1
|
Liu S, Wang Z, Cao H, Tong J, Cui J, Li L, Bu Q, Li Y, Jin T, An X, Zhang L, Song Y. Establishment of an immortalized sheep mammary epithelial cell line for studying milk fat and protein synthesis. J Food Sci 2024; 89:9799-9815. [PMID: 39322983 DOI: 10.1111/1750-3841.17370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
The mammary gland, crucial for milk production in mammals, presents challenges for in vitro study due to its complex structure and limited cell lifespan. We addressed this by introducing the SV40 large T antigen into primary mammary epithelial cells (MECs) from sheep, creating an immortalized T-tag MEC line. This line, stable for over 50 passages, maintained typical epithelial cell morphology during long-term culture. Through transcriptome sequencing and validation, we discovered 3833 differentially expressed genes between MECs and T-tag MEC line, encompassing key biological processes and signaling pathways like cell cycle, p53, and cancer. The cell line, expressing MEC markers (KRT8, KRT18, proliferating cell nuclear antigen, SV40, CSN2, and acetyl-CoA carboxylase alpha), proved capable of synthesizing milk fat and protein. Despite its infinite proliferation potential, the T-tag MEC line showed no tumor formation in mice or cell migration in vitro, indicating stability. This development offers a valuable resource for studying MECs in dairy sheep, facilitating the advancement of long-term culture systems and in vitro lactation bioreactors.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiashun Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qiqi Bu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
2
|
Mansour F, Parisi L, Rihs S, Schnyder I, La Scala GC, Aliu N, Katsaros C, Degen M. Immortalization of patient-derived lip cells for establishing 3D lip models. Front Cell Dev Biol 2024; 12:1449224. [PMID: 39559739 PMCID: PMC11570282 DOI: 10.3389/fcell.2024.1449224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction The lips fulfill various critical physiological roles besides being viewed as a fundamental aesthetic feature contributing to the perception of health and beauty. Therefore, any lip injury, abnormality, or congenital malformation, such as cleft lip, needs special attention in order to restore proper lip function and aesthetics. To achieve this goal, a better understanding of the complex lip anatomy, function, and biology is required, which can only be provided by basic research endeavors. However, the current lack of clinically relevant human lip cells and three-dimensional in vitro lip models, capable of replacing ethically questionable animal experimentations, represents a significant limitation in this area of research. Methods To address these limitations, we aimed to pioneer the introduction of immortalized healthy lip- and cleft lip-derived keratinocytes. Primary keratinocytes were isolated from patients' samples and immortalized by introducing the catalytic domain of telomerase, combined with the targeted knockdown of the cell cycle inhibitor gene, p16 INK4A . We then focused on validating the newly established cell lines by comparing their genetic stability and key phenotypic features with their primary keratinocyte counterparts. Results The newly established immortalized keratinocyte cell lines demonstrated genetic stability and preserved the main phenotypic characteristics of primary keratinocytes, such as cellular morphology and differentiation capacity. Three-dimensional lip models, generated using these cell lines, proved to be effective and convenient platforms for screening applications, including wound healing and microbial infection of the lip epithelium. Discussion The establishment of immortalized keratinocytes derived from healthy and cleft lips represents a significant achievement in lip research. These cell lines and the associated three-dimensional lip models are valuable tools that can be used as convenient screening platforms for various assays in a multitude of lip-related research areas, including dermatology, skin care, wound healing, tissue engineering, and craniofacial anomalies. This work opens new avenues in studying lip abnormalities and provides unique tools for personalized medicine approaches beneficial to patients.
Collapse
Affiliation(s)
- Farah Mansour
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Silvia Rihs
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Pediatric Surgery, Bern University Hospital, Bern, Switzerland
| | - Giorgio C. La Scala
- Division of Pediatric Surgery, Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Smith R, Bassand K, Dussol A, Piesse C, Duplus E, El Hadri K. A new model and precious tool to study molecular mechanisms of macrophage aging. Aging (Albany NY) 2024; 16:12697-12725. [PMID: 39373702 PMCID: PMC11501386 DOI: 10.18632/aging.206124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 10/08/2024]
Abstract
The accumulation of senescent cells, characterized by a senescence-associated secretory phenotype (SASP), contributes to chronic inflammation and age-related diseases (ARD). During aging, macrophages can adopt a senescent-like phenotype and an altered function, which promotes senescent cell accumulation. In the context of aging and ARD, controlling the resolution of the inflammatory response and preventing chronic inflammation, especially by targeting macrophages, must be a priority. Aging being a dynamic process, we developed a model of in vitro murine peritoneal macrophage aging. Our results show that macrophages cultured for 7 or 14 days exhibit a senescence-like phenotype: proliferation decrease, the levels of cyclin-dependent kinase inhibitors p16INK4A and p21CIP1 and of pro-inflammatory SASP components (MCP-1, IL-6, IL-1β, TNF-α, and MMP-9) increase, phagocytosis capacity decline and glycolytic activity is induced. In our model, chronic treatment with CB3, a thioredoxin-1 mimetic anti-inflammatory peptide, completely prevents p21CIP1 increase and enables day 14 macrophages to maintain proliferative activity.We describe a new model of macrophage aging with a senescence-like phenotype associated with inflammatory, metabolic and functional perturbations. This model is a valuable tool for characterizing macrophage aging mechanisms and developing innovative strategies with promising therapeutical purpose in limiting inflammaging and ARD.
Collapse
Affiliation(s)
- Rémy Smith
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Kévin Bassand
- INSERM U1148, Laboratory for Vascular and Translational Sciences (LVTS), Université Sorbonne Paris Nord, Bobigny 93000, France
| | - Ashok Dussol
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Christophe Piesse
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine (IBPS), Plate-forme Ingénierie des Protéines et Synthèse Peptidique, Paris 75005, France
| | - Eric Duplus
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| | - Khadija El Hadri
- Sorbonne Université, CNRS UMR 8256 Biological Adaptation and Ageing (B2A), INSERM U1164, Institut de Biologie Paris Seine (IBPS), Paris 75005, France
| |
Collapse
|
4
|
Ma L, Yu J, Fu Y, He X, Ge S, Jia R, Zhuang A, Yang Z, Fan X. The dual role of cellular senescence in human tumor progression and therapy. MedComm (Beijing) 2024; 5:e695. [PMID: 39161800 PMCID: PMC11331035 DOI: 10.1002/mco2.695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Cellular senescence, one of the hallmarks of cancer, is characterized by cell cycle arrest and the loss of most normal cellular functions while acquiring a hypersecretory, proinflammatory phenotype. The function of senescent cells in cancer cells varies depending on the cellular conditions. Before the occurrence of cancer, senescent cells act as a barrier to prevent its development. But once cancer has occurred, senescent cells play a procancer role. However, few of the current studies have adequately explained the diversity of cellular senescence across cancers. Herein, we concluded the latest intrinsic mechanisms of cellular senescence in detail and emphasized the senescence-associated secretory phenotype as a key contributor to heterogeneity of senescent cells in tumor. We also discussed five kinds of inducers of cellular senescence and the advancement of senolytics in cancer, which are drugs that tend to clear senescent cells. Finally, we summarized the various effects of senescent cells in different cancers and manifested that their functions may be diametrically opposed under different circumstances. In short, this paper contributes to the understanding of the diversity of cellular senescence in cancers and provides novel insight for tumor therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Jie Yu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Yidian Fu
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xiaoyu He
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Shengfang Ge
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Renbing Jia
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Ai Zhuang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Zhi Yang
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| | - Xianqun Fan
- Department of OphthalmologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghaiChina
| |
Collapse
|
5
|
Mori JO, Elhussin I, Brennen WN, Graham MK, Lotan TL, Yates CC, De Marzo AM, Denmeade SR, Yegnasubramanian S, Nelson WG, Denis GV, Platz EA, Meeker AK, Heaphy CM. Prognostic and therapeutic potential of senescent stromal fibroblasts in prostate cancer. Nat Rev Urol 2024; 21:258-273. [PMID: 37907729 PMCID: PMC11058122 DOI: 10.1038/s41585-023-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
The stromal component of the tumour microenvironment in primary and metastatic prostate cancer can influence and promote disease progression. Within the prostatic stroma, fibroblasts are one of the most prevalent cell types associated with precancerous and cancerous lesions; they have a vital role in the structural composition, organization and integrity of the extracellular matrix. Fibroblasts within the tumour microenvironment can undergo cellular senescence, which is a stable arrest of cell growth and a phenomenon that is emerging as a recognized hallmark of cancer. Supporting the idea that cellular senescence has a pro-tumorigenic role, a subset of senescent cells exhibits a senescence-associated secretory phenotype (SASP), which, along with increased inflammation, can promote prostate cancer cell growth and survival. These cellular characteristics make targeting senescent cells and/or modulating SASP attractive as a potential preventive or therapeutic option for prostate cancer.
