proteins in nuclear extracts, many with chromatin modifying, chromatin remodeling, and RNA processing functions. The results suggest that C/EBPβ acts as a multi-tasking molecular switchboard, integrating signal-dependent modifications and structural plasticity to orchestrate interactions with numerous protein complexes directing cell fate and function.
Collapse
Affiliation(s)
- Gunnar Dittmar
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany.
| | - Daniel Perez Hernandez
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; BIH Core Facility Proteomics, Robert-Roessle Strasse 10, 10125 Berlin, Germany
| | - Günther Kahlert
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Radoslaw Wesolowski
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Katharina Baum
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Knoblich
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Maria Hofstätter
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Arnaud Muller
- Proteome and Genome Research Laboratory, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine, Robert-Roessle Strasse 10, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany.
| |
Collapse
|
8
|
Coulibaly A, Haas A, Steinmann S, Jakobs A, Schmidt TJ, Klempnauer KH. The natural anti-tumor compound Celastrol targets a Myb-C/EBPβ-p300 transcriptional module implicated in myeloid gene expression. PLoS One 2018; 13:e0190934. [PMID: 29394256 PMCID: PMC5796697 DOI: 10.1371/journal.pone.0190934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
Myb is a key regulator of hematopoietic progenitor cell proliferation and differentiation and has emerged as a potential target for the treatment of acute leukemia. Using a myeloid cell line with a stably integrated Myb-inducible reporter gene as a screening tool we have previously identified Celastrol, a natural compound with anti-tumor activity, as a potent Myb inhibitor that disrupts the interaction of Myb with the co-activator p300. We showed that Celastrol inhibits the proliferation of acute myeloid leukemia (AML) cells and prolongs the survival of mice in an in vivo model of AML, demonstrating that targeting Myb with a small-molecule inhibitor is feasible and might have potential as a therapeutic approach against AML. Recently we became aware that the reporter system used for Myb inhibitor screening also responds to inhibition of C/EBPβ, a transcription factor known to cooperate with Myb in myeloid cells. By re-investigating the inhibitory potential of Celastrol we have found that Celastrol also strongly inhibits the activity of C/EBPβ by disrupting its interaction with the Taz2 domain of p300. Together with previous studies our work reveals that Celastrol independently targets Myb and C/EBPβ by disrupting the interaction of both transcription factors with p300. Myb, C/EBPβ and p300 cooperate in myeloid-specific gene expression and, as shown recently, are associated with so-called super-enhancers in AML cells that have been implicated in the maintenance of the leukemia. We hypothesize that the ability of Celastrol to disrupt the activity of a transcriptional Myb-C/EBPβ-p300 module might explain its promising anti-leukemic activity.
Collapse
Affiliation(s)
- Anna Coulibaly
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Astrid Haas
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Simone Steinmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Thomas J. Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|
9
|
Flanagan KC, Alspach E, Pazolli E, Parajuli S, Ren Q, Arthur LL, Tapia R, Stewart SA. c-Myb and C/EBPβ regulate OPN and other senescence-associated secretory phenotype factors. Oncotarget 2018; 9:21-36. [PMID: 29416593 PMCID: PMC5787458 DOI: 10.18632/oncotarget.22940] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis results from the convergence of cell autonomous mutations and corresponding stromal changes that promote tumor cell growth. Senescent cells, which secrete a plethora of pro-tumorigenic factors termed the senescence-associated secretory phenotype (SASP), play an important role in tumor formation. Investigation into SASP regulation revealed that many but not all SASP factors are subject to NF-kB and p38MAPK regulation. However, many pro-tumorigenic SASP factors, including osteopontin (OPN), are not responsive to these canonical pathways leaving the regulation of these factors an open question. We report that the transcription factor c-Myb regulates OPN, IL-6, and IL-8 in addition to 57 other SASP factors. The regulation of OPN is direct as c-Myb binds to the OPN promoter in response to senescence. Further, OPN is also regulated by the known SASP regulator C/EBPβ. In response to senescence, the full-length activating C/EBPβ isoform LAP2 increases binding to the OPN, IL-6, and IL-8 promoters. The importance of both c-Myb and C/EBPβ is underscored by our finding that the depletion of either factor reduces the ability of senescent fibroblasts to promote the growth of preneoplastic epithelial cells.
Collapse
Affiliation(s)
- Kevin C. Flanagan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- ICCE Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Elise Alspach
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ermira Pazolli
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shankar Parajuli
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qihao Ren
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura L. Arthur
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberto Tapia
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheila A. Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- ICCE Institute, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Frerich CA, Brayer KJ, Painter BM, Kang H, Mitani Y, El-Naggar AK, Ness SA. Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes. Oncotarget 2017; 9:7341-7358. [PMID: 29484115 PMCID: PMC5800907 DOI: 10.18632/oncotarget.23641] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022] Open
Abstract
The relative rarity of salivary gland adenoid cystic carcinoma (ACC) and its slow growing yet aggressive nature has complicated the development of molecular markers for patient stratification. To analyze molecular differences linked to the protracted disease course of ACC and metastases that form 5 or more years after diagnosis, detailed RNA-sequencing (RNA-seq) analysis was performed on 68 ACC tumor samples, starting with archived, formalin-fixed paraffin-embedded (FFPE) samples up to 25 years old, so that clinical outcomes were available. A statistical peak-finding approach was used to classify the tumors that expressed MYB or MYBL1, which had overlapping gene expression signatures, from a group that expressed neither oncogene and displayed a unique phenotype. Expression of MYB or MYBL1 was closely correlated to the expression of the SOX4 and EN1 genes, suggesting that they are direct targets of Myb proteins in ACC tumors. Unsupervised hierarchical clustering identified a subgroup of approximately 20% of patients with exceptionally poor overall survival (median less than 30 months) and a unique gene expression signature resembling embryonic stem cells. The results provide a strategy for stratifying ACC patients and identifying the high-risk, poor-outcome group that are candidates for personalized therapies.
Collapse
Affiliation(s)
- Candace A Frerich
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Brandon M Painter
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Huining Kang
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yoshitsugu Mitani
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel K El-Naggar
- Head and Neck Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott A Ness
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| |
Collapse
|
11
|
Herkt SC, Kuvardina ON, Herglotz J, Schneider L, Meyer A, Pommerenke C, Salinas-Riester G, Seifried E, Bonig H, Lausen J. Protein arginine methyltransferase 6 controls erythroid gene expression and differentiation of human CD34 + progenitor cells. Haematologica 2017; 103:18-29. [PMID: 29025910 PMCID: PMC5777187 DOI: 10.3324/haematol.2017.174516] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/06/2017] [Indexed: 01/22/2023] Open
Abstract
Hematopoietic differentiation is driven by transcription factors, which orchestrate a finely tuned transcriptional network. At bipotential branching points lineage decisions are made, where key transcription factors initiate cell type-specific gene expression programs. These programs are stabilized by the epigenetic activity of recruited chromatin-modifying cofactors. An example is the association of the transcription factor RUNX1 with protein arginine methyltransferase 6 (PRMT6) at the megakaryocytic/erythroid bifurcation. However, little is known about the specific influence of PRMT6 on this important branching point. Here, we show that PRMT6 inhibits erythroid gene expression during megakaryopoiesis of primary human CD34+ progenitor cells. PRMT6 is recruited to erythroid genes, such as glycophorin A. Consequently, a repressive histone modification pattern with high H3R2me2a and low H3K4me3 is established. Importantly, inhibition of PRMT6 by shRNA or small molecule inhibitors leads to upregulation of erythroid genes and promotes erythropoiesis. Our data reveal that PRMT6 plays a role in the control of erythroid/megakaryocytic differentiation and open up the possibility that manipulation of PRMT6 activity could facilitate enhanced erythropoiesis for therapeutic use.