Collapse
Affiliation(s)
- Joakin O Mori
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Isra Elhussin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mindy K Graham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clayton C Yates
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald V Denis
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elizabeth A Platz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
6
|
Rodzinski É, Martin N, Rouget R, Pioger A, Dehennaut V, Molendi-Coste O, Dombrowicz D, Goy E, de Launoit Y, Abbadie C. [Sorting of senescent cells by flow cytometry: Specificities and pitfalls to avoid]. Med Sci (Paris) 2024; 40:275-282. [PMID: 38520103 DOI: 10.1051/medsci/2024011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
Cells can be reprogrammed into senescence to adapt to a variety of stresses, most often affecting the genome integrity. Senescent cells accumulate with age or upon various insults in almost all tissues, and contribute to the development of several age-associated pathologies. Studying the molecular pathways involved in senescence induction, maintenance, or escape is challenged by the heterogeneity in the level of commitment to senescence, and by the pollution of senescent cell populations by proliferating pre- or post-senescent cells. We coped with these difficulties by developing a protocol for sorting senescent cells by flow cytometry, based on three major senescence markers : the SA-β-Galactosidase activity, the size of the cells, and their granularity reflecting the accumulation of aggregates, lysosomes, and altered mitochondria. We address the issues related to sorting senescent cells, the pitfalls to avoid, and propose solutions for sorting viable cells expressing senescent markers at different extents.
Collapse
Affiliation(s)
- Élodie Rodzinski
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Nathalie Martin
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Raphael Rouget
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Adrien Pioger
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Vanessa Dehennaut
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Olivier Molendi-Coste
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41 - UAR 2014 - PLBS, F-59000 Lille, France
| | - David Dombrowicz
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Erwan Goy
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Yvan de Launoit
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| | - Corinne Abbadie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER (Cancer Heterogeneity Plasticity and Resistance to Therapies), F-59000 Lille, France
| |
Collapse
|
7
|
Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer's disease and Parkinson's disease. Front Physiol 2023; 14:1207280. [PMID: 37405135 PMCID: PMC10315612 DOI: 10.3389/fphys.2023.1207280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent neurodegenerative disorders severely impacting life expectancy and quality of life of millions of people worldwide. AD and PD exhibit both a very distinct pathophysiological disease pattern. Intriguingly, recent researches, however, implicate that overlapping mechanisms may underlie AD and PD. In AD and PD, novel cell death mechanisms, encompassing parthanatos, netosis, lysosome-dependent cell death, senescence and ferroptosis, apparently rely on the production of reactive oxygen species, and seem to be modulated by the well-known, "old" second messenger cAMP. Signaling of cAMP via PKA and Epac promotes parthanatos and induces lysosomal cell death, while signaling of cAMP via PKA inhibits netosis and cellular senescence. Additionally, PKA protects against ferroptosis, whereas Epac1 promotes ferroptosis. Here we review the most recent insights into the overlapping mechanisms between AD and PD, with a special focus on cAMP signaling and the pharmacology of cAMP signaling pathways.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Minh D. A. Luu
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Amalia M. Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Ulrich L. M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
9
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
10
|
Sahabi S, Jafari-Gharabaghlou D, Zarghami N. A new insight into cell biological and biochemical changes through aging. Acta Histochem 2022; 124:151841. [PMID: 34995929 DOI: 10.1016/j.acthis.2021.151841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
After several years of extensive research, the main cause of aging is yet elusive. There are some theories about aging, such as stem cell aging, senescent cells accumulation, and neuro-endocrine theories. None of them is able to explain all changes that happen in cells and body through aging. By finding out the main cause of aging, it will be much easier to control, prevent and even reverse the aging process. Our cells, regardless of their replicative capacity, get old through aging and they have almost the same epigenetic age. Different cell signaling pathways contribute to aging. The most important one is mTORC1 that becomes hyperactive in cells that undergo aging. Other significant changes with age are lysosome accumulation, impaired autophagy, and mitophagy. Immune system undergoes gradual changes through aging including a shift from lymphoid to myeloid lineage production as well as increased IL-6 and TNF-α which lead to age-related weight loss and meta-inflammation. Additionally, our endocrine system also experiences some changes that should be taken into consideration when looking for the main cause of aging in the human body. In this review, we planned to summarize some of the changes that happen in cells and the body through aging.
Collapse
|
11
|
Sun C, Huang Z, Qin H, Zhang J, Wang S, Xu X, Ying S, Mao G. Exposure to 10 Hz Pulsed Magnetic Fields Do Not Induce Cellular Senescence in Human Fetal Lung Fibroblasts. Front Public Health 2021; 9:761069. [PMID: 34858933 PMCID: PMC8632261 DOI: 10.3389/fpubh.2021.761069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid population aging has led to a global burden of late-life diseases. As the largest risk factor for a multitude of age-related diseases, aging is not only the result of genotype but also closely related to external factors. With the rapid expansion in the usage of electromagnetic fields (EMFs), the effect of EMFs on aging has also attracted attention. Cells are the basic unit of organs and body tissues, and cellular senescence plays an important role in the aging process. The effect of EMFs on cellular senescence has been investigated in a few studies, but the information is limited, and the results are inconsistent; thus, further investigation is required. In this study, we investigated the effect of 10 Hz pulsed magnetic fields (MFs) on cellular senescence in a 2BS cell line, isolated from human fetal lung fibroblasts, and found that intermittent (1 d on/1 d off) exposure to 10 Hz pulsed MFs at 1.0 mT for 2 weeks induced DNA damage, but no other significant phenotype of cellular senescence in 2BS cells.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zheng Huang
- School of Stomatology, Hangzhou Normal University, Hangzhou, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Shibo Ying
- Hangzhou Medical College, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
12
|
Guo G, Watterson S, Zhang SD, Bjourson A, McGilligan V, Peace A, Rai TS. The role of senescence in the pathogenesis of atrial fibrillation: A target process for health improvement and drug development. Ageing Res Rev 2021; 69:101363. [PMID: 34023420 DOI: 10.1016/j.arr.2021.101363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/24/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence is a state of growth arrest that occurs after cells encounter various stresses. Senescence contributes to tumour suppression, embryonic development, and wound healing. It impacts on the pathology of various diseases by secreting inflammatory chemokines, immune modulators and other bioactive factors. These secretory biosignatures ultimately cause inflammation, tissue fibrosis, immunosenescence and many ageing-related diseases such as atrial fibrillation (AF). Because the molecular mechanisms underpinning AF development remain unclear, current treatments are suboptimal and have serious side effects. In this review, we summarize recent results describing the role of senescence in AF. We propose that senescence factors induce AF and have a causative role. Hence, targeting senescence and its secretory phenotype may attenuate AF.
Collapse
|
13
|
Horn IP, Marks DL, Koenig AN, Hogenson TL, Almada LL, Goldstein LE, Romecin Duran PA, Vera R, Vrabel AM, Cui G, Rabe KG, Bamlet WR, Mer G, Sicotte H, Zhang C, Li H, Petersen GM, Fernandez-Zapico ME. A rare germline CDKN2A variant (47T>G; p16-L16R) predisposes carriers to pancreatic cancer by reducing cell cycle inhibition. J Biol Chem 2021; 296:100634. [PMID: 33823155 PMCID: PMC8121974 DOI: 10.1016/j.jbc.2021.100634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Germline mutations in CDKN2A, encoding the tumor suppressor p16, are responsible for a large proportion of familial melanoma cases and also increase risk of pancreatic cancer. We identified four families through pancreatic cancer probands that were affected by both cancers. These families bore a germline missense variant of CDKN2A (47T>G), encoding a p16-L16R mutant protein associated with high cancer occurrence. Here, we investigated the biological significance of this variant. When transfected into p16-null pancreatic cancer cells, p16-L16R was expressed at lower levels than wild-type (WT) p16. In addition, p16-L16R was unable to bind CDK4 or CDK6 compared with WT p16, as shown by coimmunoprecipitation assays and also was impaired in its ability to inhibit the cell cycle, as demonstrated by flow cytometry analyses. In silico molecular modeling predicted that the L16R mutation prevents normal protein folding, consistent with the observed reduction in expression/stability and diminished function of this mutant protein. We isolated normal dermal fibroblasts from members of the families expressing WT or L16R proteins to investigate the impact of endogenous p16-L16R mutant protein on cell growth. In culture, p16-L16R fibroblasts grew at a faster rate, and most survived until later passages than p16-WT fibroblasts. Further, western blotting demonstrated that p16 protein was detected at lower levels in p16-L16R than in p16-WT fibroblasts. Together, these results suggest that the presence of a CDKN2A (47T>G) mutant allele contributes to an increased risk of pancreatic cancer as a result of reduced p16 protein levels and diminished p16 tumor suppressor function.
Collapse
Affiliation(s)
- Isaac P Horn
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - David L Marks
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda N Koenig
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tara L Hogenson
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Luciana L Almada
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren E Goldstein
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paola A Romecin Duran
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Renzo Vera
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne M Vrabel
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Gaofeng Cui
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kari G Rabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Georges Mer
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheng Zhang
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hu Li
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Martin E Fernandez-Zapico
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
14
|
Yokomizo R, Fujiki Y, Kishigami H, Kishi H, Kiyono T, Nakayama S, Sago H, Okamoto A, Umezawa A. Endometrial regeneration with endometrial epithelium: homologous orchestration with endometrial stroma as a feeder. Stem Cell Res Ther 2021; 12:130. [PMID: 33579355 PMCID: PMC7881492 DOI: 10.1186/s13287-021-02188-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Thin endometrium adversely affects reproductive success rates with fertility treatment. Autologous transplantation of exogenously prepared endometrium can be a promising therapeutic option for thin endometrium; however, endometrial epithelial cells have limited expansion potential, which needs to be overcome in order to make regenerative medicine a therapeutic strategy for refractory thin endometrium. Here, we aimed to perform long-term culture of endometrial epithelial cells in vitro. METHODS We prepared primary human endometrial epithelial cells and endometrial stromal cells and investigated whether endometrial stromal cells and human embryonic stem cell-derived feeder cells could support proliferation of endometrial epithelial cells. We also investigated whether three-dimensional culture can be achieved using thawed endometrial epithelial cells and endometrial stromal cells. RESULTS Co-cultivation with the feeder cells dramatically increased the proliferation rate of the endometrial epithelial cells. We serially passaged the endometrial epithelial cells on mouse embryonic fibroblasts up to passage 6 for 4 months. Among the human-derived feeder cells, endometrial stromal cells exhibited the best feeder activity for proliferation of the endometrial epithelial cells. We continued to propagate the endometrial epithelial cells on endometrial stromal cells up to passage 5 for 81 days. Furthermore, endometrial epithelium and stroma, after the freeze-thaw procedure and sequential culture, were able to establish an endometrial three-dimensional model. CONCLUSIONS We herein established a model of in vitro cultured endometrium as a potential therapeutic option for refractory thin endometrium. The three-dimensional culture model with endometrial epithelial and stromal cell orchestration via cytokines, membrane-bound molecules, extracellular matrices, and gap junction will provide a new framework for exploring the mechanisms underlying the phenomenon of implantation. Additionally, modified embryo culture, so-called "in vitro implantation", will be possible therapeutic approaches in fertility treatment.
Collapse
Affiliation(s)
- Ryo Yokomizo
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Yukiko Fujiki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Harue Kishigami
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Sanae Nakayama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Haruhiko Sago
- Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato, Tokyo, 105-8461, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
15
|
Abstract
♦ Background The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of the peritoneal mesothelial cell. Mesothelial cells isolated from omental tissue have immunohistochemical markers that are identical to those of mesothelial stem cells, and omental mesothelial cells can be cultivated in vitro to study changes to their biologic functions in the setting of PD. ♦ Method The present article describes the structure and function of mesothelial cells in the normal peritoneum and details the morphologic changes that occur after the introduction of PD. Furthermore, this article reviews the literature of mesothelial cell culture and the limitations of in vitro studies. ♦ Results The mesothelium is now considered to be a dynamic membrane that plays a pivotal role in the homeostasis of the peritoneal cavity, contributing to the control of fluid and solute transport, inflammation, and wound healing. These functional properties of the mesothelium are compromised in the setting of PD. Cultures of peritoneal mesothelial cells from omental tissue provide a relevant in vitro model that allows researchers to assess specific molecular pathways of disease in a distinct population of cells. Structural and functional attributes of mesothelial cells are discussed in relation to long-term culture, proliferation potential, age of tissue donor, use of human or animal in vitro models, and how the foregoing factors may influence in vitro data. ♦ Conclusions The ability to propagate mesothelial cells in culture has resulted, over the past two decades, in an explosion of mesothelial cell research pertaining to PD and peritoneal disorders. Independent researchers have highlighted the potential use of mesothelial cells as targets for gene therapy or transplantation in the search to provide therapeutic strategies for the preservation of the mesothelium during chemical or bacterial injury.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| | - Chan Tak Mao
- Department of Medicine, University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
16
|
Mikuła-Pietrasik J, Pakuła M, Markowska M, Uruski P, Szczepaniak-Chicheł L, Tykarski A, Książek K. Nontraditional systems in aging research: an update. Cell Mol Life Sci 2020; 78:1275-1304. [PMID: 33034696 PMCID: PMC7904725 DOI: 10.1007/s00018-020-03658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Research on the evolutionary and mechanistic aspects of aging and longevity has a reductionist nature, as the majority of knowledge originates from experiments on a relatively small number of systems and species. Good examples are the studies on the cellular, molecular, and genetic attributes of aging (senescence) that are primarily based on a narrow group of somatic cells, especially fibroblasts. Research on aging and/or longevity at the organismal level is dominated, in turn, by experiments on Drosophila melanogaster, worms (Caenorhabditis elegans), yeast (Saccharomyces cerevisiae), and higher organisms such as mice and humans. Other systems of aging, though numerous, constitute the minority. In this review, we collected and discussed a plethora of up-to-date findings about studies of aging, longevity, and sometimes even immortality in several valuable but less frequently used systems, including bacteria (Caulobacter crescentus, Escherichia coli), invertebrates (Turritopsis dohrnii, Hydra sp., Arctica islandica), fishes (Nothobranchius sp., Greenland shark), reptiles (giant tortoise), mammals (blind mole rats, naked mole rats, bats, elephants, killer whale), and even 3D organoids, to prove that they offer biogerontologists as much as the more conventional tools. At the same time, the diversified knowledge gained owing to research on those species may help to reconsider aging from a broader perspective, which should translate into a better understanding of this tremendously complex and clearly system-specific phenomenon.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Martyna Pakuła
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Małgorzata Markowska
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | | | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa 1/2 Str., 61-848 Poznań, Poland
| |
Collapse
|
17
|
Effect of Antioxidants on the Fibroblast Replicative Lifespan In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6423783. [PMID: 33029282 PMCID: PMC7530501 DOI: 10.1155/2020/6423783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 12/20/2022]
Abstract
Replicative senescence is an unalterable growth arrest of primary cells in the culture system. It has been reported that aging in vivo is related to the limited replicative capacity that normal somatic cells show in vitro. If oxidative damage contributes to the lifespan limitation, antioxidants are expected to extend the replicative lifespan of fibroblasts. This article critically reviews the results of experiments devoted to this problem performed within the last decades under conditions of in vitro culture. The results of studied are heterogeneous, some papers showing no effects of antioxidants; most finding limited enhancement of reproductive capacity of fibroblasts, some reporting a significant extension of replicative lifespan (RLS). Both natural and synthetic antioxidants were found to extend the RLS of fibroblasts, either by a direct antioxidant effect or, indirectly, by activation of signaling pathways and activation of proteasomes or hormetic effects. Most significant prolongation of RLS was reported so far for nicotinamide, N-hydroxylamines, carnosine and Methylene Blue. These results may be of importance for the design of skin-protecting cosmetics.
Collapse
|
18
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y, Pang J, Wen Q, Chen M, Wei B, Kaboli PJ, Du F, Zhao Q, Cho CH, Wang Y, Xiao Z, Wu X. Conditional reprogramming: next generation cell culture. Acta Pharm Sin B 2020; 10:1360-1381. [PMID: 32963937 PMCID: PMC7488362 DOI: 10.1016/j.apsb.2020.01.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Long-term primary culture of mammalian cells has been always difficult due to unavoidable senescence. Conventional methods for generating immortalized cell lines usually require manipulation of genome which leads to change of important biological and genetic characteristics. Recently, conditional reprogramming (CR) emerges as a novel next generation tool for long-term culture of primary epithelium cells derived from almost all origins without alteration of genetic background of primary cells. CR co-cultures primary cells with inactivated mouse 3T3-J2 fibroblasts in the presence of RHO-related protein kinase (ROCK) inhibitor Y-27632, enabling primary cells to acquire stem-like characteristics while retain their ability to fully differentiate. With only a few years' development, CR shows broad prospects in applications in varied areas including disease modeling, regenerative medicine, drug evaluation, drug discovery as well as precision medicine. This review is thus to comprehensively summarize and assess current progress in understanding mechanism of CR and its wide applications, highlighting the value of CR in both basic and translational researches and discussing the challenges faced with CR.