Collapse
Affiliation(s)
- Stefanie C Herkt
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Olga N Kuvardina
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Julia Herglotz
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Lucas Schneider
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Annekarin Meyer
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| | - Jörn Lausen
- Institute for Transfusion Medicine and Immunohematology, Goethe-University and German Red Cross Blood Service, Frankfurt am Main
| |
Collapse
|
12
|
Falkenberg KD, Jakobs A, Matern JC, Dörner W, Uttarkar S, Trentmann A, Steinmann S, Coulibaly A, Schomburg C, Mootz HD, Schmidt TJ, Klempnauer KH. Withaferin A, a natural compound with anti-tumor activity, is a potent inhibitor of transcription factor C/EBPβ. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1349-1358. [PMID: 28476645 DOI: 10.1016/j.bbamcr.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
Recent work has shown that deregulation of the transcription factor Myb contributes to the development of leukemia and several other human cancers, making Myb and its cooperation partners attractive targets for drug development. By employing a myeloid Myb-reporter cell line we have identified Withaferin A (WFA), a natural compound that exhibits anti-tumor activities, as an inhibitor of Myb-dependent transcription. Analysis of the inhibitory mechanism of WFA showed that WFA is a significantly more potent inhibitor of C/EBPβ, a transcription factor cooperating with Myb in myeloid cells, than of Myb itself. We show that WFA covalently modifies specific cysteine residues of C/EBPβ, resulting in the disruption of the interaction of C/EBPβ with the co-activator p300. Our work identifies C/EBPβ as a novel direct target of WFA and highlights the role of p300 as a crucial co-activator of C/EBPβ. The finding that WFA is a potent inhibitor of C/EBPβ suggests that inhibition of C/EBPβ might contribute to the biological activities of WFA.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Julian C Matern
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Wolfgang Dörner
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Sagar Uttarkar
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Amke Trentmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Simone Steinmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Anna Coulibaly
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Caroline Schomburg
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Henning D Mootz
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Thomas J Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany.
| |
Collapse
|
13
|
Ilieva F, Kostadinović Veličkovska S, Dimovska V, Mirhosseini H, Spasov H. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties. Food Chem 2017; 216:309-15. [PMID: 27596425 DOI: 10.1016/j.foodchem.2016.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines.
Collapse
Affiliation(s)
- Fidanka Ilieva
- Department of Wine and Beer Technology, University of Food Technologies, Marica 26, Plovdiv, Bulgaria; Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | | | - Violeta Dimovska
- Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, Macedonia
| | - Hamed Mirhosseini
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Selangor, Malaysia
| | - Hristo Spasov
- Department of Wine and Beer Technology, University of Food Technologies, Marica 26, Plovdiv, Bulgaria
| |
Collapse
|
14
|
Cirovic B, Schönheit J, Kowenz-Leutz E, Ivanovska J, Klement C, Pronina N, Bégay V, Leutz A. C/EBP-Induced Transdifferentiation Reveals Granulocyte-Macrophage Precursor-like Plasticity of B Cells. Stem Cell Reports 2017; 8:346-359. [PMID: 28111277 PMCID: PMC5312250 DOI: 10.1016/j.stemcr.2016.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/28/2022] Open
Abstract
The lymphoid-myeloid transdifferentiation potentials of members of the C/EBP family (C/EBPα, β, δ, and ε) were compared in v-Abl-immortalized primary B cells. Conversion of B cells to macrophages was readily induced by the ectopic expression of any C/EBP, and enhanced by endogenous C/EBPα and β activation. High transgene expression of C/EBPβ or C/EBPε, but not of C/EBPα or C/EBPδ, also induced the formation of granulocytes. Granulocytes and macrophages emerged in a mutually exclusive manner. C/EBPβ-expressing B cells produced granulocyte-macrophage progenitor (GMP)-like progenitors when subjected to selective pressure to eliminate lymphoid cells. The GMP-like progenitors remained self-renewing and cytokine-independent, and continuously produced macrophages and granulocytes. In addition to their suitability to study myelomonocytic lineage bifurcation, lineage-switched GMP-like progenitors could reflect the features of the lympho-myeloid lineage switch observed in leukemic progression. Transactivating C/EBP family members transdifferentiate B cells to myeloid cells C/EBPβ or C/EBPε transdifferentiate B cells to macrophages and granulocytes Transgene dosage determines granulocyte versus macrophage cell-type outcome C/EBP-mediated B cell conversion elicits GMP-like potential
Collapse
Affiliation(s)
- Branko Cirovic
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany
| | - Jörg Schönheit
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Jelena Ivanovska
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Christine Klement
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Nina Pronina
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Valérie Bégay
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany
| | - Achim Leutz
- Department of Tumorigenesis and Cell Differentiation, Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Straße10, 13125 Berlin, Germany; Humboldt-University of Berlin, Institute of Biology, 10115 Berlin, Germany.
| |
Collapse
|
15
|
Jakobs A, Steinmann S, Henrich SM, Schmidt TJ, Klempnauer KH. Helenalin Acetate, a Natural Sesquiterpene Lactone with Anti-inflammatory and Anti-cancer Activity, Disrupts the Cooperation of CCAAT Box/Enhancer-binding Protein β (C/EBPβ) and Co-activator p300. J Biol Chem 2016; 291:26098-26108. [PMID: 27803164 DOI: 10.1074/jbc.m116.748129] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/27/2016] [Indexed: 11/06/2022] Open
Abstract
Recent work has demonstrated pro-oncogenic functions of the transcription factor CCAAT box/enhancer-binding protein β (C/EBPβ) in various tumors, implicating C/EBPβ as an interesting target for the development of small-molecule inhibitors. We have previously discovered that the sesquiterpene lactone helenalin acetate, a natural compound known to inhibit NF-κB, is a potent C/EBPβ inhibitor. We have now examined the inhibitory mechanism of helenalin acetate in more detail. We demonstrate that helenalin acetate is a significantly more potent inhibitor of C/EBPβ than of NF-κB. Our work shows that helenalin acetate inhibits C/EBPβ by binding to the N-terminal part of C/EBPβ, thereby disrupting the cooperation of C/EBPβ with the co-activator p300. C/EBPβ is expressed in several isoforms from alternative translational start codons. We have previously demonstrated that helenalin acetate selectively inhibits only the full-length (liver-enriched activating protein* (LAP*)) isoform but not the slightly shorter (LAP) isoform. Consistent with this, helenalin acetate binds to the LAP* but not to the LAP isoform, explaining why its inhibitory activity is selective for LAP*. Although helenalin acetate contains reactive groups that are able to interact covalently with cysteine residues, as exemplified by its effect on NF-κB, the inhibition of C/EBPβ by helenalin acetate is not due to irreversible reaction with cysteine residues of C/EBPβ. In summary, helenalin acetate is the first highly active small-molecule C/EBPβ inhibitor that inhibits C/EBPβ by a direct binding mechanism. Its selectivity for the LAP* isoform also makes helenalin acetate an interesting tool to dissect the functions of the LAP* and LAP isoforms.