Collapse
Key Words
- 3T3-J2 fibroblast
- AACR, American Association for Cancer Research
- ACC, adenoid cystic carcinoma
- AR, androgen receptor
- CFTR, cystic fibrosis transmembrane conductance regulators
- CR, conditional reprogramming
- CYPs, cytochrome P450 enzymes
- Conditional reprogramming
- DCIS, ductal carcinoma in situ
- ECM, extracellular matrix
- ESC, embryonic stem cell
- HCMI, human cancer model initiatives
- HGF, hepatocyte growth factor
- HNE, human nasal epithelial
- HPV, human papillomaviruses
- ICD, intracellular domain
- LECs, limbal epithelial cells
- NCI, National Cancer Institute
- NGFR, nerve growth factor receptor
- NSCLC, non-small cell lung cancer
- NSG, NOD/SCID/gamma
- PDAC, pancreatic ductal adenocarcinoma
- PDX, patient derived xenograft
- PP2A, protein phosphatase 2A
- RB, retinoblastoma-associated protein
- ROCK
- ROCK, Rho kinase
- SV40, simian virus 40 large tumor antigen
- Senescence
- UVB, ultraviolet radiation b
- Y-27632
- dECM, decellularized extracellular matrix
- hASC, human adipose stem cells
- hTERT, human telomerase reverse transcriptase
- iPSCs, induction of pluripotent stem cells
- ΔNP63α, N-terminal truncated form of P63α
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jun Pang
- Center of Radiation Oncology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
19
|
Thompson CA, Wong JM. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance. Curr Top Med Chem 2020; 20:498-507. [DOI: 10.2174/1568026620666200131125110] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence from research on telomerase suggests that in addition to its catalytic telomere
repeat synthesis activity, telomerase may have other biologically important functions. The canonical
roles of telomerase are at the telomere ends where they elongate telomeres and maintain genomic
stability and cellular lifespan. The catalytic protein component Telomerase Reverse Transcriptase
(TERT) is preferentially expressed at high levels in cancer cells despite the existence of an alternative
mechanism for telomere maintenance (alternative lengthening of telomeres or ALT). TERT is also expressed
at higher levels than necessary for maintaining functional telomere length, suggesting other possible
adaptive functions. Emerging non-canonical roles of TERT include regulation of non-telomeric
DNA damage responses, promotion of cell growth and proliferation, acceleration of cell cycle kinetics,
and control of mitochondrial integrity following oxidative stress. Non-canonical activities of TERT primarily
show cellular protective effects, and nuclear TERT has been shown to protect against cell death
following double-stranded DNA damage, independent of its role in telomere length maintenance. TERT
has been suggested to act as a chromatin modulator and participate in the transcriptional regulation of
gene expression. TERT has also been reported to regulate transcript levels through an RNA-dependent
RNA Polymerase (RdRP) activity and produce siRNAs in a Dicer-dependent manner. At the mitochondria,
TERT is suggested to protect against oxidative stress-induced mtDNA damage and promote mitochondrial
integrity. These extra-telomeric functions of TERT may be advantageous in the context of increased
proliferation and metabolic stress often found in rapidly-dividing cancer cells. Understanding
the spectrum of non-canonical functions of telomerase may have important implications for the rational
design of anti-cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Connor A.H. Thompson
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Judy M.Y. Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, V6T 1Z3, Canada
| |
Collapse
|
20
|
Orimoto A, Kyakumoto S, Eitsuka T, Nakagawa K, Kiyono T, Fukuda T. Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition. PLoS One 2020; 15:e0229996. [PMID: 32119713 PMCID: PMC7051082 DOI: 10.1371/journal.pone.0229996] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Clinical studies have recently demonstrated that autologous transplantation of mobilized dental pulp stem cells is a safe and efficacious potential therapy for pulp regeneration. However, some limitations need to be addressed, such as the high cost of the safety and quality control tests for isolated individual dental pulp cell products before transplantation. Therefore, more efficient in vitro culturing of human dental pulp stem cells might be useful for providing low cost and high reliability testing for pulp regeneration therapy. In this study, we established a novel immortalized dental pulp stem cell line by co-expressing a mutant cyclin-dependent kinase 4 (CDK4R24C), Cyclin D1, and telomerase reverse transcriptase (TERT). The established cell line maintained its original diploid chromosomes and stemness characteristics and exhibited an enhanced proliferation rate. In addition, we showed the immortalized human dental pulp stem cells still keeps their osteogenic and adipogenic differentiation abilities under appropriate culture conditions even though the cell proliferation was accelerated. Taken together, our established cell lines could serve as a useful in vitro tool for pulp regeneration therapy, and can contribute to reproducibility and ease of cell handling, thereby saving time and costs associated with safety and quality control tests.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Seiko Kyakumoto
- Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Takahiro Eitsuka
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.,Soft-Path Engineering Research Center (SPERC), Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
21
|
Kim KW, Jeong SW, Park HY, Heu JY, Jung HY, Lee JS. The effect of prolonged rhBMP-2 treatment on telomerase activity, replicative capacity and senescence of human nucleus pulposus cells. Biotech Histochem 2020; 95:490-498. [PMID: 32037884 DOI: 10.1080/10520295.2020.1721560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
We investigated the effect of prolonged rhBMP-2 treatment on telomerase activity, replicative capacity and senescence of nucleus pulposus cells (NPCs) during long term culture. We obtained intervertebral disc (IVD) tissues with grade III degeneration from four patients. NPCs were isolated and passaged serially in three groups: control group, low-dose rhBMP-2 group and high-dose rhBMP-2 group until the cells reached the end of their replicative lifespan. Cumulative population doubling level (CPDL), telomerase activity and senescence markers, senescence-associated β-galactosidase (SA-β-gal), p53, p21, and p16, were assessed. The replicative capacity of NPCs in the high-dose rhBMP-2 group was decreased significantly compared to the control and low-dose rhBMP-2 groups. Mean telomerase activity was significantly greater in the high-dose rhBMP-2 group compared to the control and low-dose rhBMP-2 groups. The percentage of SA-β-gal-positive NPCs increased more rapidly in the high-dose rhBMP-2 group with passaging compared to the control and low-dose rhBMP-2 groups. The expression of p53, p21, and p16 in both low and high dose rhBMP-2 groups increased in all passages compared to the control group. We found that prolonged high-dose rhBMP-2 treatment increased telomerase activity of human NPCs, but decreased replicative capacity and lifespan in long term culture. We also found that excessive growth stimulation by prolonged high-dose rhBMP-2 treatment can promote NPCs senescence and result in growth arrest.
Collapse
Affiliation(s)
- Ki-Won Kim
- Department of Orthopedic Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Seo-Won Jeong
- Department of Orthopedic Research, Medical Research Institute, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Hyung-Youl Park
- Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Jun-Young Heu
- Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Ho-Young Jung
- Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Jun-Seok Lee
- Department of Orthopedic Surgery, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Seoul, Korea
| |
Collapse
|
22
|
Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12020296. [PMID: 32012719 PMCID: PMC7072138 DOI: 10.3390/cancers12020296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous senescence of cancer cells remains a puzzling and poorly understood phenomenon. Here we comprehensively characterize this process in primary epithelial ovarian cancer cells (pEOCs). Analysis of tumors from ovarian cancer patients showed an abundance of senescent cells in vivo. Further, serially passaged pEOCs become senescent after a few divisions. These senescent cultures display trace proliferation, high expression of senescence biomarkers (SA--Gal, -H2A.X), growth-arrest in the G1 phase, increased level of cyclins D1, D2, decreased cyclin B1, up-regulated p16, p21, and p53 proteins, eroded telomeres, reduced activity of telomerase, predominantly non-telomeric DNA damage, activated AKT, AP-1, and ERK1/2 signaling, diminished JNK, NF-B, and STAT3 pathways, increased formation of reactive oxygen species, unchanged activity of antioxidants, increased oxidative damage to DNA and proteins, and dysfunctional mitochondria. Moreover, pEOC senescence is inducible by normal peritoneal mesothelium, fibroblasts, and malignant ascites via the paracrine activity of GRO-1, HGF, and TGF-1. Collectively, pEOCs undergo spontaneous senescence in a mosaic, telomere-dependent and telomere-independent manner, plausibly in an oxidative stress-dependent mechanism. The process may also be activated by extracellular stimuli. The biological and clinical significance of pEOC senescence remains to be explored.
Collapse
|
23
|
Ishikawa S, Ishikawa F. Proteostasis failure and cellular senescence in long-term cultured postmitotic rat neurons. Aging Cell 2020; 19:e13071. [PMID: 31762159 PMCID: PMC6974705 DOI: 10.1111/acel.13071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular senescence, a stress-induced irreversible cell cycle arrest, has been defined for mitotic cells and is implicated in aging of replicative tissues. Age-related functional decline in the brain is often attributed to a failure of protein homeostasis (proteostasis), largely in postmitotic neurons, which accordingly is a process distinct by definition from senescence. It is nevertheless possible that proteostasis failure and cellular senescence have overlapping molecular mechanisms. Here, we identify postmitotic cellular senescence as an adaptive stress response to proteostasis failure. Primary rat hippocampal neurons in long-term cultures show molecular changes indicative of both senescence (senescence-associated β-galactosidase, p16, and loss of lamin B1) and proteostasis failure relevant to Alzheimer's disease. In addition, we demonstrate that the senescent neurons exhibit resistance to stress. Importantly, treatment of the cultures with an mTOR antagonist, protein synthesis inhibitor, or chemical compound that reduces the amount of protein aggregates relieved the proteotoxic stresses as well as the appearance of senescence markers. Our data propose mechanistic insights into the pathophysiological brain aging by establishing senescence as a primary cell-autonomous neuroprotective response.
Collapse
Affiliation(s)
- Shoma Ishikawa
- Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms Graduate School of Biostudies Kyoto University Kyoto Japan
| |
Collapse
|
24
|
Mikuła-Pietrasik J, Niklas A, Uruski P, Tykarski A, Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell Mol Life Sci 2020; 77:213-229. [PMID: 31414165 PMCID: PMC6970957 DOI: 10.1007/s00018-019-03261-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
In contrast to the well-recognized replicative and stress-induced premature senescence of normal somatic cells, mechanisms and clinical implications of senescence of cancer cells are still elusive and uncertain from patient-oriented perspective. Moreover, recent years provided multiple pieces of evidence that cancer cells may undergo senescence not only in response to chemotherapy or ionizing radiation (the so-called therapy-induced senescence) but also spontaneously, without any external insults. Since the molecular nature of the latter process is poorly recognized, the significance of spontaneously senescent cancer cells for tumor progression, therapy effectiveness, and patient survival is purely speculative. In this review, we summarize the most up-to-date research regarding therapy-induced and spontaneous senescence of cancer cells, by delineating the most important discoveries regarding the occurrence of these phenomena in vivo and in vitro. This review provides data collected from studies on various cancer cell models, and the narration is presented from the broader perspective of the most critical findings regarding the senescence of normal somatic cells.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Paweł Uruski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Długa 1/2 Street, 61-848, Poznan, Poland.
| |
Collapse
|
25
|
Vaijanathappa J, Puttaswamygowda J, Bevanhalli R, Dixit S, Prabhakaran P. Molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from Enicostemma axillare. Bioorg Chem 2019; 94:103428. [PMID: 31740047 DOI: 10.1016/j.bioorg.2019.103428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Present study aimed for molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from the successive methanol extract of Enicostemma axillare. Molecular docking of swertiamarin on telomerase targets (PDB ID: 5UGW, 3DU6 and 4ERD), followed by antiproliferative activity on HEp2 and HT-29 cells by MTT and SRB assays. Also tested for anticonvulsant activity by pentylenetetrazole (PTZ, 80 mg/kg bw) induced convulsant. Molecular docking study predicted good total score of the swertiamarin with the selected targets. Swertiamarin possesses antiproliferative activity on HEp-2 and HT-29 cells with lower CTC50 values. It also served as significant anticonvulsant agent with prolonged onset and reduced duration of the seizures. These results confirm that swertiamarin exhibited potential antiproliferative and anticonvulsant activities.
Collapse
Affiliation(s)
- Jaishree Vaijanathappa
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Karnataka, India.
| | - Jamuna Puttaswamygowda
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, B. G. Nagar - 571448, Mandya District, Karnataka, India
| | - Ramesh Bevanhalli
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, B. G. Nagar - 571448, Mandya District, Karnataka, India
| | - Sheshagiri Dixit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Karnataka, India
| | - Prabitha Prabhakaran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru 570015, Karnataka, India
| |
Collapse
|
26
|
Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells. Sci Rep 2019; 9:2074. [PMID: 30765770 PMCID: PMC6376004 DOI: 10.1038/s41598-019-38546-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are used in cell therapies, however cellular senescence increases heterogeneity of cell populations and leads to uncertainty in therapies’ outcomes. The determination of cellular senescence is time consuming and logistically intensive. Here, we propose the use of endogenous autofluorescence as real-time quantification of cellular senescence in human MSC, based on label-free flow cytometry analysis. We correlated cell autofluorescence to senescence using senescence-associated beta-galactosidase assay (SA-β-Gal) with chromogenic (X-GAL) and fluorescent (C12FDG) substrates, gene expression of senescence markers (such as p16INK4A, p18INK4C, CCND2 and CDCA7) and telomere length. Autofluorescence was further correlated to MSC differentiation assays (adipogenesis, chondrogenesis and osteogenesis), MSC stemness markers (CD90/CD106) and cytokine secretion (IL-6 and MCP-1). Increased cell autofluorescence significantly correlated with increased SA-β-Gal signal (both X-GAL and C12FDG substrates), cell volume and cell granularity, IL-6/MCP-1 secretion and with increased p16INK4A and CCND2 gene expression. Increased cell autofluorescence was negatively associated with the expression of the CD90/CD106 markers, osteogenic and chondrogenic differentiation potentials and p18INK4C and CDCA7 gene expression. Cell autofluorescence correlated neither with telomere length nor with adipogenic differentiation potential. We conclude that autofluorescence can be used as fast and non-invasive senescence assay for comparing MSC populations under controlled culture conditions.
Collapse
Affiliation(s)
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, 6000, Switzerland.,Swiss Paraplegic Centre, Nottwil, 6207, Switzerland
| | - Julien Guerrero
- Department of Biomedicine and Tissue Engineering, University of Basel Hospital, Basel, 4031, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, 6207, Switzerland. .,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, 3014, Switzerland.
| |
Collapse
|
27
|
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 2019; 99:1047-1078. [PMID: 30648461 DOI: 10.1152/physrev.00020.2018] [Citation(s) in RCA: 786] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent state of cell cycle arrest that occurs in proliferating cells subjected to different stresses. Senescence is, therefore, a cellular defense mechanism that prevents the cells to acquire an unnecessary damage. The senescent state is accompanied by a failure to re-enter the cell cycle in response to mitogenic stimuli, an enhanced secretory phenotype and resistance to cell death. Senescence takes place in several tissues during different physiological and pathological processes such as tissue remodeling, injury, cancer, and aging. Although senescence is one of the causative processes of aging and it is responsible of aging-related disorders, senescent cells can also play a positive role. In embryogenesis and tissue remodeling, senescent cells are required for the proper development of the embryo and tissue repair. In cancer, senescence works as a potent barrier to prevent tumorigenesis. Therefore, the identification and characterization of key features of senescence, the induction of senescence in cancer cells, or the elimination of senescent cells by pharmacological interventions in aging tissues is gaining consideration in several fields of research. Here, we describe the known key features of senescence, the cell-autonomous, and noncell-autonomous regulators of senescence, and we attempt to discuss the functional role of this fundamental process in different contexts in light of the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Jaskaren Kohli
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Elena Zagato
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Demaria
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; University of Groningen, European Research Institute for the Biology of Ageing, University Medical Center Groningen , Groningen , The Netherlands ; IOR, Oncology Institute of Southern Switzerland , Bellinzona , Switzerland ; Università della Svizzera Italiana, Faculty of Biomedical Sciences , Lugano , Italy ; Faculty of Biology and Medicine, University of Lausanne UNIL , Lausanne , Switzerland ; and Department of Medicine, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
28
|
Bikkul MU, Faragher RGA, Worthington G, Meinke P, Kerr ARW, Sammy A, Riyahi K, Horton D, Schirmer EC, Hubank M, Kill IR, Anderson RM, Slijepcevic P, Makarov E, Bridger JM. Telomere elongation through hTERT immortalization leads to chromosome repositioning in control cells and genomic instability in Hutchinson-Gilford progeria syndrome fibroblasts, expressing a novel SUN1 isoform. Genes Chromosomes Cancer 2019; 58:341-356. [PMID: 30474255 PMCID: PMC6590296 DOI: 10.1002/gcc.22711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023] Open
Abstract
Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease—Hutchinson‐Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long‐term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT‐immortalized cell lines.
Collapse
Affiliation(s)
- Mehmet U. Bikkul
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | | | - Gemma Worthington
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Peter Meinke
- Friedrich‐Baur‐InstitutKlinikum der Universität MünchenMünchenGermany
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Alastair R. W. Kerr
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Aakila Sammy
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Kumars Riyahi
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Daniel Horton
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Eric C. Schirmer
- The Wellcome Trust Centre for Cell BiologyInstitute of Cell Biology, and Centre for Translational and Chemical Biology, University of EdinburghEdinburghEngland
| | - Michael Hubank
- Centre for Molecular PathologyThe Royal Marsden HospitalLondonEngland
| | - Ian R. Kill
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Rhona M. Anderson
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Predrag Slijepcevic
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Evgeny Makarov
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| | - Joanna M. Bridger
- Genome Engineering and Maintenance NetworkInstitute for Environment, Health and Societies, Brunel University LondonUxbridgeEngland
| |
Collapse
|
29
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
30
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
31
|
Serum from patients with chronic obstructive pulmonary disease induces senescence-related phenotype in bronchial epithelial cells. Sci Rep 2018; 8:12940. [PMID: 30154415 PMCID: PMC6113312 DOI: 10.1038/s41598-018-31037-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a risk factor for the development of lung cancer (LC). The mechanism of interplay between both diseases remains poorly recognized. This report examines whether COPD may cause a senescence response in human bronchial epithelial cells (HBECs), leading to the progression of LC in a senescence-dependent manner. The results show that HBECs exposed to serum from COPD patients manifest increased expression of markers of cellular senescence, including senescence-associated β-galactosidase (SA-β-Gal), histone γ-H2A.X, and p21, as compared to the serum of healthy donors. This effect coincides with an increased generation of reactive oxygen species by these cells. The clinical analysis demonstrated that COPD may cause the senescence, independently on smoking status and disease severity. The concentrations of CXCL5, CXCL8/IL-8 and VEGF were higher in conditioned medium (CM) harvested from HBECs after exposure to COPD serum as compared to controls. In addition, CM treated with serum from COPD patients stimulated adhesion of A549 cancer cells to HBECs, as well as accelerating cancer cell proliferation and migration in vitro. Collectively, these findings indicate that COPD may induce senescence-like changes in HBECs and thus enhance some processes associated with the progression of lung cancer.
Collapse
|
32
|
Pathak S, Regmi S, Nguyen TT, Gupta B, Gautam M, Yong CS, Kim JO, Son Y, Kim JR, Park MH, Bae YK, Park SY, Jeong D, Yook S, Jeong JH. Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes. Acta Biomater 2018; 75:287-299. [PMID: 29883808 DOI: 10.1016/j.actbio.2018.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Attenuation of senescence progression may be attractive way to preserve the functionality of pancreatic islets (PI) after transplantation. In this study, we developed a model for in vitro induction of premature senescence in rat PI and showed the effectiveness of quercetin (QU) to prevent the senescence. To provide targeted-delivery of QU to the PI after transplantation, we prepared the hybrid clusters (HC) of islet single cells (ISC) and QU-loaded polymeric microspheres (QU; ∼7.55 ng HC-1). Long-term culture of the HC revealed reduced levels of reactive oxygen species and decreased expression of senescence-associated beta galactosidase, Rb, p53, p16, and p21 compared to that of the control islets. Transplantation of HC into subcutaneous space of the immune-deficient mice produced better glycemic control compared to the control islets or the ICC-transplanted mice. SA-β-Gal staining of the in vivo transplanted HC sample showed lower intensity compared to that of the control islets or the islet cell clusters. Thus, in situ delivery of therapeutic agent may be a promising approach to improve therapeutic outcomes in cell therapy. STATEMENT OF SIGNIFICANCE In this study, we aimed to improve outcomes in islet transplantation using in situ delivery of quercetin to pancreatic islets, using polymeric microspheres. We prepared prolonged release-type microspheres and constructed hybrid clusters of pancreatic islets and the microspheres using hanging drop method. The presence of quercetin in the cellular microenvironment attenuated the progression of senescence in the pancreatic islets in a long-term in vitro culture. Moreover, transplantation of the hybrid clusters in the diabetic mice produced better glycemic control compared to that of the control islets. In addition, quercetin delayed the progression of senescence in the pancreatic islets after in vivo transplantation. Thus, local delivery of antioxidants like quercetin may be an attractive way to improve outcomes in cell therapy.