Collapse
Affiliation(s)
| | | | | | - Thomas J Schmidt
- the Institute for Pharmaceutical Biology and Phytochemistry, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | |
Collapse
|
16
|
c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood 2016; 128:415-26. [DOI: 10.1182/blood-2015-12-686147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/22/2016] [Indexed: 12/14/2022] Open
Abstract
Key Points
c-Myb is essential for neutrophil terminal differentiation by targeting granule gene expression. c-Myb and Cebp1 act cooperatively to regulate neutrophil maturation in zebrafish.
Collapse
|
17
|
Tian W, Wang J, Zhang K, Teng H, Li C, Szyf M, Sun ZS, Zhao M. Demethylation of c-MYB binding site mediates upregulation of Bdnf IV in cocaine-conditioned place preference. Sci Rep 2016; 6:22087. [PMID: 26912258 PMCID: PMC4766519 DOI: 10.1038/srep22087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/05/2016] [Indexed: 11/09/2022] Open
Abstract
Abnormal BDNF signaling contributes to the structural and behavioral plasticity induced by drugs of abuse. However, the mechanisms regulating expression of Bdnf in drug addiction remain elusive. In the present study, using the conditioned place preference (CPP) model, we showed that expression of Bdnf IV is upregulated in the nucleus accumbens (NAc) of conditioned animals while Bdnf I is upregulated in cocaine-treated mice irrespective of conditioning. The methylation level of a putative c-MYB binding site in the promoter region of Bdnf IV was significantly decreased in the NAc under cocaine CPP conditioning but remained unchanged without conditioning, concurrently with increased binding of c-MYB to this site. Exon IV promoter/luciferase reporter assays revealed that transactivation of Bdnf by c-MYB was blocked by methylation of this c-MYB binding site. Administration of methionine, a precursor of SAM, inhibited cocaine CPP, reversed demethylation of c-MYB binding site and induction of Bdnf IV expression by cocaine CPP. Our results imply that Bdnf IV demethylation at c-MYB binding site is involved in cocaine-triggered seeking behavior, whereas Bdnf I responds to the immediate pharmacological effects of cocaine.
Collapse
Affiliation(s)
- Weiping Tian
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Rd., Beijing 100101, China.,Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, China
| | - Jiesi Wang
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Rd., Beijing 100101, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Zhang
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Rd., Beijing 100101, China
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Chong Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Rd., Beijing 100101, China
| | - Moshe Szyf
- McGill University, Department of Pharmacology and Therapeutics, Montréal, Québec, Canada H3G 1Y6
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,Institute of Genomic Medicine, Wenzhou Medical College, University-town, Wenzhou, Zhejiang, 325000, China
| | - Mei Zhao
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Rd., Beijing 100101, China
| |
Collapse
|
18
|
|
19
|
RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood 2015; 125:3570-9. [PMID: 25911237 DOI: 10.1182/blood-2014-11-610519] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/13/2015] [Indexed: 12/13/2022] Open
Abstract
The activity of antagonizing transcription factors represents a mechanistic paradigm of bidirectional lineage-fate control during hematopoiesis. At the megakaryocytic/erythroid bifurcation, the cross-antagonism of krueppel-like factor 1 (KLF1) and friend leukemia integration 1 (FLI1) has such a decisive role. However, how this antagonism is resolved during lineage specification is poorly understood. We found that runt-related transcription factor 1 (RUNX1) inhibits erythroid differentiation of murine megakaryocytic/erythroid progenitors and primary human CD34(+) progenitor cells. We show that RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation by epigenetic repression of the erythroid master regulator KLF1. RUNX1 binding to the KLF1 locus is increased during megakaryocytic differentiation and counterbalances the activating role of T-cell acute lymphocytic leukemia 1 (TAL1). We found that corepressor recruitment by RUNX1 contributes to a block of the KLF1-dependent erythroid gene expression program. Our data indicate that the repressive function of RUNX1 influences the balance between erythroid and megakaryocytic differentiation by shifting the balance between KLF1 and FLI1 in the direction of FLI1. Taken together, we show that RUNX1 is a key player within a network of transcription factors that represses the erythroid gene expression program.
Collapse
|
20
|
Situational awareness: regulation of the myb transcription factor in differentiation, the cell cycle and oncogenesis. Cancers (Basel) 2014; 6:2049-71. [PMID: 25279451 PMCID: PMC4276956 DOI: 10.3390/cancers6042049] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/11/2014] [Accepted: 09/26/2014] [Indexed: 12/02/2022] Open
Abstract
This review summarizes the mechanisms that control the activity of the c-Myb transcription factor in normal cells and tumors, and discusses how c-Myb plays a role in the regulation of the cell cycle. Oncogenic versions of c-Myb contribute to the development of leukemias and solid tumors such as adenoid cystic carcinoma, breast cancer and colon cancer. The activity and specificity of the c-Myb protein seems to be controlled through changes in protein-protein interactions, so understanding how it is regulated could lead to the development of novel therapeutic strategies.
Collapse
|
21
|
Regalo G, Leutz A. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia. EMBO Mol Med 2013; 5:1154-64. [PMID: 23828660 PMCID: PMC3944458 DOI: 10.1002/emmm.201302834] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/20/2022] Open
Abstract
Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development.
Collapse
Affiliation(s)
- Gonçalo Regalo
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
| | | |
Collapse
|
22
|
Stoilova B, Kowenz-Leutz E, Scheller M, Leutz A. Lymphoid to myeloid cell trans-differentiation is determined by C/EBPβ structure and post-translational modifications. PLoS One 2013; 8:e65169. [PMID: 23755188 PMCID: PMC3674013 DOI: 10.1371/journal.pone.0065169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 02/02/2023] Open
Abstract
The transcription factor C/EBPβ controls differentiation, proliferation, and functionality of many cell types, including innate immune cells. A detailed molecular understanding of how C/EBPβ directs alternative cell fates remains largely elusive. A multitude of signal-dependent post-translational modifications (PTMs) differentially affect the protean C/EBPβ functions. In this study we apply an assay that converts primary mouse B lymphoid progenitors into myeloid cells in order to answer the question how C/EBPβ regulates (trans-) differentiation and determines myeloid cell fate. We found that structural alterations and various C/EBPβ PTMs determine the outcome of trans-differentiation of lymphoid into myeloid cells, including different types of monocytes/macrophages, dendritic cells, and granulocytes. The ability of C/EBPβ to recruit chromatin remodeling complexes is required for the granulocytic trans-differentiation outcome. These novel findings reveal that PTMs and structural plasticity of C/EBPβ are adaptable modular properties that integrate and rewire epigenetic functions to direct differentiation to diverse innate immune system cells, which are crucial for the organism survival.
Collapse
Affiliation(s)
- Bilyana Stoilova
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | | | - Marina Scheller
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | - Achim Leutz
- Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
- Humboldt-University of Berlin, Institute of Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
23
|
Streubel G, Bouchard C, Berberich H, Zeller MS, Teichmann S, Adamkiewicz J, Müller R, Klempnauer KH, Bauer UM. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet 2013; 9:e1003343. [PMID: 23505388 PMCID: PMC3591284 DOI: 10.1371/journal.pgen.1003343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 01/10/2013] [Indexed: 01/10/2023] Open
Abstract
Protein arginine methyltransferase 4 (PRMT4)–dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling. Our manuscript deals with the Protein arginine methyltransferase 4 (PRMT4), which modifies arginine residues in histones and other chromatin-associated proteins and plays an important role in the regulation of gene expression. We addressed the question of how the transcriptional function of PRMT4 might contribute to cell lineage specification despite its ubiquitious expression pattern and how this could explain its involvement in tumorigenesis. As protein associations are likely to provide an answer to this question, we attempted to identify novel interaction partners of PRMT4 using a biochemical approach. By this means, we found that PRMT4 binds Mi2α and its close relative Mi2β. In the search for the biological role of this interaction, we found that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. Depletion of PRMT4 or Mi2α/β in human erythroleukemia cells resulted in deregulated cell proliferation and differentiation resembling the effects caused by c-Myb depletion. Our findings unravel an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling and gene activation and identify both coregulators as attractive targets for leukaemia research and therapy in the future.
Collapse
Affiliation(s)
- Gundula Streubel
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Caroline Bouchard
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Hannah Berberich
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Marc S. Zeller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | | | - Jürgen Adamkiewicz
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Rolf Müller
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische Wilhelms-University of Münster, Münster, Germany
| | - Uta-Maria Bauer
- Institute for Molecular Biology and Tumor Research (IMT), University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
24
|
Smink JJ, Leutz A. Instruction of mesenchymal cell fate by the transcription factor C/EBPβ. Gene 2012; 497:10-7. [PMID: 22306325 DOI: 10.1016/j.gene.2012.01.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/13/2011] [Accepted: 01/19/2012] [Indexed: 01/10/2023]
Abstract
The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) plays a role in the differentiation of a large variety of cell types. C/EBPβ was initially described as an early inducer of adipocyte differentiation, however, recent data have shown that this is not the only mesenchymal cell lineage where C/EBPβ has an instructive function. Mouse models and tissue culture studies have now established a regulatory role of C/EBPβ in osteoblast and in chondrocyte differentiation. These three different cell lineages are derived from the same precursor, the mesenchymal stem cell (MSC). This review will focus on the emerging role of C/EBPβ and its different protein isoforms in various mesenchymal cell lineages and its function in adipocyte, chondrocyte and osteoblast differentiation. Moreover, the mesenchymal stem cell has attracted the attention of regenerative medicine in recent years, and the possible role of C/EBPβ in this respect will be discussed.
Collapse
Affiliation(s)
- Jeske J Smink
- Max Delbrueck Center for Molecular Medicine, Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany
| | | |
Collapse
|
25
|
Quintana AM, Zhou YE, Pena JJ, O'Rourke JP, Ness SA. Dramatic repositioning of c-Myb to different promoters during the cell cycle observed by combining cell sorting with chromatin immunoprecipitation. PLoS One 2011; 6:e17362. [PMID: 21364958 PMCID: PMC3043100 DOI: 10.1371/journal.pone.0017362] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 02/01/2011] [Indexed: 02/05/2023] Open
Abstract
The c-Myb transcription factor is a critical regulator of proliferation and stem cell differentiation, and mutated alleles of c-Myb are oncogenic, but little is known about changes in c-Myb activity during the cell cycle. To map the association of c-Myb with specific target genes during the cell cycle, we developed a novel Fix-Sort-ChIP approach, in which asynchronously growing cells were fixed with formaldehyde, stained with Hoechst 33342 and separated into different cell cycle fractions by flow sorting, then processed for chromatin immunoprecipitation (ChIP) assays. We found that c-Myb actively repositions, binding to some genes only in specific cell cycle phases. In addition, the specificity of c-Myb is dramatically different in small subpopulations of cells, for example cells in the G2/M phase of the cell cycle, than in the bulk population. The repositioning of c-Myb during the cell cycle is not due to changes in its expression and also occurs with ectopically expressed, epitope-tagged versions of c-Myb. The repositioning occurs in established cell lines, in primary human CD34+ hematopoietic progenitors and in primary human acute myeloid leukemia cells. The combination of fixation, sorting and ChIP analysis sheds new light on the dynamic nature of gene regulation during the cell cycle and provides a new type of tool for the analysis of gene regulation in small subsets of cells, such as cells in a specific phase of the cell cycle.
Collapse
Affiliation(s)
- Anita M. Quintana
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ye E. Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Janeth J. Pena
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - John P. O'Rourke
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Scott A. Ness
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
27
|
A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 2010; 30:212-22. [DOI: 10.1038/onc.2010.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Lee S, Miller M, Shuman JD, Johnson PF. CCAAT/Enhancer-binding protein beta DNA binding is auto-inhibited by multiple elements that also mediate association with p300/CREB-binding protein (CBP). J Biol Chem 2010; 285:21399-410. [PMID: 20452968 DOI: 10.1074/jbc.m110.128413] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Signaling through Ras GTPases controls the activity of many transcription factors including CCAAT/enhancer-binding protein (C/EBPbeta), which regulates oncogenic H-Ras(V12)-induced senescence and growth arrest. Here we report that C/EBPbeta (LAP) DNA binding is inhibited by N-terminal sequences and derepressed by oncogenic Ras signaling. Sequence and mutational analyses showed that auto-repression involves two LXXLF (phiXXphiphi)-like motifs (LX1 and LX2) and a third element, auto-inhibitory domain (AID), located within conserved region CR5. LX1 is a critical component of the transactivation domain and has been shown to mediate C/EBPbeta binding to the TAZ2 region of p300/CREB-binding protein coactivators. C/EBPbeta auto-repression also involves a C-terminal regulatory domain (CRD) adjacent to the leucine zipper. CRD contains a third phiXXphiphi motif (LX3) and a short sequence, KQL, which has similarity to a region in the protein-binding site of TAZ2. The C/EBPbeta N- and C-terminal domains physically associate in a manner that requires the basic region and CRD. We propose a model in which the regulatory sequences form a hydrophobic core that reciprocally inhibits DNA binding and transactivation. We also suggest a mechanism for C/EBPbeta derepression involving several recently identified modifications within AID and CRD. Finally, we show that association of activated C/EBPbeta with p300/CREB-binding protein requires the LX2 and AID auto-inhibitory elements. Thus, the N-terminal regulatory elements have dual roles in auto-inhibition and coactivator binding.