Collapse
|
33
|
Zhang S, Duan E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant 2018; 27:729-738. [PMID: 29692196 PMCID: PMC6047276 DOI: 10.1177/0963689717725755] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022] Open
Abstract
As the most voluminous organ of the body that is exposed to the outer environment, the skin suffers from both intrinsic and extrinsic aging factors. Skin aging is characterized by features such as wrinkling, loss of elasticity, laxity, and rough-textured appearance. This aging process is accompanied with phenotypic changes in cutaneous cells as well as structural and functional changes in extracellular matrix components such as collagens and elastin. In this review, we summarize these changes in skin aging, research advances of the molecular mechanisms leading to these changes, and the treatment strategies aimed at preventing or reversing skin aging.
Collapse
Affiliation(s)
- Shoubing Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Central laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Enkui Duan
- State Key Lab of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Grayson AK, Hearnden V, Bolt R, Jebreel A, Colley HE, Murdoch C. Use of a Rho kinase inhibitor to increase human tonsil keratinocyte longevity for three-dimensional, tissue engineered tonsil epithelium equivalents. J Tissue Eng Regen Med 2017; 12:e1636-e1646. [PMID: 29048773 DOI: 10.1002/term.2590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Abstract
The generation of tissue-engineered epithelial models is often hampered by the limited proliferative capacity of primary epithelial cells. This study aimed to isolate normal tonsillar keratinocytes (NTK) from human tonsils, increase the lifespan of these cells using the Rho kinase inhibitor Y-27632 and to develop tissue-engineered equivalents of healthy and infected tonsil epithelium. The proliferation rate of isolated NTK and expression of c-MYC and p16INK4A were measured in the absence or presence of the inhibitor. Y-27632-treated NTK were used to generate tissue-engineered tonsil epithelium equivalents using de-epidermised dermis that were then incubated with Streptococcus pyogenes to model bacterial tonsillitis, and the expression of pro-inflammatory cytokines was measured by cytokine array and ELISA. NTK cultured in the absence of Y-27632 rapidly senesced whereas cells cultured in the presence of this inhibitor proliferated for over 30 population doublings without changing their phenotype. Y-27632-treated NTK produced a multi-layered differentiated epithelium that histologically resembled normal tonsillar surface epithelium and responded to S. pyogenes infection by increased expression of pro-inflammatory cytokines including CXCL5 and IL-6. NTK can be isolated and successfully cultured in vitro with Y-27632 leading to a markedly prolonged lifespan without any deleterious consequences to cell morphology. This functional tissue-engineered equivalent of tonsil epithelium will provide a valuable tool for studying tonsil biology and host-pathogen interactions in a more physiologically relevant manner.
Collapse
Affiliation(s)
- Amy K Grayson
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering, University of Sheffield, UK
| | - Robert Bolt
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Ala Jebreel
- Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Helen E Colley
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, UK
| |
Collapse
|
35
|
Human lung epithelial cell cultures for analysis of inhaled toxicants: Lessons learned and future directions. Toxicol In Vitro 2017; 47:137-146. [PMID: 29155131 DOI: 10.1016/j.tiv.2017.11.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/28/2017] [Accepted: 11/14/2017] [Indexed: 01/01/2023]
Abstract
The epithelium that covers the conducting airways and alveoli is a primary target for inhaled toxic substances, and therefore a focus in inhalation toxicology. The increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of inhaled toxicants. However, the validity of the current in vitro models and their acceptance by regulatory authorities as an alternative to animal models is a reason for concern, and requires a critical review. In this review, focused on human lung epithelial cell cultures as a model for inhalation toxicology, we discuss the choice of cells for these models, the cell culture system used, the method of exposure as well as the various read-outs to assess the cellular response. We argue that rapid developments in the 3D culture of primary epithelial cells, the use of induced pluripotent stem cells for generation of lung epithelial cells and the development of organ-on-a-chip technology are among the important developments that will allow significant advances in this field. Furthermore, we discuss the various routes of application of inhaled toxicants by air-liquid interface models as well as the vast array of read-outs that may provide essential information. We conclude that close collaboration between researchers from various disciplines is essential for development of valid methods that are suitable for replacement of animal studies for inhalation toxicology.
Collapse
|
36
|
Padhi SS, Roy S, Kar M, Saha A, Roy S, Adhya A, Baisakh M, Banerjee B. Role of CDKN2A/p16 expression in the prognostication of oral squamous cell carcinoma. Oral Oncol 2017; 73:27-35. [PMID: 28939073 DOI: 10.1016/j.oraloncology.2017.07.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE CDKN2A/p16 is a known tumor suppressor gene with a homologous deletion in Oral Squamous cell carcinoma. CDKN2A/p16 is found to be inactivated in a broad spectrum of solid tumors and in more than 80% of OSCC. Molecular alteration of CDKN2A/p16 in progression of OSCC can pose an important tool for the prognosis of squamous cell carcinoma. MATERIAL AND METHOD Systematic network analysis was carried out to obtain involvement of CDKN2A/p16 in oral cancer by polysearch and FunDO. In the present study we have screened 104 OSCC patients from eastern region of India for CDKN2A/p16 expression in recurrent and non-recurrent OSCC. The observation was validated by Comparative Genomic Hybridisation and Next generation sequencing in recurrent cases. RESULT Systematic analysis revealed direct involvement of CDKN2A/p16 in oral cancer. There was a consistent downregulated expression of CDKN2A/p16 in the recurrent cases. The gene expression study confirmed a >5-fold downregulation of CDKN2A/p16 in recurrent tumors as compared to non-recurrent ones. Array CGH analysis revealed a copy number deletion in the recurrent case. Furthermore, next generation sequencing validated deletion of CDKN2A/p16 and reported it asa common variant with a nonsense mutation having stop /loss of function of the gene in recurrent cases. Recurrent cases with deleted CDKN2A/p16 expression had poor prognosis and low survival rate. CONCLUSION CDKN2A/p16 frequently alters in oral cancer progression with a deletion/loss of function in the recurrent cases displaying its role in aiding several molecular events for the malignant transformations occurring throughout disease progression.
Collapse
Affiliation(s)
- Swati Shree Padhi
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha 751016, India
| | - Arka Saha
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Shomereeta Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Amit Adhya
- Department of Pathology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, Odisha 751024, India
| | - Manas Baisakh
- Department of Pathology, Apollo Hospitals, Bhubaneswar, Odisha 751004, India
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
37
|
Graham MK, Principessa L, Antony L, Meeker AK, Isaacs JT. Low p16 INK4a Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone. Prostate 2017; 77:374-384. [PMID: 27859428 PMCID: PMC5548187 DOI: 10.1002/pros.23276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND There are two principal senescence barriers that must be overcome to successfully immortalize primary human epithelial cells in culture, stress-induced senescence, and replicative senescence. The p16INK4a /retinoblastoma protein (p16/Rb) pathway mediates stress-induced senescence, and is generally upregulated by primary epithelial cells in response to the artificial conditions from tissue culture. Replicative senescence is associated with telomere loss. Following each round of cell division, telomeres progressively shorten. Once telomeres shorten to a critical length, the DNA damage response pathway is activated, and the tumor suppressor p53 pathway triggers replicative senescence. Exogenous expression of telomerase in normal human epithelial cells extends the replicative capacity of cells, and in some cases, immortalizes cells. However reliable immortalization of epithelial cells usually requires telomerase activity coupled with inactivation of the p16/Rb pathway. METHODS A lentiviral vector, pLOX-TERT-iresTK (Addgene #12245), containing a CMV promoter upstream of a bicistronic coding cassette that includes loxP sites flanking the catalytic subunit of human telomerase gene (TERT) and herpes simplex virus type-1 thymidine kinase gene (HSV1-tk) was used to transduce normal prostate basal epithelial cells (PrECs) initiated in cell culture from prostate cancer patients undergoing radical prostatectomies. RESULTS Transduction of early (i.e., <7) passage PrECs with TERT led to successful immortalization. However, attempts to immortalize late (i.e., >7) passage PrECs were unsuccessful. Late passage PrECs, which acquired elevated p16, were unable to overcome the senescence barrier. Immortalized PrECs (TERT-PrECs) retained a normal male karyotype and low p16 expression. Additionally, TERT-PrECs were non-tumorigenic when inoculated into intact male immunodeficient NSG mice. CONCLUSIONS The present studies document that early passage human PrECs have sufficiently low p16 to permit immortalization by TERT expression alone. TERT-PrECs developed using this transduction approach provides an appropriate and experimentally facile model for clarifying the molecular mechanism(s) involved in both immortalization of human PrECs, as well as identifying genetic/epigenetic "drivers" for conversion of these immortalized non-tumorigenic cells into fully lethal prostate cancers. Notably, loxP sites flank the exogenous TERT gene in the TERT-PrECs. Cre recombinase can be used to excise TERT, and resolve whether TERT expression is required for these cells to be fully transformed into lethal cancer. Prostate 77: 374-384, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mindy Kim Graham
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - Lorenzo Principessa
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Lizamma Antony
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Alan K. Meeker
- Departments of Pathology, Oncology and Urology, John Hopkins University School of Medicine, Baltimore, Maryland
| | - John T. Isaacs
- Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Correspondence to: Dr. John T. Isaacs, Chemical Therapeutic Program, Bunting-Blaustein CRB1, 1650 Orleans Street, Baltimore, MD 21231.
| |
Collapse
|
38
|
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017; 18:175-186. [PMID: 28096526 PMCID: PMC5589191 DOI: 10.1038/nrm.2016.171] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.