Collapse
Affiliation(s)
- Sook Lee
- Laboratory of Cancer Prevention, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
29
|
Molvaersmyr AK, Saether T, Gilfillan S, Lorenzo PI, Kvaløy H, Matre V, Gabrielsen OS. A SUMO-regulated activation function controls synergy of c-Myb through a repressor-activator switch leading to differential p300 recruitment. Nucleic Acids Res 2010; 38:4970-84. [PMID: 20385574 PMCID: PMC2926607 DOI: 10.1093/nar/gkq245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Synergy between transcription factors operating together on complex promoters is a key aspect of gene activation. The ability of specific factors to synergize is restricted by sumoylation (synergy control, SC). Focusing on the haematopoietic transcription factor c-Myb, we found evidence for a strong SC linked to SUMO-conjugation in its negative regulatory domain (NRD), while AMV v-Myb has escaped this control. Mechanistic studies revealed a SUMO-dependent switch in the function of NRD. When NRD is sumoylated, the activity of c-Myb is reduced. When sumoylation is abolished, NRD switches into being activating, providing the factor with a second activation function (AF). Thus, c-Myb harbours two AFs, one that is constitutively active and one in the NRD being SUMO-regulated (SRAF). This double AF augments c-Myb synergy at compound natural promoters. A similar SUMO-dependent switch was observed in the regulatory domains of Sp3 and p53. We show that the change in synergy behaviour correlates with a SUMO-dependent differential recruitment of p300 and a corresponding local change in histone H3 and H4 acetylation. We therefore propose a general model for SUMO-mediated SC, where SUMO controls synergy by determining the number and strength of AFs associated with a promoter leading to differential chromatin signatures.
Collapse
|
30
|
Wilczek C, Chayka O, Plachetka A, Klempnauer KH. Myb-induced chromatin remodeling at a dual enhancer/promoter element involves non-coding rna transcription and is disrupted by oncogenic mutations of v-myb. J Biol Chem 2010; 284:35314-24. [PMID: 19841477 DOI: 10.1074/jbc.m109.066175] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The oncogene v-myb of avian myeloblastosis virus (AMV) encodes a transcription factor (v-Myb) that transforms myelomonocytic cells by deregulating the expression of specific target genes. v-myb has acquired its oncogenic potential by truncation as well as by a number of point mutations of its cellular progenitor c-myb. As a result of these changes, the target gene spectrum v-Myb differs from that of c-Myb. We recently showed that the chicken mim-1 gene, a c-Myb target gene that is not activated by v-Myb harbors a powerful cell type-specific and Myb-inducible enhancer in addition to a Myb-responsive promoter. We now show that Myb-dependent activation of the mim-1 gene is accompanied by extensive remodeling of the nucleosomal architecture at the enhancer. We found that the mim-1 enhancer region also harbors a promoter whose activity is stimulated by Myb and which directs the transcription of an apparently non-coding RNA. Furthermore, our data show that the oncogenic mutations of AMV have disrupted the ability of v-Myb to induce remodeling of chromatin structure at the mim-1 enhancer. Together, our results demonstrate for the first time directly that Myb induces alterations of the nucleosomal organization at a relevant target site and provide new insight into the functional consequences of the oncogenic amino acid substitutions.
Collapse
Affiliation(s)
- Carola Wilczek
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
31
|
Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ. Mutations in Multiple Domains of c-Myb Disrupt Interaction with CBP/p300 and Abrogate Myeloid Transforming Ability. Mol Cancer Res 2009; 7:1477-86. [DOI: 10.1158/1541-7786.mcr-09-0070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Matre V, Nordgård O, Alm-Kristiansen AH, Ledsaak M, Gabrielsen OS. HIPK1 interacts with c-Myb and modulates its activity through phosphorylation. Biochem Biophys Res Commun 2009; 388:150-4. [PMID: 19646965 DOI: 10.1016/j.bbrc.2009.07.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/27/2009] [Indexed: 12/31/2022]
Abstract
The transcription factor v-Myb is a potent inducer of myeloid leukaemias, and its cellular homologue c-Myb plays a crucial role in the regulation of haematopoiesis. In a yeast two-hybrid (Y2H) screening we identified the nuclear kinase HIPK1 as an interaction partner for human c-Myb. The interaction involves a C-terminal region of HIPK1, while a bipartite interaction surface was identified in c-Myb, including regions in its N-terminal DNA-binding domain as well as in its C-terminal region. HIPK1 and c-Myb co-localize in distinct nuclear foci upon co-transfection. c-Myb appears to be phosphorylated by HIPK1 in its negative regulatory domain as supported by both in vivo and in vitro data. A functional assay revealed that HIPK1 repressed the ability of c-Myb to activate a chromatin embedded target gene, mim-1, in haematopoetic cells. Our findings point to a novel link between an important kinase and a key regulator of haematopoiesis.
Collapse
Affiliation(s)
- Vilborg Matre
- Department of Molecular Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
33
|
CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 2009; 11:e12. [PMID: 19351437 DOI: 10.1017/s1462399409001033] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CCAAT/enhancer-binding proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate gene expression to control cellular proliferation, differentiation, inflammation and metabolism. Encoded by an intronless gene, C/EBPbeta is expressed as several distinct protein isoforms (LAP1, LAP2, LIP) whose expression is regulated by the differential use of several in-frame translation start sites. LAP1 and LAP2 are transcriptional activators and are associated with differentiation, whereas LIP is frequently elevated in proliferative tissue and acts as a dominant-negative inhibitor of transcription. However, emerging evidence suggests that LIP can serve as a transcriptional activator in some cellular contexts, and that LAP1 and LAP2 might also have unique actions. The LIP:LAP ratio is crucial for the maintenance of normal growth and development, and increases in this ratio lead to aggressive forms of breast cancer. This review discusses the regulation of C/EBPbeta activity by post-translational modification, the individual actions of LAP1, LAP2 and LIP, and the functions and downstream targets that are unique to each isoform. The role of the C/EBPbeta isoforms in breast cancer is discussed and emphasis is placed on their interactions with receptor tyrosine kinases.
Collapse
|
34
|
Ko ER, Ko D, Chen C, Lipsick JS. A conserved acidic patch in the Myb domain is required for activation of an endogenous target gene and for chromatin binding. Mol Cancer 2008; 7:77. [PMID: 18840288 PMCID: PMC2572630 DOI: 10.1186/1476-4598-7-77] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 10/07/2008] [Indexed: 01/02/2023] Open
Abstract
The c-Myb protein is a transcriptional regulator initially identified by homology to the v-Myb oncoprotein, and has since been implicated in human cancer. The most highly conserved portion of the c-Myb protein is the DNA-binding domain which consists of three imperfect repeats. Many other proteins contain one or more Myb-related domains, including a number of proteins that do not bind directly to DNA. We performed a phylogenetic analysis of diverse classes of Myb-related domains and discovered a highly conserved patch of acidic residues common to all Myb-related domains. These acidic residues are positioned in the first of three alpha-helices within each of the three repeats that comprise the c-Myb DNA-binding domain. Interestingly, these conserved acidic residues are present on a surface of the protein which is distinct from that which binds to DNA. Alanine mutagenesis revealed that the acidic patch of the third c-Myb repeat is essential for transcriptional activity, but neither for nuclear localization nor DNA-binding. Instead, these acidic residues are required for efficient chromatin binding and interaction with the histone H4 N-terminal tail.
Collapse
Affiliation(s)
- Emily Ray Ko
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5324, USA.
| | | | | | | |
Collapse
|
35
|
Barroga CF, Pham H, Kaushansky K. Thrombopoietin regulates c-Myb expression by modulating micro RNA 150 expression. Exp Hematol 2008; 36:1585-92. [PMID: 18814950 DOI: 10.1016/j.exphem.2008.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mice harboring c-Myb hypomorphic mutations display enhanced thrombopoiesis because of increased numbers of megakaryocytes and their progenitors. Thrombopoietin induces these same effects, which lead us to hypothesize that the hormone acts through modulation of c-Myb expression, as c-Myb levels falls during thrombopoietin-induced megakaryocyte (MK) maturation. Micro RNAs (miRs) downregulate gene expression by binding to the 3' untranslated region (UTR) of specific messenger RNAs (mRNAs); we noted that the 3'UTR of c-Myb contains four miR-150 binding sites. MATERIALS AND METHODS We used quantitative reverse transcriptase polymerase chain reaction, Western blotting, and reporter gene analyses to assess the response of c-Myb to thrombopoietin stimulation and to gain of and loss of miR-150 expression. RESULTS We found that thrombopoietin reduced c-Myb mRNA and protein levels within 7 hours in megakaryocytes and UT7/thrombopoietin (TPO) cells. Using a reporter gene containing the c-Myb 3'UTR region, including its four miR150 binding sites, we found that expression of miR150 reduced luciferase expression to 50% of baseline at 24 hours and to 25% at 48 hours in UT7/TPO cells. Quantitative polymerase chain reaction and Western blotting also revealed that miR-150 reduced endogenous c-Myb mRNA and protein to 50% in UT7/TPO cells, and to 65% in mature megakaryocytes. Converse experiments utilizing anti-miR150 increased luciferase activity twofold over control anti-miR. Finally, TPO increased miR150 expression 1.8-fold within 24 hours and 3.4-fold within 48 hours. CONCLUSIONS These findings establish that miR150 downmodulates c-Myb levels, and because TPO affects miR150 expression, our results indicate that, in addition to affecting MK progenitor cell growth, TPO downmodulates c-Myb expression through induction of miR-150.
Collapse
Affiliation(s)
- Charlene F Barroga
- Department of Medicine and Division of Hematology/Oncology, University of California, San Diego School of Medicine, San Diego, CA 92103-8811, USA
| | | | | |
Collapse
|
36
|
Huang YC, Su LH, Lee GA, Chiu PW, Cho CC, Wu JY, Sun CH. Regulation of cyst wall protein promoters by Myb2 in Giardia lamblia. J Biol Chem 2008; 283:31021-9. [PMID: 18768462 DOI: 10.1074/jbc.m805023200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myb family transcription factors are important in regulating cell proliferation, differentiation, and cell cycle progression. Giardia lamblia differentiates into infectious cysts to survive outside of the host. During encystation, genes encoding cyst wall proteins (CWPs) are coordinately induced. We have identified an encystation-induced Myb2 protein, which binds to the promoter regions of the cwp genes and myb2 itself in vitro. To elucidate the role of Myb2 in G. lamblia, we tested the hypothesis that Myb2 can activate encystation-induced genes. We found that overexpression of Myb2 resulted in an increase of expression of CWP1 at both protein and mRNA levels. Interestingly, the Myb2-overexpressing trophozoites had increased capability to differentiate into cysts. In cotransfection assays, Myb2 was able to transactivate the cwp promoters and its own promoter in vivo, suggesting that its gene can be positively autoregulated. Moreover, deletion of the N- or C-terminal domain resulted in a decrease of transactivation and autoregulation function of Myb2. We also found that the promoter of a newly identified encystation-induced gene, the giardial myeloid leukemia factor-like gene, has the Myb2 binding sites and that its mRNA levels were increased by Myb2 overexpression. Chromatin immunoprecipitation assays confirmed that Myb2 was bound to the promoters with its binding sites. Transfection of the myb2 antisense construct reduced the levels of the cwp1 transcripts and cyst formation. Our results suggest that Myb2 is a potent transactivator of the cwp genes and other endogenous genes and plays an important role in G. lamblia differentiation into cysts.
Collapse
Affiliation(s)
- Yu-Chang Huang
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
37
|
Bonifer C, Bosch FX, Faust N, Schuhmann A, Sippel AE. Evolution of Gene Regulation as Revealed by Differential Regulation of the Chicken Lysozyme Transgene and the Endogenous Mouse Lysozyme Gene in Mouse Macrophages. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1994.0t227.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20:247-56. [PMID: 18585056 DOI: 10.1016/j.smim.2008.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
While it has long been known that the transcription factor c-Myb is an essential regulator of hematopoiesis, its precise molecular targets have remained elusive. Cell line studies suggest that c-Myb promotes proliferation and at the same time inhibits differentiation, however the early lethality of c-Myb deficient embryos precluded analysis of its role in adult hematopoiesis. Here we review insights derived from recently developed mouse models of c-Myb deficiency that are viable as adults. These studies reveal a complex array of functions for c-Myb in multiple hematopoietic cell types that will redefine our understanding of this crucial transcription factor.
Collapse
Affiliation(s)
- Kylie T Greig
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|
39
|
Alm-Kristiansen AH, Sæther T, Matre V, Gilfillan S, Dahle Ø, Gabrielsen OS. FLASH acts as a co-activator of the transcription factor c-Myb and localizes to active RNA polymerase II foci. Oncogene 2008; 27:4644-56. [DOI: 10.1038/onc.2008.105] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
40
|
Plachetka A, Chayka O, Wilczek C, Melnik S, Bonifer C, Klempnauer KH. C/EBPbeta induces chromatin opening at a cell-type-specific enhancer. Mol Cell Biol 2008; 28:2102-12. [PMID: 18195047 PMCID: PMC2268399 DOI: 10.1128/mcb.01943-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 12/16/2007] [Accepted: 01/01/2008] [Indexed: 12/16/2022] Open
Abstract
We have used the chicken mim-1 gene as a model to study the mechanisms by which transcription factors gain initial access to their target sites in compacted chromatin. The expression of mim-1 is restricted to the myelomonocytic lineage of the hematopoietic system where it is regulated synergistically by the Myb and CCAAT/enhancer binding protein (C/EBP) factors. Myb and C/EBPbeta cooperate at two distinct cis elements of mim-1, the promoter and a cell-type-specific enhancer, both of which are associated with DNase I hypersensitive sites in myelomonocytic cells but not in mim-1-nonexpressing cells. Previous work has shown that ectopic expression of Myb and C/EBPbeta activates the endogenous mim-1 gene in a nonhematopoietic cell type (fibroblasts), where the gene is normally completely silent. Here, we investigated the molecular details of this finding and show that the activation of mim-1 occurs by two independent mechanisms. In the absence of Myb, C/EBPbeta triggers the initial steps of chromatin opening at the mim-1 enhancer without inducing transcription of the gene. mim-1 transcription occurs only in the presence of Myb and is associated with chromatin opening at the promoter. Our work identifies a novel function for C/EBPbeta in the initial steps of a localized chromatin opening at a specific, physiologically relevant target region.