Collapse
Affiliation(s)
- John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
39
|
Reiter JL, Drendel HM, Chakraborty S, Schellinger MM, Lee MJ, Mor G. Cytogenetic features of human trophoblast cell lines SWAN-71 and 3A-subE. Placenta 2017; 52:17-20. [PMID: 28454693 DOI: 10.1016/j.placenta.2017.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 11/28/2022]
Abstract
Immortalization of primary cells with telomerase is thought to maintain normal phenotypic properties and avoid chromosomal abnormalities and other cancer-associated changes that occur following simian virus 40 tumor antigen (SV40 Tag) induced immortalization. However, we report that the human telomerase reverse transcriptase (hTERT)-immortalized SWAN-71 trophoblast cell line has a near pentaploid 103∼119,XXXX[cp20] karyotype. Additionally, DNA typing analysis indicated that SWAN-71 cells have acquired microsatellite instability. In comparison, the post-crisis SV40-transformed trophoblast cell line 3A-subE was hypertriploid 69∼81,XX[cp20]. Both cell lines contained multiple specific clonal rearrangements. These findings emphasize the need to monitor for genetic instability in hTERT-immortalized cells.
Collapse
Affiliation(s)
- Jill L Reiter
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Ave, UH 2440, Indianapolis, IN 46202, USA.
| | - Holli M Drendel
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W Walnut St, Indianapolis, IN 46202, USA
| | - Sujata Chakraborty
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, 975 W Walnut St, Indianapolis, IN 46202, USA
| | - Megan M Schellinger
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Ave, UH 2440, Indianapolis, IN 46202, USA
| | - Men-Jean Lee
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 550 N. University Ave, UH 2440, Indianapolis, IN 46202, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar St, LSOG 312, New Haven, CT 06510, USA
| |
Collapse
|
40
|
Smith JL, Lee LC, Read A, Li Q, Yu B, Lee CS, Luo J. One-step immortalization of primary human airway epithelial cells capable of oncogenic transformation. Cell Biosci 2016; 6:57. [PMID: 27891214 PMCID: PMC5106784 DOI: 10.1186/s13578-016-0122-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The ability to transform normal human cells into cancer cells with the introduction of defined genetic alterations is a valuable method for understanding the mechanisms of oncogenesis. Easy establishment of immortalized but non-transformed human cells from various tissues would facilitate these genetic analyses. RESULTS We report here a simple, one-step immortalization method that involves retroviral vector mediated co-expression of the human telomerase protein and a shRNA targeting the CDKN2A gene locus. We demonstrate that this method could successfully immortalize human small airway epithelial cells while maintaining their chromosomal stability. We further showed that these cells retain p53 activity and can be transformed by the KRAS oncogene. CONCLUSIONS Our method simplifies the immortalization process and is broadly applicable for establishing immortalized epithelial cell lines from primary human tissues for cancer research.
Collapse
Affiliation(s)
- Jordan L. Smith
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
- University of Massachusetts Medical School and the Graduate School of Biomedical Sciences, Worcester, MA USA
| | - Liam C. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
- Graduate Program, Cambridge University, Cambridge, UK
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
| | - Qiuning Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
- ShanghaiTech University, Shanghai, China
| | - Bing Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
- Janssen R&D Shanghai Discovery Center, Shanghai, China
| | - Chih-Shia Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH., Bethesda, MD USA
| |
Collapse
|
41
|
Hare D, Collins S, Cuddington B, Mossman K. The Importance of Physiologically Relevant Cell Lines for Studying Virus-Host Interactions. Viruses 2016; 8:v8110297. [PMID: 27809273 PMCID: PMC5127011 DOI: 10.3390/v8110297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/13/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.
Collapse
Affiliation(s)
- David Hare
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Susan Collins
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Breanne Cuddington
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| | - Karen Mossman
- Pathology and Molecular Medicine, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
- Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Str. West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
42
|
Characterization and Expression of Senescence Marker in Prolonged Passages of Rat Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:8487264. [PMID: 27579045 PMCID: PMC4989133 DOI: 10.1155/2016/8487264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022] Open
Abstract
The present study is aimed at optimizing the in vitro culture protocol for generation of rat bone marrow- (BM-) derived mesenchymal stem cells (MSCs) and characterizing the culture-mediated cellular senescence. The initial phase of generation and characterization was conducted using the adherent cells from Sprague Dawley (SD) rat's BM via morphological analysis, growth kinetics, colony forming unit capacity, immunophenotyping, and mesodermal lineage differentiation. Mesenchymal stem cells were successfully generated and characterized as delineated by the expressions of CD90.1, CD44H, CD29, and CD71 and lack of CD11b/c and CD45 markers. Upon induction, rBM-MSCs differentiated into osteocytes and adipocytes and expressed osteocytes and adipocytes genes. However, a decline in cell growth was observed at passage 4 onwards and it was further deciphered through apoptosis, cell cycle, and senescence assays. Despite the enhanced cell viability at later passages (P4-5), the expression of senescence marker, β-galactosidase, was significantly increased at passage 5. Furthermore, the cell cycle analysis has confirmed the in vitro culture-mediated cellular senescence where cells were arrested at the G0/G1 phase of cell cycle. Although the currently optimized protocols had successfully yielded rBM-MSCs, the culture-mediated cellular senescence limits the growth of rBM-MSCs and its potential use in rat-based MSC research.
Collapse
|
43
|
Ibrahim B, Sheerin AN, Jennert-Burston K, Bird JLE, Massala MV, Illsley M, James SE, Faragher RGA. Absence of premature senescence in Werner's syndrome keratinocytes. Exp Gerontol 2016; 83:139-47. [PMID: 27492502 DOI: 10.1016/j.exger.2016.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 11/29/2022]
Abstract
Werner's syndrome (WS) is an autosomal recessive genetic disorder caused by loss of function mutation in wrn and is a useful model of premature in vivo ageing. Cellular senescence is a plausible causal mechanism of mammalian ageing and, at the cellular level, WS fibroblasts show premature senescence resulting from a combination of telomeric attrition and replication fork stalling. Over 90% of WS fibroblast cultures achieve <20 population doublings (PD) in vitro compared to wild type human fibroblast cultures. It has been proposed that some cell types, capable of proliferation, will fail to show a premature senescence phenotype in response to wrn mutations. To test this hypothesis, human dermal keratinocytes (derived from both WS and wild type patients) were cultured long term. WS Keratinocytes showed a replicative lifespan in excess of 100 population doublings but maintained functional growth arrest mechanisms based on p16 and p53. The karyotype of the cells was superficially normal and the cultures retained markers characteristic of keratinocyte holoclones (stem cells) including p63 expression and telomerase activity. Accordingly we conclude that, in contrast to WS fibroblasts, WS keratinocytes do not demonstrate slow growth rates or features of premature senescence. These findings suggest that the epidermis is among the tissue types that do not display symptoms of premature ageing caused by loss of function of wrn. This is in support that Werner's syndrome is a segmental progeroid syndrome.
Collapse
Affiliation(s)
- Badr Ibrahim
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - Angela N Sheerin
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - Katrin Jennert-Burston
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - Joe L E Bird
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - M V Massala
- Department of Dermatology, University of Sassari, Viale S Pietro No 43, 09100 Sassari, Italy, Department of Human and Hereditary Pathology, Section of General Biology and Medical Genetics, University of Pavia, Pavia
| | - Matthew Illsley
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - S Elizabeth James
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| | - Richard G A Faragher
- School of Pharmacy and biomolecular sciences, stress, ageing and diseases research group, College of life, health and physical sciences, University of Brighton, Cockcroft Building, Brighton, BN149HJ, England.
| |
Collapse
|
44
|
Legzdina D, Romanauska A, Nikulshin S, Kozlovska T, Berzins U. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells. Int J Stem Cells 2016; 9:124-36. [PMID: 27426094 PMCID: PMC4961112 DOI: 10.15283/ijsc.2016.9.1.124] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2015] [Indexed: 01/19/2023] Open
Abstract
Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy.