Collapse
Affiliation(s)
- Annette Plachetka
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Alternative RNA splicing produces multiple forms of c-Myb with unique transcriptional activities. Mol Cell Biol 2008; 28:2091-101. [PMID: 18195038 DOI: 10.1128/mcb.01870-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-Myb transcription factor regulates the proliferation and differentiation of hematopoietic cells, and activated alleles of c-myb induce leukemias and lymphomas in animals. Relatively minor changes in the structure of c-Myb protein change the genes that it regulates and can unleash its latent transforming activities. Here, quantitative assays were used to analyze the alternative splicing of human c-myb transcripts. We identified an array of variant transcripts, expressed in highly regulated, lineage-specific patterns, that were formed through the use of alternate exons 8A, 9A, 9B, 10A, 13A, and 14A. Expression levels of the different splice variant transcripts were regulated independently of one another during human hematopoietic cell differentiation, and the alternative splicing of c-myb mRNAs was increased in primary leukemia samples. The alternatively spliced c-myb transcripts were associated with polysomes and encoded a series of c-Myb proteins with identical DNA binding domains but unique C-terminal domains. In several types of assays, the variant c-Myb proteins exhibited quantitative and qualitative differences in transcriptional activities and specificities. The results suggest that the human c-myb gene encodes a family of related proteins with different transcriptional activities. Enhanced alternative splicing may be a mechanism for unmasking the transforming activity of c-myb in human leukemias.
Collapse
|
42
|
Buck M, Chojkier M. C/EBPβ phosphorylation rescues macrophage dysfunction and apoptosis induced by anthrax lethal toxin. Am J Physiol Cell Physiol 2007; 293:C1788-96. [PMID: 17855774 DOI: 10.1152/ajpcell.00141.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bacillus anthracis lethal toxin (LT) impairs innate and adaptive immunity. Anthrax lethal factor stimulates cleavage of MAPK kinases, which prevents the activation of antiapoptotic MAPK targets. However, these MAPK targets have not been yet identified. Here, we found that LT induces macrophage apoptosis by enhancing caspase 8 activation and by preventing the activation of ribosomal S6 kinase-2 (RSK), a MAPK target, and the phosphorylation of CCAAT/enhancer binding protein-β (C/EBPβ) on T217, a RSK target. Expression of the dominant positive, phosphorylation mimic C/EBPβ-E217rescued macrophages from LT-induced apoptosis by blocking the activation of procaspase 8. LT inhibited macrophage phagocytosis and oxidative burst and induced apoptosis in normal mice but not in C/EBPβ-E217transgenic mice. These findings suggest that C/EBPβ may play a critical role in anthrax pathogenesis, at least in macrophages.
Collapse
Affiliation(s)
- Martina Buck
- Department of Medicine, University of California San Diego, and Veterans Affairs Healthcare System, San Diego, CA 92161, USA.
| | | |
Collapse
|
43
|
Ivanova O, Braas D, Klempnauer KH. Oncogenic point mutations in the Myb DNA-binding domain alter the DNA-binding properties of Myb at a physiological target gene. Nucleic Acids Res 2007; 35:7237-47. [PMID: 17959653 PMCID: PMC2175353 DOI: 10.1093/nar/gkm675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The oncoprotein v-Myb of avian myeloblastosis virus (AMV) transforms myelomonocytic cells by deregulating specific target genes. Previous work has shown that the oncogenic potential of v-Myb was activated by truncation of N- and C-terminal sequences of c-Myb and was further increased by amino acid substitutions in the DNA-binding domain and other parts of the protein. We have analyzed the activation of the chicken lysozyme gene which is strongly activated by c-Myb but not by its oncogenic counterpart v-Myb. We report that Myb acts on two different cis-regulatory elements, the promoter and an enhancer located upstream of the gene. Interestingly, the activation of the enhancer was abolished by the oncogenic amino acid substitutions. We demonstrated that a single Myb-binding site is responsible for the activation of the lysozyme enhancer by Myb and showed that the v-Myb protein of AMV was unable to bind to this site. Our data demonstrate for the first time that oncogenic activation of Myb alters its DNA-binding specificity at a physiological Myb target gene.
Collapse
Affiliation(s)
- Olga Ivanova
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, D-48149 Münster, Germany
| | | | | |
Collapse
|
44
|
Yamkamon V, Ivanova O, Braas D, Chayka O, Patmasiriwat P, Klempnauer KH. A dual activation mechanism for Myb-responsive genes in myelomonocytic cells. Blood Cells Mol Dis 2007; 40:219-26. [PMID: 17950008 DOI: 10.1016/j.bcmd.2007.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 11/26/2022]
Abstract
The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which is responsible for the transformation of myelomonocytic cells by avian myeloblastosis virus (AMV). v-Myb is thought to exert its biological effects by deregulating the expression of specific target genes. Here we have used DNaseI hypersensitive site mapping and reporter gene assays to study the activation of three Myb target genes--mim-1, the lysozyme gene and the C/EBPbeta gene--all of which are activated by Myb in myelomonocytic cells but not in other hematopoietic lineages. We have found that these genes are activated by Myb via more than one cis-regulatory region. Our data suggest that all three genes are activated by Myb by dual mechanisms involving the promoters as well as enhancers. Using a cell line that expresses an estrogen-inducible v-Myb/estrogen receptor fusion protein we have also determined the effect of Myb on the expression of the C/EBPalpha gene. Our results show that C/EBPalpha expression is down-regulated by v-Myb. Thus, v-Myb affects the expression of two C/EBP family members in opposite directions.
Collapse
Affiliation(s)
- Vichanan Yamkamon
- Institut für Biochemie, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Gundelach H, Braas D, Klempnauer KH. The promoter regions of the Myb-regulated Adora2B and Mcm4 genes co-localize with origins of DNA replication. BMC Mol Biol 2007; 8:75. [PMID: 17822556 PMCID: PMC2018721 DOI: 10.1186/1471-2199-8-75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 09/06/2007] [Indexed: 02/02/2023] Open
Abstract
Background The retroviral oncogene v-myb encodes a transcription factor (v-Myb) which is responsible for the transformation of myelomonocytic cells by avian myeloblastosis virus (AMV). v-Myb is thought to exert its biological effects by deregulating the expression of specific target genes. We have recently demonstrated that the chicken Gas41 gene, whose promoter co-localizes with an origin of DNA replication, is a bona fide Myb target gene. Because of this finding we have asked whether other Myb-regulated genes are also associated with DNA replication origins. Results We show that the promoter region of the chicken adenosine receptor 2B gene (Adora2B), a known Myb-target gene, acts as a DNA replication origin. Furthermore, we have examined known replication origins for the presence of Myb binding sites. We found that the intergenic region between the genes for the minichromosome maintenance 4 protein (Mcm4) and the catalytic subunit of DNA-dependent protein kinase (Prkdc), whose human counterpart has been identified as a replication origin, contains a number of Myb binding sites. Our data show that this region also acts as an origin of replication in chicken cells. Interestingly, we found that the chicken Mcm4 gene is also Myb-regulated. Conclusion Our work identifies the chicken Mcm4 gene as a novel Myb target gene and presents evidence for the co-localization of two novel origins of DNA replication with Myb-regulated genes. Our work raises the possibility that a fraction of Myb target gene promoters is associated with DNA replication origins.
Collapse
Affiliation(s)
- Holger Gundelach
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Daniel Braas
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
- Howard Hughes Medical Institute, MacDonald Research Laboratories, UCLA, 675 Charles E. Young Drive South, Los Angeles, CA-90095-1662, USA
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| |
Collapse
|
46
|
Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 2007; 31:385-401. [PMID: 17666525 DOI: 10.1152/physiolgenomics.00059.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In euryhaline teleosts, osmoregulation is a fundamental and dynamic process that is essential for the maintenance of ion and water balance, especially when fish migrate between fresh water (FW) and sea water (SW) environments. The European eel has proved to be an excellent model species to study the molecular and physiological adaptations associated with this osmoregulatory plasticity. The life cycle of the European eel includes two migratory periods, the second being the migration of FW eels back to the Sargasso Sea for reproduction. Various anatomical and physiological changes allow the successful transition to SW. The aim of this study was to use a microarray approach to screen the osmoregulatory tissues of the eel for changes in gene expression following acclimation to SW. Tissues were sampled from fish at selected intervals over a 5-mo period following FW/SW transfer, and RNA was isolated. Suppressive subtractive hybridization was used for enrichment of differentially expressed genes. Microarrays comprising 6,144 cDNAs from brain, gill, intestine, and kidney libraries were hybridized with appropriate targets and analyzed; 229 differentially expressed clones with unique sequences were identified. These clones represented the sequences for 95 known genes, with the remaining sequences (59%) being unknown. The results of the microarray analysis were validated by quantification of 28 differentially expressed genes by Northern blotting. A number of the differentially expressed genes were already known to be involved in osmoregulation, but the functional roles of many others, not normally associated with ion or water transport, remain to be characterized.
Collapse
|
47
|
Gombart AF, Grewal J, Koeffler HP. ATF4 differentially regulates transcriptional activation of myeloid-specific genes by C/EBPepsilon and C/EBPalpha. J Leukoc Biol 2007; 81:1535-47. [PMID: 17347301 DOI: 10.1189/jlb.0806516] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dimerization between different basic region leucine zipper (ZIP) transcription factors is regarded as an important mechanism for integrating various extracellular signals to control specific patterns of gene expression in cells. The activating transcription factor 4 (ATF4) protein was identified as a principal partner for the myeloid-specific transcriptional factor C/EBPepsilon. Dimerization required the ZIP motif of each protein and redirected DNA binding of C/EBPepsilon and ATF4 from their respective symmetric consensus sites to asymmetric C/EBP and cAMP response element sites. The C/EBPepsilon:ATF4 heterodimer bound to the C/EBP sites in the promoters of the myeloid-specific genes encoding neutrophil elastase (NE) and the G-CSF receptor (G-CSFR). Also, the heterodimer bound a previously uncharacterized site in the promoter of the mim-1 gene at nucleotide -174. Coexpression of ATF4 and C/EBPepsilon in the presence of c-Myb synergistically activated the mim-1 and NE promoters compared with C/EBPepsilon plus c-Myb alone. Synergistic activation was not observed for the G-CSFR promoter and only occurred in the presence of c-myb with the NE or mim-1 promoters. In contrast, ATF4:C/EBPalpha dimers bound to the C/EBP sites in the G-CSFR and NE promoters, but transcriptional activation was inhibited by 30-80% in the presence or absence of c-Myb. We propose that ATF4 may regulate myeloid gene expression differentially by potentiating C/EBPepsilon but inhibiting C/EBPalpha-mediated transcriptional activation.
Collapse
Affiliation(s)
- Adrian F Gombart
- Cedars-Sinai Medical Center, Division of Hematology/Oncology, Davis Bldg. 5019, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | | | | |
Collapse
|
48
|
Saether T, Berge T, Ledsaak M, Matre V, Alm-Kristiansen AH, Dahle O, Aubry F, Gabrielsen OS. The chromatin remodeling factor Mi-2alpha acts as a novel co-activator for human c-Myb. J Biol Chem 2007; 282:13994-4005. [PMID: 17344210 DOI: 10.1074/jbc.m700755200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The c-Myb protein belongs to a group of early hematopoietic transcription factors that are important for progenitor generation and proliferation. These factors have been hypothesized to participate in establishing chromatin patterns specific for hematopoietic genes. In a two-hybrid screening we identified the chromatin remodeling factor Mi-2alpha as an interaction partner for human c-Myb. The main interacting domains were mapped to the N-terminal region of Mi-2alpha and the DNA-binding domain of c-Myb. Surprisingly, functional analysis revealed that Mi-2alpha, previously studied as a subunit in the NuRD co-repressor complex, enhanced c-Myb-dependent reporter activation. Consistently, knock-down of endogenous Mi-2alpha in c-Myb-expressing K562 cells, led to down-regulation of the c-Myb target genes NMU and ADA. When wild-type and helicase-dead Mi-2alpha were compared, the Myb-Mi-2alpha co-activation appeared to be independent of the ATPase/DNA helicase activity of Mi-2alpha. The rationale for the unexpected co-activator function seems to lie in a dual function of Mi-2alpha, by which this factor is able to repress transcription in a helicase-dependent and activate in a helicase-independent fashion, as revealed by Gal4-tethering experiments. Interestingly, desumoylation of c-Myb potentiated the Myb-Mi-2alpha transactivational co-operation, as did co-transfection with p300.
Collapse
Affiliation(s)
- Thomas Saether
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Grondin B, Lefrancois M, Tremblay M, Saint-Denis M, Haman A, Waga K, Bédard A, Tenen DG, Hoang T. c-Jun homodimers can function as a context-specific coactivator. Mol Cell Biol 2007; 27:2919-33. [PMID: 17283046 PMCID: PMC1899927 DOI: 10.1128/mcb.00936-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1beta (IL-1beta) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein beta (C/EBPbeta). Unexpectedly, the interaction interface with PU.1 and C/EBPbeta involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1beta locus is occupied by PU.1 and C/EBPbeta and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Collapse
Affiliation(s)
- Benoit Grondin
- Institute of Research in Immunology and Cancer, University of Montreal, P.O. Box 6128, Downtown station, Montréal, Québec
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
In recent years, investigators have made great progress in delineating developmental pathways of several lymphoid and myeloid lineages and in identifying transcription factors that establish and maintain their fate. However, the developmental branching points between these two large cell compartments are still controversial, and little is known about how their diversification is induced. Here, we give an overview of determinants that play a role at lymphoid-myeloid junctures, in particular transcription factors and cytokine receptors. Experiments showing that myeloid lineages can be reversibly reprogrammed into one another by transcription factor network perturbations are used to highlight key principles of lineage commitment. We also discuss experiments showing that lymphoid-to-myeloid but not myeloid-to-lymphoid conversions can be induced by the enforced expression of a single transcription factor. We close by proposing that this asymmetry is related to a higher complexity of transcription factor networks in lymphoid cells compared with myeloid cells, and we suggest that this feature must be considered when searching for mechanisms by which hematopoietic stem cells become committed to lymphoid lineages.
Collapse
Affiliation(s)
- Catherine V Laiosa
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|