Collapse
Affiliation(s)
- Diana Legzdina
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | - Sergey Nikulshin
- Children's Clinical University Hospital, Clinical Laboratory, Riga, Latvia
| | | | - Uldis Berzins
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
45
|
Cheng E, Zhang X, Wilson KS, Wang DH, Park JY, Huo X, Yu C, Zhang Q, Spechler SJ, Souza RF. JAK-STAT6 Pathway Inhibitors Block Eotaxin-3 Secretion by Epithelial Cells and Fibroblasts from Esophageal Eosinophilia Patients: Promising Agents to Improve Inflammation and Prevent Fibrosis in EoE. PLoS One 2016; 11:e0157376. [PMID: 27310888 PMCID: PMC4911010 DOI: 10.1371/journal.pone.0157376] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although most studies on treatments for eosinophilic esophagitis (EoE) have focused on effects in the epithelium, EoE is a transmural disease. Eosinophils that infiltrate the subepithelial layers of the esophagus lead to fibrosis and the serious complications of EoE, and current therapies have shown minimal effects on this fibrosis. We aimed to elucidate T helper (Th)2 cytokine effects on esophageal fibroblasts and to explore potential fibroblast-targeted therapies for EoE. METHODS We established telomerase-immortalized fibroblasts from human esophageal biopsies. We stimulated these esophageal fibroblasts with Th2 cytokines, and examined effects of omeprazole and inhibitors of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT6) pathway (AS1517499, leflunomide, and ruxolitinib) on STAT6 phosphorylation, STAT6 nuclear translocation, and eotaxin-3 expression. We also measured the effects of these inhibitors in esophageal epithelial cells stimulated with Th2 cytokines. RESULTS As in esophageal epithelial cells, Th2 cytokines increased STAT6 phosphorylation, STAT6 nuclear translocation, eotaxin-3 transcription and protein secretion in esophageal fibroblasts. Unlike in epithelial cells, however, omeprazole did not inhibit cytokine-stimulated eotaxin-3 expression in fibroblasts. In contrast, JAK-STAT6 pathway inhibitors decreased cytokine-stimulated eotaxin-3 expression in both fibroblasts and epithelial cells. CONCLUSIONS Omeprazole does not inhibit Th2 cytokine-stimulated eotaxin-3 expression by esophageal fibroblasts, suggesting that PPIs will have limited impact on subepithelial EoE processes such as fibrosis. JAK-STAT6 pathway inhibitors block Th2 cytokine-stimulated eotaxin-3 expression both in fibroblasts and in epithelial cells, suggesting a potential role for JAK-STAT inhibitors in treating both epithelial inflammation and subepithelial fibrosis in EoE.
Collapse
Affiliation(s)
- Edaire Cheng
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, Children’s Health Children’s Medical Center, Dallas, Texas, United States of America
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| | - Xi Zhang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kathleen S. Wilson
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David H. Wang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jason Y. Park
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pathology, Children’s Health Children’s Medical Center, Dallas, Texas, United States of America
| | - Xiaofang Huo
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chunhua Yu
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiuyang Zhang
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Stuart J. Spechler
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rhonda F. Souza
- Esophageal Diseases Center, Veterans Affairs North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Medical Services, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
46
|
Abstract
UNLABELLED Telomeres progressively shorten throughout life. A hallmark of advanced malignancies is the ability for continuous cell divisions that almost universally correlates with the stabilization of telomere length by the reactivation of telomerase. The repression of telomerase and shorter telomeres in humans may have evolved, in part, as an anticancer protection mechanism. Although there is still much we do not understand about the regulation of telomerase, it remains a very attractive and novel target for cancer therapeutics. This review focuses on the current state of advances in the telomerase area, identifies outstanding questions, and addresses areas and methods that need refinement. SIGNIFICANCE Despite many recent advances, telomerase remains a challenging target for cancer therapy. There are few telomerase-directed therapies, and many of the assays used to measure telomeres and telomerase have serious limitations. This review provides an overview of the current state of the field and how recent advances could affect future research and treatment approaches. Cancer Discov; 6(6); 584-93. ©2016 AACR.
Collapse
Affiliation(s)
- Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas. Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
47
|
Dellambra E. Oncogenic Ras: A double-edged sword for human epidermal stem and transient amplifying cells. Small GTPases 2016; 7:147-55. [PMID: 27111451 DOI: 10.1080/21541248.2016.1182242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The human epidermal clonal evolution, i.e. the transition from stem cells (SCs) to transient amplifying (TA)-cells and post-mitotic cells, is a continuous and tightly regulated process that ensures physiologic tissue homeostasis. The Ras family of small GTPases has a key role in skin homeostasis and tumorigenesis. Indeed, activating mutations in Ras genes have been found in human cutaneous squamous cell carcinomas (cSCCs) and in experimentally-induced murine cSCCs. In mouse models, the Ras signaling might lead to hyperproliferative phenotypes, including the development of cSCCs, depending on the nature of the founding cells. Tumor-initiating cells or Cancer Stem Cells (CSCs) have been demonstrated in murine and human cSCCs even if the mechanism of their development from normal SCs or TA-cells is not completely elucidated. Here, the relation between the Ras expression outcome and the clonogenic potential of the target keratinocyte is discussed.
Collapse
Affiliation(s)
- Elena Dellambra
- a Vascular Pathology Laboratory, Fondazione Luigi Maria Monti, IDI-IRCCS , Rome , Italy
| |
Collapse
|
48
|
Feijoo P, Terradas M, Soler D, Domínguez D, Tusell L, Genescà A. Breast primary epithelial cells that escape p16-dependent stasis enter a telomere-driven crisis state. Breast Cancer Res 2016; 18:7. [PMID: 26758019 PMCID: PMC4711177 DOI: 10.1186/s13058-015-0667-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use of improved cell-culture conditions supporting the growth of these breast primary epithelial cells was expected to delay or eliminate stress-induced senescence and lead to the propagation of normal cells. However, no studies have been carried out to investigate these points. Propagation of breast primary epithelial cells was performed in WIT medium on Primaria plates. Immunofluorescence, western blot and qRT-PCR were used to detect molecular markers, and to determine the integrity of DNA damage-response pathways. Promoter methylation of p16 (INK4a) was assessed by pyrosequencing. In order to obtain a dynamic picture of chromosome instability over time in culture, we applied FISH methodologies. To better link chromosome instability with excessive telomere attrition, we introduced the telomerase reverse transcriptase human gene using a lentiviral vector. We report here that breast primary epithelial cells propagated in vitro with WIT medium on Primaria plates express some luminal characteristics, but not a complete luminal lineage phenotype. They undergo a p16-dependent stress-induced senescence (stasis), and the cells that escape stasis finally enter a crisis state with rampant chromosome instability. Chromosome instability in these cells is driven by excessive telomere attrition, as distributions of chromosomes involved in aberrations correlate with the profiles of telomere signal-free ends. Importantly, ectopic expression of the human TERT gene rescued their chromosomal instability phenotype. Essentially, our data show that contrary to what was previously suggested, improved culture conditions to propagate in vitro mammary epithelial cells with some luminal characteristics do not prevent stress-induced senescence. This barrier is overcome by spontaneous methylation of the p16 (INK4a) promoter, allowing the proliferation of cells with telomere dysfunction and ensuing chromosome instability.
Collapse
Affiliation(s)
- Purificación Feijoo
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Mariona Terradas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - David Soler
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Daniel Domínguez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Laura Tusell
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Anna Genescà
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
49
|
Abstract
Regulation of the cell-division cycle is fundamental for the growth, development, and reproduction of all species of life. In the past several decades, a conserved theme of cell cycle regulation has emerged from research in diverse model organisms. A comparison of distinct features of several diverse model organisms commonly used in cell cycle studies highlights their suitability for various experimental approaches, and recaptures their contributions to our current understanding of the eukaryotic cell cycle. A historic perspective presents a recollection of the breakthrough upon unfolding the universal principles of cell cycle control by scientists working with diverse model organisms, thereby appreciating the discovery pathways in this field. A comprehensive understanding is necessary to address current challenging questions about cell cycle control. Advances in genomics, proteomics, quantitative methodologies, and approaches of systems biology are redefining the traditional concept of what constitutes a model organism and have established a new era for development of novel, and refinement of the established model organisms. Researchers working in the field are no longer separated by their favorite model organisms; they have become more integrated into a larger community for gaining greater insights into how a cell divides and cycles. The new technologies provide a broad evolutionary spectrum of the cell-division cycle and allow informative comparisons among different species at a level that has never been possible, exerting unimaginable impact on our comprehensive understanding of cell cycle regulation.
Collapse
Affiliation(s)
- Zhaohua Tang
- W.M. Keck Science Center, The Claremont Colleges, 925 North Mills Avenue, Claremont, CA, 91711, USA,
| |
Collapse
|
50
|
Schwarz JS, de Jonge HR, Forrest JN. Value of Organoids from Comparative Epithelia Models. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2015; 88:367-74. [PMID: 26604860 PMCID: PMC4654185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organoids have tremendous therapeutic potential. They were recently defined as a collection of organ-specific cell types, which self-organize through cell-sorting, develop from stem cells, and perform an organ specific function. The ability to study organoid development and growth in culture and manipulate their genetic makeup makes them particularly suitable for studying development, disease, and drug efficacy. Organoids show great promise in personalized medicine. From a single patient biopsy, investigators can make hundreds of organoids with the genetic landscape of the patient of origin. This genetic similarity makes organoids an ideal system in which to test drug efficacy. While many investigators assume human organoids are the ultimate model system, we believe that the generation of epithelial organoids of comparative model organisms has great potential. Many key transport discoveries were made using marine organisms. In this paper, we describe how deriving organoids from the spiny dogfish shark, zebrafish, and killifish can contribute to the fields of comparative biology and disease modeling with future prospects for personalized medicine.
Collapse
Affiliation(s)
- Julia S. Schwarz
- Yale College, Yale University, New Haven, Connecticut,Department of Medicine, Yale School of Medicine, New Haven, Connecticut,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine
| | - John N. Forrest
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut,Mount Desert Island Biological Laboratory, Salisbury Cove, Maine,To whom all correspondence should be addressed: John N. Forrest, Jr., MD, Office of Student Research, 308 ESH, Yale School of Medicine, New Haven, CT; Tele: 203-785-6633; Fax: 203-785-6936;
| |
Collapse
|